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Abstract

Galileo asked in his Dialogue of the Two New Sciences what relationship exists between
the size of the set of all natural numbers and the size of the set of all square natural numbers.
Although one is a proper subset of the other, suggesting that there are strictly fewer squares
than natural numbers, the existence of a simple one-to-one correspondence between the two
sets suggests that they have, in fact, the same size. Cantor famously based the modern
notion of cardinality on the second intuition, but recent advances in mathematical logic
(most notably, numerosity theory) have renewed an interest in the question whether Cantor’s
way out of Galileo’s paradox was the only possible one. I present a new solution to Galileo’s
paradox and argue that it is a better alternative to the Cantorian solution than numerosity
theory. In fact, I argue that it is the best possible way out of Galileo’s Paradox that can be
based on the “Euclidean” intuition that the whole is always greater than any of its proper
parts.

1 Galileo’s Paradox

How many natural numbers are there? Answering such a question requires us to extend our usual
concepts of counting and size from finite to infinite collections. But many issues arise as soon as
we undertake that task. Galileo offered a vivid presentation of one such issue in his Dialogue of
the Two New Sciences [11], although, as thoroughly established by Mancosu [20], the problem
itself has a much longer and richer history. On the first day of their dialogue, Salviati (Galileo’s
stand-in the Dialogue) is challenged by a perplexed Simplicio, who asks the following question:
how is it possible that a line, containing infinitely many points, may however be a proper part
of another line, who must therefore contain a greater infinity of points? Salviati replies:

This is one of the difficulties which arise when we attempt, with our finite minds, to
discuss the infinite, assigning to it those properties which we give to the finite and
limited; but this I think is wrong, for we cannot speak of infinite quantities as being
the one greater or less than or equal to another. [11, p. 30]

Salviati argues for his position by giving another example. By a series of questions to Simplicio
about the collection of all square numbers (i.e., numbers of the form n2 for some natural number
n) and the collection of all numbers, Salviati manages to make Simplicio contradict himself. On
the one hand, since every square is a natural number, but the converse is false, there must be
stricly more natural numbers than squares. On the other hand, since every square number can
be mapped uniquely to its root, and every natural number is the root of some square, there must
in fact be as many squares as there are roots of squares, and thus as many square numbers as
there are natural numbers. Salviati draws the following conclusion from the situation:
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So far as I see we can only infer that the totality of all numbers is infinite, that the
number of squares is infinite, and that the number of their roots is infinite; neither
is the number of squares less than the totality of all numbers, nor the latter greater
than the former; and finally the attributes “equal”, “greater”, and “less” are not
applicable to infinite, but only to finite, quantities. [p. 31-32]

Galileo’s solution to the paradox is therefore to retreat: it is simply impossible to extend coher-
ently the concept of size in a way that would allow us to meaningfully compare infinite collections.
Although this is certainly one way to avoid the paradox, it is not a particularly satisfactory one.
Nonetheless, as I will explain below, I think there is some wisdom in Galileo’s restraint.

Galileo’s paradox highlights a tension between two principles which, following [20], I will call
the Bijection and Part-Whole Principles.

Bijection Principle: For any two sets of natural numbers A,B, size(A) = size(B) if and only
if there is a one-to-one correspondence f : A → B;

Part-Whole Principle: For any two sets of natural numbers A,B, if A is a proper part of B,
then size(A) < size(B).

Cantor famously solved the issue by endorsing the first of the two principles. The existence
of a one-to-one correspondence between the set of natural numbers and the set of squares means
that they have the same size. The other intuition, according to which a set can never have the
same size as one of its proper subsets, remains valid in the realm of the finite, but must be
abandoned when it comes to infinite sets. Cantor’s choice led him to develop the modern notion
of cardinality, which is often taken to be an extension of the notion of size to infinite sets.

The success of the Cantorian approach has led to a widespread belief that Cantor’s was es-
sentially the only way to extend the concept of size into the infinite. Gödel [12] famously argued
for such a position when discussing the status of the Continuum Hypothesis in set theory. Such
a view, however, is challenged by the development of alternative theories of size for infinite sets.
Mancosu [20] lists several historical attempts to develop an arithmetic of the infinite based on
the Part-Whole Principle rather than on Cantor’s Bijection Principle. The idea traces back to
Euclid’s “common notion” that the whole is always greater than any of its proper parts, which
is why theories of size trying to follow it are often called Euclidean theories. A prominent figure
among such attempts in the Bohemian polymath Bernard Bolzano, who tried to develop such
a “Calculation of the Infinite” in his Paradoxes of the Infinite [1, 27]. More recently, modern
model-theoretic tools have been used to develop numerosity theory [2, 3, 4], which assigns sizes
to infinite sets (and in particular to sets of natural numbers) in a way that is consistent with
part-whole intuitions. A distinctive feature of numerosities is that the existence of a one-to-one
correspondence between two sets is a necessary but not sufficient condition for their equinu-
merosity. As such, numerosities are a vastly more fine-grained notion of size than cardinality:
while all infinite subsets of the natural numbers have the same cardinality, they have infinitely
many distinct numerosities. Despite their sophistication, several arguments have been raised
against the claim that numerosity theory offers a genuine alternative to the Cantorian path [24,
25, 32]. As we shall see below, I agree with some of these arguments, and I think numerosities
do not provide a satisfactory alternative to the Cantorian notion of size based on part-whole
intuitions. But I think such an alternative theory exists, and my goal in this paper is to present
it and argue that it is, at least in the case of sets of natural numbers, a natural, well-motivated,
and mathematical fruitful way out of Galileo’s paradox. Before getting into this further, let me
briefly outline what I take to be the relevance of this work, by highlighting how it relates to three
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debates in the philosophy of the mathematical infinite.

First, the original purpose of Gödel’s argument is to show that the continuum hypothesis,
which is strictly speaking an issue about cardinality, can also be understood as a basic question
about the size of sets of real numbers. For Gödel, the fact that the continuum hypothesis can
be presented as such a basic problem is evidence that it must, in fact, have a definite answer,
since it asks an elementary question about our concept of set. Should cardinality, however,
be one among several ways of extending our pre-theoretic notion of size into the infinite, this
would also be significant for the debate in the philosophy of set theory regarding whether the
continuum hypothesis is a definite problem [8, 14]. One may, for example, think that cardinality
is a fascinating and mathematically fruitful notion to investigate when studying the infinite,
without assuming that it corresponds to an “objective” property of infinite sets in the way that
the size of a finite set is. In other words, cardinality is a technical notion worthy of mathematical
investigation, but one that ultimately depends on our concept of set rather than on some objective
features of the world. Such a view is therefore consistent with the idea that our concept of set
might simply not be determined enough to settle questions such as the Continuum Hypothesis.

Second, the debate around Galileo’s Paradox is also relevant for the foundation for mathe-
matics, particularly for neologicists. Neologicists hold that Frege’s goal of providing a foundation
for arithmetic based solely on logic and analytically true principles can be achieved. One of the
central tenets of the neologicist program [34] is the claim that Hume’s Principle, from which
the Dedekind-Peano axioms can be derived in second-order logic, is analytic. Hume’s Principle
states that the number of objects falling under a concept F is the same as the number of objects
falling under another concept G if and only if there is a one-to-one correspondence between the
F s and the Gs. Neologicists hold that this is a conceptual truth, self-evident for anyone who
grasps the concept of number. This view is consistent with the idea that Cantor’s notion of
cardinality is the one true way of extending the concept of size (and the closely related concept
of number of elements) into the transfinite. However, as remarked in [15, 19], if one thinks that
there are alternative ways of extending the concept of number from the finite to the infinite,
including some that are consistent with part-whole ideas rather than with Cantorian ones, then
the neologicist’s claims become much harder to maintain. In particular, this leads to the “Good
Company” objection to the neologicist program: since there are consistent principles based on
part-whole intuitions that can deliver the Dedekind-Peano axioms yet are incompatible with
Hume’s Principle, on what grounds could the claim that the latter is a conceptual truth about
the concept of number be based? If there are legitimate alternatives to the Cantorian definition
of (finite and infinite) number, then Hume’s Principle might still be true, but it is certainly not
a conceptual truth about the concept of number.

Lastly, Euclidean ideas have recently been discussed in the context of probability theory.
As it is well known, Kolmogorov probability theory faces some serious issues when dealing with
uniform probability measures on infinite sample spaces. A famous example is de Finetti’s Lottery
[9] (also called “God’s Lottery” in [23]), in which a natural number is chosen at random. It is
easy to see that no probability function defined on all singletons could model such a situation.
De Finetti’s own solution was to give up Kolmogorov’s axiom of countable additivity in favor
of finite additivity and to argue that each finite subset of N has probability 0 of containing the
winning ticket. Such a solution, however, is counter-intuitive in that it forces us to admit that
some event that has probability 0 of occurring will in fact occur. Our pre-theoretic intuition of
quantitative probability arguably respects the constraint that any possible event should receive
a positive probability of occurring, an idea expressed by the following constraint:

Regularity: For any A ∈ B, A ̸= 0 implies µ(A) > 0.
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It is fairly straightforward to show that a finitely additive probability function on the powerset
of the set of natural numbers that satisfies the Regularity constraint yields a Euclidean theory of
size. The converse is also true, and in particular, numerosity theory has inspired the development
of Non-Archimedean Probability theory [5, 6, 31]. But some of the criticisms raised against nu-
merosity theory carry over to Non-Archimedean Probability theory [25, 26, 32]. Thus, although
the development of a generalized probabilistic framework in which the existence of regular prob-
ability functions can be guaranteed is arguably a worthy goal to pursue [16, 18, 28], doing so in
a convincing way arguably involves offering a satisfactory solution to Galileo’s paradox based on
Euclidean intuitions.

The rest of the paper is organized as follows. In Section 2, I introduce what I think is a helpful
axiomatic framework for thinking about Galileo’s paradox and describing what the logical space
of solutions to the paradox looks like. This leads me to introduce in Section 3 what I call the
Minimal Proposal, which I advocate for in the rest of the paper. In Section 4, I discuss the
Density Intuition, an intuition about sizes of sets of numbers which, I argue, is often confused
with part-whole considerations and is the true driving force behind numerosity theory. I also give
an informal, intuitive presentation of numerosity theory that avoids getting into overly technical
details. In Section 5, I argue that numerosities face a serious problem that I call the Invariance
Problem and that, contrary to what has been argued before, the Invariance Problem comes from
the Density Intuition and not from the desire to preserve part-whole intuitions. This leads me
to introduce in Section 6 an alternative to numerosity theory called the Generic Approach and
argue that this is the “best possible” Euclidean theory. As I will show, the Minimal Proposal and
the Generic Approach actually yield the exact same theory, a result which I take to be strong
evidence that my proposal is the best contender for an alternative to Cantor’s theory of size
based on part-whole considerations. Finally, in Section 7 I offer a brief summary of what I think
the debate now looks like in light of the new proposal that I advocate for. Throughout the rest
of this paper, I will sometimes refer to some formal results. Whenever those results are new,
proofs have been included in Appendix A. The proofs themselves are all easy, and require no
knowledge of set theory beyond, roughly, the ability to draw Venn diagrams and to understand
notions such as injections and surjections.

