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ABSTRACT 

The continued development of General Circulation Models (GCMs) towards increasing 

resolution and complexity is a predominantly chosen strategy to advance climate science, 

resulting in channelling of research and funding to meet this aspiration. Yet many other 

modelling strategies have also been developed and can be used to understand past and present 

climates, to project future climates and ultimately to support decision-making. We argue that 

a plurality of climate modelling strategies and an equitable distribution of funding among 

them would be an improvement on the current predominant strategy for informing policy 

making. To support our claim, we use a philosophy of science approach to compare 

increasing resolution and complexity of General Circulation Models with three alternate 

examples: the use of machine learning techniques, the physical climate storyline approach, 

and Earth System Models of Intermediate Complexity. We show that each of these strategies 

prioritises a particular set of methodological aims, among which are empirical agreement, 

realism, comprehensiveness, diversity of process representations, inclusion of the human 

dimension, reduction of computational expense, and intelligibility. Thus, each strategy may 

provide adequate information to support different specific kinds of research and decision 

questions. We conclude that, because climate decision-making consists of different kinds of 
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questions, many modelling strategies are all potentially useful, and can be used in a 

complementary way. 

 

SIGNIFICANCE STATEMENT 

The intended purpose of the paper is to argue for the simultaneous and equitable 

development of modelling strategies in climate science. This should replace the dominant 

strategy that is the continued development of resolution and complexity in General 

Circulation Models (GCMs). We argue that different modelling strategies, including 

storylines, machine learning techniques, and Earth system Models of Intermediate 

Complexity, are complementary to inform policy making due to the distinct values they 

prioritise. Importantly, this paper promotes equitable (not necessarily equal) distribution of 

funding among these strategies, while there is a research politics tendency to prefer high 

resolution complex modelling. 

CAPSULE (BAMS) 

We argue that a plurality of modelling strategies in climate science would provide better 

information than the currently dominant strategy of increasing resolution and complexity of 

General Circulation Models. 

1. Introduction 

In the last thirty years, the concentration of research effort upon increasing resolution and 

complexity in General Circulation Models (GCMs) has been a predominant modelling 

strategy in climate science (Palmer and Stevens 2019). The hope is that this fundamental 

research development will both increase process understanding and, in time, lead to reliable 

fine-grained projections, which in turn can support decision-making and political action at all 

levels, from the United Nations Framework Convention on Climate Change to local climate 

services (Stevens et al. 2023). To support this research, funding has been channelled into the 

physical and computational sciences (Overland and Sovacool 2020) and particularly into the 

high-resolution models developed and maintained by larger modelling centres with high 

performance computing facilities. In recent years there has been more coordinated lobbying 

for further funding at the scale of US$250 million per year to go into the development of 

kilometre-scale GCMs (Slingo et al. 2022; Hewitt et al. 2022). In July 2023, the Berlin 

Summit for EVE (Earth Virtualization Engines) called for investment of EUR300 million per 
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centre per year for three to five centres to provide “small ensembles of km-scale multi- 

decadal global climate projections” and associated outreach and capacity development  

activities (Stevens et al. 2023).   

However, there is no universal agreement that this approach is the most effective use of  

resources, especially when climate research output is intended to support decision-making  

(Stainforth and Calel 2020; Rodrigues and Shepherd 2022; Findlater et al. 2021). While  

greater coordination in GCM-focused climate research is largely taken to be a good thing –  

allowing for intercomparison projects and better understanding of uncertainty – the prospect  

for providing relevant and actionable climate projections for decision support has been the  

subject of more debate (Lemos et al. 2012; Kirchoff et al. 2013; Hewitt et al. 2021).   

In this paper, we argue for a pluralism of modelling strategies in climate research, and  

therefore for an equitable1, more diversified distribution of funding among the current  

strategies. There is, on the climate research market, an array of modelling strategies which in  

addition to GCMs of maximum resolution and complexity, includes the construction of  

superparameterisations or of Convection-Permitting Models (Fosser et al. 2020); the  

downscaling of GCMs via Regional Climate Models and/or statistical models (Jacob et al.  

2014; Giorgi 2019); the use of machine-learning-based modules and models (Chantry et al.  

2021); the deployment of narrative explanations called storylines (Shepherd et al. 2018),  

which diversify the evidence for narratives beyond GCMs (Baldissera Pacchetti et al. 2023);  

the coupling with the biosphere and anthroposphere in Earth system Models of Intermediate  

Complexity (Steffen et al. 2020); the coupling with economy and energy in Integrated  

Assessment Models (Nordhaus and Boyer 2003); and the use of other non-climate-focused  

models with climatic representation or climate inputs, such as ecosystem models and climate  

impact models (eg Rosenzweig et al 2017).  We argue that given the complexity of the  

climate system, modelling strategies should not compete against one another to be seen as the  

best or the only source of information about future climate. We argue that they are  

compatible with each other, and can be seen as complementary tools to advance our current  

knowledge base. Doing so, we follow the fundamental argument of Held (2005) and Balaji  

(2021) that hierarchies of models of differing levels of complexity can all contribute to our  

understanding of a system and our ability to assess the confidence we should have in our  

                                                 
1 Articulating what is meant in practice by an equitable funding distribution requires input from a wider 

community, so it is beyond the scope of this paper and will be the subject of future work by the authors. Here 
we only note that “equitable” does not mean “equal”. 
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predictions. Instead of a hierarchy, however, we visualise a connected network of models 

which take multiple viewpoints and provide different perspectives. In this view, there is no 

fundamental reason to prefer one strategy over another in an absolute way: the value of each 

approach is mutually reinforced by investment in the others, especially where they provide 

different kinds of information about different aspects of the system – which may be of 

interest to different potential stakeholders or users. 

