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1 Introduction

The idea of infinity and zero are closely related, despite their inverse relationship.
The symbol 0 intuitively refers to nothingness, whereas the symbol ∞ refers to
“so much” that it cannot be quantified or captured. The notion of finititude
rests somewhere between complete nothingness (0) and something having no
end (∞).

My concern is that many of the philosophers arguing for or against the
ontology (or possibility) of an actual infinite set are unaware or unfamiliar with
the mathematical literature attempting to clearly and rigorously define these
terms. I believe it is a mistake to leave mathematicians out of this conversation,
as analysts in particular have defined (and used) infinity in a way that is relevant
to the ongoing debate between philosophers.

For this paper, I have selected examples from Rudin’s Principles of Analy-
sis [15], which has become a standard text for Real Analysis classes taken by
pure mathematicians and engineers. I will also restrict the scope of examples
to Euclidean spaces for simplicity. Finally, I will be using addition, + and
multiplication ∗ in their usual way.

2 What are numbers?

2.1 Numbers and Numerals

To ask whether the symbol∞ could refer to a number means we need to ask what
numbers really are. It suffices to say numbers are mathematical objects used
to measure and count. Numerals, the symbols used to represent numbers (in
English, we use Arabic numerals), are different from the “numbers” themselves
(hence the Arabic numeral 2, the word “two”, and two tally marks refer to the
same number, despite having different names in each case.

Important sets of numbers include the natural numbers, which can either
mean the positive integers Z+ = {1, 2, 3, . . . }, or the “non-negative integers”
Z∗ = {0, 1, 2, 3, . . . }. The integers, represented by Z = {. . . ,−2,−1, 0, 1, 2, . . . , }
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are a set of positive and negative numbers. Next we have the rational numbers,

Q =
{

p
q

}
, where p and q are integers and q ̸= 0. Finally, we have the real num-

bers, R which include all the rational numbers plus irrational numbers that form
“gaps” in the rationals, such as

√
2 which cannot be written as a terminating

or repeating decimal. Note that

Z+ ⊂ Z∗ ⊂ Z ⊂ Q ⊂ R.

2.2 Sets of numbers

Two important sets of numbers are groups [14] and fields [19]. A group G is a set
of elements along with an associated group operation that satisfies a specific set
of properties [14]. One of these properties is that the group operation must have
have an “identity element” along an “inverse operation” that allows one to get
the identity element from any other element of the group. In the case of usual
addition, the identity element is 0 and the inverse operation is x + (−x) = 0.
As a result, the positive integers Z+ under addition is not a group (it does
not contain the needed identity element 0), and neither are the non-negative
integers Z∗ (as they do not contain the negative numbers needed to “invert”
addition to get the additive inverse, 0). On the other hand, the Integers (Z),
Rationals (Q), and Reals (R) do form a group under standard addition.

Fields contain two operators, + and ∗, which must must satisfy the Field
Axioms described in 1.12 of [15] 1. One of these axioms is the existence of
multiplicative inverses, so the integers (plus the subsets Z+ and Z∗) do not
form a field since the multiplicative inverses of integers are not integers. The
rationals Q and reals R do form fields. Table 1 summarizes whether each set is
a field and a group.

A mathematical structure, meaning a set with some associated operator(s),
is said to be closed under a given operator if the operator applied to members
of the set yields another element in the set [18]. The positive integers, non-
negative integers, integers, rationals, and reals are all closed under standard
addition since the sum of any two elements is an element in the set. In other
words, x, y ∈ S =⇒ (x + y) ∈ S. This will be important when discussing
infinity since the real numbers are closed before introducing the symbol ∞.

2.3 The Importance of Zero

A zero element, including the scalar zero and a zero vector, is an important
element in topology [15], linear algebra [17], and algebraic structure more gen-
erally [1]. Letting 0⃗ denote the zero vector (For Euclidian k-spaces with k > 1)
and 0 denote the scalar zero, we have the following principles:

1There are also rings, [20], which include + and ∗, but where multiplication need not be
commutative. Rings are more general than fields because they do not need to follow all Field
Axioms; thus all fields are rings but not all rings are fields.
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Name Symbol Group? Field?
Positive Integers Z+ No No

Non-Negative Integers Z∗ No No
Integers Z Yes No
Rationals Q Yes Yes
Reals R Yes Yes

Table 1: Whether each set of numbers forms a group and a field under standard
addition and multiplication.

• For any group G where the group operator is standard addition, 0 is the
additive identity: x+ 0 = x ∀x ∈ G 2.

• For any field F , x · 0 = 0 · x = 0, ∀x ∈ F [1] 3.

• For any field F , we have a zero element, denoted 0, such that x+ 0 = x,
∀x ∈ F

• Every vector space contains 0⃗ (because one can choose 0 from the associ-
ated scalar field 4 [17]).

• |x| = 0 ⇐⇒ x = 0⃗ [15].