2 An Axiomatic Framework for Size Relations

In this section, I focus on a particular way to address the issues behind Galileo’s paradox, namely,
an axiomatic approach toward size relations. This is a shift from the more common presentation
of the problem in terms of number structures, but, as I explain below, I think it is a more
illuminating perspective.

At its core, Galileo’s paradox raises an issue regarding the following question: when does a
set of natural numbers A contain “at most as many elements” as another set B? In the case
of natural numbers and their squares, we saw that two seemingly intuitive principles contradict
one another. Although those principles were phrased in terms of the size of a set, they can easily
be rephrased in terms of the “at most as many elements” relation. According to the first one,
the fact that we can map N into N2 in a one-to-one way (meaning that any two distinct natural
numbers are mapped to two distinct squares) implies that there are at most as many natural
numbers as squares. By contrast, according to the second intuition, the fact that the squares
are a proper subset of the natural numbers implies that there must be strictly more natural
numbers than squares. In other words, solving Galileo’s paradox amounts to giving a precise
characterization of a binary relation ⊑ between sets of natural numbers, where, for any two sets
of natural numbers A and B, A ⊑ B if and only if there are “at most as many elements” in A as
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there are in B. This is what I will take to be the central problem that we need to address. It is
related to, but not identical with, the issue of extending the structure of the natural numbers so
as to assign a size to every set of natural numbers. A full treatment of this issue is beyond the
scope of this paper,1 but let me briefly highlight for now how the two relate to one another. If we
have such a structure N and a function size : P(N) → N , then, assuming that the structure N
is ordered by some relation ≼, we can simply “pull back” the order to a relation on the powerset
of N. In other words, we could say that A has “at most as many elements” as B (i.e., A ⊑ B)
whenever the size of A is less than or equal to the size of B (i.e., whenever size(A) ≼ size(B)).
Thus solving the “structure” problem also gives us a solution to the “relation” problem, at
least under the assumption that the structure we construct is an ordered one. Importantly, the
converse is also true, by a standard technique called a definition by abstraction. If we have a size
relation ⊑ defined on the powerset of N that has certain properties (namely, being a quasi-order,
which I define below), then we can define an equivalence relation ≡ by letting A ≡ B if and
only if A ⊑ B and B ⊑ A. Intuitively, A and B are equivalent with respect to their sizes if
there are “at most as many elements” in A as there are in B, and vice versa. Once we have
such an equivalence relation, it becomes easy to define what the size of a set A is: we can simply
take it to be its equivalence class under the relation ≡. In other words, for any set A, define
size(A) = {B ⊆ N | A ≡ B}. This is a standard construction in mathematics, particularly useful
when introducing new number systems, which traces back (at least) to Cantor’s construction of
the cardinal numbers, Frege’s definition of the natural numbers, or von Staudt’s definition of
the direction of a line [33]. Once we have such a definition, we can indeed take our structure
extending the natural numbers to be given by the set {size(A) | A ∈ P(N)}, and it can naturally
be ordered by the relation size(A) ≼ size(B) if and only if A ⊑ B.

Determining what the relation⊑ is and extending the natural numbers to an ordered structure
of sizes for all sets of natural numbers are therefore, in a precise sense, equivalent problems. But
it is easier to give a systematic description of the logical space of possibilities for the relation ⊑,
which is what I will do in the rest of this section by presenting several properties (or “axioms”)
that we may want the relation ⊑ to satisfy. Let me start with three properties that I will take
for granted.

QO: The relation ⊑ is a quasi-order, meaning that it is reflexive (A ⊑ A for any A ⊆ N) and
transitive (A ⊑ B and B ⊑ C together imply A ⊑ C for any A,B,C ⊆ N).

IN: The relation ⊑ extends the inclusion ordering on sets of natural numbers, meaning that for
any A,B ⊆ N, A ⊆ B implies A ⊑ B.

DEC: The relation ⊑ satisfies the following “decomposition principle”: whenever A1, A2, B1

and B2 are sets such that A1 ∩ A2 = B1 ∩ B2 = ∅, A1 ⊑ B1 and A2 ⊑ B2 together imply
A1 ∪A2 ⊑ B1 ∪B2.

Whenever ⊑ is a relation between sets of natural numbers that satisfies QO, IN and DEC,
I will call ⊑ a size relation. Let me briefly comment on why I think those three are natural
conditions to impose on the “at most as many elements” relation.

First, it seems really hard to deny that this relation is reflexive and transitive. Whatever
having “at most as many elements” as another set may mean for a set of natural numbers, any
set clearly has “at most as many elements” as itself. An intuitive justification for transitivity can
be given in terms of some sort of monotonicity or stability of our counting procedure: whatever
procedure we choose for establishing that A has at most as many elements as B, if it also
establishes that B as at most as many elements as C, we should somehow be able to combine the

1For a recent survey of the matter that adopts the number structure approach, see [30].
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two procedures so as to show that A has at most as many elements as C. Without transitivity,
we may have some interesting things to say about “local” comparisons between sets, but it would
be very difficult to have a global picture of the entire structure of sets of natural numbers under
the “at most as many elements” relation. In fact, imposing reflexivity and transitivity on ⊑ is
precisely what we need to ensure that the corresponding relation ≡ is an equivalence relation,
and thus to allow us to build a number structure out of our size relation.

The second criterion, IN, also seems fairly intuitive. Whatever “having at most as many
elements” means in the context of sets of natural numbers, surely being contained as a subset is
a sufficient condition. After all, if A ⊆ B, then every element of A is also an element of B. How
could there not be at least as many elements in B as in A?

Finally, the third condition can be interpreted as a coherence condition imposed on judg-
ments of size relationship. Whatever the correct way of determining when a set has “at most
as many elements” as another may be, this procedure should be uniform for smaller sets and
bigger sets. If we have established two size relationships A1 ⊑ B1 and A2 ⊑ B2 between two
pairs of sets, then we should be able to lift this size relationship to one between their respective
unions A1 ∪A2 and B1 ∪B2, under the assumption that these are disjoint unions, so as to avoid
any “double counting”. It might be helpful here to draw an analogy with probability theory. In
most settings, probability functions are required to be (at least) finitely additive, meaning that
the probability of the disjoint union of two events E1 and E2 should be exactly the sum of the
probability of E1 and the probability of E2. This captures the idea that the probability of an
event is determined by the probabilities of its subevents. One may think of DEC as a weak
form of additivity for sizes of sets of natural numbers. Indeed, it is meant to capture the intu-
itive idea that the “number of elements” in a set A is determined by the “number of elements”
of its subsets. If we can partition two sets A and B into subsets A1 and A2, and B1 and B2

respectively, in such a way that there are “at most as many elements” in A1 as there are in B1,
and “at most as many elements” in A2 as there are in B2, then we should also conclude that
there are “at most as many elements” in A as there are in B.

From now on, I will therefore assume that the “at most as many elements” relation is a size
relation, meaning that it satisfies QO, IN and DEC as specified above. Note that, under one
way of understanding Galileo’s view, this is already asking for too much, since doing so commits
one to asserting some size relationships between infinite sets of natural numbers. However, there
is no risk of paradox here: the inclusion ordering on sets of natural numbers is an example of
a size relation, and, in fact (by IN), the smallest possible such example. At the other end of
the spectrum, there is a largest possible size relation: the total relation on the powerset of the
natural numbers, according to which A ⊑ B for any A,B ∈ N. Of course, neither option is a
reasonable choice for a precise characterization of “at most as many elements”. The inclusion
order is too fine-grained, since two finite sets can have the exact same number of elements yet
be incomparable with respect to the inclusion ordering: singletons are the simplest example of
this. The total relation, on the other end, is too coarse-grained: clearly, there are not at most as
many natural numbers as there are numbers in the set {0, 1}, to take one example among many.

This is where the two competing intuitions that lead to Galileo’s paradox enter the picture.
Both correspond to an additional axiom one can impose on the relation ⊑, although the two do
not play the same role. I will call the first such axiom the Injection Principle (IP). According
to IP, the “at most as many elements” relation between sets of natural numbers is completely
characterized by the existence of a special kind of functions called injections. Recall that an
injection (or one-to-one map) from a set S to a set T is a function f : S → T such that for any
two distinct s, s′ ∈ S, f(s) is distinct from f(s′). In other words, an injection is a map that
preserves non-identity between the elements of S. Mapping the passengers of a flight to their
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seat on the plane is an injection, while mapping them to their date of birth may not be. The
Injection Principle states that the existence of an injection from a set A to a set B coincides
with A having “at most as many elements” as B.

IP: For any A,B ⊆ N, A ⊑ B if and only if there is an injection f : A → B.

Importantly, IP gives necessary and sufficient conditions for a set to contain “at most as many
elements” as another, and, as such, picks out exactly one size relation, which I will denote as ⊑C
(for cardinality). It is easy to verify that ⊑C is a size relation. Whenever A ⊆ B, the identity
is an injection from A to B, hence A ⊑C B. Moreover, the composition of two injections is also
an injection, which implies that ⊑C is transitive. Finally, if we have two injections f1 : A1 → B1

and f2 : A2 → B2, we can simply take their union to obtain an injection f : A1 ∪A2 → B1 ∪B2

(the fact that A1 ∩A2 = B1 ∩B2 = ∅ is a crucial assumption here). Moreover, the relation ⊑C is
precisely the one determined by the Cantorian notion of cardinality. For any sets A,B of natural
numbers, we have that card(A) = card(B) if and only if A ≡C B. In other words, two sets have
the same cardinality if and only if one can define an injection from either set into the other.2

The axiom IP completely determines what the “at most as many elements” relation is. The
second axiom, by contrast, merely states a necessary condition for a set A to have “at most as
many elements” as a set B: A cannot be a proper superset of B. This is the natural way of
cashing out the intuition that “the whole is always greater than any of its proper parts”, which
is why I will refer to it as the Euclidean Constraint (EC).

EC: if A is a proper subset of B, then B ̸⊑ A.

If one only considers finite collections, then IP and EC are not only compatible but true.
The existence of a Dedekind-infinite set, however, is enough to derive a contradiction between the
two. Indeed, recall that Dedekind [7] defined a set A as infinite if there is an injection f : A → A
that is not a surjection, meaning that the range of f , ran(f), is a proper subset of A. If A is
such a set, then, according to IP, A ⊑ ran(f) (since f is an injection from A to its range),
while, according to EC, A ̸⊑ ran(f) (since ran(f) is a proper subset of A). So we must give up
either IP or EC, exactly the situation of Galileo’s paradox. Cantor’s way out, of course, is to
go with IP, which has the advantage of uniquely specifying what the relation ⊑ is. Let me now
motivate an another option, and present an alternative to cardinality that satisfies the Euclidean
Constraint.

3 The Minimal Proposal

Recall Galileo’s original reaction to the paradox: we should tread very carefully when dealing
with size relationships between sets. As I have argued above, Galileo is treading too carefully
when he says that nothing can be said about size relationships between infinite sets. The relation
⊑ should at least be what I called a size relation. But I think there is something appealing to
the idea that perhaps, in many cases, there is just nothing meaningful that can be said regarding
whether there are more elements in one infinite set than in another. Let me now try and
implement this idea in a precise way.