We adopt a philosophy of science approach when comparing GCM development aimed at 

enhancing resolution and complexity with three other examples: machine learning 

techniques, the physical climate storyline (PCS) approach and the Earth system Models of 

Intermediate Complexity (EMICs). With these three we are not aiming to be comprehensive: 

we choose these strategies because they are already in development and/or in use, and are 

significantly different from each other (regarding climate modelling strategies, see also Held 

2005; Katzav and Parker 2015; Walmsley 2020, Balaji 2020). As such, these strategies 

provide examples of alternative approaches to advancing our understanding of the climate. 

We show that each of these strategies prioritises a particular set of aims, among which are 

empirical agreement, realism, comprehensiveness, diversity of process representations, 

inclusion of the human dimension, reduction of computational expense, and intelligibility. 

More precisely, we first identify the aims of the continued increase of resolution and 

complexity of GCMs (Section 2). We call this the “predominant approach” to reflect the 

continued emphasis on GCM development as described above, and contrast it with the many 

aspects of climate change research that do not necessarily involve developing models of ever 

higher resolution and complexity. We then discuss the aims of three selected alternative 

modelling strategies (Section 3). It will follow that the alternative strategies have different 

degrees of conflict with the aims favoured by the predominant approach, a conflict which 

may contribute to debate about their respective effectiveness and acceptability. We reflect 

this debate back onto the predominant approach itself. We suggest that for each type of 

approach the targeted methodological aims make the strategies more or less adapted to 

answer particular kinds of real-world decision questions. Thus, because climate decision-

making consists of many different kinds of questions, these modelling strategies (and many 

others which we have not looked at here) are all useful, and act in a complementary way. We 

conclude that we should therefore be pluralist about modelling strategies, and that funding 

should reflect this pluralism (Section 4). 
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2. The predominant approach: increasing resolution and complexity of  

GCMs  

Historically, climate science has developed directly from meteorology and numerical  

weather prediction, a field that has seen significant improvement in predictive skill and  

decision support utility due to improvements in computational power and model resolution.  

The scientists involved in the early stages of the development of climate science as a  

discipline and its standard approach shared a fundamental assumption: that having better  

computers and more detailed models would also drastically improve the skill of climate  

modelling (Edwards 2010), and indeed there has been much improvement in this respect.  

Climate scientists continue to argue that still more computational power will allow for  

higher-resolution and more complex models that will continue to improve the predictability  

of climate variables (Shukla et al. 2009; Palmer 2011; Palmer 2014; Palmer and Stevens  

2019; Slingo et al. 2022; Hewitt et al. 2022) and thereby improve the utility of climate  

prediction for decision support.  

There are many nationally-funded research projects that are devoting resources to the  

development of high-resolution climate modelling, for instance Clima (Clima 2021), the  

“Destination Earth” project (Hoffman et al., 2023), and the UK Met Office Unified Model  

(Met Office 2021). Moreover, all of the ongoing nationally-funded research centres submit  

climate model runs to the Coupled Model Intercomparison Project (CMIP) as contributions to  

the IPCC (Intergovernmental Panel on Climate Change) process. This has not been the only  

focus of climate research (we outline others below), but, the preferred, predominant, and  

most-funded modelling strategy of climate science has been and still is to build increasingly  

high-resolution and increasingly complex simulation models of the physical climate in order  

to produce quantitative climate projections.2  

We identify three methodological aims that are associated within the predominant  

approach. The first aim is empirical agreement of the model outputs. Minimally, the model  

reconstructions of the past and present climates must be able to qualitatively correspond to  

patterns in the observational data. The second aim is realism of the model assumptions. For a  

given system, there is a tendency to work towards more realistic representations, thus  

                                                 
2 By definition, this excludes funding directed to, e.g., developing observation networks and the related 

technology. Here, we are currently concerned with efforts directed towards dynamical and statistical modelling 
and analysis of what can be defined as “the climate system”. Of course, we recognise that modelling does also 
rely on other activities such as data collection.  
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correcting for previous simplifications, notably through the integration of more variables and 

fine-grained details, or replacing previous parameterisations by explicit theory-based 

equations.3 The third aim is comprehensiveness of the models, in terms of the sheer quantity 

of process representations in the models. There is a tendency to continually expand the 

boundaries of the modelled system, and to integrate more and more processes in the models. 

The current emphasis on higher spatial resolution in climate modelling is connected with both 

realism and comprehensiveness, and generally entails increase in computational power. It is 

assumed that this will also lead to better predictability of climate variables, which we discuss 

further below.  

An important pragmatic consequence of prioritising the same set of aims is that models 

essentially all have the same end goal, so that in principle they can be made interoperable and 

intercomparable, and that if there were no cross-dependencies, the multi-model ensemble 

could be interpreted as a collection of equally plausible representations of the climate system, 

for further statistical treatment. The Coupled Model Intercomparison Project (Eyring et al. 

