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Abstract 

The recent developments in artificial intelligence (AI), particularly in light of the 

impressive capabilities of transformer-based Large Language Models (LLMs), have 

reignited the discussion in cognitive science regarding whether computational devices 

could possess semantic understanding or whether they are merely mimicking human 

intelligence. Recent research has highlighted limitations in LLMs’ reasoning, 

suggesting that the gap between mere symbol manipulation (syntax) and deeper 

understanding (semantics) remains wide open. While LLMs overcome certain aspects 

of the symbol grounding problem through human feedback, they still lack true 

semantic understanding, struggling with common-sense reasoning and abstract 

thinking. This paper argues that while adding sensory inputs and embodying AI 

through sensorimotor integration with the environment might enhance its ability to 

connect symbols to real-world meaning, this alone would not close the gap between 

syntax and semantics. True meaning-making also requires a connection to subjective 

experience, which current AI lacks. The path to AGI must address the fundamental 

relationship between symbol manipulation, data processing, pattern matching, and 

probabilistic best guesses with true knowledge that requires conscious experience. A 

transition from AI to AGI can occur only if it possesses conscious experience, which 

is closely tied to semantic understanding. Recognition of this connection could furnish 

new philosophical insights into longstanding practical and philosophical questions for 

theories in biology and cognitive science and provide more meaningful tests of 

intelligence than the Turing test. 
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Introduction 

Theories of language and meaning are not new. One could begin with Ferdinand de 

Saussure’s fundamental insights about the meaning of signs and words as arising from their 

relationships with other signs and words. The structure of language is based on these 

relationships and differences, without which meaning could not emerge. This approach laid the 

foundation for modern structural linguistics and semiotics.  

Later, Ludwig Wittgenstein, in his masterpiece of logical positivism, Tractatus Logico-

Philosophicus, emphasized that meaningful statements must be rooted in the clarity of concepts 

within a logical system of propositions. He described language as mirroring the world of facts 

(not things), developing a “picture theory” of language as a description of our experiences of 

these facts. The later Wittgenstein departed from the Tractatus in his Philosophical 

Investigations, realizing that language derives its meaning not only from logical structures but 

also from its contextual dependency. Language mirroring the world and facts is specific to social 

and practical contexts, and the meanings it conveys must have inherent flexibility and 

vagueness. 

Noam Chomsky’s theory of “transformational-generative grammar” championed the view 

that language is a product of the mind, an idea based on a biolinguistic conception, in which the 
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human ability to use complex forms of language is pre-wired in the brain, in a “language 

acquisition device.” This premise led him to hypothesize the existence of universal grammar, 

with core syntactic linguistic knowledge being genetically inherited. 

Saussure’s, Wittgenstein’s, and Chomsky’s theories are just a few examples of the many 

competing theories that have emerged over the years. However, a definitive answer to the 

question of the nature of language and meaning remains elusive. 

Similar questions arose in the field of IT. Shortly before Wittgenstein published his 

Investigations, Claude Shannon, the modern father of information theory, was contemplating 

the notion of information. What does the word “information” mean? The etymology of words 

is often more insightful than our contemporary understanding of them. The word “information” 

derives from the Latin “informare,” which suggests that something has been formed or shaped–

by molding, carving, or puncturing an object into a pattern or by modifying its physical, 

internal, or external state. It is about forming or changing something, making it a medium for 

symbols that convey a message, expressing our thoughts to someone who can understand those 

symbols and refer to them meaningfully. Whether it is letters and words on paper or bits in a 

computer, information is always about forming patterns or modifying internal states in objects. 

On the other hand, the information we receive also “forms” and “shapes” ideas in our minds. 

There is, therefore, an important distinction to be made between physical information and 

semantic information. Physical information conveys a message in the form of symbols, signs, 

and tokens, and in communication theory, it is quantified by the Shannon information measure. 

However, a sequence of symbols and its quantification in bits are, in and of themselves, not 

meaningful unless a mind apprehends them and “collapses” them into a meaningful semantic 

whole. Physical information has no meaning whatsoever if there is no mind receiving the 

message and translating it into coherent thoughts. 

Shannon was acutely aware of this distinction. In his seminal 1948 paper, “A Mathematical 

Theory of Communication,” he pointed out: “The fundamental problem of communication is 

that of reproducing at one point either exactly or approximately a message [a sequence of 

discrete symbols] selected at another point. Frequently the messages have meaning; that is they 

refer to or are correlated according to some system with certain physical or conceptual entities. 

These semantic aspects of communication are irrelevant to the engineering problem” (Shannon, 

1948). 

In physics and statistical theory, several other definitions of information exist. However, 

most of these information measures are closely related to Shannon information, and none of 

them quantify semantic content.  

Unlike a mathematical or physical theory of communication, semantic information concerns 

the meaning of a message. The idea that meaning cannot be reduced to pattern recognition alone 

and that a physical representation of something is fundamentally different from the thing being 

represented becomes intuitively evident with the famous Gestalt figures. For example, the 

popular Rubin’s vase-face figure, where our mind switches between the visual interpretation of 

a vase and two faces, shows how patterns in-formed into material structures (the figure on a 

piece of paper) have no meaning in and of themselves. A meaning-making mind must convert 

physical information into a coherent semantic whole and eventually even make a choice 

between mutually exclusive ones. It is a cognitive process that highlights how the significance 

of things isn’t inherent in the things themselves “out there” but rather emerges as a perceived 

content in us. 

For about three decades, these questions were largely ignored as irrelevant philosophical 

subtleties. Unfortunately, physical information was often conflated with semantic information, 

and both were simply referred to as “information” without further distinctions. However, the 

progress of IT, the ever-increasing (physical) information processing power of computers, the 

advent of AI, and new findings in neuroscience have forced us to reconsider these simplistic 
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assumptions. Questions about the nature of consciousness and the mind have resurfaced, and 

the relationship between computational and mental states has become a matter of debate. 