An obvious starting point is the inclusion ordering ⊆. After all, it is the smallest size relation.
What about the idea that it is also the correct size relation between sets of natural numbers? As

2Note that the “if” part of this equivalence is not trivial: the celebrated Cantor-Schröder-Bernstein theorem
establishes that whenever there are injections f : A → B and g : B → A, there is a one-to-one correspondence
h : A → B.

7



I mentioned above, there is a major issue here: the relation is too small or, equivalently, it allows
for two many distinctions between sets. Clearly, finite sets with the same number of elements
should have the same size. We want, after all, to extend finite arithmetic to infinite sets. To
explain this further, let me first fix some notation. Whenever A is a finite set, I will write |A| for
its finite cardinality, i.e., the natural number that corresponds to how many elements are in A.
We should not be spooked by the use the word “cardinality” here: as long as we consider finite
sets, there is no disagreement regarding what their sizes are, and we can freely use the concept
of finite cardinality to reason about such sizes. Our need to preserve finite arithmetic suggests
adding something like the following to our list of axioms for the relation ⊑: whenever A is a
finite set with n elements and B contains at least n elements, then A ⊑ B. If B is a finite set,
we can simply say that A ⊑ B whenever |A| ≤ |B|. In the more general case, we can express
this axiom in a rigorous way using injections:

FIN: For any finite set A and any B ⊆ N, if there is an injection from A to B, then A ⊑ B.

One may think of FIN as a way to extract the finitistic content from IP. At least when A
is finite, the existence of an injection f from A to B is enough to conclude that there are “at
most as many elements” in A as there are in B. This seems uncontroversial enough: after all, we
could simply use f to count as many elements of B as there are in A. I will call a size relation
arithmetical precisely when it satisfies FIN. Indeed, adding FIN to our list of axioms is exactly
what is needed to ensure that finite arithmetic is preserved. Whenever A and B are finite sets
of size n and m respectively, we will have that A ⊑ B whenever n ≤ m. Whenever A is finite
and B is infinite, we will also have that A ⊑ B. But these are not the only cases that we should
consider. To see this, recall first that the set-theoretic difference of two sets A and B of natural
numbers is the set A \ B = {n ∈ N | n ∈ A and n /∈ B}. Consider now the sets A = 2N \ {0}
and B = 2N \ {2}. The first set contains all even numbers except for 0, and the second one
contains all even numbers except for 2. It is straightforward to see that for any size relation ⊑
that satisfies FIN, we have that A ⊑ B. Indeed, we can partition A into the sets A1 = 2N\{0, 2}
and A2 = {2}, and B into the sets B1 = 2N \ {0, 2} and B2 = {0}. By reflexivity of ⊑, we have
that A1 ⊑ B1, and, by FIN, we have that A2 ⊑ B2. By DEC, this means that A ⊑ B. The
same argument shows that B ⊑ A, so that, in fact, A ≡ B. This, I think, is fairly intuitive:
when we set aside the part that A and B have in common (i.e., their intersection A∩B), we are
left with two singletons. Even though A and B are both infinite, comparing their sizes ends up
being a matter of finite arithmetic once we discard their intersection. Here is one way to turn
this idea into a systematic definition:

MIN: For any A,B ⊆ N, A ⊑ B if and only if there is a finite set C ⊆ B \ A such that
|A \B| ≤ |C|.

Let me make a few remarks about the definition above, which I call the Minimal Proposal
for reasons that I will explain shortly. First, MIN really is a definition, in the same way that IP
defines a particular size relation (namely, cardinality): it gives necessary and sufficient conditions
for a set A to have “at most as many elements” as a set B. Accordingly, I will write ⊑M for
the relation defined by MIN. Second, although this might take a minute to notice, MIN does
capture the intuition above. Indeed, whenever A ⊑M B, this is because A \B is finite, and that
finite set contains at most as many elements as the set B \A. In other words, once we “delete”
from sets A and B their common part A ∩ B, we’re left with only finitely many elements in A,
and at least as many elements in B, regardless of whether B \A is finite or infinite. Third, it is
fairly straightforward to notice that ⊑M is a relation that extends the inclusion ordering while
preserving the Euclidean Constraint. Indeed, suppose that A ⊆ B. Then A \ B is empty, so,
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clearly, there are at least as many elements in B \A as there are in A \B, hence A ⊑M B. But
if A is a proper subset of B, then B \ A is not empty, which means that there is strictly more
elements in B \ A than there are in A \ B, hence B ̸⊑M A. Again, this is rather intuitive. If A
is a proper subset of B, then, when we remove their common part A∩B, there is nothing left of
A, while some elements of B are left over. Lastly, let me explain why I call MIN the Minimal
Proposal. It is simply because of the following result, the proof of which can be found in the
Appendix (Theorem A.3.1).

Theorem 3.1. The relation ⊑M is the smallest arithmetical size relation on P(N).

Note that there are two parts to the content of this result. First, ⊑M is a relation that
satisfies QO, IN, DEC and FIN. Second, it is the smallest such relation, meaning that, when-
ever ⊑ is a relation satisfying those four axioms, A ⊑M B implies A ⊑ B. In a sense, this
means that ⊑M captures well the Galilean idea that we should exert caution when assigning
size relationships between infinite sets. Unlike Galileo, we do not want to say that the relation
of having “at most as many elements” never holds between any two infinite sets, because we
think that this relation is a size relation. We also cannot pick the smallest size relation, i.e., the
inclusion ordering, because it is too fine-grained to preserve finite arithmetic. But ⊑M is our
best option for this minimalist or “modest” approach. By Theorem 3.1, the relation defined by
the Minimal Proposal is exactly what we need if we want a size relation that preserves finite
arithmetic. Any further assignment of size relationship is superfluous, unless of course there are
further requirements that one wants to impose on the “at most as many elements” relation.

I think that there is a lot of appeal to the minimal approach. In fact, as will become clear
in the rest of this paper, I think MIN is a legitimate alternative to the Cantorian definition of
size via IP, and that ⊑M is the correct way to give a precise meaning to the “at most as many
elements” relation that respects the Euclidean Constraint. In other words, I think ⊑M is the
contender to the cardinality relation ⊑C that proponents of a Euclidean theory of size have been
searching for. I have already made a positive argument for ⊑M, by drawing from the Galilean
idea that we should be careful in the way we determine size relationships between infinite sets.
Let me now address two possible objections to the idea that ⊑M is a legitimate contender for a
notion of relative size for sets of natural numbers. Dealing with the first one will be easy, while
dealing with the second one will take much longer.

The first objection one could raise is that the Minimal Proposal cannot really compete with
the Cantorian notion of cardinality, because it presupposes it or some key parts of it. The ar-
gument, as I understand it, would run like the following. The Cantorian notion of cardinality
only appeals to set-theoretic notions, like that of an injective function between two sets. By con-
trast, MIN appeals to notions such as finiteness, and finite cardinality. Worse, MIN “secretly”
appeals to the Injection Principle, because it is equivalent to the following:

MIN’: For any A,B ⊆ N, A ⊑ B if and only if A \B is finite and A \B ⊑C B \A.

To be a genuine alternative to Cantorian cardinalities, the relation ⊑M would have to be defined
without any appeal to finiteness or cardinalities. Or so runs the argument.

I am not quite convinced by the argument. I think one could make the case that notions
like “finiteness” are a common resource in this debate, and not the exclusive property of the
Cantorian. Similarly, the fact that MIN can be reformulated using the relation ⊑C is perhaps
interesting (for example, it can be useful in establishing that ⊑C extends ⊑M), but is not par-
ticularly relevant to the issue of whether MIN defines a size relation that is independent from
cardinality. Being entirely unable to express MIN in a way that does not appeal to cardinality
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would probably be more of a problem. Fortunately however, one can express MIN in a way that
does not appeal to cardinalities, nor even to finiteness, and is moreover well motivated.

The starting point is a cornerstone of finite combinatorics called the Pigeonhole Principle.
In its simplest and most popular form, it states the following: whenever you are trying to fit a
set of pigeons into a set of pigeonholes, if you have more pigeons than holes, then you must fit
at least two pigeons in the same hole. There is a way to understand it as a statement about
injections: no function from a set A into a set B with fewer elements can be an injection.
Taking the contrapositive yields the “if” direction of IP in the finite case: if there is an injection
f : A → B, then there are at most as many elements in A as there are in B. But there is also
a way of understanding the Pigeonhole Principle in terms of a relationship between injections
and surjections (i.e., functions whose range is their entire codomain). Suppose that, instead
of assigning pigeonholes to pigeons, we were assigning pigeons to pigeonholes, for example, by
putting a pigeon’s name on each pigeonhole. Since no pigeon needs two pigeonholes, this amounts
to defining an injection from the set of pigeonholes to the set of pigeons. If there are more pigeons
than pigeonholes, however, not every pigeon will have its name on a pigeonhole. In other words,
the function is not surjective. By contraposition, this means that whenever every injection from
B to A is also surjective, there are at most as many elements in A as there are in B. Just like
in the purely injective account of the Pigeonhole Principle, we can therefore extract a sufficient
condition for A to have at most as many elements as B from this more complex account. Note
that, in the finite case again, this is also necessary: whenever there is an injection of B into A
that is not surjective, then there are strictly more elements in A than elements in B.

The idea is now to take this version of the Pigeonhole Principle and extend it to infinite sets
of natural numbers. We have to be a bit careful here. If A is a Dedekind-infinite set, then there
is a function A → A that is injective but not surjective (this is exactly Dedekind’s definition),
but we certainly would not want to say that there are more elements in A than elements in A.
A natural way to exclude this case is to consider only functions between sets that are disjoints.
This motivates the following definition, which I call the Generalized Pigeonhole Principle:

GPP: For any A,B ⊆ N, A ⊑ B if and only if any injection f : B \A → A\B is also surjective.

Again, the driving idea is similar to the one in the definition of ⊑M. Given two sets A and
B, discard their common part A ∩ B and compare the two remaining sets A \ B and B \ A.
Then A has “at most as many elements” as B if and only if A \B has “at most many elements”
as B \ A, which we can now understand via our alternative understanding of the Pigeonhole
Principle: every injection from B \ A into A \ B is also surjective. Note that GPP does not
appeal in any way to the Injection Principle, nor to any notion of finiteness. Nonetheless, we
have the following, whose proof can be found in the Appendix (Theorem A.1).

Proposition 3.2. GPP defines the relation ⊑M. In other words, for any sets A,B ⊆ N,
A ⊑M B if and only if any injection f : B \A → A \B is also surjective.

The Minimal Proposal can therefore be characterized exclusively in terms of set-theoretic
notions such as injections and surjections. This definition, like the Injection Principle, can be
motivated by considerations based on a natural principle in finite combinatorics, the Pigeonhole
Principle. Depending on how one presents the principle, distinct ways of generalizing it to the
infinite arise. I do not wish to claim that the account in terms of injections and surjections is “as
natural” as the one in terms of injections alone. Nor do I think that I need to. All that matters
is that the Minimal Proposal can be put on equal footing with the Injection Principle in terms
of the kind of concepts that they rely on.
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The second criticism that one could raise against the Minimal Proposal is that, just like
Galileo’s stance, it is too limited. There are instances in which we would like to ascribe size
relationships between sets, yet the Minimal Proposal remains silent. As a matter of fact, it is
very easy to see that many sets are incomparable with respect to their sizes under the Minimal
Proposal. Whenever A and B are sets such that both A \ B and B \ A are infinite, we have
neither A ⊑M B nor B ⊑M A. For example, if A is the set of even numbers and B the set
of odd numbers, then we cannot say whether there are more evens than odds, more odds than
evens, or the same number of evens and odds. To put the point differently, ⊑M fails to satisfy
the following Linearity constraint:

LIN For any A,B ⊆ N, either A ⊑ B or B ⊑ A.