2016) relies on this kind of standardisation of inputs and outputs in order to generate 

information supporting the IPCC’s assessment of climatic changes and impacts over the next 

century. There is also a feedback effect, insofar as the IPCC framework itself helps to shape 

and promote the shared goals of the modelling community and to encourage this kind of 

intercomparability. 

The outputs provided by GCMs are also conveniently shaped for ingestion into further 

models which elaborate the consequences of projected climatic changes (such as downscaling 

models, physical impact models, and economic models), although representations of 

uncertainty are not so convenient and often do not make it into models further down the 

modelling chain (see Clark et al. 2016 for a discussion of the representation of uncertainty in 

hydrological impacts of climate change). Limitations to computational power means that this 

cascade cannot be fully explored, leading to important knowledge gaps and to what has been 

called the “cascade of uncertainty” (Wilby and Dessai 2010).  

However, an exhaustive exploration of uncertainty and its bounds is an important 

component to decision-making. While there have been calls to reduce different types of  

                                                 
3 “Realism”, here, is the term that scientists generally use to characterise their modelling assumptions, it is 

not what philosophers take to be as scientific realism. We use realism instead of “accuracy” because we want to 
avoid any connotation of “correctness”. 
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uncertainty in climate projections (e.g. Hawkins and Sutton 2009), increasing resolution and  

complexity of GCMs has not always reduced model projection uncertainty (Knutti and  

Sedlacek 2012, see especially Fig. 1).  The inclusion of new processes can radically change  

the space of possible outcomes, such as the Marine Ice Cliff Instability contribution to  

uncertainty in sea level rise projections (described by Horton et al. 2020). Some climate  

scientists have called for a different type of approach to uncertainty assessment and  

management, such as through “counterfactual thinking” (see, e.g., Rodriguez and Shepherd  

2022).   

3. Alternative approaches  

Let us now explore the extent to which alternative modelling strategies – machine  

learning techniques, storylines and EMICs – meet the three aims of empirical agreement,  

realism and comprehensiveness, and promote additional methodological aims.  

a. Machine learning techniques  

Machine learning (ML) approaches to climate modelling offer the possibility of rapid  

progress on data-intensive tasks for which these methods are well-suited; indeed, aspects of  

data assimilation, sub-grid-scale process parameterisation and model output post-processing  

in weather and climate could already be classed as ML methods (Schultz et al. 2021). The  

potential to reduce the computation time even for a subset of tasks is attractive, given that  

weather and climate models operate at the limits of the available computational resource and  

are already implemented on high-performance computing architectures which are  

increasingly designed to support ML methods. We distinguish here between small-scale or  

“soft AI” approaches (Chantry et al. 2021) which incorporate ML methods into small  

subroutines of the climate model, versus larger-scale (Chantry et al. 2021’s “hard AI”)  

approaches which use ML methods as climate model replacements, to predict field-scale  

outputs. The former constitute only an extension of the GCM approach – the subject of  

discussion in this section is “hard AI”.  

With respect to empirical agreement with observations, ML-based models have at least  

the potential to perform similarly or better than simulation models, though both approaches  

have their limitations when the parameters of the system go beyond the data used to fit the  

model, as is the case for future climatic change. If the physics-based nature of a model is the  

underlying reason to have any confidence that it will perform as well in the future as in the  
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past, then fully ML-based models must take some care to express intelligibly the reasons for  

expecting empirically-derived relationships to continue to hold out-of-sample, but this is not  

in principle impossible.  

Regarding realism, one characteristic of ML is that the data are not assumed to conform  

to given physical laws or regularities, instead relying on the emergence of those regularities  

in statistical form. In climate modelling, physical process representation has generally been  

the preferred form of modelling, with statistical or empirically-derived parameterisations  

used only where physical processes are insufficiently well understood or would require a  

prohibitive share of the computing resource. “Hard AI”, or larger-scale implementation of  

ML methods to directly predict field-scale outputs, is in conflict with the aim of realism.  The  

“hard AI” approach has made significant progress on weather-forecasting timescales, with  

skill levels currently similar to operational Numerical Weather Prediction (NWP) (Lam et al.  

2023).  The ability to train longer-timescale ML models is lower, due to the scarcity of data,  

but we note that the same caveat about calibration also applies to process-based models, since  

we are always subject to the inductive problem that past performance does not guarantee  

future success.  In principle, it could be possible for a “hard AI” implementation to learn the  

laws of physics and make reliable projections without containing explicitly “realistic”  

representations corresponding to current human understanding of physical processes.  A  

middle-ground may be provided by new physics-informed deep learning approaches, for  

which the primary motivations include “more interpretable ML methods that […] can provide  

accurate and physically consistent predictions, even for extrapolatory/generalization tasks”  

(Karniadakis et al. 2021).  

