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Abstract—The vast majority of exam grading, especially in
true-false and multiple choice scenarios, encourages students
to guess. This leads to two issues: the first is it incentivizes
students to be overconfident rather than honestly quantify their
level of belief and the second is that instructors cannot see
which questions students are certain about versus these where
students guess. This paper explores how Bayesian Grading solves
these issues, encouraging students to be honest about their
true beliefs and discouraging them from guessing. Bayesian
Grading evaluates both cognition and metacognitive reflection
simultaneously, teaching students to become aware of the sources
of their uncertainty and encouraging them to be self-directed
learners.

Index Terms—Scoring, Metacognition, Grading, Bayesian
Probability

I. BACKGROUND

Metacognition is perhaps best summarized as “thinking
about thinking,” consisting of two components: knowledge
and regulation. Metacognitive reflection is particularly relevant
when teaching students to become independent thinkers and
learners, as it involves “the monitoring of one’s cognition and
includes planning activities, awareness of comprehension and
task performance, and evaluation of the efficacy of monitor-
ing processes and strategies (Lai, 2011).” Research suggests
metacognition can also improve with appropriate instruction,
implying students can be taught to reflect on their own thinking
(Lai, 2011).

While teaching metacognition is associated with “very
positive effect[s] on student outcomes (Perry et al., 2019),”
it is often underused in classrooms. This is likely due to
the difficulty assessing metacognition and integrating it with
existing curricula. This paper focuses on a method of mod-
ifying true-false and multiple choice questions to incentivize
students to practice metacognition and honestly report their
level of certainty in answer selections being true. The method
proposed in this paper, Bayesian Grading, requires no change
to existing multiple choice or true-false questions, instead
relying on students reporting their creedences combined with
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a scoring rule for these creedences that incentivize honesty.
Bayesian Grading can be done automatically via a computer1,
requiring no additional instructor effort once students have
been taught the process. The process of teaching students to
reporting their creedences gives them practice quantifying their
knowledge in line with standards of reason described by many
epistemologists (Cox, 1961; Hájek, 2023).

II. MOTIVATION: ISSUES WITH MULTIPLE CHOICE
SCORING

Consider the following multiple choice question, taken from
the FE (Fundamentals of Engineering) exam:

A magnetic field has the vector field B⃗ = 10yi +
2yj−mzk The constant m is most nearly:

• A: 2
• B: -2
• C: 0
• D: 4

Consider the students Alice, Bob, and Charles who answer
the question as follows: Alice is 51% confident the answer
is A and 49% confident the answer is B, so she chooses A.
Bob is 49% confident the answer is A and 51% confident the
answer is B, so he chooses B. Finally, Charles has no idea
of what the answer is, so he guesses answer A. In typical
multiple choice grading, (detailed in Section III-C( students
choose one answer they think is the best. They receive 1 point
if they select the correct answer and 0 points if they select the
wrong answer.

In the above example, Alice and Charles both receive 1
point, while Bob receives 0 points. This is despite the fact that
Alice and Bob’s underlying (metacognitive) beliefs about the
correct answer are very similar. Furthermore, Charles receives
more points than Bob by pure luck, despite the fact that Bob
has more knowledge than Charles: he is able to eliminate two
incorrect answers from the problem.

The standard way of grading multiple choice questions, with
its all-or-nothing nature, provides no way of distinguishing

1Code is available at: REMOVED FOR REVIEW PROCESS



between Alice and Charles’ knowledge, since both receive
the same number of points. An instructor thus has no way of
knowing that Charles was guessing and Alice knew the correct
answer, and thus no recourse for intervening on Charles’
behalf and fixing whatever caused him to believe B was the
correct answer. An instructor also has no way of knowing
whether Bob was simply guessing or had a misconception
that caused him to choose an incorrect answer. The issue
with standard multiple choice grading can be summarized
as follows: students are not incentivized to report their true
beliefs because they have no way of doing so. This harms
both students who could display some partial knowledge (for
instance, being able to eliminate some incorrect answers) and
instructors who want to know which concepts that students are
confused about. While standard multiple choice grading does
show the questions students get wrong, it does not inform
instructors which answers students are deciding between, and
thus which distractors students are confused by. The ability
to see students’ confidence in various answer choices allow
instructors to better understand students’ misconceptions and
thought processes, allowing them to teach more effectively.

