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Abstract

Frequency-based arguments against rational belief in a miracle occur-
ring have been present for centuries, the most notable being from David
Hume. In this essay, I will show Hume’s argument rests on an equivoca-
tion of probability, with him using the term interchangeably to refer to
two different and incompatible perspectives: Bayesianism and Frequen-
tism. Additionally, I will show that any frequentist arguments against
miracles relies on a view of probability that is only dubiously linked to
rationality. In other words, the frequentist cannot have it both ways: if
probability is indeed frequency, then miracles are indeed improbable but
not necessarily irrational to believe. On the other hand, if probability is
an agent’s confidence in a given belief, than under certain assumptions
miracles are indeed highly probable and thus rational to believe despite
their rarity. As a result, regardless of which view of probability one takes,
it does not follow that believing in a miracle is irrational simply because
miracles are rare.

1 Introduction

Miracles are defined as events outside of the usual course of nature. As Mackie
(2013) writes,

The laws of nature. . . describe the ways in which the world—including,
of course, human beings—works when left to itself, when not inter-
fered with. A miracle occurs when the world is not left to itself,
when something distinct from the natural order as a whole intrudes
into it.

If we assume most observations are the result of nature when left to itself,
than miracles are (relatively) rare. With this in mind, it is perhaps unsurprising
that some would argue the rarity of miracles is a reason to disbelieve them.

The most famous and influential argument against rational belief in mira-
cles comes from Section X of David Hume’s Enquiry Concerning Human Under-
standing (Hume and Steinberg, 1993). While there are differing interpretations
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on what point Hume intended to make1, my reading of Hume is that he is
making an argument as follows:

• P1: One should only believe miracle testimony TM if the probability that
TM is true is larger than the probability that TM is false.2

• P2: The probability that miracle testimony TM is true is always smaller
than the probability that TM is false.

• C: Therefore, one should never believe miracle testimony TM is true

The controversial premise here is P2, and many have taken aim at the sugges-
tion that miracle claims are always less probable than the testimony being false
(Earman, 2000). For instance, Charles Babbage (often considered the “Father
of the Computer”) wrote in the Ninth Bridgewater Treatise

[I]f independent witnesses can be found, who speak truth more fre-
quently than falsehood, it is ALWAYS possible to assign a number of
independent witnesses, the improbability of the falsehood of whose
concurring testimony shall be greater than the improbability of the
alleged miracle (Babbage, 1841).

Of course, Babbage’s suggestion is only true if the prior probability of a
miracle is nonzero. Hume argues that the prior probability of a miracle is zero
because the frequency of miracles is zero. He writes:

A miracle is a violation of the laws of nature; and as a firm and
unalterable experience has established these laws, the proof against a
miracle, from the very nature of the fact, is as entire as any argument
from experience can possibly be imagined3...It is no miracle that a
man, seemingly in good health, should die on a sudden: because
such a kind of death, though more unusual than any other, has yet
been frequently observed to happen. But it is a miracle, that a dead

1Some believe Hume was arguing against the possibility of miracles, however under this
interpretation, Hume has been criticized as begging the question (Lewis, 2009) and proving
too much (Geisler, 2014). For more interpretations and discussion of Hume, see Hájek (2008)
and Earman (2000) for a critical examination.

2This premise is based on the following from Hume’s Enquiry:

No testimony is sufficient to establish a miracle, unless the testimony be of such
a kind, that its falsehood would be more miraculous, than the fact, which it
endeavours to establish...When anyone tells me, that he saw a dead man restored
to life, I immediately consider with myself, whether it be more probable, that this
person should either deceive or be deceived, or that the fact, which he relates,
should really have happened...If the falsehood of his testimony would be more
miraculous, than the event which he relates; then, and not till then, can he pretend
to command my belief or opinion (Hume and Steinberg, 1993).

3Others, such as Lewis (2009) and Campbell (1824), have argued Hume begs the question
against miracles by assuming natural laws are based on firm and unalterable experience.
While this is also an important critique, my target is the frequency-based nature of Hume’s
argument.
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man should come to life; because that has never been observed in
any age or country (Hume and Steinberg, 1993).