ML approaches allow for comprehensiveness within their own architecture: a larger  

neural network, or the addition of more layers of deep learning, or the addition of more  

sources of data. But additional complexity here does not map directly to the kinds of extra  

complexity in terms of additional process representations usually targeted by climate model  

development. For a simulation model, the consideration of more physical systems necessarily  

implies a larger and possibly more complex model architecture, where for a ML-based  

model, the complexity of input data and complexity of the internal structure are largely  

independent. If the aim is to account for the effects of as many processes as possible, then a  

simulation-based approach necessarily meets the limits of computational resource where a  

ML approach can be more efficient. Balaji (2021) argues that computational limits alone  
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(before considering energy requirements) will force a pragmatic change to this aim: “the  

continual addition of detail in our simulations is something that may have to be reconsidered,  

given certain physical limits on the evolution of computing hardware [...]. We may be  

compelled down some radically different paths” (2021, 2).  

What are the additional aims that are highlighted by considering ML approaches to  

modelling? One possible aim is reduction of computational expense, something considered  

by the predominant perspective as a simple boundary condition. Although the computational  

expense of initial ML model training is significant, use for provision of climate services  

would likely take the form of interaction with pretrained models (analogous to the current use  

of CMIP data). Another aim is intelligibility. This is the ability of the user to generate  

explanations based on the model (de Regt, 2017; Jebeile, Lam, and Räz 2020): ML models  

are typically opaque in this respect (Knüsel and Baumberger 2020; Jebeile, Lam, and Räz  

2020). While simulation models are naturally intelligible in that they construct causal  

physical chains, Reichstein et al. (2019) note that “given their complexity, modern Earth  

system models are in practice often also not easily traceable back to their assumptions,  

limiting their interpretability” (2019, 199). The lesser intelligibility of ML-based models may  

therefore be less of a trade-off in this respect than is usually assumed. As noted above,  

internal representations of physical processes within ML models may or may not correspond  

to human understandings, but could still result in effective forecasting skill.  The question is  

not necessarily whether skill can be achieved but whether it will be possible for us to identify  

it with sufficient confidence to be able to use it.  

The use of ML or other data-driven approaches to modelling could also stimulate the  

development of new methods for uncertainty quantification, since present methods are highly  

model-laden, tending to explore a subspace of possible physical model configurations, such  

as those generated by systematic perturbation of initial and boundary conditions and model  

parameters. While “soft AI” approaches do not alter this paradigm, sensitivity analysis for  

“hard AI” approaches would be interesting to compare with existing uncertainty estimates.  

Without a well-defined set of parameters to consider perturbing, such sensitivity analysis  

might take the form of retraining ML models given different sets of input data, objective  

functions, or calibration targets.  This raises the same issues already of concern to GCM  

approaches, of appropriate choices of calibration targets and the trade-off in allocating  

computational resource to sensitivity analysis rather than the best possible single model.  
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b. Physical Climate Storylines  

A physical climate storyline (PCS) is defined as “a physically self-consistent unfolding of  

past events, or of plausible future events or pathways” (Shepherd et al. 2018), and the IPCC’s  

Sixth Assessment report (AR6) defines PCS as exploration of “plausible trajectories of  

weather and climate conditions or events, especially those related to high levels of risk”  

(Arias et al. 2021, Box 1). The PCS approach is still heterogeneous and while not an  

approach that develops new models per se, instead often relying upon some kind of modelled  

output, can be seen as a set of methodological guiding principles which embody different  

types of epistemic and non-epistemic aims (Baldissera Pacchetti et al. 2023). A common  

theme in this approach is that it prioritises the causal representation of hazards and impact  

chains, by analysing past, present or plausible future climate conditions or events. This  

emphasis is important for prioritising physical interpretation of model output and adequately  

interpreting probabilistic estimates of uncertainty (Shepherd 2021). The focus on conditions  

and events that are related to high levels of risk emphasised in the IPCC definition provides a  

type of question framing that aims to reduce degrees of freedom that focus on those aspects  

of weather and climate that are most immediately relevant to humans (Sillmann et al. 2021)4.  

While it is not possible to provide a general analysis of this approach, we here focus on  

some examples that show a departure from the use of increasingly complex and high  

resolution GCMs as described in the “predominant approach”, both in terms of how to  

interpret and use GCM output, and in the ways they use other types of models to explore  

uncertainty and extreme events.   

Lloyd and Shepherd (2020), for example, describe storylines as an alternative  

representation of causality in the context of climate change and its impacts. Their analysis  

focuses on different key concepts in impact assessments and attribution studies: what counts  

as an extreme event, how causality is conceptualised in impact assessments and attribution  

studies, and how this is related to the use of statistics in climate change science. Because of  

the difficulties tied to conceptualising and modelling extreme events with the predominant  

approach (e.g. lack of sufficient historical data to validate and verify model performance for  

extreme events), Lloyd and Shepherd (2020) argue that the storyline approach can provide a  

                                                 
4 “Storylines” are also sometimes used to describe “scenario storylines” to represent possible 

socioeconomic future scenarios used to force GCMs. We are not discussing that type of storyline here, but see 
Rounsevell and Metzger (2010); Rounsevell et al. (2021); Baulenas et al. (2023). 
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better alternative to evaluating the causes of extreme events and how these may change under  

global warming by framing the scientific problem differently.  

The PCS approach is not univocal in its attitude to the methodological aim of realism. For  

example, storylines that are based on weather forecast models do aim at detailed  

representation of the region for which the storyline is constructed, and the detailed  

representation of the system is generally regarded as one of the strong suits of this approach  

(Hazeleger et al. 2015; van den Hurk et al. 2023). On the other hand, the narrative approach  

of Dessai et al. (2018) focuses on reducing the degrees of freedom of a system by identifying  

the key components that may be most sensitive to changes in global mean temperature, as  

well as exploring scenarios of atmospheric circulations that would not be captured by the  

models, thereby not prioritising realism in the way we have defined this aim above.   