A proper way of scoring multiple choice questions should
thus have the following desirable properties:

• Offer maximum credit if a student is confident in the
correct answer

• Provide partial credit if students can eliminate some
incorrect answers

• Offer minimum credit if a student is overly confident in
an incorrect answer (discouraging students from guessing
randomly)

In summary, a metacognitively-aimed way of grading multiple
choice questions will incentivize students to report their true
level of confidence in the correct answer, rewarding them the
more their confidence aligns with the correct answer, and the
more confident they are that incorrect answers are incorrect.

III. FROM BOOLE TO BAYES

A. Quantifying Belief

Using numbers to quantify one’s confidence in a statement
being true corresponds to the Bayesian interpretation of proba-
bility (Hájek, 2023), an extension of Aristotle’s logic (Jaynes,
2003; Cox, 1961, 1946). According to Plato and Aristotle
(Hamilton, 2009) statements or propositions are either true
or false, never both or neither, and with no in-between. These
principles about statements are captured in the “three laws of
thought,” which can be expressed as follows:

1) Law of Non-Contradiction: ¬(A ∧ ¬A)
2) Law of the Excluded Middle: A ∨ ¬A
3) Law of Identity: ∀x, x = x

Logician George Boole famously used algebra to describe
these axioms (Boole, 1911) and Aristotle’s syllogisms more
generally (Corcoran, 2003), allowing mathematical and sym-
bolic operations to be performed on logical statements (Davis,
2000). In Boole’s formulation, a value of 1 represents a true
statement, while a value of 0 represents a false statement.

While Boole’s logic is able to capture the truth or falsity
of statements, it does not provide a mechanism for evaluating
one’s knowledge confidence in whether a statement is true
or false. This is because Boolean logic is aimed at describing
truth, not knowledge. Bayesian probability is thus an extension
of logic that captures an agent’s subjective degree of belief in
a statement’s truth (Hájek, 2023). Furthermore, as physicist
Richard Cox famously pointed out, if one takes (as Boole
did) 0 to represent false and 1 to represent true, the probability
measure P in a Kolmogorov probability triple (Ω, E, P ) (Kol-
mogorov and Bharucha-Reid, 2018) that assigns numeric val-
ues to events e ∈ E corresponds to Boole’s truth values when
one has complete certainty in an event occurring P (e) = 1 or
complete certainty in an event not occurring P (e) = 0 (Cox,
1961, 1946). Because the probability measure can take on
intermediate values between 0 and 1, it can capture situations
where an agent lacks knowledge about which outcome occurs
(corresponding to a scenario where an agent lacks knowledge
about whether the proposition “an event ei occurs” is true).
Interpretations of P (ei) = p are thus “I am p ·100% confident
event ei occurs” or “if I had x dollars to bet on ei occurring,
I would bet p · x dollars (Ramsey, 2016).”

Such values do not contradict any of the laws of thought
discussed in Section III-A because Bayesian probability is
an epistemic notion, while (logical) truth is an ontic one. In
other words, one’s degree of belief is based on one’s current
knowledge (and ignorance), while logical truth is a mind-
independent property of reality. It is for this reason many
epistemologists see (Bayesian) probability as an addition to
logic, not a replacement for it.

B. Boolean vs. Bayesian True/False Questions

Questions where students are asked to report whether a
statement is true or false are traditionally scored using Boole’s
logic. Consider the following question:

True or False: When integrating a function f1(x) +
f2(x), the integral of the sum

∫
(f1(x) + f2(x)) dx

equals the sum of the integrals
∫
f1(x)dx +∫

f2(x)dx.

Let k be a boolean variable representing the answer key,
meaning it is 0 if the statement is false or 1 if the statement
is true. In traditional (what the authors call Boolean) grading,
a student reports whether they believe the statement is true or
false. Let a represent a students’ answer: a student will submit
a = 0 if they believe the statement is false and a = 1 if they
believe the statement is true. The score the student receives
for a true-false question is ScoreBooleanTF = k ⇐⇒ a, which
takes on a value of 1 if k and a have the same value and 0 if
they differ. This can also be written as2:

ScoreBooleanTF(a) =

{
a if k = 1

(1− a) if k = 0
(1)

2Equation 1 can be written succinctly as ScoreBooleanTF(a) = ak + (1 −
a)(1− k).