In 1980, one of the most debated arguments against computationalism came from Searle, 

who formulated his celebrated “Chinese Room Argument.” This thought experiment was 

designed to challenge the notion that a Turing machine–and, by extension, any (non-quantum) 

computer or AI system running an algorithm–can truly understand something simply by 

processing symbols (Searle, 1980). Searle, who does not understand Chinese, imagined himself 

locked in a room with a set of rules (in English) for manipulating Chinese symbols. By receiving 

Chinese characters as input and following the rules to produce the correct output in Chinese, he 

could mimic a native Chinese speaker, though without understanding what the Chinese symbols 

actually referred to–that is, what they meant. No matter how perfect a simulation of 

understanding might be, it does not imply genuine comprehension of the language. One is 

merely following the syntactic rules of a program without any grasp of meaning (semantics).  

By highlighting the distinction between syntax (symbol manipulation) and semantics 

(meaning), this thought experiment demonstrates the possibility of correctly processing 

symbols without understanding what they mean. Thus, it raises the question of whether 

machines, while capable of the former, are also capable of the latter. There is only the signifier 

without the signified, in the sense that a Turing machine manipulates symbols according to 

syntactic rules (an algorithm) without having either an abstract conceptual designation or any 

real-world referents.1 

Based on these arguments, Searle introduced the distinction between “strong AI”–nowadays 

referred to as “Artificial General Intelligence” (AGI)–and “weak AI.” There is no consensus on 

what exactly “general intelligence” means. Here, as will become clear throughout this essay, 

general intelligence refers to a system possessing what I like to call “semantic awareness”–that 

is, a form of cognition capable of reasoning based on a genuine semantic comprehension (in a 

sense that will be clarified later) of language, data, and, eventually, sensory inputs. Such a 

system would go beyond the mere emulation currently achieved by symbol manipulation, best-

fit algorithms, or next-token predictions.  

In the 1990s, Searle’s thought experiment was reinforced by the so-called “symbol 

grounding problem,” discussed by Harnad (1990). This issue highlights the difficulty of 

explaining how symbols in computational systems–whether words, numbers, streams of bits, 

signals, or more complex representations–can carry meaning without being grounded in sensory 

experiences or real-world interactions. A gap remains between functional symbols and number-

crunching processes on the one hand and meaningful mental states on the other. The divide 

between syntax and semantics persists. 

The question becomes even more complex when we consider that symbols do not always 

refer to concrete objects or real-world phenomena but can also represent abstract and intangible 

concepts like “beauty,” “justice,” or even the concept of “abstraction” and “meaning” itself. 

Harnad raises the issue that we do not really know what “meaning” itself is. We cannot 

simply assume that semantics can be reduced to a form of computation, as computation follows 

specific syntactic, logical, and mathematical rules based on symbol manipulation–not their 

meanings. He referred to this as the “symbol/symbol merry-go-round”–the idea that symbols 

can refer only to other meaningless symbols. Avoiding this infinite regress requires a bridge 

between those representations and the things or concepts to which they refer. 

Even for a Turing machine that convincingly passes the Turing test–that is, its cognitive 

processes are indistinguishable from those of a human, the question would remain: Does it 

meaningfully connect its internal representations to their referents, or is it mere mimicry, 

without any real semantic awareness of what they mean? Does it truly understand? What does 

 
1 One might argue that the meaning of symbols lies in their “use.” However, there is no “use” inherent in the 

cell state that a Turing machine’s head reads and reacts to other than that which an external semantic agent assigns. 
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it mean to “truly understand”? Harnad realized that “there is a difference between inert words 

on a page and consciously meaningful words in our heads” (Harnad, 1990 & 2007). 

Thus, following mechanical rules in symbol manipulation is one thing, and what humans 

mean by “understanding,” “knowing,” or “comprehension” is another. Semantics remains 

outside the formal description of any computational model. 

The question, then, is: If symbols are meaningless in and of themselves, what generates 

meaning? While Shannon’s notion of physical information is conceptually and mathematically 

well-defined, it is unclear how to define semantic information and even less clear how minds 

convert the former into the latter. How do neural activity patterns supposedly constitute and 

implement meaning? How do symbols and signs encoded in language elicit meaning in the 

brain through their reciprocal exchange? It seems that a mind is required as an interface between 

Shannon information (which refers to physical patterns or states in a medium) and semantic 

information (which meaningfully grounds the symbol to its referent in a much less tangible 

mental domain). 

The most promising approach to answering these questions and aiming at “naturalizing 

meaning” seemed to be representationalism–an attempt to explain mental states and their 

contents in terms of representations and intentionality. However, decades of research in 

cognitive science and philosophical debates aimed at connecting mental processes that 

manipulate representations of external reality with cognition, perception, and consciousness 

have led to little substantial progress.2 Currently, non-representational theories emphasizing 

cognition as deeply rooted in bodily experiences and actively engaged with the environment 

are receiving more attention. (We will address these in the concluding section.) The advent of 

Large Language Models (LLMs) and their limitations suggests that this must be the case. 

However, I will argue that while embodiment might provide valuable insights into the 

relationship between computation, symbols, representations, and sense-making semantics, it 

can, at best, be only a necessary but not sufficient condition. Phenomenal consciousness and its 

whole psychological dimension cannot be sidestepped, as it is inextricably intertwined with 

meaning-making. 