Comprehensiveness is not prioritised in most of the examples of the storyline approach, as  

the boundaries of the system to be represented are strictly set by the specific (eg  a certain  

event or region) focus of the approach. For example, a recent commentary of event-oriented  

PCS (Sillmann et al. 2021) highlights how the focus of event-based climate storylines does  

not aim at a full causal analysis of attribution factors, but rather on the impacts of events that  

contribute to climate related risks.  

The approach strongly aims at empirical agreement by rooting PCS in observed events or  

NWP output, and in many cases linear temperature scaling is subsequently used to explore  

counterfactual events under different thermodynamic conditions. These counterfactuals are  

not empirically verifiable, but their plausibility is rooted in the argument that there is less  

uncertainty in exploring changing thermodynamic conditions while keeping the dynamics the  

same (Trenberth et al. 2015).   

Approaches to PCS development such as the one of Dessai et al (2018) reduce  

computational expense, either by relying on expert elicitation to explore bounds of  

plausibility and/or uncertainty, or by only exploring only key chains of counterfactual events  

related to climatic hazards under different thermodynamic conditions (Hazeleger et al. 2015).   

Climate storylines emphasise other aims that are not prioritised by the predominant  

approach. Although all the storyline approaches have a focus on the physics, due to the role  

of the (atmospheric) climatic component in storylines, the storyline approach of Hazeleger et  

al. (2015) and Shepherd et al. (2018) focuses on the choice of physical hazards (climate  

events) driven by considerations of the impacts they would generate. Thus, climate storylines  
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typically include the human dimension to a greater extent. In this way, they can be the basis  

for an in-depth study of human and ecosystem vulnerabilities to extreme events (Sillmann et  

al. 2021) or allow for better integration of top-down and bottom-up decision-making  

approaches (Dessai and Hulme 2004; Dessai et al. 2018; Bhave et al. 2018).  

Another aim that is prioritised in this approach is intelligibility. Risbey et al. (2002) argue  

that GCM output, especially when used to derive regional information, should be  

complemented with regional expertise to interpret model output, due to the complexity and  

uncertainty related to GCMs. The storyline approach instead avoids proliferation of  

uncertainties by focusing on developing “counterfactual explanations” of plausible futures  

(Hazeleger et al. 2015; Sillmann et al. 2021). Similarly, the approach of Dessai et al. (2018)  

uses expert elicitation to derive process-based narrative that focus on key mechanisms that  

may drive future changes in the region of focus. Due to this focus on intelligibility, storyline  

approaches work not only as alternative methods to explore the uncertainty related to future  

climate, but also as tools that can better communicate how a changing climate can impact  

society and ecosystems.  

c. Earth system Models of Intermediate Complexity  

Earth system Models of Intermediate Complexity (EMICs) are being developed with the  

holistic ambition of capturing the climate system by representing a larger number of  

components than GCMs, but in correspondingly less detail. Compared to GCMs, EMICs  

idealise relatively well-understood components (oceans, atmosphere, dynamics) and therefore  

can put greater refinement on less well-understood components which can be the source of  

important feedbacks or tipping points. This way, EMICs are able to investigate the influence  

of human elements, non-linearities, and abrupt transitions that are the scope of Earth system  

studies (eg Kim et al. 2022).  

The conceptual foundation of the Earth System Science (ESS) “one model to fit all”  

(Uhrqvist 2015) strategy is the diagram of Bretherton (1985) and has been updated since  

(Steffen et al. 2020, figs. 3, 61). Following Steffen et al. (2020), three main components  

interact with each other: the geosphere, the biosphere, and the anthroposphere (which covers  

the energy systems, science and technology, institutions and political economy, human  

population with their futures, values and beliefs, and production and consumption). All of  

these components and sub-components interact with each other, and in this inclusive picture,  

only sun, volcanoes, and fossil fuel combustion are considered as external forcings. Such  
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conceptual frameworks in ESS led to the development of policy-relevant concepts such as the 

Anthropocene, tipping elements, and planetary boundaries (see Steffen et al. 2020). 

While “the grand challenge for ESS is to achieve a deep integration of biophysical 

processes and human dynamics to build a truly unified understanding of the Earth System” 

(Steffen et al. 2020, 54), this remains an asymptotic programme. ESS has so far rather 

produced a range of comprehensive yet moderately realistic models on which we focus here.  

EMICs and GCMs do not aim to study the same aspects of the climate system and, for 

that reason, comparing their respective empirical agreement is tricky: they are certainly not 

equally good in reproducing the same datasets. Models with more spatial detail show better 

empirical agreement with spatially detailed observations, but questions still remain how to 

combine the variables into a consistent evaluation metric given that models do not represent 

the same things. EMICs do aim for empirical agreement but do not prioritise it first. 