Ultimately, I think the failure of Linearity is a desirable feature of the theory, even though
this is certainly a marked difference from the case of finite sets. In the realm of the finite,
sets are linearly ordered with respect to their sizes. For any two finite sets A and B, either
A has at most as many elements as B, or B has at most as many elements of A. Linearity is
a feature of finite sets that is transferred to the whole powerset of the set of natural numbers
by the Cantorian notion of cardinality, although in a rather trivial fashion: any set injects into
any infinite set, so all infinite sets have the same size.3 So how concerning is it that, under the
Minimal Proposal, sets of natural numbers are not linearly ordered with respect to their sizes?
In the next few sections, I will argue that this is not concerning at all and that, in fact, Linearity
is not a desirable feature of a theory of size that wants to preserve the Euclidean Constraint. But
doing so requires engaging with existing attempts to define a linear size relation that preserves
the Euclidean Constraint (such as numerosity theory), and grappling with what I think is the
(mistaken) intuitive motivation behind them, which I call the Density Intuition.

4 Numerosities and the Density Intuition

In this section, I present and discuss what I call the Density Intuition regarding sizes of sets of
natural numbers. As we shall see, I think the idea has a rather strong intuitive pull, but that it
is ultimately mistaken, for reasons that will become clear in the next section. Crucially, it has
not been sufficiently distinguished from the Euclidean Constraint in the literature, which has led
to some confusion regarding what Euclidean theories of size can be. I will start by a motivating
example, before showing how standard numerosity theory implements the Density Intuition in a
sophisticated way.

Suppose that we modify slightly the setup of Galileo’s paradox as follows. Let 2N be the set
{2n | n ∈ N} of all powers of 2. That set is both infinite and coinfinite, so it is one of those
“problematic” sets for which our pretheoretic Euclidean intuitions regarding size assignments are
murky. What if we tried to compare N2 with 2N instead of N? Are there more square numbers
than powers of 2, or the other way around, or are their sizes perhaps incomparable?

For the Cantorian, the question is easily answered. Since both sets are countably infinite,
they have the same size. In other words, 2N ≡C N2. In fact, there is a particularly nice bijection
that one can define from 2N to N2: simply map 2n to n2 for any n ∈ N! By contrast, the Eu-
clidean Constraint stays silent regarding the relationship between 2N and N2, since neither set
is a subset of the other. In fact, since both N2 \ 2N and 2N \ N2 are infinite, the sizes of the two
sets are also incomparable according to the minimal relation ⊑M: N2 ̸⊑M 2N, and N2 ̸⊑M 2N.
As I will argue below, I think this is a welcome feature of the theory. But I also think that there

3It is worth mentioning that the linearity of cardinals, by contrast with the countable case, is far from trivial,
and is in fact equivalent of Zermelo-Fraenkel set theory to the Axiom of Choice.
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is some intuitive pull towards the idea that there should be some relationship between the size
of 2N and that of N2. Let me now explain what the idea is.

Suppose that we start enumerating the elements of N2 and those of 2N:

N2 : 0, 1, 4, 9, 16, 25, 36, 49, . . .

2N : 1, 2, 4, 8, 16, 32, 64, 128, . . .

Then we might quickly notice a pattern emerging between the two enumerations. The values
in the sequence of powers of 2 “grow much faster” than those in the sequence of squares: already,
the eighth power of 2, 128, is more than twice larger than the eighth square number, 49. More-
over, this pattern is easily seen to be more pronounced as we move further along the sequence
of natural numbers: the 101st square number, 10000, is vastly smaller than the 101st power of
2, 2100, whose decimal notation contains 31 digits. From this fact, one may get the sense that
powers of 2 are more scattered among the natural numbers than squares. Even though both sets
are infinite, we will typically run into square numbers faster than we would run into powers of
2. What I call the Density Intuition is the idea that this very fact tells us something about the
relative sizes of N2 and 2N: there are more squares than powers of 2, because the distribution of
squares along the sequence of natural numbers is more dense than the distribution of powers of 2.

In short, the following is exactly what I take to be the core principle of the Density Intuition:
the size of a set A of natural numbers is determined by the distribution of its elements along
the sequence of natural numbers with their usual ordering. The more scattered a set is, the
smaller its size. Admittedly, the phrasing that I have used so far is rather vague, and I think
that, ultimately, a precise formulation of what follows from the Density Intuition is an extremely
difficult task. But there are several examples that one can give to sharpen the pretheoretic
intuition. The example of the set of squares versus the set of powers of 2 is such an example:
because the elements of the latter are more scattered along the sequence of natural numbers, the
former set has larger size. Arguably, one could also think that the distribution of the elements
of a set of natural numbers could sometimes even determine precise ratios. For example, the set
2N = {2n | n ∈ N} of even numbers is precisely half the size of N, because every pair of two
consecutive natural numbers contains exactly one even number. Similarly, one could argue that,
for any n > 0, the size of the set nN of all multiples of n is precisely 1

n of the size of N, because
any sequence of n consecutive natural numbers contains exactly one multiple of n.

Although I have not given it a precise mathematical formulation, I think there is nonetheless
something quite robust about the Density Intuition. First of all, it arguably played a role in
the development of many non-Cantorian intuitions about the infinite. For example, the Islamic
philosopher Ibn Qurra, one of the very first to defend the idea that the infinite comes in many
different sizes, argued in the ninth century that the set of natural numbers was twice bigger than
the set of even numbers, three times bigger than the set of multiples of three, and so on [20].

Second, there exists already a mathematically precise (and fruitful) way to make sense of the
Density Intuition, via the notion of asymptotic density. For any set of natural number A, its
asymptotic density is defined as the real number

lim
n→∞

|A ∩ {0, ..., n}|
|{0, ..., n}|

,

whenever such a limit is defined. Asymptotic density is a central notion in modern number theory,
and it plays a key role in some of its most celebrated results, such as Szemerédi’s theorem or the
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prime number theorem. For sets of the form nN, their asymptotic density can easily be computed
to be 1

n . But every finite set, no matter how large, has asymptotic density 0. In fact, many
infinite sets (including prime numbers, squares, or powers of 2) also have asymptotic density 0,
because their distribution along the sequence of natural numbers is not bounded below by any
positive rational number. Perhaps even more troublesome is the fact that not every set of natural
numbers has an asymptotic density, a direct consequence of the fact that not every sequence of
rationals converges to a real value.

Asymptotic Density is therefore far from a perfect tool for fleshing out a theory of size for
sets of natural numbers from the Density Intuition. Because it assigns value 0 to any finite set
and to many infinite sets, it does not extend finite arithmetic nor does it satisfy the Euclidean
Constraint. But one might think that the issue here has nothing to do with the Density Intu-
ition itself, and rather comes from the fact that one tries to assign a real value to sets of natural
numbers. In short, the real line is too coarse a structure to make sense of the subtle differences
existing between finite sets, or between infinite sets whose distribution along the sequence of
natural numbers becomes unboundedly sparse. This is, in a way, the key idea behind numerosity
theory, arguably the most sophisticated mathematical endeavor to assign sizes to set of natural
numbers in a way that is coherent with the Euclidean Constraint. The original presentation
of Benci and di Nasso’s ideas [3] is quite technical, and uses fairly advanced set-theoretic and
model-theoretic tools. Instead of following their presentation, I will therefore introduce the main
features of the theory thanks to a useful thought experiment.

Suppose that the task of determining size relationships between sets of natural numbers is
given to an ideal agent, called a Surveyor, with the following characteristics. First, any Surveyor
has a complete and effortless mastery of finite arithmetic. She is able to count the number of
elements in any finite set of natural numbers and to determine ratios between the sizes of any two
finite sets. Second, any Surveyor has tremendous determination and stamina: she is capable of
carrying out such processes of counting and comparing finite sets as long as she wishes, including
an infinite number of times. She also has perfect memory, meaning that she remembers every
operation she has ever performed. However, she has one major limitation: she cannot determine
the size of a set, or count its number of elements, when that set is infinite. She is, so to speak,
“finite-sighted”: her capacity to perform any act of counting or size comparing is limited by
the fact that she can only consider finitely many elements at once. How would such a Surveyor
proceed to determine size relationships between two sets of natural numbers A and B, regardless
of whether they are finite or infinite? Intuitively, all she can do is approach the problem by
comparing finite subsets of A and B, hoping that this gives her a good approximation of the true
size relationship between the two sets.

Within this conceptual framework, Benci and di Nasso’s idea can now be presented as follows.
Given a (possibly infinite) set A, a Surveyor should proceed sequentially. For any natural number
n, she should look at the first n natural numbers {0, ..., n − 1}, and count how many elements
from A appear in that set. As she progresses along the sequence of natural numbers, she looks
at longer and longer initial segments of N, and this allows her to approximate the size of A with
ever increasing accuracy. Clearly, if A is a finite set, then our sequential Surveyor’s computation
of the size of A will become constant from some point onwards: as soon as she starts looking at
initial segments of the natural numbers that contain all the elements of A, her approximation of
the size of A will not increase anymore, and will be perfectly accurate. If A is infinite, on the
other hand, then her approximation of A will never stabilize, and keep increasing as she considers
larger and larger initial segments of A. In this case, there is no size that the Surveyor can safely
assign to the set A. But this does not mean that all infinite sets will eventually “converge”
towards the same behavior. Because she has perfect memory, our Sequential Surveyor is always
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aware of the way in which her approximation of the size of A changes. If A is very big, say,
a cofinite set, then the Surveyor’s approximation of the size of A changes almost all the time,
except for finitely many values. By contrast, if A is infinite and coinfinite, then the Surveyor’s
approximation of the size A will be a sequence that increases infinitely many times, but also
repeats itself infinitely many times.

What about determining relative size relationships between two sets of a natural numbers A
and B? Clearly, a sequential Surveyor can apply the same strategy. She can go through every
initial segment {0, ..., n−1} of the natural numbers and check every time whether there are more
elements of A in that set than elements of B, or vice versa, or whether there are exactly as many
elements from either set. Once again, if either A or B is finite, the answer she will get is constant
from some point onwards. If A and B are both finite, she will be able to determine the true size
relationship between these two sets once she considers an initial segment of the natural numbers
large enough to include their union A ∪ B. If A is finite and B infinite, then such a Surveyor
will also notice that, from some point onwards, the answer she gets is always the same: once
she reaches an initial segment of the natural numbers that contains A as well as strictly more
elements from B, she will notice that there are always more elements from B than elements from
A. What if A and B are both infinite? Several situations may arise. For example, if A is the
set 2N of even numbers and B is the set of odd numbers, the answers that she will get oscillates
between “A has more elements than B” (whenever the initial segment she considers has an odd
number of elements) and “A has exactly as many elements as B” (whenever the initial segment
has an even number of elements). Crucially, however, this is not the only possibility. Whenever A
is a proper subset of B, the answer will be constant from some point onwards. Once a sequential
Surveyor has reached an initial segment that contains a natural number that is in B but not
in A, she will notice that, from that point onwards, there will always be strictly more elements
from B than elements from A in any longer initial segment. In that sense, a sequential Surveyor
is very sympathetic to part-whole considerations. But a similar situation arises in the case of
N2 and 2N: from some point onwards (say, n = 40), she will notice that there are consistently
more square numbers than powers of 2 in all the initial segments of the natural numbers that
she considers. This is precisely because, as we noted above, powers of 2 are more scattered along
the sequence of natural numbers than squares.