Meaning in a Time of Large Language Models 

With the advent of transformer-based Large Language Models (LLMs), particularly in their 

popular form as ChatGPT, these questions elicited renewed interest. LLMs are designed to 

understand and generate human-like text based on vast amounts of data. Using deep learning 

neural networks, they predict and generate word sequences by learning patterns, grammar, 

context, and semantics from large datasets. Trained on diverse sources, including books, 

websites, and conversations, LLMs can answer questions, complete texts, translate languages, 

summarize information, and engage in natural dialogue. We have all been impressed by their 

abilities, which seem to suggest that they can reason effectively and possess a degree of 

semantic understanding.3 The deep learning architecture underpinning these models is the 

transformer, whose key feature is its ability to effectively process and understand long-range 

dependencies in input data. Key components of transformer-based LLMs include: the self-

attention mechanism (which weights the importance of different tokens in a sequence relative 

to one another); positional encoding (accounting for the order and relative position of words); 

 
2 For a good summary of these theories and their inability to solve the problem of meaning in AI shortly before 

LLMs took center-stage, see (Froese & Taguchi, 2019). 
3 Here, the term “reasoning” encompasses not only problem-solving abilities that rely on logical processes like 

deduction, induction, abduction, multi-step inference, or mathematical skills, but also those requiring abstraction, 

generalization, semantic discrimination rather than plausible best guesses, and the capacity to organize thoughts 

and conceptual structures into coherent, meaningful wholes–that is, what is commonly referred to as “common 

sense,” “rationality,” or “thinking” in human cognitive skills. 
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multi-head attention (using multiple attention “heads” to capture different types of relationships 

between words in parallel, thereby enhancing the model’s flexibility in understanding context); 

feedforward neural networks (applying neural networks to refine each token’s representation 

based on the context derived from the attention mechanism); and layer normalization and 

residual connections (stabilizing training and improving information flow through the network, 

often reinforced by learning from human feedback). 

In simpler terms, transformers in LLMs process and generate text by learning the probability 

distribution of sequences of words or tokens and predicting the next word based on those 

previously generated. The transformer architecture has proven to be exceptionally powerful, 

especially in tasks that seem to require some level of semantic understanding. This fact 

challenges the notion that symbol manipulation alone is insufficient for cognitive states 

involving deep understanding.  

Do LLMs truly understand? Do they possess a semantic understanding beyond imitation? 

Do they ground symbols as humans do? 

While LLMs perform surprisingly well, nobody knows exactly why. Their internal 

complexity is such that they must be regarded as a black box. The issue is further complicated 

by the possibility of distinguishing different forms of “grounding.” Modern LLMs, as artificial 

neural networks, compute over high-dimensional vectors rather than discrete symbols, making 

it more accurate to speak of a “vector grounding problem” (Mollo, 2023). Millière and Mollo 

distinguish five notions of grounding: referential (how linguistic items refer to real-world 

objects), sensory-motor (such as linking textual and visual representations), relational (how 

words relate to other words through definitions), communicative (the establishment of an 

intersubjective, rule-based language to communicate meaning and ensure mutual 

understanding), and epistemic (the relationship between linguistic expressions and factual 

knowledge-based data). Using an analogy with Chalmers’ distinction between the easy and hard 

problems of consciousness (Chalmers, 1995), the hard problem of symbol grounding pertains 

to referential grounding. The other forms of grounding are, so to speak, “easy” in the sense that 

they can be addressed through a more or less sophisticated representational theory. Harnad’s 

“symbol/symbol merry-go-round” relates to the referential grounding.  

However, Millière and Mollo argue that LLMs can partially overcome the referential 

grounding problem, thereby acquiring more than interlinguistic functions through human fine-

tuning. This fine-tuning endows LLMs with normative, world-involving functions that allow 

them to develop intrinsically meaningful representations of the world–going beyond mere word 

associations by adding an epistemic layer that connects language to world references. Through 

human feedback, LLMs gain knowledge about how the world operates, which enables them to 

form world-involving representations rather than purely linguistic ones, even without 

embodiment. In this way, LLMs at least partially address the referential grounding problem. 

Yet, these world-involving functions are ultimately human-induced; the human factor is the 

bridge between language and the world. Human feedback via supervised learning provides 

modern LLMs with a form of referential grounding that aligns vector representations of words 

with real-world referents, endowing them with intrinsic meaning that, once fine-tuned, may no 

longer rely directly on human input. The only way for LLMs to achieve any form of referential 

grounding is through the intervention of a semantically grounded human agent who sets the 

normative framework, thereby guiding the non-grounded agent in establishing a world-system 

of referents. Thus, even if this approach succeeds, it merely shifts the symbol grounding 

problem from the machine to the human agent: If an artificial neural network cannot achieve 

symbol (or vector) referential grounding, how are those biological neural networks inside our 

skulls able to do so? 

Moreover, empirical evidence suggests that there is not anything or “anyone” in an LLM 

that genuinely “understands” beyond best-guessing and mimicry. Recent research has shown 

that LLMs can deviate in their responses when presented with irrelevant information, with 
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performance declining when an unrelated sentence is added to a problem. This does not alter 

the problem’s semantic content but appears to “distract” the model (Shi, 2023). The illusion of 

“reasoning” displayed by LLMs relies largely on recognizing patterns with a strong token bias 

rather than true comprehension; this also accounts for their limited generalization ability (Jiang, 

2024). Further studies reveal that LLMs lack genuine mathematical reasoning; instead, they 

replicate logical steps seen in training data without understanding. For instance, rephrasing the 

same question can yield different answers, and adding redundant information irrelevant to the 

solution significantly lowers their mathematical reasoning performance. A slight increase in 

task difficulty can similarly lead to notable performance drops. LLMs tend to translate 

statements into operations (e.g., interpreting “discount” as “multiplication”) without 

understanding the underlying semantics. This behavior aligns more closely with probabilistic 

pattern matching than with actual logical reasoning. Such limitations are evident even in basic 

grade-school math problems and are expected to become more apparent in complex 

mathematical assessments. That LLMs do not go much beyond sophisticated forms of 

“semantic-free“ imitation is also suggested by the fact that they are inherently limited by their 

ability to solve problems that significantly differ from those they saw during their training 

session.4 Additionally, the idea that LLMs exhibit “emergent abilities”–skills that are absent in 

smaller models and that appear only in larger ones–is also under scrutiny. These abilities may 

be fictitious and not an inherent result of scaling models up in complexity (Schaeffer, 2023). 