Regarding comprehensiveness, EMICs aim at integrating the geosphere, the biosphere 

and the anthroposphere, and as such do prioritise comprehensiveness very highly.  (Having 

said that, we note that comprehensiveness does not have a natural definition in terms of the 

number of processes represented in the models (Claussen et al. 2002, 583), and that in a 

comparative sense the “comprehensiveness” is as hard to evaluate as the empirical 

agreement.)  EMICs are specifically built for including more processes than GCMs contain; 

what is gained in terms of computational power (by choosing lower spatial resolution and 

using parameterizations) is reassigned to either increasing simulation time (for 

paleoclimatology) and number of represented large-scale processes. 

Consequently, regarding realism, EMICs are less realistic than complex and detailed 

GCMs. There is indeed an unavoidable trade-off between comprehensiveness and realism 

because of computational limits. EMICs are necessarily more approximate representations of 

the climate system, and therefore choices are made in particular with respect to (i) what 

components should be actually taken into account, and (ii) how realistically they should be 

represented within the model (i.e. with a parameterisation or a specific equation).  

An additional aim that the development of EMICs prioritises is the diversity of process 

representations. The ambition of EMICs is indeed to integrate aspects of the climate system 

that are different in nature: from the physics of the geosphere, to the biology of the biosphere, 

to the socioeconomic and even psychosocial dimension of the anthroposphere. Diversity of 

process representations refers to the degree of heterogeneity of the natures of the interacting 
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components included in the model. Thus, for example, an ESM which integrates a carbon 

cycle and a vegetation dynamics module has a higher diversity of process representations 

than a GCM which does not integrate those modules but describes more atmospheric and 

near-surface oceanic sub-processes. Diversity of process representations also includes the 

idea that the heterogeneous elements are interactively and dynamically coupled with each 

other rather than merely included in the models as prescribed boundary conditions. 

Another related aim of EMICs is the inclusion of the human dimension. EMICs integrate 

the human dimension through diverse perspectives, i.e. social, ecosystemic, and 

environmental perspectives. They aim to describe interconnections and feedbacks between 

the geosphere, the biosphere and the anthroposphere. 

It is worth highlighting that the sacrifice of realism for the sake of quantity and diversity 

of process representations could be justified by the possibility that the error one makes in 

omitting system components of different nature may be greater than the error one makes due 

to lesser realism (an error that one usually tries to reduce by using spatial refinement methods 

like superparameterisations or “soft AI” approaches). Thus, the use of GCMs with increasing 

resolution and complexity “potentially underestimates the role of vegetation dynamics and 

biogeochemical cycles in affecting the climate system and overestimates the importance of 

high spatial resolution and comprehensiveness” (Claussen et al. 2002, 580). On the other 

hand, the tension between realism and comprehensiveness may lead one to develop only one 

aspect of the climate system, aiming at higher realism of physical climatic variables, while 

setting boundary conditions that are supposed to be representative of the other aspects. For 

example, anthropogenic emissions are conceived as forcing factors (or boundary conditions) 

within GCMs, via the definition of emission scenarios. One argument in favour of this 

strategy is that it is easier to add to the model things we already understand well (for a 

physicist, it is easier to add more physics than to learn biology or economics). In this sense, 

one might argue that realism (at local scale) of the physical climate system is more important 

than integrating more diverse components with less realism. 

Finally, regarding intelligibility, in a sense of detailed causal relationships between 

processes within the model, then GCMs with increasingly complex and detailed structure are 

more intelligible than EMICs. But in a sense of overall system-wide intelligibility, the EMICs 

have the potential to provide a qualitative understanding from the conceptual frameworks in a 

wider field which is partially outside the view of GCMs, however detailed. 
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4. Benefits of multiple modelling strategies  

In this section, we first highlight that the predominant approach does not prioritise the  

additional aims uncovered by the above discussion, and as a result, some possible objectives  

of modelling are not fully met by the paradigm of increasing resolution and complexity in  

GCMs. We then argue that, because no single approach can prioritise all of these aims  

simultaneously and meet all possible objectives, a toolbox including all of the modelling  

strategies is preferable to a single one.  

a. Limits of the predominant approach  

First, the predominant approach tends to assume that more powerful computers are  

necessary to build more realistic and more comprehensive models. Therefore, the approach  

treats computational expense as a simple constraint: reduction of computational expense is  

desirable, but only insofar as it allows one to make use of the saved resource elsewhere. The  

main trade-offs in this respect for a state-of-the-art GCM are how to allocate resources  

between further complexity, longer simulation time, and larger ensembles. So, the  

predominant approach leads to ever-increasing costs of computation (and energy, although  

computational efficiency is also improving): supercomputers with price tags in hundreds of  

millions of dollars represent a significant proportion of the costs of existing and proposed  

modelling centres. In addition to the environmental impact and the effect of excluding less- 

resourced groups, this barrier to entry (to participation, for example, in CMIP) effectively  

reduces the potential ensemble size and diversity.   

Improvement in modelling and modelling outputs has been heterogeneous, and depends  

on the time-scale and regions of interest. This heterogeneity may be due to a combination of  

availability of observations for verification, theoretical developments, and development of  

computational tools, amongst other factors. The heterogeneity of model performance is also a  

function of past and present socio-political power relations, resulting in institutions in or  

studying Europe and North America benefiting from higher-quality data, greater research  

funding, and access to more computational resources than institutions in or studying, for  

example, Africa. If the predominant approach is to be continued without further entrenching  

sociopolitical biases, efforts must be made to avoid the continuation of this pattern (James et  
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al. 2018; Mishra et al. 2023) and indeed proposals such as EVE do emphasise the need for 

global participation and capacity-building (Stevens et al. 2023). 