Based on how I have described sequential Surveyors so far, we are in the following situation.
Given a pair A, B of sets of natural numbers, a Surveyor can associate to any natural number n
exactly one of the following three possibilities:

• A ≺ B (there are strictly fewer elements in A than elements in B);

• A ≻ B (there are strictly more elements in A than elements in B);

• A ∼ B (there are exactly as many elements in A as elements in B).

In fact, any natural number n determines a full size relation for sets of natural numbers, based
on all the answers given by a Surveyor to questions of the form “What is the size relationship
between sets A and B?” once she focuses on the initial segment of the natural numbers up to n.
Of course, such a theory depends on the natural number n, and is only of limited interest. It is,
after all, only an approximation of the “correct” theory, up to the first n natural numbers. What
is left to do for a Surveyor is to build her theory of size by extracting a definitive answer from
the multitude of all these partial ones. In order to do this, she must decide when a particular
answer appears “often enough” in the sequence of natural numbers to be the correct one. This
is where distinct sequential Surveyors may differ, and therefore yield different size relations. In
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Benci and di Nasso’s numerosity theory, a Surveyor must determine what “often enough” means
in a way that guarantees the following three properties:

F1 Cofiniteness: Any answer that always appears from some point onwards (i.e., for any
natural number m greater than some natural number n) appears “often enough”;

F2 Coherence: Two answers appear “often enough” if and only if their conjunction also appears
“often enough”;

F3 Decisiveness: For any question regarding the size relationship between two sets A and B,
exactly one answer appears “often enough”.

Whenever a sequential Surveyor S fixes a notion of what counts as an answer appearing
“often enough” that satisfies those three properties, one can define a relation ⊑D on P(N) by
letting A ⊑D B if and only if the answer A ≺ B or A ∼ B appears “often enough” according to
S. The resulting relation has the following properties:

• ⊑D is a size relation: it satisfies QO, IN and DEC;

• ⊑D is Euclidean: it satisfies EC;

• ⊑D is arithmetical: it satisfies FIN;

• ⊑D is linear: it satisfies LIN.

The last property, Linearity, is a crucial difference between ⊑D and ⊑M. Unlike the relation
⊑M, ⊑D is a linear order, so any two sets, including two infinite and coinfinite sets, are compa-
rable. In other words, a sequential Surveyor always gives a definitive answer to the question “are
there more elements in A than in B, or fewer, or do they have the same number of elements”?
This is, of course, because we required the Surveyor to be “decisive” when determining what
counts as “often enough”. Arguably, any sequential Surveyor also implements fairly well the Den-
sity Intuition. In the case of N2 and 2N, she gives the answer that one would expect: 2N ⊑D N2,
since 2N ≺ N2 is the answer that the sequential Surveyor obtains cofinitely many times when
she considers initial segments of the natural numbers. What about other aspects of the Density
Intuition, such as the idea that there are exactly as many even numbers as odd numbers? In
general, this will depend on what the Surveyor counts as “often enough”. By imposing more
conditions, one can choose a sequential Surveyor that implements more of the Density Intuition.
For example, if one requires her to consider that, for any n > 0, the set of multiples on n counts
as “often enough”, then one makes sure that the sequential Surveyor thinks that congruence
classes modulo some natural number m all have the same size. In other words, she will think
that A ≡D B whenever A and B are two sets of the form {mn + i | n ∈ N} for some natural
number m and some i < m.4

As I have said above, the Density Intuition is open-ended. One could always add more
requirements regarding size relationships to those already imposed. Whenever the distribution of
the elements of a set A along the sequence of natural numbers is consistently more scattered than
that of the elements in a set B from some point onwards, any sequential Surveyor will conclude
that there are strictly fewer elements in A than in B. For sets with a periodic distribution
such as congruence classes modulo some natural number n, additional constraints can be put
on what the Surveyor thinks count as “often enough”. But these arguably do not exhaust the

4This is simply because, for any m > 0 and any natural number n, whenever n is a multiple of m, the set
{0, ..., n − 1} is partitioned by congruence modulo m into exactly m classes, all of which have the same size,
exactly for the reason given by Ibn Qurra in the quote above.
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Density Intuition itself. However, there are very strong reasons to believe that the Density
Intuition on its own cannot specify a unique sequential Surveyor satisfying Benci and di Nasso’s
constraints. This is because the existence of any such sequential Surveyor is equivalent (over
Zermelo-Fraenkel set theory) to the existence of a particular kind of set-theoretic object called
a free ultrafilter on N [3].5 Such free ultrafilters are well-known objects in mathematical logic,
and have wide-ranging applications in model theory, infinite combinatorics, set theory, and much
more [13]. But they are also highly complex objects, whose existence can only be guaranteed
by assuming a strong fragment of the Axiom of Choice. As such, free ultrafilters cannot be
described (or, as set theorists would put it, they are not definable). In our context, this means
that there is no way for us to explicitly specify how a sequential Surveyor satisfying Benci and di
Nasso’s constraints would determine what counts as an answer appearing “often enough”. The
existence of such sequential Surveyors can only be guaranteed by non-constructive means. As
such, the way in which they operate remains shrouded in mystery: there is no way for us to
have a fully explicit description of it. Assuming they exist, we can select among them those
that satisfy additional criteria that correspond to the Density Intuition. But we will never be
able to select precisely one of them in that way. This is the price we have to pay in order to
get the linearity of the relation ⊑D. In a sense, this shows that the Density Intuition itself does
not deliver the linearity of the structure of sizes of sets of natural numbers. If we want any
two sets to have comparable sizes, we must choose a sequential Surveyor whose notion of what
counts as “often enough” is compatible with the Density Intuition, but also goes beyond it, and
trust her judgments. This obviously raises some serious issues regarding how well-motivated the
predictions of numerosity theory could be. Once we go beyond the Density Intuition, as we know
we must do if we want our size relation to be linear, on what grounds could such size relationship
judgements be motivated? I think this problem is serious enough, and a significant reason why
the claim that numerosity theory is a viable alternative to the Cantorian notion of size has been
met with skepticism. But I also think that focusing on this issue obfuscates a bigger issue having
to do with the Density Intuition itself.6 As I will argue in the next section, the problem is not
that the Density Intuition is too weak to deliver a linear size relation on its own. Rather, the
issue is that the Density Intuition is misleading, because it leads us to making assignments of
size relationship that cannot possibly be well motivated.

5 The Invariance Problem

In this section, I discuss what I take to be the main problem of numerosity theory, which I call
the Invariance problem. In short, the point is that there is one additional requirement that
one would arguably want to impose on the size relation ⊑, having to do with the notion of a
permutation of N. A permutation of a set S is simply a one-to-one correspondence π : S → S.
One could think of a permutation of N as a mere relabeling of its elements. Permutations are
important for sets of natural numbers, because any permutation π : N → N induces another
one-to-one correspondence π∗ : P(N) → P(N), given by π∗(A) = {π(a) | a ∈ A} for every
A ⊆ N. In other words, given a permutation π : N → N, we can associate to any set A ⊆ N the
set of all images of its elements under π.

5Benci and di Nasso’s original framework uses free ultrafilters that actually have an extra property called the
Ramsey property. But I am leaving out this extra feature for the sake of simplicity.

6I should also mention here a recent proposal by Trlifajova [29], who defended a partial theory of size that still
obeys the Density Intuition. Unlike numerosity theory, Trlifajova’s proposal is constructive and can be explicitly
described. In a nutshell, I think trading linearity for definability is a step in the right direction. But Trlifajova’s
approach still tries to build on the Density Intuition and, as such, it does not evade the criticism that I will raise
against numerosity theory in the next section.
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There is a widespread belief in the literature that sizes should be preserved in some way by
permutations [24, 25, 32]. Parker [24] in particular has raised a forceful challenge to Euclidean
theories of size by presenting some arguments based on permutations, to which I will return
below. For now, let me just mention that giving a precise formulation to the idea in terms of an
additional axiom to impose on the relation ⊑ is a delicate affair. I think the correct way to do
so is via the following constraint, which I call Relative Invariance (RI):

RI: For any A,B ⊆ N and any permutation π : N → N, if A ⊑ B, then π∗(A) ⊑ π∗(B).

The conceptual motivation behind Relative Invariance is simply that permutations cannot
change size relations between sets of natural numbers. In other words, if there are “at most as
many elements” in a set A as there are in a set B, then one cannot change that fact by merely
looking at the images of A and B under a permutation. Note that, because every permutation
has an inverse, the conditional in RI is really a biconditional: permutations cannot “destroy”
size relations between sets, but they also cannot “create” any new ones.

Relative Invariance is easily seen to be compatible with the Euclidean Constraint. Indeed, the
inclusion ordering is an example of a Euclidean size relation that is also relatively invariant, since
whenever π : X → X is a permutation of the elements of a set X and A ⊆ B ⊆ X, we also have
that π∗(A) ⊆ π∗(B). Nonetheless, it is easy to see that Benci and di Nasso’s numerosities are
not relatively invariant. One could come up with many counterexamples having to do with the
fact that numerosities are linearly ordered,7 but I think the following is a more telling example.
Recall that, according to any sequential Surveyor, there are “strictly more” squares than powers
of 2, i.e., 2N ⊑D N2 and N2 ̸⊑D 2N. At the same time, both 2N \N2 and N2 \ 2N are infinite sets.
So we may fix a bijection f : 2N \N2 → N2 \2N and use it to define a permutation π that swaps n
with its image under f whenever n ∈ 2N \N2, and leaves every other natural number untouched.
It is easy to see that, given such a permutation π, π∗(2

N) = N2 and π∗(N2) = 2N, which means
that π∗(2

N) ̸⊑D π∗(N2), contradicting Relative Invariance. Now, the idea that there were strictly
more squares than natural numbers traces all the way back to the Density Intuition and is not a
mere quirk of its implementation via numerosity theory. So the situation is really that Relative
Invariance is incompatible with the Density Intuition and, a fortiori, with any theory that tries
to implement it, including numerosity theory or Trlifajova’s recent proposal [29].