Other investigations have highlighted AI’s limitations in reasoning, as demonstrated by 

LLMs’ failures in seemingly simple tasks such as counting words or reversing a list (McCoy, 

2024). This raises the question of why LLMs are generally effective in multi-step reasoning yet 

struggle with surprisingly trivial problems. Chain-of-thought prompting, which involves 

generating intermediate reasoning steps before arriving at a final output, exhibits characteristics 

of both memorization reasoning (in which the model mimics patterns learned from training 

data) and probabilistic reasoning (in which the model selects the most probable output based 

on the input) (Prabhakar, 2024). Further studies have examined how transformer LLMs tackle 

compositional tasks that require breaking problems into sub-steps and synthesizing those steps 

into precise answers. It turns out that they often simplify these tasks by matching linearized 

subgraphs–training examples that mirror the computations needed to solve test examples–

without developing systematic problem-solving skills. Moreover, abstract multi-step reasoning 

problems based on autoregressive generation (the statistical prediction of the next sequence 

value based on previous values) tend to deteriorate rapidly as task complexity increases (Dziri, 

2024).  

This suggests that LLMs’ abilities scale asymptotically: Beyond a certain threshold, adding 

more neural layers, faster processing, increasing training data, enhancing supervised 

reinforcement learning, and further fine-tuning or prompt engineering do not significantly 

improve their performance.5 

Additionally, unlike humans, LLMs cannot correct their erroneous guesses (Kambhampati, 

2024). This aspect is crucial, as one might argue that humans are prone to similar flaws. 

However, humans can recognize their logical, inferential, and deductive mistakes, which allows 

them to restart the problem-solving process with different premises or methodological 

approaches. This capacity to overcome biases and reach the desired result is possible only 

because of a semantic awareness that extends beyond mere symbol manipulation, enabling 

 
4 Anyone with teaching experience recognizes this behavior in students who cheat. When they do not know the 

answer, they abandon meaningful reasoning and instead try to arrive at the correct answer by guessing–mimicking 

the methods and rules they have seen applied but without truly understanding the problem-solving method. 
5 This is also reminiscent of the fact that, contrary to popular belief, humans do not possess the largest brain. 

Other species have larger brains in terms of size, number of neurons, or weight. What, then, determines human 

cognitive dominance? 
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individuals to identify incorrect or nonsensical outcomes even if they do not know the correct 

answer. 

After all, it does not require complex scientific research to recognize the shortcomings of 

LLMs in reasoning, semantic competence, and the understanding of inherent meaning. 

Sustained use and interaction often reveal interesting insights.6 For example, if one were to ask 

how many U.S. states have names beginning with the letter K, one might be told that there are 

four: Kansas, Kentucky, Kansas, and Kentucky. These issues similarly affect generative AI. If 

instructed to create a picture with no elephant in the room, it might repeatedly generate images 

featuring an elephant in a room, thereby demonstrating a failure to grasp negation (the “not-

questions”). When asked to depict someone writing with their left hand, the model may refuse 

to comply, always producing an image of a right-handed person instead. This makes sense if 

we keep in mind that the model makes probabilistic guesses rather than semantic ones, as it has 

been trained predominantly on images of right-handed individuals.  

Similarly, self-driving cars’ ability to classify objects and people is impressive, yet countless 

instances reveal their lack of comprehension regarding what they are “seeing” (e.g., 

distinguishing between real people on the street and fictional figures on a billboard). Classifying 

and categorizing are not the same thing as understanding. The critical questions are whether a 

car can effectively navigate without a semantic understanding of its environment–recognizing 

the street, cyclists, traffic lights, and so on–and whether a level V self-driving car could achieve 

comprehension that even humans might struggle to acquire without conscious experience. 

It could be argued that further fine-tuning and additional training sessions might resolve 

these issues and reduce the error rate. After all, humans also make mistakes. However, this is 

not the decisive point. The crux of the matter is that when the model fails, it can do so 

spectacularly, sometimes producing absurd answers that clearly illustrate a lack of genuine 

understanding. 

Overall, we are beginning to realize that despite billions being invested in research and 

development, LLMs continue to hallucinate, fabricate information, and lack true representation 

of the world. They excel in deep learning but struggle with generalized abstract reasoning, and 

they have difficulty understanding wholes in terms of their parts. Though we are dealing with 

a black box, we know it is ultimately a Turing machine working with symbols according to 

logical, syntactic, context-based, or probabilistic rules in someone else’s natural language. 

These symbols stand for external referents grounded in the subjective experiences of someone 

else–experiences that the symbols themselves cannot convey to others. 

While LLMs’ cognitive skills are undoubtedly impressive and surprising, it is becoming 

increasingly evident that there is still no true reasoning or common-sense knowledge that 

extends beyond sophisticated Chinese room machinery. There is no “ghost in the machine” with 

semantic awareness; fundamentally, the machine does not understand a thing. 

If even the most advanced AI can pass a molecular biology exam yet remains far from 

achieving human intelligence–or even the intelligence of a cat or dog–something might be 

fundamentally flawed in our understanding of what intelligence truly is. Alternatively, we might 

be overlooking a crucial aspect of our nature as living beings. 

Meaning and Qualia 

Following Wigner’s famous question about “The Unreasonable Effectiveness of 

Mathematics in the Natural Sciences” (Wigner, 1960), for reasons we are still struggling to 

fully comprehend, mathematics appears to mirror aspects of the world. At least in physics, 

chemistry, and, to some extent, biology, it serves as a descriptive framework for physical reality. 

 
6 For many more examples, see Dr. W. Hsu’s collection of LLM failures: https://lnkd.in/eUW6TYCY. 

https://lnkd.in/eUW6TYCY
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Perhaps the question is not so much why mathematics is effective but why it mirrors some 

aspects of the world at all. 

One might ask a similar question in the domain of AI: If LLMs lack a true understanding of 

what they are doing, why are they so unreasonably effective? 

It is challenging to discern precisely how modern AI implementations–essentially black 

boxes–operate, given that they employ millions of neurons and billions of weighting parameters 

and manipulate trillions of numbers, vectors, matrices, and tensors. As of the time of this 

writing, there is no definitive answer. For now, we can only speculate.  