Second, in the predominant approach, the human dimension has remained largely absent 

from the equations even while we became increasingly confident that humanity is the primary 

driver of climate change. The direct effect of humans on the climate remains separated from 

GCMs in economic models (the families of Integrated Assessment Models used to generate 

socioeconomic scenarios) while the effects of the climate upon humans are left to impact 

models and economic models, effectively preventing quantitative treatment of potential 

feedbacks or cascading consequences which could lead to social or physical “tipping points”.  

There is a need for more integration of different perspectives to better understand the 

intricacies of the human-environment interaction and increase the salience of decision-

relevant science (Conway et al. 2019).  

Historically, climate science has indeed been conceived as a physics-based discipline. 

However, the focus on physics ignores important social and methodological issues that 

philosophers, environmental social scientists and increasingly physical climate scientists, are 

recognising as important aspects of a comprehensive evaluation of the quality of climate 

change related knowledge (see, e.g. Shackley and Wynne 1995; Shackley et al. 1998; Dessai 

and Hulme 2004; Winsberg, Oreskes, and Lloyd 2020; Jebeile and Crucifix 2021). 

Integrative approaches which bring the human element closer to physical models include co-

production approaches (Bremer and Meisch 2017) and climate risk narratives (Jack et al. 

2020) as well as storylines and EMICs. 

Third, comprehensiveness can be in tension with intelligibility. At the small scale, 

physics-based GCMs are intelligible by design, in that every effect can be traced to a 

“physical” (within the model) cause. At the larger scale, however, more comprehensive 

models introduce cascading complexity and so make it hard for the user to develop an 

intuitive understanding of the model outputs. A result of this lack of overall intelligibility is 

that the task of tuning a climate model has become an extremely complex undertaking 

(Hourdin et al. 2017; Balaji et al 2022). Yet, intelligibility at the larger scale can be an 

important requirement if we consider transparent communication of scientific results to a 

wide audience to be of importance. In this respect, the use of storyline approaches can prune 

the scope of consideration sufficiently to allow simpler explanation of effects and a more 

targeted exploration of uncertainty. 
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Fourth, the diversity of process representation is not prioritised by GCMs, meaning that 

there is an imbalance in potential sources of uncertainty. Statistical methods which are used 

to analyse the outputs of GCM ensembles and generate probabilities about future climate are 

not able to take account of this imbalance, since it is unknown to what degree any errors 

might be independent of each other. As Katzav et al. (2021) note, if it is desirable to provide 

probabilities then a more systematic attempt would need to be made to explore the range of 

possible model outcomes; they conclude that “Experimental designs should prioritise the 

maximisation of diversity within ensembles” (12) and that sensitivity analyses alone (the 

standard method uses perturbed parameter ensembles, supplemented with outcomes from 

emulators, or at best an ensemble of alternate GCMs) are insufficient to achieve this. 

Finally, we address the objection that any of the above methodological aims may only be 

desirable insofar as they provide some warrant that the outputs of a model will be reliable and 

hence useful for decision support. The methodological aims prioritised by the predominant 

approach of increasing resolution and complexity in GCMs (empirical agreement, 

comprehensiveness, and realism) are promoted because they are taken to be the most 

effective way of supporting an argument that the model outputs will offer good predictions, 

conditional on giving it the right input. We offer two counterpoints to this assumption. First, 

the increasing complexity of models means that progress towards “better” outputs is no 

longer (if it ever was) monotonic - physical improvements to one module or component may 

result in degradation of quantitative performance in other areas (Schmidt et al. 2017, Hourdin 

et al. 2017). Second, it is useful to distinguish between raw predictive capability and utility as 

decision support. Even if the quantitative reliability of projections of large-scale climate 

variables is improved, it is not necessarily the case that we would have more adequate 

information for decision support (Kirchhoff, Lemos and Dessai 2013). On smaller scales, the 

provision of increasingly detailed climate projections suffers from the problem of poorly-

constrained large-scale uncertainties (such as sea level rise) and uncertainty cascades, 

including human and socio-economic feedbacks as well as possible “climate tipping points”, 

which could dominate the smaller uncertainties in varied GCM (or RCM) outputs. As such, it 

does not seem to us to be conclusively demonstrated that increasing resolution and 

complexity will improve utility for decision support, even if it does result in improved 

predictive capability for a subset of prioritised variables.  
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Returning to Isaac Held’s concept of a “hierarchy of models”, the above discussion  

suggests one compelling reason to reject this in favour of a “network” or “toolbox” of models  

and model value. There is no top of the hierarchy and no single scalar dimension on which to  

rank either the conceptual or empirical quality of a model. Even if we could guarantee that  

each improvement to physical representation would result in improved predictive ability, we  

would still need to account for the needs of different stakeholders (user communities).   

b. A toolbox for climate information  

Now that we have shown that the predominant approach favours certain methodological  

aims while it sacrifices other possibly important aims relevant for policy support, we want to  

argue that having a toolbox of diverse strategies rather than a single approach will allow one  

to better satisfy the existing diversity of user needs. Moreover, with multiple strategies  

available, the range of possible stakeholder engagements with climate modelling is also  

increased, improving the accessibility of knowledge.  