There are, however, at least two very strong reasons to take RI to be an axiom that any
suitable size relation should satisfy. The first has to do with the applicability of such a size
relation beyond sets of natural numbers, while the second has to do with the very concept of a
size relation for sets. Regarding the first issue, the point is that, although everything I have said
so far was about relative size assignments between sets of natural numbers, we would presumably
want our approach to be applicable to a wider context, say all countable sets. After all, finite
arithmetic is useful because it applies to any collection of finite sets, not just to sets of natural
numbers. Given a countable set S, there is a natural way to use a size relation ⊑ on sets of
natural numbers to determine size relationships between subsets of S: label all the elements of S
with the natural numbers and determine size relationships between to sets A,B ⊆ S by looking at
the two sets of natural numbers that correspond to the labels of the elements of A and the labels
of the elements of B respectively. Formally, this amounts to defining a relation ⊑∗ on P(S) by
fixing a bijection f : N → S, and then letting A ⊑∗ B iff f−1[A] ⊑ f−1[B], where, for any C ⊆ S,
f−1[C] = {n ∈ N | f(n) ∈ C}. But which bijection f should we choose? The point is that this
matters if and only if the relation ⊑ is not relatively invariant.8 In other words, if ⊑ is relatively

7Parker [24] gives such an example.
8In essence, this is because composing a labeling f1 : N → S with the inverse of another labeling f2 : N → S

induces a permutation of N.
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invariant, we can transfer this size relation to a size relation on the powerset of any countable
set S in a unique way, regardless of the way in which we label the elements of S with natural
numbers. If the relation ⊑ is not relatively invariant, however, different labelings of the elements
of S will induce different size relations on P(S), with no general way to determine a particular
one as the “correct one”. A non-relatively invariant size relation on P(N) has therefore limited
applicability, because trying to apply it to the subsets of a countable set S involves an irreducible
element of arbitrariness, namely the labeling of the elements of S by natural numbers.

This first issue, I think, points towards a more conceptual one. Recall that our starting point
is the idea that the relation of having “at most as many elements” as another set is a coarsening
of the inclusion ordering on the powerset of the natural numbers. Whereas the inclusion ordering
distinguishes between sets with respect to their membership, size relations are meant to abstract
away from the exact list of elements of a set of natural numbers and consider only “how many”
numbers appear in the set. The inclusion ordering however, as I have noted above, is relatively
invariant. If the relation of having “at most as many elements” were not relatively invariant,
this would yield a paradoxical situation in which permutations somehow preserve the finer re-
lation (the inclusion ordering), but do not preserve the coarser one. In other words, this would
mean that “at most as many elements” relation tracks a feature of sets that is not captured
by the subset relation. But sets are precisely unstructured entities, completely determined by
their elements. I think that one could therefore legitimately argue that a relation ⊑ on sets of
natural numbers that is not relatively invariant might have some interest as a size relation for
structured sets of some kind, but not as a size relation for sets understood as completely un-
structured entities. The point can be made perhaps even more forcefully by considering number
structures rather than size relations. Recall, that, given a size relation ⊑, we can define a cor-
responding structure of sizes (N ,≼) by considering the set of equivalence classes {A· | A ⊆ N},
where A· = {B ⊆ N | A ≡ B}, ordered by letting A· ≼ B· if and only if A ⊑ B. We may
now wonder how permutations of the natural numbers act on such a structure (N ,≼). Here, we
find that there is a stark contrast between size relations that satisfy RI and those who don’t.
Indeed, if ⊑ is relatively invariant, then every permutation π induces an automorphism π∗ of
(N ,≼) (i.e., an isomorphism from (N ,≼) into itself), given by letting π∗(A·) = (π∗(A))· for any
A ⊆ N. Intuitively, if one takes A· to stand for the size of A, this means that any permutation
defines a structure-preserving map on the structure of sizes by mapping the size of a set A to the
size of its permutation. By contrast, if ⊑ is not relatively invariant, then there is no guarantee
that the map π∗ is an automorphism. In fact, it might not be a function, since the failure of
Relative Invariance allows for the case of two equivalent sets A and B such that π∗(A) ̸≡ π∗(B).
In other words, sets that have the same size might suddenly have different sizes once we define a
permutation of the natural numbers. Whatever property of natural numbers is being tracked by
such a relation, it is hard to view such a high sensitivity to permutations as a characteristic of size.

Let me conclude this section by briefly discussing Parker’s criticism of Euclidean theories.
Roughly, Parker argues that Euclidean theory of size must either be arbitrary, because they fail
to satisfy certain criteria of invariance under permutations, or too weak to be fruitful. In short, I
agree with some of Parker’s points, but I think his arguments overreach in at least two ways. First,
Parker does not make, like I do, a distinction between the Euclidean Constraint and the Density
Intuition. This leads him to regularly attribute to the part-whole intuitions certain claims that, I
think, could only be motivated by considerations inspired from the Density Intuition (such as the
idea that there are as many positive integers as there are negative integers). As I will argue in
the next section, there is a well-motivated Euclidean size relation that is also relatively invariant
and that it is far from being “too weak”. Second, Parker argues that any theory size for infinite
sets should satisfy a stronger version of invariance, which I will call Absolute Invariance (AI):
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AI: For any A ⊆ N and any permutation π : N → N, A ⊑ π∗(A).

Intuitively, Absolute Invariance states that permutations of N cannot “shrink” the size of a
set of natural numbers. There might be some intuitive pull to the idea, but one can quickly see
that it is incompatible with the Euclidean Constraint. Indeed, for any infinite and coinfinite set
A, one can define a permutation π such that π∗(A) is a proper subset of A.9 Parker takes this to
be evidence that the Euclidean Constraint should be disregarded, because the “at most as many
elements” relation should be absolutely invariant. A full discussion of Parker’s arguments is
beyond the scope of this paper, since I am more interested in finding the best possible Euclidean
theory of size rather than in defending the mere possibility of such a theory. Therefore, I’ll
limit myself to the following two comments. First, one could try to argue for AI by coming
up with versions of the two arguments I gave for RI. For example, if one uses a size relation
⊑ that is relatively invariant but not absolutely invariant to determine size relations for subsets
of a countable set S, one could have a case of two distinct labelings f, g : N → S such that
f−1[A] ̸≡ g−1[A] for some A ⊆ S. In other words, unsurprisingly, there is no arbitrariness in
determining relative size relationships between subsets of S, but there could be some arbitrariness
in determining the absolute size of subsets of S if ⊑ is not absolutely invariant. Regarding my
second argument for RI, one could also argue that permutations should not only preserve the
structure of sizes, but, in fact, should not affect sizes at all! This amounts to saying that, given
a permutation π, the induced automorphism π∗ of the structure (N ,≼) should actually be the
identity. I think those arguments raise interesting questions regarding how exactly one should
think about “sizes” according to a Euclidean size relation, but that none of them amounts to
the devastating objection Parker is after.

Second, I think the following result, whose proof can be found in the Appendix A (Lemma A.4),
sheds an interesting light on the relationship between relative and Absolute Invariance.

Lemma 5.1. An arithmetical size relation ⊑ is absolutely invariant if and only if it is relatively
invariant and linear.

In short, this means that the intuition behind Absolute Invariance can be analysed as a com-
bination of Relative Invariance and Linearity. If we understand things that way, then requiring
Absolute Invariance instead of mere Relative Invariance appears like a way to sneak LIN back
into the picture. As we will now see, abandoning Linearity, however, is the key to reconciling
invariance with the Euclidean Constraint.

6 The Generic Approach

As I have argued in the previous section, there is something deeply wrong with the Density
Intuition, because it forces us to make certain determinations of size relationships that are
not relatively invariant under permutations of the set of natural numbers. In hindsight, this
should be far from surprising. After all, the key idea behind the Density Intuition is that
size relationships between sets of natural numbers are determined by the distributions of their
respective elements along the sequence of natural numbers. But any permutation of the natural
numbers will somewhat disturb the sequence of natural numbers. A permutation that swaps
only finitely many natural numbers may not disturb it enough so as to change what the Density

9Here is a simple way to do this. Given A, define first a bijection f between N and the integers Z as follows:
map all natural numbers in A onto the non-negative integers, and all natural numbers not in A onto the negative
integers. Then define the permutation π by π(n) = f−1(f(n) + 1), i.e., by shifting the image of n to the right
and taking the preimage of the result. It is then easy to check that π∗(A) = A \ f−1(0), so π∗(A) is a proper
subset of A.
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Intuition takes size relationships between sets of natural numbers to be, but a more radical
permutation surely will. If one wants to define a size relation that satisfies RI, one must therefore
abandon the Density Intuition, and with it the idea that size relationships between infinite sets
can be approximated by looking at initial segments of the natural numbers. Let me now present
a way to do so by going back to our thought experiment of the Surveyor.

Recall that a sequential Surveyor’s way of determining whether there were “at most as many”
elements in a set A as in a set B is to obtain partial approximations of the correct answer by
focusing on finite sets of the form {0, ..., n − 1} for some natural number n. Ultimately, the
reason why a sequential Surveyor implements the Density Intuition is because she focuses solely
on initial segments of the natural numbers. But what if, instead, we allowed her to consider any
finite set of natural numbers for her approximations of the correct size relationship between two
infinite sets A and B? In other words, for any sets of natural number A and B and any finite
set C, we now let our Surveyor determine whether there are “at most as many elements” in A as
there are in B from the point of view of the set C by computing whether |A∩C| ≤ |B ∩C|. The
idea here is that, in her assessment of size relationships, a sequential Surveyor is biased by the
fact that she only considers initial segments of the natural numbers for her partial measurements.
By contrast, our new Surveyor thinks that such measurements should be performed whenever
possible, i.e., relative to any arbitrary finite set of natural numbers.

The picture is now the following. Given two sets A and B, our new Surveyor determines a
function that assigns to any finite set of natural numbers an answer to the question “does A
contain at most as many elements as B?”. Here again, whenever one of A or B is finite, there is
a sense in which the answer will be constant “from some point onwards”. For example, if both
A and B are finite, then as soon as a Surveyor considers a finite set C that contains their union
A∪B, she will always obtain the same answer. The same holds whenever A is a proper subset of
B, regardless of whether or not either set is finite. Indeed, for any finite set C, the Surveyor will
always know that there are at most as many elements in A as there are in B relative to C and,
as soon as C contains at least one element of the set B \ A, she will also know that B contains
strictly more elements than A. What about the example used before to motivate the Density
Intuition, namely squares and powers of 2? Recall that, from some point onwards, a sequential
Surveyor always obtained that there were strictly more squares than powers of 2. Predictably,
the same does not occur for our new version of the Surveyor. Indeed, there are finite sets of
arbitrarily large size relative to which there are at most as many squares as there are powers of
2: for example, just take any finite subset of 2N! In fact, more is true: given any finite set C,
we can always find a larger set D ⊇ C such that, relative to D, there are more powers of 2 than
squares: simply add to C more elements of 2N \N2 than there are elements in C, which you can
always do, since 2N \ N2 is infinite.

Once again, our Surveyor is in a situation in which she has infinitely many answers to the
question “are there at most as many elements in A as there are in B?”, and she must find a
way to extract from them a definite answer. Faced with the same issue, the sequential Surveyor
of Benci and di Nasso’s chooses what counts as “often enough” in a way that satisfies the
three constraints of Cofiniteness, Coherence and Decisiveness. But recall that the existence of
such a sequential Surveyor required strong non-constructive principles and, with, them some
unavoidable element of arbitrariness in the choice of sequential Surveyor. By contrast, we can
specify a unique Surveyor with the following definition of what counts as “often enough”:

G1 Cofinality: An answer of the form “A has at most as many elements as B” appears “often
enough” if and only if there is a finite set C such that, for any finite set D ⊇ C, there are
at most as many elements in A ∩D as there are elements in B ∩D.