Zero serves as an additive identity (see the second bullet point) and can “nullifiy”
every member of a field (see the first bullet point). However we will soon see
we need to be more precise about what zero actually means - is it a number
that can produce a finite quantity when added enough (or an infinite) number
of times, or is it a symbol that represents ontological “nothingness?” Here it
is important to differentiate between the symbol 0⃗, which represents the zero
vector, with the zero vector itself, which is a vector that has zero length and
thus does not “go” anywhere. Similarly, the symbol 0 refers to the number that
is “nothing” (no length, no distance, etc). These symbols are elements that
represent “nothingness,” so we give them a name, despite the content being
nothing. In a Fregarian sense, symbol 0 (for the reals, rationals, or integers)
and the vector 0⃗ (for Euclidan k-space) refers to the same thing, which is nothing
in each case [5].

3 Defining Infinity Mathematically

Rudin (and other analysts) introduce the “extended real numbers,” a number
system that takes the field of real numbers, R, and adds the symbols (they are
careful to not call these numbers; as we will see later, field operations do not
work on them) +∞ and −∞ [15]. This allows every subset of R to have an

2It should be clear this is also true for fields under standard addition as well
3Also Proposition 1.16 in [15]
40 exists in all fields by the previous bullet point, also see the Field Axioms listed in 1.12

of [15]
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upper bound in the extended real numbers. It is worth pointing out that these
symbols are introduced so any subset of the real numbers has an upper bound
in the real numbers, and Rudin (among others) are clear to point out they do
not refer to a definite quantity the way finite numbers do.

3.1 Infinity is not a number (in the traditional sense)

The error that Wes Morriston [10, 12, 11] and Alex Malpass [8] make is assum-
ing infinity refers to a quantity that can be treated like any other finite number.
Morriston’s example in [11] involves two angels, Gabriel and Uriel, taking turns
singing praises to God every minute. Note that Morriston’s example is con-
structed so this is a potential infinite not an actual infinite, a distinction made
by Aristotle and William Lane Craig [3] (who Morriston is specifically replying
to), a worthwhile attempt to keep this example from begging the question by
supposing an infinite set has already been completed. However Morriston’s ex-
ample still ends up treating infinity like a finite quantity in a question begging
way. Morriston says,

It’s true, of course, that Gabriel and Uriel will never complete the
series of praises. They will never arrive at a time at which they have
said all of them. Indeed, they will never arrive at a time at which
they have said infinitely many praises. At every stage in the future
series of events as I am imagining it, they will have said only finitely
many. But that makes not a particle of difference to the point I
am about to make. If you ask, “How many distinct praises will be
said?” the only sensible answer is, infinitely many. [11]

Now it is clear that as time goes on and on towards infinity, the number
of praises sung by Gabriel and Uriel tend towards infinity as well. However
Morriston’s question “how many distinct praises will be said” lacks a subject
- namely when we are asking the count to end. For instance, if we ask “how
many praises will be sung after four minutes,” it is clear that the answer is four
(Gabriel will have sang two and Uriel will have sung two as well). However the
question “how many distinct praises will be said” without including a subject
is like asking “if I start counting numbers now, how many numbers will I count
if I do not stop?” The lack of a specific, definite subject makes the question
ill-posed and under-determined.

If seems as if Morriston wants to ask the question “how many praises will
be sung at infinity,” however this would clearly beg the question if favor of
an infinite quantity being reached by successive addition. Morriston could, at
this point, argue there is a difference between reaching infinity and completing
infinity, however I do not see how what distinction would be. Considering that
Morriston creates this example to try and argue that a future series of possible
events is an actual infinite (and that a regress of an infinite number of past events
is possible), it is important that this argument does not rest on “counting to” an
actual infinite in first place. I believe it does: asking “how many praises will be
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sung [implicitly at infinity, which is not a finite or determinate quantity]” is like
asking “how many praises will be sung at the color blue.” The point that infinity
is not a determinate quantity is also shared by Michael Huemer, Morriston’s
colleague at University of Colorado, Boulder [6]. Morriston continues,

As I have imagined the scenario, each of the praises is definite and
discrete. What is their number? Since there is a first praise, the
number of praises that have been said will always be finite. But
that’s not what I’m asking about. What I am asking is this: How
many “definite and discrete” praises will be said after a given mo-
ment of time? (It’s very important to keep our tenses straight here!)
I do not see how the friends of the kalām argument can avoid the
conclusion that the number of praises, each of which will be said, is
(and always will be!) be greater than any natural number.

The point here is that “after a [or any] given moment of time” is also a “definite
and discrete” number - the sum of a finite number of finite (integer, natural, ra-
tional, or real) numbers will always be a finite number because the the integers,
rationals, and reals, are closed under addition. In other words, the number of
praises sung will never exceed a finite number due to the closure of the inte-
gers, rationals, and reals under addition. My argument is that there is no “at
infinity” at all - there is simply the tendency to get larger and larger (and thus
closer, but still always “infinitely far”) from the idea of infinitude.