Hume is only able to make this move because he equivocates probability: he
using the same the term to refer to both frequency (the frequentist view of
probability, described in Section 2.2) and as an epistemic concept related to
rational credences (the Bayesian view of probability, described in Section 2.3).
It is this equivocation that exposes the flaw in Hume, and indeed any frequency-
based argument, against miracles. My argument is that Hume cannot have
it both ways; probability cannot be both primarily be frequency and be an
epistemic concept due to the incompatibility between these interpretations.

Indeed we see Hume himself switching between these interpretations of prob-
ability within his Enquiry. In Section VI, Of Probability Hume writes, “Though
there be no such thing as Chance in the world; our ignorance of the real cause
of any event has the same influence on the understanding, and begets a like
species of belief or opinion (Hume and Steinberg, 1993)”. This Hume adopting
a Bayesian view, where probability is an epistemic concept referring to one’s
degree of belief4. Yet in Section 10, Of Miracles, we see frequentist Hume using
probability interchangeably with frequency, where he writes (emphasis added):

A wise man, therefore, proportions his belief to the evidence. In such
conclusions as are founded on an infallible experience, he expects
the event with the last degree of assurance, and regards his past
experience as a full proof of the future existence of that event. In
other cases, he proceeds with more caution: He weighs the opposite
experiments: He considers which side is supported by the
greater number of experiments: to that side he inclines, with
doubt and hesitation; and when at last he fixes his judgment, the
evidence exceeds not what we properly call probability (Hume and
Steinberg, 1993).

If the Bayesian view of probability is correct, than assuming miracles have a
zero prior probability is begging the question against them, since this amounts to
claiming one a priori knows all current and future miracle claims are false before
investigation. If the frequentist view of probability is correct 5, probability
and rational belief are no longer (necessarily) to the same concept, and the
frequentist needs to show what this necessary link is to argue belief in miracles
is irrational.

4Italian statistician Bruno DeFinetti, a Bayesian, opened his two volume treatise on prob-
ability by declaring (similar to Bayesian Hume), “Probability does not Exist! (De Finetti
et al., 2017)”

5Frequentism has come under much recent criticism, with many philosophers of statistics
now arguing it is an untenable interpretation of probability (Hubert, 2021; Hájek, 2009).
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2 What is Probability

Statisticians typically agree with Andrey Kolmogorov’s axiomatization of prob-
ability theory into a three-element tuple (Ω, E, P ), consisting of a sample space
Ω (a set of outcomes), an event space E (a set of sets of outcomes, and a
σ−algebra over Ω), and a probability measure P that assigns each event e ∈ E
to a probability between 0 and 1 inclusive (Kolmogorov and Bharucha-Reid,
2018). P must obey a set of probability axioms such as finite additivity for
(Ω, E, P ) to be considered a legitimate probability space.

What is less clear is what the meaning or interpretation of these terms
are. For instance, American mathematician and statistician L.J. Savage once
remarked “It is unanimously agreed that statistics depends somehow on prob-
ability. But, as to what probability is and how it is connected with statistics,
there has seldom been such complete disagreement and breakdown of communi-
cation since the Tower of Babel (Savage, 2012).” Furthermore, Bertrand Russell
once quipped in a lecture, “Probability is the most important concept in mod-
ern science, especially as nobody has the slightest notion what it means (Bell,
2012).”

2.1 The Classical View of Probability

Probability developed by applying mathematics to games of chance, with fig-
ures such as Girolamo Cardano, Blaise Pascal, Pierre de Fermat, and Christian
Huygens laying the groundwork for modern statistics. The view that emerged
from these thinkers is called the classical view of probability, where the prob-
ability of an event is the number of possible ways an event can occur divided
by the total number of possibilities (Hájek, 2023). This was famously put by
French mathematician Abraham de Moivre in a 1718 book on probability that
was apparently highly prized by gamblers, “[I]f we constitute a fraction whereof
the numerator be the number of chances whereby an event may happen, and
the denominator the number of all the chances whereby it may either happen or
fail, that fraction will be a proper designation of the probability of happening
(Moivre, 1738).” Formally, under the classical view, the probability of an event
e ∈ E is defined as P (e) ≡ |e|/|Ω|, where | · | represents the cardinality of a set.