In principle, this grading scheme incentivizes students to
choose whichever answer they believe is best, as the score
quantifies the alignment of their answer choice a with the truth
k. The issue, however, is that students cannot fully represent
their beliefs. Consider two students, Jacob and Karen. Jacob is
95% sure the statement is true, while Karen is only 60% sure
the statement is true. Since both must report true or false (rep-
resenting full confidence in whether they believe the statement
is true or false) they have no way of qualifying their belief
to take into account their uncertainty. As a result, students
are not incentivized to exercise metacognitive regulation, since
they have no choice but to report full confidence in a single
answer. Furthermore, since an instructor only sees whether a
student reports true or false for a given question, they have no
way of knowing whether students are simply guessing or are
confident that they have the correct answer.

Bayesian Grading, on the other hand, scores questions based
on students’ creedence c. In addition to capturing cases when a
student is fully confident that a given statement is true (c = 1)
or false (c = 0), Bayesian Grading captures when students
have no idea whether the it is true or false (c = 0.5) along
with various positions in-between.

C. Boolean vs. Bayesian Multiple Choice

Typical multiple choice grading also implicitly follows
Boole’s system of quantifying true and false into 0 and 1.
A multiple choice question with n selections is a collection
of n statements: one of which is true, and the remaining
n− 1 statements are false. Students are tasked with selecting
the statement they believe is true (and thus which remaining
statements, which remain unselected, are false).

Since there is only one statement which is true, the answer
key for a multiple choice question can be thought of as a
basis vector ei, a vector of a single 1 and several 0’s, where
the position of the 1 corresponds to the correct (or true)
answer and the positions of the 0’s refer to incorrect (or false)
choices. For instance, the answer key for the example question
in Section II can be written as k⃗ = [1, 0, 0, 0]T , with the
first position corresponding to answer choice A, the second
position corresponding to answer choice B, etc. If t refers to
the position of the true (correct) answer, then the answer key
k⃗ = et, a basis vector with a 1 in the t position, and 0’s in all
other positions.

A students’ answer choice can also be thought of as a vector;
one that encodes the students belief in what the best answer
is. In standard or Boolean multiple choice grading, students
must select one answer they believe is correct. As a result,
their choice must follow the same rules as the answer key: a
1 in the position of the answer they believe is correct, and a
0 in all other positions. Alice and Charles’ answer choices for
the example question in Section II can be written as a⃗Alice =
a⃗Charles = [1, 0, 0, 0]T while Bob’s answer can be written as
a⃗Bob = [0, 1, 0, 0].

A students’ score for a given question is thus the inner
product of the student’s answer a⃗ with the answer key k⃗:

ScoreBooleanMC (⃗a) = ⟨⃗a, k⃗⟩ =
∑
i

a⃗ik⃗i. (2)

This inner-product grading scheme allocates points to stu-
dents based on how well their beliefs line up with the
truth. This approach is unproblematic; instructors want to
know what students’ knowledge is, and the correspondence
between student answers and the truth is a justifiable metric
(Glanzberg, 2023). The issue, rather, is students are unable to
fully represent their beliefs if they have any uncertainty about
the correct answer.

D. Disbelief vs Unbelief

As sociologist of science Marcello Truzzi pointed out, there
is a difference between disbelief and unbelief (Truzzi, 1987).
The idea that one’s “default position” should be unbelief (re-
serving judgment about facts) rather than disbelief (assuming a
statement is false prior to investigation) dates back all the way
to the Greek skeptic Pyrrho, who wrote that one should “be
without beliefs, disinclined to take a stand one way or another
(Stough, 1969).” After all, claiming a proposition is false is a
claim to knowledge in the same way claiming a proposition
is true is a claim to knowledge.

When one is completely ignorant of whether a statement
is true or false, a creedence of c = 0.5 is assigned to the
statement to represent unbelief. This corresponds to what is
called the “principle of insufficient reason”3. The principle of
insufficient reason says that in the absence of any relevant
evidence, one should distribute their credence equally among
all possibilities as to not unjustifiably favor one possibility
over another4. The state of unbelief represents an openness to
whether a statement is true or false, and likewise c = 0.5 is
equally between disbelief (c = 0) and full confidence (c = 1).

For multiple choice questions, the principle of indifference
says to assign each answer a creedence of 1

n when one is
completely ignorant of which answer is correct. Represented
as a vector, u⃗n, is an n-length vector where each element has
a value of 1/n. Teaching students to reflect on their ignorance
is key for them to become self-directed learners.

IV. BAYESIAN SCORING

Rather than forcing students to take an all-or-nothing ap-
proach to answering question, Bayesian Grading uses a scoring
rule on students’ creedences c. A well-designed scoring rule
will encourage both cognition (whether students know the
correct answer) and metacognition reflection (how confident
students are in their choice) simultaneously. Such a scoring
rule would have the following desirable properties:

3This is also known as the “principle of indifference” by J.M. Keynes
(Keynes, 2013).