I will call the Surveyor determined by such a notion of “often enough” the Generic Surveyor,

20



and I will denote the relation that she defines on P(N) by ⊑G . Note that this relation can be
explicitly described as follows.

GEN For any A,B ⊆ N, A ⊑ B if and only if there is a finite set C ⊆ N such that for all finite
D ⊇ C, |A ∩D| ≤ |B ∩D|.

I think there are strong reasons to believe that what counts as “often enough” for the Generic
Surveyor is indeed often enough. After all, Cofinality means that the Surveyor needs only to
consider a particular finite set C of natural numbers to be sure of her answer. As soon as she
considers that finite set, plus maybe more natural numbers, her answer will not change. Note
that this means also that, no matter what finite set D she starts from, she will always “converge”
to the same answer, as soon as she reaches the finite set C ∪ D. So Cofinality certainly isn’t
too weak a requirement to impose on what counts as “often enough”. But is it too strong?
Could the Generic Surveyor be a bit more liberal in what she counts as “often enough”? The
following result arguably shows that, in fact, this is the best she can do if she wants to remain
both Euclidean and well-motivated.

Theorem 6.1. The relation ⊑G is the largest Euclidean and relatively invariant size relation.

Again, note that there are two parts to this theorem. First, ⊑G is a size relation that is both
Euclidean and relatively invariant. Second, it is the largest such relation: any size relation ⊑ for
which there are sets A and B such that A ̸⊑G B, yet A ⊑ B must violate either EC or RI. As
we have seen in the previous section, there is some tension between the Euclidean property and
invariance. More invariance, such as Absolute Invariance, means that the Euclidean property
must be abandoned, Similarly, some Euclidean theories such as numerosity theory are not even
relatively invariant. What Theorem 6.1 shows is that ⊑G is, in a sense, the optimal equilibrium
point between the two: no size relation can make strictly more assignments than ⊑G without
losing at least one of the two properties.

Let’s take stock. We started from the Minimal Proposal, with a relation ⊑M that was the
smallest possible size relation preserving finite arithmetic. We worried that ⊑M was too small a
relation, in particular because it was not linear, and we considered whether the Density Intuition
could help in finding a Euclidean and linear size relation. As I have argued, however, any size
relation based on the Density Intuition should be abandoned, because it is incompatible with
the criterion of Relative Invariance. But we have now obtained a theory, the Generic Approach,
that determines a Euclidean size relation ⊑G that is also relatively invariant, and is in fact the
largest such size relation. Although it is not linear, it could still appear as an improvement on
the Minimal Proposal. How should we choose between the two, i.e., between the size relations
⊑M and ⊑G? The good news is that, in fact, we do not have to choose.

Theorem 6.2. For any set A,B ⊆ N, A ⊑M B if and only if A ⊑G B. In other words, the
relations ⊑M and ⊑G are identical.

This result, whose proof can be found in the Appendix (Theorem A.1), is strong evidence that
our initial worry about the Minimal Proposal can be dispelled. As long as we want a Euclidean
theory of size that is relatively invariant under permutations, the Minimal Proposal is in fact
also a maximal one: no other Euclidean and relatively invariant size relation can do better. Note
that an immediate corollary of Theorems 3.1, 6.1 and 6.2 is the following unique characterization
of ⊑G .

Theorem 6.3. The relation ⊑G is the unique arithmetical, Euclidean and relatively invariant
size relation on P(N).
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Again, I think this result should make us very confident about the Minimal Proposal or,
equivalently, about the Generic Approach. We tried to approximate what a Euclidean version of
the “at most as many elements” relation might be “from below”, by heeding the Galilean call for
modesty, and we ended up with the Minimal Proposal. We tried to approximate it “from above”,
by looking for a size relation that extracts the non-arbitrary kernel from the Density Intuition,
and we ended up with the Generic Approach as encapsulated by the generic Surveyor, whose
judgments coincide with the Minimal Proposal. As a consequence, we now have six different
characterizations of the generic relation ⊑G , all with their own intuitive motivation.

1. A ⊑G B if and only if there is C ⊆ B \A such that |A \B| ≤ |B \A|;

2. ⊑G is the smallest arithmetical size relation;

3. A ⊑G B if and only if any injection f : B \A → A \B is also surjective;

4. A ⊑G B if and only if there is a finite set C ⊆ N such that for any finite D ⊇ C,
|A ∩D| ≤ |B ∩D|;

5. ⊑G is the largest Euclidean and relatively invariant size relation;

6. ⊑G is the unique arithmetical, Euclidean and relatively invariant size relation.

Once again, this is in stark contrast to numerosity theory, according to which the correct size
relation on P(N) cannot be specified explicitly, and must instead be chosen from a multitude
of non-constructive options. This leads me to think that ⊑G is a better alternative to the
Cantorian notion of size for sets of natural numbers. In fact, given its characterization as the
unique arithmetical, Euclidean and relatively invariant size relation, I think ⊑G is the best possible
candidate for such a Euclidean challenge to the notion of cardinality.

7 Conclusion

The axiomatic approach I have embraced here brings, I think, a lot of clarity to the tension that
is at the root of Galileo’s Paradox. The results I have presented entail that no size relation on
the powerset of N can be linear, Euclidean and relatively invariant. The joint incompatibility
between those three requirements gives rise to a trilemma, which, as shown in Table 1, gives rise
to three possible roads for the “at most as many elements” relation:

• Adopt Linearity and Relative Invariance, which leads to Cantor’s way out of the paradox
and to the relation ⊑C ;

• Adopt Linearity and the Euclidean Constraint, which is the road followed by adepts of the
Density Intuition and leads to many sequential Surveyors and many possibilities for the
relation ⊑D;

• Adopt Relative Invariance and the Euclidean Constraint, which leads to the generic relation
⊑G .

As I have argued at length, I think the third path is superior to the second one. Granted,
this requires giving up the ability to always determine which of any two sets of natural numbers
has more elements than the other, but I think the sacrifice is worth it. Assignments of size
relationships under the Generic Approach are always grounded in some elementary facts that
have a strong element of finiteness to them. To be sure of her answer, the generic Surveyor
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EC RI LIN

⊑C × � �
⊑D � × �

⊑M / ⊑G � � ×

Table 1: Galileo’s trilemma

must be able to determine that it is the correct answer by looking merely at a finite set. When
we consider sets of natural numbers as pure sets (thus forgetting about the standard order on
the sequence of natural numbers), there are many sets for which no size relationship can be
determined on the sole basis of such finitary facts. But, precisely for this reason, it is hard to
see what kind of motivation could be given for determining size relationships between such sets,
unless one adopts the Cantorian idea that they all have the same size.

Despite this motivation for embracing the partiality of the generic relation, I would like to
conclude with a few words of solace for the friends of linearity. Arguably, giving up on linearity
feels like a high cost to pay because of a strong historical and conceptual link between the notion
of a quantity and linearity, in the sense that any two quantities of the same kind should always
be comparable to one another.10 In fact, I tend to think that there might be, after all, a way to
save some form of linearity even within the framework that I presented here. In short, starting
from the Galilean perspective of the Minimal Proposal, one can try to achieve linearity in several
ways, not all of which are equally good. Numerosity theory enforces linearity by giving into
arbitrariness and undefinability. Any two sets are comparable with respect to their sizes, but
very few such comparisons are well-motivated, as the failure of Relative Invariance indicates.
Cantor’s notion of cardinality, on the other hand, delivers linearity for sets of natural numbers,
but, arguably, at the price of triviality: any two infinite sets of natural numbers are comparable,
because they have the same size. It is also worth mentioning that, beyond the realm of the
countable, the linearity of cardinalities comes at a heavy price again, as it requires the Axiom of
Choice. Crucially, both approaches extend the relation ⊑M until it becomes a linear order. The
solution that I have in mind, by contrast, embraces its partial nature, but changes the meaning
of what it takes for a relation to be linear. Roughly speaking, the idea is that the statement
of linearity is disjunctive, and that disjunctions may sometimes hold of certain mathematical
structures not in virtue of one of their disjuncts holding determinately, but rather because these
structures exhibit a certain blend of definiteness and partiality. Under such a view, there is
no need to extend the generic relation, but we may instead view it as a partial relation that
nonetheless behaves linearly. Interestingly, the same strategy can be applied to the number
structure induced by ⊑G , which can then be embedded into a larger structure that has the same
first-order theory as the natural numbers. Fleshing out the details of this “semantic” road to
linearity involves discussing an alternative to the standard Tarskian semantics of first-order logic
known as possibility semantics, which is largely beyond the scope of this paper.11 For now, I
will therefore limit myself to mentioning this as a promising way to reconcile size relationships
between infinite sets with the ideal of linearity, thereby offering perhaps the most convincing way
out of Galileo’s Paradox.

10Forti [10] seems to be making such a similar point when advocating for numerosity theory.
11The reader may consult [17, 21] for more on this semantic framework, and in particular [22, Chap.8], where

the very idea sketched here is presented in more detail.
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A Appendix

Theorem A.1. Let A,B ⊆ N. The following are equivalent:

1. There is a finite C ⊆ N such that for all finite D ⊇ C, |A ∩D| ≤ |B ∩D|;

2. Every one-to-one function f : B \A → A \B is onto;

3. There is a finite C ⊆ B \A such that |A \B| ≤ |C|.

Proof. We show the following chain of implications: 1 ⇒ 2 ⇒ 3 ⇒ 1.

1 ⇒ 2 Suppose that there is a one-to-one function f : B \ A → A \ B which is not onto, and
let C be a finite subset of N. We will show that there is a finite D ⊇ C such that
|B ∩ D| < |A ∩ D|. Since f is not onto, A \ B is non-empty, so fix some n ∈ A \ B.
Moreover, let C ′ = C ∩ B \ A, and D′ = {f(x) | x ∈ C ′}. Since f is one-to-one, we have
that |D′| = |C ′|. Now let D = C ∪D′ ∪ {n}. Since D′, {n} and A ∩B ∩C are all disjoint,
we have that |A∩D| ≥ |D′|+ |{n}|+ |A∩B ∩C|. Moreover, since B ∩ (D′ ∪{n}) = ∅ and
C ′ ∩A∩B ∩C = ∅, we also have that |B ∩D| = |C ′|+ |A∩B ∩C|. But then we have the
following chain of inequalities:

|B ∩D| = |C ′|+ |A ∩B ∩C| = |D′|+ |A ∩B ∩C| < |D′|+ |{n}|+ |A ∩B ∩C| ≤ |A ∩D|.

Hence for any finite set C, there is D ⊇ C such that |B ∩D| < |A∩D|. By contraposition,
this means that if there is a finite C ⊆ N such that for all finite D ⊇ C, |A∩D| ≤ |B ∩D|,
then every one-to-one function f : B \A → A \B is onto.

2 ⇒ 3 Suppose that, whenever C ⊆ B \A is finite, A \B is strictly greater in cardinality than C.
Clearly, if B \ A is finite, this means that |B \ A| < |A \ B|, which means that there is a
one-to-one function from B \A to A \B which is not onto. So we may assume that B \A
is infinite. But this means that A \B is also infinite, for, otherwise, we could find a finite
subset of B \ A that is greater than or equal to A \ B in cardinality. So A \ B and B \ A
are two infinite sets, which means that we can find a one-to-one map from B \A to A \B
that is not onto. By contraposition, if every one-to-one function f : B \A → A \B is onto,
then there is a finite C ⊆ B \A such that |A \B| ≤ |C|.