The classical view of probability relies on what is called the principle of
insufficient reason, or as economist John Maynard Keynes famously called it,
the principle of indifference (Keynes, 2013), which says that when we have no
reason to believe that one outcome will occur preferentially to another, we assign
them equal probability (Weisstein). This assumption, while reasonable in many
cases, leads to two issues with the classical view.

The first is that the classical view has no way of updating probabilities if
the data shows uniformity is not a good assumption. The classical view only
deals with possibility, and has no way of incorporating frequencies or taking
into account direct observations. Consider a loaded die, weighted in such a way
so it lands on one number more frequently than others: after rolling such a
the die, it seems there is now a reason to prefer some numbers over others, yet
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the classical view has no way of overcoming the principle of indifference and
adapting to these observations.

The second issue with the classical view involves what are called Bertrand’s
Paradoxes, named after French mathematician Joseph Bertrand (Shackel, 2007).
These are demonstrated mathematically in Appendix A; in essence Bertrand’s
paradoxes show that the principle of indifference can provide inconsistent re-
sults when dealing with a sample space that is uncountably infinite. While the
statistician E.T. Jaynes provides a response to this in terms of the principle
of maximum entropy (Jaynes, 1968), the main point is the classical view alone
does not appear to provide a way of arbitrating between different answers that
come from equivalent reformulations.

2.2 The Frequentist View of Probability

Like the classical view, the frequentist view uses counts to determine proba-
bilities, dividing the number of outcomes that belong to a certain event by
the total number of trials. However unlike the classical view, the frequentist
uses actual observed counts rather than possibilities to determine the prob-
ability (Hájek, 2023). This view was famously stated by John Venn, who
wrote “probability is nothing but that proportion (Venn, 1866).” Formally,
let o = [ω1, ω2, . . . , ωn] be a sequence of n outcomes observed from Ω belonging
to a probability space (Ω, E, P ). The probability of an event e ∈ E is thus

defined as P (e) ≡ |{ωi∈o s.t. ωi∈e}|
|o| .

Unlike the classical view of probability, this change to actual counts allows
the frequentist view of probability to capture intuitions loaded die and unfair
coins. This makes the frequentist view more data-driven than the classical view.
However, one immediate problem is that different sequences of outcomes lead to
different probabilities: a coin that is never flipped has an undefined probability,
while a coin flipped only once has a probability of either 0 or 1 depending on
what the result of this flip is. Another issue has to do with unrepeatable events,
such as historical events; often called the “problem of the single case.” There is
no way to assign frequencies to unrepeatable events other than to give them a
value of 0 or 1. These problems are related to what is called finite frequentism,
where |o| ∈ Z+, and issues with this view are explored in (Hájek, 1996).

One promising solution to the inconsistencies of different (finite) samples is
to let probability be the limit of the aforementioned ratio for a sequence of out-
comes. This is a view called hypothetical frequentism, with the word hypothetical
used since it is impossible to perform an infinite number of trials. Formally, hy-

pothetical frequentism defines probability as P (e) ≡ limn→∞
|{ωi∈o s.t. ωi∈e}|

|o| ,

for any n−length sequence of outcomes o. Indeed these ratios often do converge
as n → ∞, so it seems the hypothetical frequentist is able to avoid inconsisten-
cies resulting from different samples that plagued the finite frequentist.

However the hypothetical frequentist has given up the data-driven benefit
of frequentism by invoking counterfactuals (Starr, 2022). Indeed to make a
claim such as “the democrats will probably win the next election” is to imagine
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an infinite collection of hypothetical repeated elections. If these hypothetical
elections differ from one another or from the actual course things take, than
the argument is implicitly invoking counterfactuals. Despite possible appearing
more data-driven (due to the demand for actual observations), the hypothetical
frequentist view of probability is arguably just as (if not more) subjective as the
classical view since it is tied to speculative metaphysical judgments about an
infinite number of counterfactuals.

2.3 The Bayesian View of Probability

The Bayesian view of probability sees probability as an epistemic notion that
quantifies uncertainty. The Bayesian View of probability was famously stated
by British mathematician and logician Augustus DeMorgan, who wrote, “By
degree of probability, we really mean, or ought to mean, degree of belief (Mor-
gan, 1847).” It is this view that allows probability theory to be an extension of
logic that allows one to reason when they lack complete knowledge and update
their beliefs in light of new evidence. According to classical logic, (Shapiro and
Kouri Kissel, 2024), propositions are either true or false, and due to Aristo-
tle’s notions such as the law of the excluded middle (LEM) and law of non-
contradiction (LNC), must be one or the other.