For example, Wittgenstein might not have been entirely off: Language, like mathematics, 

isn’t merely a human cognitive creation unrelated to the organization of the world but, rather, 

might reflect its structure. We might conjecture that the statistical distribution of words is not 

solely tied to human cognition but also offers a window into the conditional structure of the 

world as mediated through human language. The patterns embedded in language might reflect 

the patterns inherent in the world. Linguistic patterns track real-world patterns, and which 

representational structure may be captured within LLMs (Queloz, 2024). If so, given that LLMs 

are pattern matchers trained to “autocomplete” based on complex relationships between vast 

numbers of tokens (representing properties of the world and their interrelations), their 

effectiveness might be less surprising. 

Nonetheless, while any mathematical or formal proposition acquires meaning only when it 

is communicated from grounded semantic agents to other grounded semantic agents, one could 

go a step further and suggest that all of what we perceive and conceptualize about the world is 

ultimately a symbol, sign, token, or image within our cognitive awareness. This might be even 

less surprising to the philosophical idealist, who posits that the world itself is an “idea” or 

symbolic expression. Such a view aligns with certain Eastern philosophical and mystical 

theories in which the universe represents the expression of a creative, transcendental “real-

idea,” forming the foundation for all meanings, signs, words, and human language (Masi, 2024). 

Be that as it may, it is not necessary to venture into metaphysical speculations to capture 

some essential aspects of how our sense-making cognitive processes emerge. The primary 

challenge here is not conceptual or theoretical but, rather, the shift from a third- to first-person 

perspective. 

In this respect, it might also be interesting to consider Harnad’s recent follow-up, which he 

formulated in the form of a dialogue with ChatGPT-4 (Harnad, 2024). According to Harnad, 

what ChatGPT lacks is “a direct sensorimotor grounding to connect its words to their referents 

and its propositions to their meanings.” Machines operate within the realm of symbol 

manipulation without any grounding in real-world physical interactions and experiences; they 

lack the subjective and conscious dimensions of understanding. He further suggests that the 

only solution is to embody AI models–that is, to ground them–with sensory and motor outputs 

that allow them to interact with and learn from their environment.  

However, he carefully distinguishes the symbol grounding problem from any allusion to the 

hard problem of consciousness (or the “problem of qualia” or the “explanatory gap” (Chalmers, 

1995)). The symbol grounding problem concerns how symbols acquire meaning by linking 

them to their referents in the real world or to concepts that enable understanding. In contrast, 

the philosophical issue of qualia involves how neural processes give rise to the subjective 

experiences of “what it is like” to be in a qualitative state of consciousness. The symbol 

grounding problem is about representation and understanding in artificial systems, not about 

why the complex machinery in our brain supposedly gives rise to subjective experiences. 

Qualia–the introspectively accessible, subjective, phenomenal aspects of our conscious 

lives, such as the bitterness and warmth of coffee, the redness of an apple, the smell of freshly 

cut grass, or the sharp pain from a paper cut–are not reducible to mere information processing. 

Our private experiences of pleasure, pain, feelings, and emotions, along with sensory 

perceptions like seeing, hearing, touching, smelling, and tasting, convey qualities of the world 
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such as colors, sizes, and shapes. These experiences are not merely concepts or abstract symbols 

in a quantitative database; they are grounded in a qualitative experiential dimension. 

Harnad’s insights are inspiring; however, in my view, he fails to close the circle. He begins 

by associating meaning with “the subjective, felt experience of understanding,” the 

“phenomenological aspect of what it feels like to mean or understand something”–elements that 

AI lacks, as it has no “direct experiential grounding” or “direct sensorimotor experiences.” Yet, 

somewhat surprisingly, he stops short of explicitly concluding that, for a machine to achieve 

what he terms “direct symbol grounding” (and, ultimately, a state of AGI), it must be conscious. 

Disentangling the symbol grounding problem from the hard problem of consciousness and 

then reiterating that natural language must be grounded in real-world experiences is a misstep. 

This is because the former is an aspect of the latter. The symbol grounding problem is itself 

“grounded” in the problem of qualia and the explanatory gap. Asking how a symbol can be 

meaningfully connected to what it represents without allowing the connection to be linked to 

phenomenal consciousness is a form of philosophical self-censorship. 

I submit that the gap between syntax and semantics is qualitatively much deeper than 

previously assumed. Scaling alone will not bridge this gap. While embodied architectures could 

extend text-based information to include sensory-based data with feature-detecting and 

abstracting capacities from real-world engagement, this would not transform Shannon-type 

sensory information into semantic information, thereby grounding the ungrounded in any 

miraculous way. 

Sensorimotor embodiment without qualia–that is, without phenomenal consciousness and 

its sentient, subjective experiences–could, nonetheless, lead to more nuanced forms of non-

human intelligence. However, there is no reason to believe that replacing or augmenting the 

linguistic symbols in an LLM super-dictionary database with a sensorimotor super-dictionary 

of pixels and mathematical functions representing environmental sensory signals could provide 

genuine grounding beyond syntactic computational understanding within an abstract 

categorical space. Names and verbal descriptions require not only a sensorimotor embodiment 

but also a conscious experience of the features they represent to be grounded in a semantic 

space. Vast data sets (textual, numerical, and/or sensory), immense computing power, and any 

form of embodiment may be necessary, but it is hard to believe they would be automatically 

sufficient to allow an AI system to gain a true understanding of the properties of the real world 

with which it is engaging without having a subjective experience of the very same properties. 

It will remain a “reasoning” based on complex classification schemes that formally represent 

relationships between things and phenomena but without actual understanding. The result is 

still akin to a Turing machine or a “Chinese room mimicry” that will ultimately reveal its 

limitations. Biological organisms’ meaning-making has an essential component that machines 

fundamentally lack–a gap that information processing alone cannot bridge. To put it in Vallor’s 

words: “We are more than efficient mathematical optimizers and probable next-token 

generators”(Vallor, 2024). 