4Applied naively, the principle of indifference can lead to a series of
“paradoxes” when the reference class has an uncountably infinite number
of members (Hájek, 1996; Kendall and Moran, 2012). Since no exam can
ever been administered with this many statements, this point is irrelevant to
the given context, and rather serves as a warning for an unscrupulous use of
the principle of indifference.



• Offer a maximum score to students who reports full
confidence in the correct answer.

• Offer a minimum score to students who reports full
confidence in an incorrect answer

• Offer some score in-between for students who report that
they are unsure of the correct answer (with various values
in-between).

• Incentivize students to honestly report their true cree-
dences (not guess or exaggerate)

A. Naive Bayesian Scoring
One straightfoward way of scoring belief (that adheres to

the first three properties above) is to use students’ creedences
directly in Equation 1 and 2 for true-false and multiple choice
questions respectively. For true-false questions, the score of
a student’s reported creedence c for a question where k is a
boolean variable representing the correct answer:

ScoreNaiveBayesTF(c) =

{
c if k = 1 (k is true)
(1− c) if k = 0 (k is false)

(3)

Similarly, for multiple choice questions, students’ creedences
c⃗ in each answer can be compared with the answer key k⃗ as
follows:

ScoreNaiveBayesMC(c⃗) = ⟨c⃗, k⃗⟩ (4)

The problem with this method is that students can maximize
their score by being dishonest about their true creedences. The
fourth desired proprerty of Bayesian scoring is that students
are incentivized to report their true creedences. However the
expected value of Equations 3 and 4 can be maximized by
students who report an exaggerated belief in whichever answer
they think is best.

B. Naive Bayesian Scoring for True-False Questions
For a true-false question, the expected score for a reporting

strategy is defined as follows, where s is the number of points
one allocates and c is one’s creedence that the statement is
true (i.e. one’s beief that the answer key k is true):

E[ScoreNaiveBayesTF(s)] = s · c+ (1− s) · (1− c) (5)

Consider the question in Section III-B, where the answer key
is k = 1 (i.e. k is true). Karen is only 60% sure the answer
is true, and if she reports her creedence c = 0.6, her expected
score is as follows:

E[ScoreNaiveBayesTF(0.6)] = 0.6 · 0.6 + 0.4 · 0.4 = 0.52

However if Karen instead reports an exaggerated guess using
the strategy

sExaggerated =

{
1 if c > 0.5

0 else

her expected score is

E[ScoreNaiveBayesTF(sExaggerated)] = 0.6 · 1 + 0.4 · 0 = 0.6

Since E [ScoreNaiveBayesTF(sExaggerated)] >
E [ScoreNaiveBayesTF(c)], the naive scoring method
ScoreNaiveBayesTF does not incentivize Karen to honestly
report her true level of belief.

C. Naive Bayesian Scoring for Multiple Choice Questions

Similarly, the multiple choice example, consider a student
Dan whose creedences for the question described in Section II
are: c⃗Dan = [0.4, 0.3, 0.2, 0.1]. If he reports his true creedences,
his score will be ⟨c⃗Dan, k⃗⟩ = 0.4 ·1+0.3 ·0+0.2 ·0+0.1 ·0 =
0.51. However, if Dan instead reports maximum confidence in
the answer he believes is correct, represented by the response
s⃗Dan = [1, 0, 0, 0], his score will be ⟨s⃗Dan, k⃗⟩ = 1 · 1 + 0 · 0 +
0 · 0 + 0 · 0 = 1.

If one considers Dan’s expected score under each method
of choosing an answer, we find that Dan’s optimal strategy is
not to report his true level of belief. The expected score under
a reporting strategy s⃗ is defined as follows:

E[ScoreNaiveBayesMC(s⃗)] = ⟨s⃗, c⃗⟩ (6)

First, consider Dan’s expected score by honestly reporting his
true level of belief:

E[ScoreNaive(c⃗)] = 0.4 ·0.4+0.3 ·0.3+0.2 ·0.2+0.1 ·0.1 = 0.3

Now, consider Dan’s expected score if he uses an exaggerated
strategy similar to Karen’s above, which reports full confi-
dence in whichever answer he believes is more likely than the
others to be true :

sExaggerated = em, m = argmax
i

c⃗i

The expected score of the exaggerated strategy is

E[ScoreNaiveBayesMC(sExaggerated)] =

1 · 0.4 + 0 · 0.3 + 0 · 0.2 + 0 · 0.1 = 0.4

Since E[ScoreNaiveBayesMC(sExaggerated)] >
E[ScoreNaiveBayesMC(c⃗)], we see that if Dan wants to
maximize ScoreNaiveBayesMC, his optimal strategy is to report
overconfidence in whichever answer choice he believes is
most likely to be true. This does not incentivize Dan to
develop healthy metacognitive reflection about his beliefs - in
fact it does the opposite, encouraging him to be overconfident
in whichever answer he thinks is best and underconfident in
other answers.

D. Strictly Proper Scoring

A scoring mechanism where an agent maximizes their score
if and only if they are honest about their true level of belief is
called a strictly proper scoring rule (Staël von Holstein, 1970;
Bickel, 2010). Such a scoring rule ensures that only

∀s⃗ ̸= c⃗, E [ScoreStrictlyProper(s⃗)] < E [ScoreStrictlyProper(c⃗)]

There are many examples of strictly proper scoring rules;
for instance, Bickel (2010) suggests using what is called
a logarithmic scoring rule, L(c⃗) = ln (c⃗t) , which scores
questions based on the logarithm of the creedence a student
assigns for the true answer t5. One potential issue with this
metric is if a student assigns a creedence of 0 to the correct

5Such a score would need to be scaled by some offset, since the maximum
score would be 0



answer (i.e. c⃗t = 0), their score would be −∞. While Bickel
(2010) argues this is a feature and not a bug, the authors of
this paper suggest a different rule that avoids this potential
issue6.

E. Quadratic Scoring

1) Quadratic Scoring for True-False Questions: The naive
scoring in Section IV-A can be modified to produce a strictly
proper scoring rule by squaring the distance from a student’
creedence c to the correct answer k. In essence, the square
function discourages exaggerated guesses by penalizing large
deviations from the correct value, and produces a proper
scoring rule. For true-false questions, the quadratic scoring
rule is as follows:

ScoreQuadraticTF(c) = 1− 2(c− k)2 (7)

Consider Karen, who is only 60% confident that the given
statement is true. Under the quadratic scoring rule, Karen
gets a higher score for being honest and reporting her true
creedences, as shown below:

E [ScoreQuadraticTF(c)] =(
1− 2(0.6− 1)2

)
· 0.6 +

(
1− 2(0.6− 0)2

)
· 0.4 = 0.52

On the other hand, if Karen attempts to exaggerate her guess
by reporting full confidence in her belief that the statement is
true, she gets a lower expected score:

E [ScoreQuadraticTF(sExaggerated)] =(
1− 2 · (0)2

)
· 0.6 +

(
1− 2 · (1)2

)
· 0.4 = 0.20

Thus under the quadratic rule, students are incentivized
to report their true level of belief for maximum points,
encouraging metacognitive reflection.

2) Quadratic Scoring for Multiple Choice Questions: As
with true-false questions, Equation 2 can easily be modified to
produce a strictly proper scoring rule by squaring the distance
from students’ creedences to the correct answer. Since there
are multiple answer choices, the 2-norm is used to calculate
the distance in the quadratic scoring rule as follows:

ScoreQuadraticMC(c⃗) = 2c⃗t − ∥c⃗∥22 (8)

In the equation above, t is the index of the true answer, and
thus c⃗i is the creedence the student assigns to the correct

answer. This equation equals 1 −
∥∥∥c⃗− k⃗

∥∥∥2
2
, which can be

understood as how close the students’ creedences c⃗ are to the
answer key k⃗. Here d =

∥∥∥c⃗− k⃗
∥∥∥2
2

represents the distance
between the student’s answer and the correct answer, while
1− d represents how “close” of the student’s creedence is to
the correct answer.

Consider Dan in Section IV-A, whose creedence was
c⃗Dan = [0.4, 0.3, 0.2, 0.1]. If Dan accurately reports his

6While Bickel’s justification of the danger of a student getting a −∞, may
be justified for graduate students, such a risk may not be appropriate for
undergraduate or primary school students.