George Boole, in his famous work on mathematical logic, connected Aristo-
tle’s logic to algebra by letting a 0 represent false and a 1 represent true, pro-
viding operations for combining and relating propositions (Boole, 1911; Davis,
2000). It is in this context that a probability, as a measure between 0 and
1, represents an agent’s confidence that a given proposition is true. Physicist
Richard Cox famously made this connection in his 1948 paper Probability, Fre-
quency and Reasonable Expectation (Cox, 1946), later expanding upon it in his
1961 book The Algebra of Probable Inference (Cox, 1961). Fellow physicist and
statistician E.T. Jaynes also shared this view in his book Probability Theory:
The Logic of Science (Jaynes, 2003). Recent popular-level and academic work
has argued for the Bayesian interpretation of probability; see (Clayton, 2021;
Hoang, 2020).

At the heart of Bayesian probability is Bayes’ Theorem, which describes
how a rational agent should update their belief in a model M being true when
presented with new evidence E.

P (M |E) =
P (E|M)P (M)

P (E)
(1)

Here, P (M |E) is the posterior, referring to an agent’s belief that a model M
is true after seeing evidence E. P (E|M) is called the likelihood function, and
refers to an agent’s belief that they would see the evidence E if M is in fact
true. This is multiplied by P (M), called the prior, which is one’s confidence
that M is true before observing evidence E. Lastly, P (E) in the denominator is
called the evidence, and refers to one’s confidence in seeing E under any model.
We will come back to this term later.
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The Bayesian view provides a way of overcoming the shortcomings of both
the classical and frequentist perspectives. The Bayesian view is able to adapt
to observed data, meaning it can reason about loaded die and unfair coins,
unlike the classical view. The Bayesian view also avoids Bertrand’s paradoxes:
in addition to providing a mechanism of updating beliefs via the posterior, the
Bayesian view shows how the choice of a prior can be subjective6. As Kendal and
Moran wrote in 1964 (referring to Bertrand’s Paradoxes), “Since the ascription
of a measure to such elements is not quite an obvious procedure, a number of
‘paradoxes’ can be produced by failure to distinguish the reference set (Kendall
and Moran, 2012).” In other words, the Bayesian gets to choose how they assign
a probability measure to the prior P (M), and if they are using the principle of
indifference, they must to select a specific measure to use as a prior.

Unlike the frequentist, who either needs to posit dubious counterfactual sce-
narios or collect actual data, the Bayesian can still reason about possibility in
the absence of data. Of course, once data is observed, these observations can
be used to revise one’s belief, but observations are not strictly necessary for the
Bayesian to reason about probability. In summary, the Bayesian view allows
one to reason about possibility when one lacks data, and incorporate data when
one has it.

3 Probability and Rationality

One’s interpretation of probability has a direct bearing on the relationship be-
tween probability and rationality. To the frequentist, probability is frequency,
and any attempt to link frequency to rational belief is non-obvious and sub-
ject to the famous Problem of Induction. To the Bayesian, probability involves
belief, with no necessary link to frequencies: bayesian epistemology argues a
rational agent will update their belief via Bayesian conditioning (Arnborg and
Sjödin, 2001), and as Ramsey (2016) famously showed, using Bayesian proba-
bilities is the only way to avoid getting duped by a “dutch book” style betting
argument.

We come dilemma for those advancing a Hume-style argument against belief
in miracles. She must choose to either

1. Adopt a frequentist view of probability (described in Section 3.1), or

2. Adopt a Bayesian view of probability

If she chooses the first horn, then probability is frequency. On this view, mir-
acles are indeed improbable (because they have low frequency) but are not
necessarily irrational to believe. This is because under the frequentist view, the
link between probability (frequency) and rationality is non-obvious and subject
to the Problem of Induction. This is detailed in Section 3.1.