Meanwhile, taking a first-person perspective reveals that our semantics-based cognition is 

inherently tied to conscious experience–always. We cannot truly understand colors, sounds, 

tastes, smells, temperature, touch, or sight without having directly experienced seeing a color, 

hearing a sound, tasting chocolate, smelling an odor, or touching an object. Is there a difference 

in “meaning” between, say, listening to a symphony of Tchaikovsky and “knowing” it only in 

the form of a digital transcription? An LLM might “know” everything textually about apples or 

the Fourier transform of a sound signal, but there is no semantics to extract, as all this remains 

an abstract, multidimensional vector representation defined by weighted numerical parameters. 

Without experiencing “what it is like” to taste an apple or feel its texture or to be immersed in 

the chills and thrills of musical rapture, it cannot achieve any form of symbol–or vector–

grounding. Similarly, someone might explain all the chemistry and physics of an H2O molecule, 

but you cannot grasp the essence of wetness until you have felt the sensation of water yourself. 
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This leads us to Jackson’s famous knowledge argument (Jackson, 1982): Neurophysiologist 

Mary may have all the physical information about color vision, but she still lacks knowledge if 

she has not experienced the qualia of colors.  

The question is: Can any physical information be linked to semantic information without the 

presence of subjective experience? 

One could reverse the argument and ask, “What kind of ‘knowledge’ could a purely 

phenomenological experience without physical information or conceptualization convey?” It is 

unlikely that this would lead to semantic comprehension. I might experience the blueness of the 

ocean, the chill of an environment, the sourness of a lemon, or its shape in my hands without 

having any concept or understanding of what the ocean, the environment, or a lemon truly 

represents. 

This does not mean, however, that congenitally blind individuals cannot understand others 

discussing spatial properties, geometric forms, light, colors, or other visual sensations. They 

have an indirect understanding of these concepts, achieving referential grounding much like an 

LLM–not through sentience but via information mediated by other sentient agents. The key 

difference between even the most advanced AI and a person with sensory impairments is that 

the absence of sight in humans is compensated for by other subjective experiences, like sound, 

touch, taste, and smell. These experiences enable the indirect semantic comprehension of visual 

concepts even if direct visual perception is lacking, as the representation is supported by other 

forms of conscious experience–something a machine cannot replicate.7  

What kind of comprehension do blind individuals have of the visible world, and to what 

extent can they eventually recover an ordinary understanding of it? This is not a new question. 

For instance, in the 17th century, William Molyneux proposed a thought experiment involving 

a congenitally blind person who has learned to recognize objects solely through touch. Imagine 

this person can distinguish a sphere from a cube by touch but has never seen them. Now, 

suppose this person could suddenly see. Molyneux questioned whether, if the sphere and cube 

were placed on a table, this person would be able to identify which was which without touching 

them. 

The question was debated by philosophers like Locke and Berkeley, who essentially agreed 

that if our mind cannot establish a relationship between the tactile and visual worlds, the answer 

to Molyneux’s question must be negative. The connection between these two realms–

specifically, grounding visual experience in meaningful semantic content known only through 

tactile experience–cannot be established through mere intellectual inference. To create this 

connection, one must link real-world experiences with previously grounded concepts derived 

from other kinds of lived experiences. 

Interestingly, the Molyneux problem can now receive a scientific answer. It is possible to 

gain some insights into the state of “meaningless awareness” from individuals affected by 

congenital cataracts that are later treated. A congenital cataract is an organic anomaly present 

at birth that clouds the eye’s natural lens and can result in amblyopia–a disorder in which the 

brain fails to process visual stimuli. In the 1930s, Marius von Senden became the first to 

describe the perception of space and shape in congenitally blind individuals before and after 

surgery (Senden, 1960). When the sight of previously blind patients was restored and their 

bandages removed, they did not see the world as one might assume. Instead, they experienced 

a blotch of chaotic colored patches that meant nothing to them. They required time and practice 

to make sense of what they saw. 

In 2011, neuroscience shed further light on this topic. An Indian research project, “Project 

Prakash,” aimed at treating blind children while also seeking answers to scientific questions 

about how the brain develops and learns to see, provided evidence supporting Locke and 

Berkeley’s views (Held, 2011). In the treatment of congenitally blind children aged 8 to 17, 

 
7 One of the most dramatic and well-known examples of this is the story of deafblind Helen Keller. 
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researchers found that, upon gaining sight, these children struggled to visually match objects 

they had previously known only through somatosensory information. However, this capacity 

developed quite rapidly; their skills in relating visual perception to somatosensory sensation 

improved within a few days of sight restoration and were nearly fully present within a few 

months. Physical information could finally be grounded in semantic information through 

sensory tactile experiences, as the latter was already rooted in a meaningful conceptual unity. 

This indicates that linking tactile knowledge to visual knowledge is not an innate ability. 

Furthermore, it demonstrates that meaning emerges not only from the relationships among 

words, symbols, or vectors but also through the contextualization of different forms of 

qualitative experiences. Only after this experiential stage can the mind connect a symbol (the 

signifier) to its referent in the real world (the signified).8 

One thing that must be noted is that semantic content does not require an experiential link to 

the physical world–that is, direct sensorimotor engagement. Most notably, abstract and 

intangible concepts like “freedom,” “courage,” “truth,” “beauty,” “justice,” and “wisdom” lack 

objective referents in the physical world. Nonetheless, they are deeply meaningful to us and, in 

a sense, real and concrete. Their concreteness arises from subjective feelings and a “perception 

of meaning” rooted in the experiential dimension of the mind. These concepts are thoughts, 

often accompanied by an inner emotional state, that also have a qualitative meaningful aspect. 

Even purely abstract entities, such as numbers, lack physical reality outside our minds (or, as 

Platonists would argue, exist only in a world of perfect Forms), and the symbols for numbers 

hold no inherent significance unless they are associated with a “number sense”–an experiential 

link between symbol and quantity mediated by a subjective mental experience of extension or 

quantity.9 

Qualia are not limited to sensory experiences; thoughts are “mental qualia,” and emotions 

are “emotional qualia.” The “perception of meaning” is, above all, a subjective “mental quale” 

that emerges from and is intertwined with other qualitative experiences, whether 

somatosensory, affective, or otherwise. In this way, there exists a phenomenon of what “it is 

like to be” in each of these internal states–an aspect that any symbol-to-symbol or 

representation-to-representation relationship cannot fully capture. 