3 ⇒ 1 Let C ⊆ B \ A be a finite set such that |A \ B| ≤ |C|, and let D ⊆ N be a finite set such
that C ⊆ D. Let D1 = D ∩ A \ B and D2 = D ∩ A ∩ B. Then we have the following
equalities:

|A ∩D| = |A ∩ C|+ |D1|+ |D2|
|B ∩D| = |C|+ |D2|.

Since C ⊆ B \ A, |A ∩ C| = 0, so |A ∩ D| ≤ |B ∩ D| if and only if |D1| ≤ |C|. But
D1 ⊆ A \ B, hence |D1| ≤ |A \ B| ≤ |C| by assumption on C. Hence |A ∩D| ≤ |B ∩D|,
which completes the proof.

Lemma A.2. The relation ⊑G on P(N) has the following properties:
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1. QO: ⊑G is a quasi-order, i.e., it is reflexive and transitive.

2. IN: ⊑G extends the inclusion ordering, i.e., A ⊆ B implies A ⊑G B.

3. DEC: if A1, A2, B1 and B2 are sets such that A1 ∩A2 = B1 ∩B2 = ∅, then A1 ⊑G B1 and
A2 ⊑G B2 together imply A1 ∪A2 ⊑G B1 ∪B2.

4. FIN: for any finite set A and any B ⊆ N, if there is an injection from A to B, then
A ⊑G B.

5. EC: for any A ⊊ B, B ̸⊑G A.

6. RI: for any A,B ⊆ N and any permutation π : N → N, A ⊑G B implies π∗(A) ⊑G π∗(B).

Proof. We prove all items in turn. We will use several equivalent characterizations of ⊑G .

1. Clearly, for any A ⊆ N and any finite C ⊆ N, we have that |A ∩ C| ≤ |A ∩ C|. This shows
that ⊑G is reflexive. For transitivity, suppose that A ⊑G B ⊑G C. Then we have finite
sets D1 and D2 such that for any D ⊇ D1, |A ∩ D| ≤ |B ∩ D| and for any D′ ⊇ D2,
|B ∩ D′| ≤ |C ∩ D′|. Let E = D1 ∪ D2. Then for any finite D ⊇ E, we have that
|A ∩D| ≤ |B ∩D| ≤ |C ∩D|, since E ⊇ D1, D2. But this means that |A ∩D| ≤ |C ∩D|
for any finite D ⊇ E, hence A ⊑G C.

2. Suppose A ⊆ B. Then for any finite C ⊆ N, |A ∩ C| ≤ |B ∩ C|. Hence A ⊑G B.

3. Let A1, A2, B1, B2 be subsets of N such that A1 ⊑G B1, A2 ⊑G B2 and A1∩A2 = B1∩B2 =
∅. Let A = A1 ∪ A2 and B = B1 ∪ B2. Fix finite sets C1, C2 such that for any finite set
D, D ⊇ C1 implies |A1 ∩ D| ≤ |B1 ∩ D| and D ⊇ C2 implies |A2 ∩ D| ≤ |B2 ∩ D|. Let
C = C1 ∪ C2, and let D ⊇ C be a finite set. Since A1 ∩ A2 = B1 ∩ B2 = ∅, we have the
following two equalities:

|A ∩D| = |A1 ∩D|+ |A2 ∩D|
|B ∩D| = |B2 ∩D|+ |B2 ∩D|

Now since D ⊇ C1 ∪C2, we have that |A1 ∩D| ≤ |B1 ∩D| and |A2 ∩D| ≤ |B ∩D|. Hence

|A ∩D| = |A1 ∩D|+ |A2 ∩D| ≤ |B1 ∩D|+ |B2 ∩D| = |B ∩D|,

which shows that A ⊑G B.

4. Let A be a finite set and B ⊆ N such that there is an injection f : A → B. Let C ⊆ B
be the range of f , and note that, since f is injective, we have that |A| = |C|. Now let
D ⊇ C. Since C ⊆ B ∩D, we have that |A ∩D| ≤ |A| = |C| ≤ |B ∩D|. But this means
that A ⊑G B.

5. Suppose that A ⊊ B, and let C be a finite set. To show that B ̸⊑G A, it is enough to find
D ⊇ C such that |B ∩D| ≰ |A ∩D|. Let n ∈ B \A, and let D = C ∪ {n}. Then A ∩D is
a proper subset of B ∩D, from which it follows that |A ∩D| < |B ∩D|. This shows that
B ̸⊑G A.

6. Let A,B ⊆ N and let π : N → N be a permutation. If A ⊑G B, then there is a finite
C ⊆ B \ A such that |A \ B| ≤ |C|. Now notice the following simple facts about the map
π∗ : P(N) → P(N) for any C,D ⊆ N:
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• C ⊆ D implies π∗(C) ⊆ π∗(D);

• π∗(C \D) = π∗(C) \ π∗(D);

• If C is a finite set, then |π∗(C)| = |C|.

Hence π∗(C) ⊆ π∗(B \A) = π∗(B) \π∗(A), and we have the following chain of inequalities:

|π∗(A) \ π∗(B)| ≤ |π∗(A \B)| = |A \B| ≤ |C| = |π∗(C)|.

Hence π∗(A) ⊑G π∗(B).

Theorem A.3. The following completely characterize the relation ⊑G among the set of size
relations on P(N):

1. ⊑G is the smallest size relation on P(N) that satisfies FIN.

2. ⊑G is the largest size relation on P(N) that satisfies EC and RI.

3. ⊑G is the unique size relation on P(N) that satisfies FIN, EC and RI.

Proof. We prove all three items of the theorem in turn.

1. Note first that ⊑G satisfies FIN by Lemma A.2. To show that it is the smallest such size
relation, suppose that ⊑ is a size relation that satisfies FIN, and let A,B ⊆ N such that
A ⊑G B. We must show that A ⊑ B. Since A ⊑G B, there is a finite C ⊆ B \ A such
that |A \ B| ≤ |C|. In particular, A \ B is finite and injects into B \ A. Since ⊑ satisfies
FIN, this means that A \ B ⊑ B \ A. Moreover, since ⊑ is a size relation, we have that
A ∩ B ⊑ A ∩ B. Now clearly A can be decomposed into A \ B and A ∩ B, and B can be
decomposed into B \A and A ∩B. By DEC, it follows that A ⊑ B.

2. Here again, note that ⊑G satisfies EC and RI by Lemma A.2. To show that it is the
largest such size relation, suppose that ⊑ is a size relation that satisfies EC and RI,
and let A,B ⊆ N such that A ⊑ B. We must show that A ⊑G B. Suppose, towards a
contradiction, that A ⊑ B but A ̸⊑G B. By Theorem A.1, we have f : B \A → A \B such
that f is one-to-one but not onto. Now define π : N → N by letting π(a) = b, for b the
unique element of B \ A such that f(b) = a, if a ∈ ran(f), π(b) = f(b) for any b ∈ B \ A,
and π(x) = x for any x /∈ B \ A ∪ ran(f). In other words, π is a permutation of N that
swaps the domain of f with its range and leaves every other natural number undisturbed.
Now we make the following observations. First, since ⊑ satisfies RI and A ⊑ B, we have
that π∗(A) ⊑ π∗(B). Moreover, B ⊆ π∗(A). Indeed, if b ∈ A ∩ B, then π(b) = b ∈ A, and
if b ∈ B \A, then π(b) = f(b) ∈ A. Since ⊑ satisfies IN, this means that we have:

A ⊑ B ⊑ π∗(A) ⊑ π∗(B),

whence, by transitivity of ⊑, we have that A ⊑ π∗(B). But notice also that π∗(B) ⊊ A.
Indeed, if π(b) ∈ B, then either π(b) ∈ B ∩ A, which can only happen if π(b) = b and
hence if b ∈ A, or π(b) ∈ B \ A, in which case f(π(b)) = b, which means that b ∈ A \ B.
Moreover, since f is not onto, there is some a ∈ A \ B such that π(a) = a, which means
that a ∈ A \ π∗(B). Hence we have that π∗(B) ⊊ A and A ⊑ π∗(B), which contradicts the
assumption that ⊑ satisfies EC. This completes the proof.

26



3. By Lemma A.2, ⊑G satisfies FIN, EC and RI. To show that this uniquely characterizes
⊑G , suppose that ⊑ is a size relation that satisfies FIN, EC and RI. By part 1, A ⊑G B
implies A ⊑ B, since ⊑ satisfies FIN. By part 2, A ⊑ B implies A ⊑G B, since ⊑ satisfies
EC and RI. Hence A ⊑ B if and only if A ⊑G B, which means that ⊑G is the unique size
relation satisfying FIN, EC and RI.

Lemma A.4. An arithmetical size relation ⊑ is absolutely invariant if and only if it is relatively
invariant and linear.

Proof. Fix a size relation ⊑. Suppose first that ⊑ is absolutely invariant. Then ⊑ is clearly
relatively invariant, since, if π is a permutation and A,B ⊆ N, we have that A ⊑ B implies that
π∗(A) ⊑ A ⊑ B ⊑ π∗(B). To see that it is linear, let A,B ⊆ N and consider the sets A \ B,
B \A. If one of them is finite, then by FIN we have that either A\B ⊑ B \A, or B \A ⊑ A\B.
But then it follows from DEC that we have either A ⊑ B or B ⊑ A. If both A\B and B \A are
infinite, then we can fix a bijection f between those two sets, which gives rise to a permutation
π such that π∗(A) = B. But then, by Absolute Invariance, we have that A ⊑ π∗(A) = B.

For the converse direction, suppose now that ⊑ is linear and relatively invariant. Note first
that this implies that, whenever A,B ⊆ N are such that B\A and A\B are infinite, we have that
A ⊑ B. Indeed, suppose A and B are such sets. By linearity, we have either A ⊑ B or B ⊑ A.
Suppose the latter holds. Since both A \ B and B \ A are infinite, there is a bijection between
these two sets, which can be lifted to a permutation π such that π∗(A) = B and π∗(B) = A. But
then, by Relative Invariance together with A ⊑ B, it follows that A = π∗(B) ⊑ π∗(A) = B. Now
suppose, towards a contradiction, that there is a set A and a permutation π such that A ̸⊑ π∗(A).
Without loss of generality, we may assume that A is infinite and coinfinite (otherwise, we can
easily derive the contradiction by using FIN and DEC). We distinguish two cases. If both
A \ π∗(A) and π∗(A) \ A are infinite, then it follows from the observation made above that
A ⊑ π∗(A), which is the contradiction we were after. Otherwise, without loss of generality, we
have that π∗(A)\A is finite. But then A∪π∗(A) = A∪π∗(A)\A is coinfinite. So fix some infinite
set B such that B∩ (A∪π∗(A)) = ∅. It follows that B \A, A\B, π∗(A)\B and B \π∗(A) are all
infinite, so, by the observation above again, we have that A ⊑ B ⊑ π∗(A). But this contradicts
the transitivity of ⊑.
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