6The subjectivity of assigning credence does not mean Bayesian inference is irrational;
indeed one could argue epistemology is subjective since it involves belief and what information
a given person has access to.
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On the other hand, if she chooses the second horn, then probability and
rationality are indeed linked via Bayesian epistemology, but frequency has less
to do with probability than Bayes’ theorem does. As a result, we show it is
possible for miracles to have a high probability and thus be rational to believe,
regardless of their low frequency. This is detailed in Section 3.2.

Thus, either way, belief in miracles is not irrational. It is only by equivocat-
ing between these two incompatible views of probability that one can definitively
argue miracles are irrational because of their low frequency.

3.1 Horn 1: Frequentism and the Problem of Induction

Hume is also famous for positing his famous problem of induction elsewhere
in the Enquiry (Henderson, 2022), which (ironically) is also the most famous
argument against trusting frequencies. Hume writes “it implies no contradiction
that the course of nature may change, and that an object seemingly like those
which we have experienced, may be attended with different or contrary effects.”

On one hand, Hume claims that “If I ask, why you believe any particular
matter of fact, which you relate, you must tell me some reason,” while on the
other, he writes “tis impossible for us to satisfy ourselves by our reason, why we
shou’d extend [our] experience beyond those particular instances, which have
fallen under our observation (Hume and Steinberg, 1993).” By thus concluding
that one must take it on blind faith that the future will resemble the past (com-
bined with his evidentalist epistemology), Hume has provided an undercutting
defeater for his own frequentist reasoning about miracles. As C.S. Lewis fa-
mously remarked, “no man knew this better than Hume. His Essay on Miracles
is quite inconsistent with the more radical, and honourable, scepticism of his
main work. (Lewis, 2009).”

My argument is that this is not a problem unique to Hume, rather it is a
problem for frequentism in general: if probability is indeed frequency, then one
may ask what reason we have to trust frequencies, calling into question the link
between probability and rationality. Furthermore, to say the past is a good
guide to the future because the past has predicted the present well is to beg
the question in favor of a link between frequentism and rationality, since this
involves using the fact that the past is good at predicting the past to predict
the future.

Here’s an example adopted from Russell (2001): imagine a turkey living
comfortably on a farm for years. Suppose that the turkey believes this pro-
vides a reason for believing he will wake up the next day, which happens to
be Thanksgiving. Unbeknownst to the turkey, the very fact he was raised and
fed was for the purpose of being Thanksgiving dinner. The key insight here
is the farmer has justified knowledge that the turkey will be killed and eaten
on Thanksgiving, despite the fact that the number of days that the turkey will
be killed and eaten (1 day) is small compared to the total number of days the
turkey has lived on the farm wihtout being killed (hundreds of days). Under
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frequentism, the probability that the turkey will be killed and eaten is low7

for both the farmer and the turkey despite the fact that the farmer has justi-
fied knowledge of the turkey’s eventual death and consumption. Thus, under
frequentism, probability and rationality are separate concepts.

3.2 Horn 2: Bayesianism and Frequencies

To the Bayesian, probability is not necessarily frequency, and rather is one’s
degree of belief in a given proposition being true. Returning to the turkey in
Section 3.1, the turkey would perhaps assign high probability to model where
he wakes up and is fed as usual on Thanksgiving and future days, while the
farmer would not. The difference is the farmer has additional knowledge about
the turkey, that if the turkey had, would cause a (rational) turkey to revise his
belief.

A Bayesian update for the Turkey would work as follows: let T be the event
where the Turkey becomes thanksgiving dinner, and TC be it’s complement (i.e.
the turkey wakes up fine on Thanksgiving). Let F be the farmer’s testimony that
he raised and fed the turkey for the past 500 days so it would be Thanksgiving

dinner. Applying Bayes’ Theorem (Equation 1), we have P (T |F ) = P (F |T )P (T )
P (F ) .