Moreover, semantics has a wholistic character. The perception of meaning is always 

associated to an integration of information that neuroscience still struggles to understand 

(Herzog, 2024). How the brain integrates information from various sensory inputs (sight, sound, 

touch, etc.10) and distinct neural processes into a unified, coherent experience is unclear. For 

example, when we look at an apple, we don’t perceive separate visual features like color, shape, 

and size individually; rather, we see a single, whole apple. It is what I referred to as a semantic 

whole that suddenly appears in our awareness by looking at a figure made of pixels, parts, 

structures, boundaries, colors, etc. The question of how different parts of the brain “bind" 

features together into one experience, despite being processed in different brain regions, is 

commonly known as the “binding problem” and is intimately related to the unity of 

consciousness.  

The implications for AI are that without a conscious subject (an entity or individual capable 

of conscious qualitative sensations of the properties of the world), a machine cannot grasp 

 
8 One might argue that in human infants, certain cognitive developments occur prior to full conscious 

awareness. This suggests that some forms of understanding can arise without phenomenal consciousness. 

However, this conclusion relies on the questionable assumption that newborns have no subjective experiences, 

which contradicts all external evidence. The burden of proof lies with those who claim that babies lack sentience. 
9 Children who, for whatever reason, do not learn to relate the number symbols, or a perception of numerosity 

of objects, to a “number sense” are most likely to develop mathematical learning disabilities like dyscalculia 

(DeCarli, 2023). 
10 A careful first-person investigation reveals that this isn’t the case only with sensory inputs, but with thoughts 

and emotions as well. 
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anything beyond the purely abstract “understanding” of its representations, symbols, letters, 

words, sentences, signs, and numbers. A self-driving car, no matter how advanced or 

sophisticated its neural network and information processing system might be, cannot 

comprehend what an image of a street, a cyclist, or a traffic light represents if it lacks the 

complementary subjective experience and an integrative process that binds them into a 

meaningful unity. True knowledge cannot be achieved through functional processes alone; 

understanding requires a specific type of qualitative phenomenal dimension. An image can be 

converted into vector spaces, matrices, relationships, curve fittings, and probability laws. 

However, unless the light signals hitting the pixels of the image on the CCD camera elicit a 

subjective lived experience in someone or something, all these mathematical abstractions, 

multidimensional vectors, or neural representations will remain meaningless physical 

information without semantic grounding. While physical information can be measured by 

(negative) Shannon entropy, without sentience, nothing can convert it into semantic 

information. This is because “understanding” is an aspect of phenomenal consciousness itself 

and can’t be abstracted from the hard problem of consciousness. 

Discussion and Conclusion 

Thus, consciousness plays a fundamental role in the transition from symbols to semantics. 

An information processing system may interact with the environment through sensory-motor 

embodiment, but that alone does not make it a true semantic agent. For it to achieve this, it must 

possess a representation of the world based on experiences, not just representations, abstract 

symbolic descriptions or indirect linguistic grounding–that is, “qualia-less” physical 

information. Transitioning from the vectorization of language to the vectorization of the 

environment may represent a significant advancement in AI, but this alone is unlikely to 

overcome its semantic deficiencies, as these will still be ungrounded quantifying numbers or 

symbols all the way down. Embodiment may be a necessary condition, but it is not sufficient 

to transform unconscious comprehension into conscious comprehension. To achieve a deeper 

understanding of the world, including its contents, properties, and related concepts, I must grasp 

it qualitatively through conscious experience–that is, with qualia in the form of sensations, 

feelings, and lived sensory perceptions. A tight and inextricable relationship exists between 

feeling and knowing, sensing and understanding, perceiving and comprehending. We cannot 

disconnect these aspects of cognition and treat them separately. Otherwise, no symbol 

grounding can occur. True understanding is inherently rooted in and inseparable from 

consciousness. While the hard problem of consciousness addresses how consciousness emerges 

from material and/or functional processes, such as neural activity in the brain, the symbol 

grounding problem explores how meaning arises from these same processes. Symbol grounding 

is impossible without experience because meaning is an inherent aspect of consciousness. To 

understand something implies being conscious of it. Meaning is subjective perception; the 

“perception of meaning” is a quale in itself.11 

Embracing this standpoint might have significant implications for theories in biology and 

cognitive science that explore the relationship between cognition and the defining 

characteristics of life. Examples include autopoiesis and enactivism, complex dynamical 

systems theories based on predictive processing, the Free Energy Principle theory, the Extended 

Mind hypothesis, Integrated Information Theory, the Cellular Basis of Consciousness model, 

Rosennean complexity, and biosemiotics, to name just a few. 

Due to space limitations, this essay cannot summarize these theories, not even superficially. 

However, it can be said that one common theme they emphasize is the close intertwining of 

cognition and life processes. This suggests that cognition is not merely a high-level brain 

 
11 I like to reframe this as the “hard problem of semantic awareness.” 
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function but, rather, is foundational to life itself. The mind is not a passive container or a 

separate system that simply models the world; instead, cognition emerges from the direct 

interaction between organisms and their environments (and, eventually, among multiple agents, 

objects, or biological networks). The embodied mind encompasses more than the brain; it 

represents a synergistic relationship between the brain and the body, in which cognition is a 

process of minimizing predictive error and energy expenditure to maintain self-identity and is 

deeply rooted in bodily experiences actively engaged with the environment. Cognition, 

problem-solving skills, perception, and goal-directedness are not limited to brain functions in 

complex organisms but, rather, are essential traits of life, present even in simple bacteria, slime 

molds, and plants.  

The relevant common trait in the present context is that, according to these perspectives, 

meaning-making is a fundamental characteristic of all living systems as well. It emerges from 

the continuous interaction between an organism and its environment. Meaning is enacted 

through the adaptive coupling between the internal state of the organism–whether unicellular 

or multicellular–and its surroundings (e.g., what supports survival is meaningful, while what 

threatens existence becomes meaningless). In biosemiotics, life is viewed as a network of 

semiotic (sign-based) processes, with organisms constantly interpreting signals and symbols 

from their environment. Here, meaning emerges as an intrinsic feature of life through signs and 

codes operating at cellular, genetic, and ecological levels. 