First of all, we should make it clear that favouring any modelling strategy is actually a  

value-laden view on how science can best inform society (including the kinds of stakeholders  

whose information preferences are prioritised (Porter and Dessai, 2017)). A preference for  

one modelling strategy over another is strongly motivated by a certain ideal of “what good  

science ought to be”. More precisely, it is driven by the scientific community’s take on what  

models would produce the “best” information for decision support. Longino (1996) shows  

that scientific aims are never strictly epistemically motivated, and goes further to suggest that  

qualities such as novelty, ontological heterogeneity, mutuality of interaction, applicability to  

human needs, and diffusion or decentralisation of power can be taken as genuine scientific  

aims, although they are also tinged with values. While Longino focuses on scientific theories,  

where we focus on modelling strategies, and more particularly on climate modelling  

strategies, we use her assertion that scientific aims are driven by views about how science can  

best inform us about the world, and those views can partly be loaded with social, economic  

and political values. Thus, in climate science, favouring any given modelling strategy is a  

value-laden choice, with political and social implications.   

Second, each modelling strategy comes with its own set of methodological aims. It  

follows that each modelling strategy is more or less suitable in supporting decisions  

depending on the kinds of questions that are being addressed. Increasingly high-resolution  

and more complex GCMs provide consistent long time-series of climatic variables which are  
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of most use for large-scale quantitative decision-making such as distinguishing between  

options for where in Europe to locate a new wind farm. The ML approach makes a more  

efficient use of computational resource; it may be particularly useful for data-intensive  

applications at the short timescale where direct verification is feasible, such as downscaling  

forecasts of wind conditions to hyper-local scales. Storylines are intelligible, making them  

particularly suitable in public and fast communication on climate risks, for example  

providing information about how the risk of a particular kind of extreme wind event is  

changing over time. EMICs provide one with a systemic view of interactions and feedbacks  

between important components of the climate system; these models are valuable in  

identifying and communicating larger-scale and systemic risks (blind spots for GCMs) and  

providing an interdisciplinary interface for climate science with fields such as energy policy  

and geopolitics. Other families of impact models and Integrated Assessment Models, though  

we have not considered them here, target other stakeholders and other methodological aims,  

ingesting data and framings provided both by GCMs and by other models and scenarios of  

future environmental change.  

Finally, we see the plural development of climate modelling strategies like adding more  

tools to a toolbox. With more tools, one can better satisfy the diversity of user needs as  

sketched in the previous paragraph. We find the metaphor of a toolbox helpful here: a  

screwdriver – optimised for one purpose – is no good when one needs a hammer, and a Swiss  

Army knife – strategy which attempts to maximise all desiderata simultaneously – will be  

less effective for any job than the adequate tool. But it is often said that when all you have is  

a hammer, every problem looks like a nail. When increasingly high-resolution and complex  

GCMs are the primary tools for provision of climate information, how might this limit our  

approaches to climate change adaptation? Stainforth and Calel (2020) have argued that  

“Before ploughing billions into developing specialised computers and associated computer  

models, it would be wise to first develop a good theoretical understanding of what is  

necessary and sufficient to build models capable of such high-resolution predictions” (p2).  

We agree, and we extend their condition. It would also be wise to develop a more coherent  

theoretical understanding of what kind of climate modelling is necessary (though perhaps  

never sufficient) to inform good climate decision-making. In our view, this requires the active  

participation of more stakeholders than the highly-quantitative organisations whose needs,  

wishes and expectations are prioritised by the further development of highly complex and  

detailed GCMs.  This could be achieved by diversifying modelling strategies, not by  
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consolidating yet more effort onto a single strategy.  A bigger and better hammer will  

certainly do a better job of hammering nails, but as not all things are nails that need  

hammering, this alone does not make it the best possible investment.    

5. Concluding remarks  

The predominant approach to climate modelling – making further investment in the  

development of increasingly complex and high resolution GCMs at the expense of other  

approaches – is limiting both the kinds of climate information that can be gained and the  

kinds of stakeholders who can engage with and use that information. We could make better  

climate decisions if we had more robust information from a range of sources, that was  

applicable to a variety of situations and relevant to more stakeholders. To do better science,  

we need to diversify the approaches, not double down on the existing paradigm. The  

currently predominant modelling strategy is also the most computationally expensive, and  

therefore promoting diversity need not be a significant drain on computational resource. It  

does not mean we have to fund everything, distribute financial resources equally, or spread  

the resources too thinly to get anything useful anywhere. It does not even necessarily mean  

funding the limited set of complementary alternatives we have considered here.  It might also  

stimulate debate about novel forms of models and modelling approaches with even more  

different aims; perhaps ones centred around ecosystems, the concept of “just transition”  

(Heffron, 2022), or participatory co-production. The politics of science funding requires some  

coordination (and democratically decided priorities) to decide what projects should be funded  

and in which of many possible ways diversification should be achieved. The outcomes of  

active diversification would be to broaden the kinds of decision questions we are capable to  

answer, as well as to have more justified confidence in the robust core of projections, more  

potential input from those who will be affected by decisions, and thereby more effective  

consensus building for climate action.  
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