Choices Eliminated 2 Choices 3 Choices 4 Choices 5 Choices
0 1/2 1/3 1/4 1/5
1 1 (Correct) 1/2 1/3 1/4
2 - 1 (Correct) 1/2 1/3
3 - - 1 (Correct) 1/2
4 - - - 1 (Correct)

TABLE I
STUDENTS’ SCORES WHEN ELIMINATING INCORRECT ANSWERS

ACCORDING TO SCOREQUADRATICMC(c⃗) DESCRIBED IN EQUATION 8.

true creedences, his expected score using Equation 8 is
E[ScoreQuadraticMC(c⃗Dan)] = 0.3 However, if Dan instead re-
ports full confidence in whichever answer he believes is most
likely, his expected score is E[ScoreQuadratic(c⃗Dan)] = −0.2.
Not only is Dan incentivized to report his true creedences, he
is penalized for making an exaggerated guess.

Returning to the other students described in Section
II, and using each students’ creedeces, one has c⃗Alice =
[.51, .49, 0, 0]T , leading to an expected score of 0.520 points.
Note that if Alice tried to put full creedence in whatever
answer she thought was most likely, her expected score would
be 0.020. As a result, Alice is incentivized to report her true
creedences, as this strategy yields more expected points for her
then guessing. Bob’s creedences, c⃗Bob = [.49, .51, 0, 0]T leads
to an expected score of 0.480 points. Lastly, Charles’ cree-
dences, c⃗Charles = [0.25, 0.25, 0.25, 0.25] leads to an expected
score of 0.250. What if Charles had guessed? If he guesses the
correct answer, which he does 25% of the time, he receives 1
point. However if we guesses an incorrect answer, which he
does 75% of the time, he gets −1 point. Charles’ expected
score for guessing is actually −2 points, while his expected
score for being honest is 0 points. Charles is thus incentivized
to report that he does not know the answer than try and guess
randomly.

V. TEACHING METACOGNITION THROUGH BAYESIAN
GRADING

With Bayesian grading, students are actively discouraged
from black-and-white thinking, which has been associated with
emotional resistance to intellectual development (Ambrose
et al., 2010). The introduction of Bayesian grading in a
classroom provides an opportunity for students to practice
metacognition, as well as learn topics at the intersection
of probability, epistemology, and cognitive psychology. Part
of the challenge is simply students’ lack of exposure to
metacognition: as psychologist Hartman (2001) noted, “many
students are unaware of the concept of metacognition and
do not reflect on their thinking and learning strategies and
attitudes and how they might be improved.” The benefit
of Bayesian Grading is that students become familiar with
(and practice) assessing their own knowledge and ignorance.
While many existing grading schemes penalize students most
severely for admitting ignorance (actively discouraging healthy
metacognitive habits), Bayesian Grading’s incentive is towards
accurate reflection.

One well-documented metacognitive challenge is the
Dunning-Kruger effect, where students who lack knowledge



are overconfident in wrong answers (Dunning, 2011). Re-
search has shown metacognitive differences can contribute to
the Dunning-Kruger effect (McIntosh et al., 2019), implying
teaching students metacognitive practices can reduce their
succeptibility to the Dunning-Kruger effect. Other research
suggests intellectual humility, or “the degree to which people
recognize that their beliefs might be wrong” also reduces
one’s susceptibility to the Dunning-Kruger effect (Leman
et al., 2023). This suggests that Bayesian Grading, which
has students report their creedences and provides feedback on
these creedences, could reduce the Dunning-Kruger effect in
students.

VI. CONCLUSION

With Bayesian grading, students are incentivized to learn
the material and learn to quantify their own belief. Bayesian
grading thus evaluates cognition and metacognitive reflection
simultaneously, with students’ creedences allowing instructors
to see which material is causing student confusion.
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Hendricks, and J. van Benthem, Eds. Cham: Springer
International Publishing, 2016, pp. 21–45. [Online].
Available: https://doi.org/10.1007/978-3-319-20451-2 3

M. Glanzberg, “Truth,” in The Stanford Encyclopedia
of Philosophy, fall 2023 ed., E. N. Zalta
and U. Nodelman, Eds. Metaphysics Research
Lab, Stanford University, 2023. [Online]. Available:
https://plato.stanford.edu/archives/fall2023/entriesruth/

M. Truzzi, “Zetetic Ruminatrons on Skepticism and Anomalies
in Science,” Citeseer, vol. 12-13, pp. 7–21, 1987.

C. L. Stough, Greek Skepticism; a Study in Epistemology.
Berkeley,: University of California Press, 1969.

J. M. Keynes, A Treatise on Probability. Courier Corporation,
Sep. 2013, google-Books-ID: rVCoAAAAQBAJ.
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