In other words, these approaches aim to reduce meaning-making starting from non-

reductionist and wholistic perspectives described by different forms of material causation. They 

seek to naturalize meaning by beginning with basic physical information processes and bottom-

up or top-down complex dynamics accounting for the emergence of semantic information in 

cognitive biological systems. For instance, this is visible in the “experience-blind” naturalism 

pursued by enactive theory, which attempts to reduce experience to a “naturalized 

phenomenology.” While enactivism recognizes the limitations of traditional naturalism and 

advocates for a “new naturalism,” it still struggles to account for the emergence of experience 

within the natural world. There are good reasons to believe this will end similarly to the 

pragmatist philosophy of nature from the previous century (Barrett, 2024). 

Consequently, I argue that for these same reasons, attempts to explain the emergence of 

“semantic agency” in nature from an experience-blind perspective are bound to fail. As this 

paper has argued, semantics is inherently tied to conscious experience and, therefore, cannot be 

separated or abstracted from it. To put it metaphorically, trying to account for the emergence of 

meaning in living systems without conscious experience is like trying to explain water waves 

without water. 

As for any AGI narrative, since the success of ChatGPT and the impressive capabilities of 

LLMs, there has been a marked increase in discussions about the imminent arrival of AGI–

human-like intelligence. However, many of these discussions overlook the intrinsic connection 

between general intelligence and consciousness. 

Enhancing AI performance by adding another trillion neurons, increasing parameters, 

providing sensory-motor environmental interaction, integrating it with neuro-symbolic AI, or 

developing more advanced deep learning algorithms will certainly advance current AI 

capabilities. However, it will not accomplish the “semantic trick.” The elephant in the room 

must be addressed: the possibility that human-like intelligence, with its semantic awareness, 

might not be replicable in machines unless we learn how to manufacture consciousness itself 

(if it is even possible to do so). Without consciousness, true AGI cannot exist. The current 
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widespread discourse on the impending AGI revolution, which is predicted to shape our future, 

warrants a more critical examination that considers the first-person perspective.12 

On the other hand, recognizing the relationship between meaning and consciousness might 

offer new approaches to longstanding questions. The distinction between conscious intelligence 

and machine intelligence (or even the distinction between machine and living organism itself?) 

becomes apparent when, sooner or later, the machine makes a glaringly irrational mistake–one 

that no conscious, semantically aware agent would make. This reveals its lack of genuine 

semantic understanding and could be taken as evidence of its absence of subjective experience. 

In principle, this could suggest the basis for a new test of intelligence, potentially replacing the 

famous Turing test. The goal would be to develop a test designed to assess whether a machine 

possesses a deep, semantic understanding comparable to that of a conscious being building its 

meanings beyond symbol manipulation in a semantic space determined by qualitative 

experiences. If it does, this would imply a form of intelligence that points to some level of 

experiential awareness, even if not necessarily human. 

This line of thought could also serve as an argument against the hypothetical existence of 

“philosophical zombies” (or “p-zombies”). A p-zombie is imagined as a being physically 

identical to a human and behaving exactly like a conscious person but lacking any inner life or 

conscious experiences. However, because a p-zombie would not have the sentience necessary 

for meaning-making, it would eventually reveal itself by making naïve errors, much like non-

conscious AI systems do. This would betray its lack of consciousness and semantic 

understanding. It is reasonable, then, to conclude that beings that act like humans yet lack 

subjective experiences do not exist, as otherwise, we would have already distinguished them 

from conscious humans. A test centered on meaning-making provides a stronger and potentially 

more convincing proof of the presence or absence of consciousness and true intelligence in a 

machine than the Turing test does. 

I have focused primarily on the relationship between human-like experience and semantics 

because it represents the most familiar form of cognition for us. Nonetheless, I believe similar 

arguments can apply to non-human animals, with sentience also serving as the basis for 

meaningfully navigating the world.  

Conversely, one could argue that machine learning without any conscious experience could 

be viewed as a form of “understanding” as well. Avoiding an anthropocentric perspective means 

acknowledging that our concept of understanding need not be confined to human ways of 

making sense of the world; indeed, computers could “understand” things in their own manner. 

Perhaps there even exists an extraterrestrial civilization with a radically different understanding 

of reality. What do we know? 

This is plausible, as human semantics might be only one of infinitely many varieties of 

semantics. However, this paper’s main claim does not focus on any specific form of human 

cognition. Rather, the paper posits that semantics is inherently tied to conscious experience. If 

this hypothetical civilization’s semantics is not grounded in some form of consciousness and 

sentience, without any perception of the world’s properties through qualitative subjective 

experiences, then it would, by definition, be a civilization of p-zombies. In principle, we would 

eventually be able to distinguish its members from other conscious beings. Their 

“understanding” exhibited by a cognition devoid of qualia–no matter how complex, powerful, 

or sophisticated–would remain at the level of a Turing machine head processing physical 

information on a strip of tape. Nothing would convert this physical information into genuine 

semantic understanding. 

 
12 Though I am an “AGI-skeptic,” the rationale presented here does not necessarily imply that AGI is 

impossible. It merely states that, if we want the machine to become semantically aware, it must become conscious 

as well. 
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In any case, the realization of AGI, if it ever happens, will first require the creation of 

conscious machines. There is a foundational, principled argument against the imminent arrival 

of AGI, as we remain far from developing systems that transcend memorization, pattern 

matching, or probabilistic assessments to achieve genuine, complex abstract reasoning based 

on conscious experience. Meaning and conscious experience are inseparable. Therefore, a first-

person perspective, not only in the philosophy of mind but also with regard to addressing 

fundamental questions about AI, is essential. Approaching AI from this perspective might also 

help us gain a deeper understanding of ourselves. 
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