Now the turkey may ascribe low initial confidence to his being thanksgiving din-
ner, corresponding to a low prior P (T ). However if the turkey’s confidence that
the farmer would give this testimony if indeed he would end up as thanksgiv-
ing dinner is high enough, then this can overcome the initial improbability the
turkey assigned to P (T ). What is key here is the evidence term, P (F ), which
represents the confidence the turkey has that the farmer would claim the turkey
would be thanksgiving dinner under any model. Using the law of total proba-
bility, P (F ) = P (F |T )P (T ) + P (F |TC)P (TC). Thus if P (F |TC) ≈ 0, meaning
the turkey doesn’t think the farmer would lie, then the posterior P (T |F ) ≈ 1,
meaning the turkey has updated his belief and is now fairly confident he will
be thanksgiving dinner. This is despite the fact that the frequency of days the
turkey is killed and eaten is indeed low and despite the turkey’s initial low prior.
Again, the turkey can be justified believing in a low frequency event if the ob-
served evidence is far better explained by the low frequency event than a higher
frequency alternative.

In a similar way, let M a miracle. Even if one assigns a low prior P (M)
to miracles on the basis of their low frequency, as long as this prior is nonzero,

7If the turkey is only killed and eaten on one day out of hundreds, than the probability
that the turkey will be killed on a given day (such as Thanksgiving) is thus low, regardless
of the farmer’s knowledge or intention. A sly frequentist could argue that what should really
be considered is the frequency of Thanksgivings, not days in general. Which items are to be
used in a probability computation is called the reference class problem, coined by Reichenbach
(1971). While the reference class problem is present in any substantive view of probability
(Hájek, 2007), it is particularly an issue for the frequentist because the frequentist needs to
specify what frequency they are talking about. Of course, this is how a frequentist can still
argue for the rationality of miracles; that there is no analogous reference class for a certain
religious figure and thus the reference class of naturalistic explanations or everyday poeple is
inappropriate and does not count against the frequency.
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there can always be testimony TM such that P (M |TM ) > P (MC |TM ), meaning
believing a miracle occurred is more rational than its denial.

4 Alternative Models and Uncertainty

The denominator of Bayes’ Theorem, or the evidence P (E), implicitly takes into
account other possible models could explain the evidence.
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A Bertrand’s Paradox: An Illustration

Adopting an example from Fraassen (1989), consider a factory that produces
cubes with a side length from 0 to 1. Suppose one wants to know the expected or
average side length, E[s]. Using the principle of indifference on the side length,
one assumes a uniform distribution over side lengths, where s ∼ U [0, 1], and we
calculate E[s] =

∫
s
P (s)sds to get the following:

E[s] =
∫ 1

0

sds =
s2

2

∣∣1
s′=0

=
1

2

So the average side length from a factory producing cubes with a side length
that ranges from 0 to 1 is 1

2 .
However, one can equivalently restate the problem as the same factory pro-

ducing cubes with a face area that ranges from 0 to 1. Notice how this is still
the same factory; if the side lengths of the cube range from 0 to 1, then the
face area will range from 02 = 0 to 12 = 1. However under this reformulation,
the principle of indifference says to assume a uniform distribution over the face
area, or s2 ∼ U [0, 1]. To calculate the expected side length, one can invoke the
Law of the Unconscious Statistician (Casella and Berger, 2002), which states
E[g(X)] =

∫∞
−∞ g(x)fX(x)dx, where fX(x) represents the probability density

function of a random variable X8. The expected side length is thus

E
[√

x2
]
=

∫
s2

√
s2P (s2)ds2 =

∫ 1

0

z1/2dz =
2z3/2

3

∣∣1
z=0

=
2

3
.

By restating the same problem a different way, one gets a different, and
indeed inconsistent, answer. One can do this a third time as well by restating

8This is a special, continuous case of the Lebesgue–Stieltjes integral over FX(x), the cu-
mulative density function of X In greater generality, the Law of the Unconscious Statistician
states that E[g(X)] =

∫∞
−∞ g(x)dFX(x).
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the problem again as the factory producing cubes with a *volume* that ranges
from 0 to 1. Since 03 = 0 and 13 = 1, this is the same factory as the one that
produces cubes with a side that ranges from 0 to 1. However if, as the principle
of indifference suggests, one assumes s3 ∼ U [0, 1], then the expected side length
is now

E
[

3
√
x3

]
=

∫
s3

3
√
s2P (s3)ds3 =

∫ 1

0

z1/3dz =
3z4/3

4

∣∣1
z=0

=
3

4
.

These three inconsistent answers show the principle of indifference alone lacks
the specificity needed to avoid “dutch book” style arguments, such as the ones
suggested by Ramsey (2016).
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