Mathematicians from Gauss to Hilbert have all treated infinity as an idea
and not a determinate quantity - indeed it is the treating of the symbol ∞
as a number algebraically that leads to a myriad of problems, some of which
we will discuss in subsequent sections. My argument is the idea of “infinity”
as a quantity that does not end is useful in an instrumentalist kind of way,
but cannot be metaphysically (or logically) realized. Assuming infinity can be
reached from a finite quantity violates the assumed closure of fields.

4 Zeno’s Paradox (Mostly) Resolved

4.1 Overview of Zeno’s Paradox

Zeno’s Dichotomy Paradox, often shortened to just Zeno’s Paradox (Zeno had
at least 9 paradoxes), involves a runner Atalanta trying to run a from point A
to point B. Before Atalanta reaches B, she must first reach the halfway point,
call this B/2. However before she reaches B/2, she must first reach B/4, and
before this, B/8, and so on. As a result, despite the fact that the distance from
A to B is finite, she would (apparently) need to complete an infinite number
of distances to go from point A to point B. At least one philosopher has cited
this as support for the metaphysical possibility of completing infinities, a point
I will say more about in subsequent sections [7].

The sequence of points Atalanta must reach can be written as an =
{
. . . , 1

16 ,
1
8 ,

1
4 ,

1
2 , 1

}
.

Thankfully, this sequence is absolutely convergent and thus by the Riemann Re-

5



arrangement Theorem we can reorder the terms while preserving the sum [15]
5. We thus have a new sequence of partial sums

bn =

n∑
i=1

1

2i

In Approaching Infinity, Michael Huemer writes Zeno’s paradox as a helpful
syllogism I modify to fit this example:

1. To reach point B, Atalanta must arrive at each point in the sequence 6

bn =
{

1
2 ,

1
4 ,

1
8 ,

1
16 , . . .

}
2. bn has an infinite number of terms

3. It is impossible to complete a sequence with an infinite number of terms

4. Therefore, it is impossible for Atalanta to reach point B (In some formu-
lations, the argument is that Atalanta cannot even begin to move).

On the surface, it appears we are stuck - Atalanta cannot move any finite dis-
tance, and thus cannot begin to move at all. But obviously, Atalanta (or any
runner for that matter) can move. This forms a common argument for the
existence of actual infinities: namely that distances, which can be described by
an infinite sequence of sub-intervals, can be crossed. However, what is often
not mentioned in such an argument is this “infinite sequence of sub-intervals”
themselves must have zero measure (in which case, this is a trivial point, as we
will see in the next section) or the sub-intervals must converge to zero measure
“fast enough.” Note further that not all sub-intervals converging to zero measure
will work, they must shrink to zero measure “fast enough”. Additionally, in the
latter case, you can get as close as you would need to get to the actual interval
in a finite number of sub-intervals. So long as all the sequence of regions have
nontrivial measure (meaning the sub-regions are non-zero nor do they converge
to zero measure), there will only be a finite number needed to describe the in-
terval. If the sub-intervals have smaller measure, we may need more, but this
number will always remain finite.

As a result, I find it odd that this is used as an argument for the existence
of an actual infinite. The reals are constructed in such a way where there
are no “gaps” between any two numbers, so of course there are an infinite
number of real numbers between these two endpoints. However this was done
by construction to ensure upper and lower bounds exist, not necessarily for
any analogy to reality . These upper and lower bounds are themselves finite
numbers, and so is the distance between any given pair of them.

5Those unconvinced by the rearrangement theorem can consider the problem in reverse -
another runner going from point B to point A

6Huemer describes this using the word “series” despite this being a sequence of partial sums.
Huemer appears to use the word “series” to refer to sequences and series interchangeably - my
guess is this is a regional difference in language. I will stick with the mathematical convention
of a series being a summation of terms of a sequence.
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4.2 Infinitely Large Quantities vs Continuums

Suppose for the sake of argument we grant that infinities can be completed;
that moving any finite distance is “completing” an infinite number of (infinitely
small) sub-intervals. Would this imply that the symbol ∞ now refers to a
definite value? Would it also imply could “count to” infinity by enumerating
reals, thus logically violating the assumed closure of the field of reals?

I do not think so. In particular, it is important to distinguish between
finite continuums (the only thing unbounded about them is the cardinality of
subintervals that could be used to describe them, and if so, the measure of these
sub-intervals must shrink to zero “fast enough” that we can get arbitrarily close
within a finite number of terms) and infinitely large numbers. In the sake of
finite continuums, one can also always describe them in terms of a finite number
of (finite in measure) sub-intervals. In the case of infinitely large quantities, one
cannot. As a result, there is a difference between a finite continuum and an
infinitely large number which cannot be constructed from a finite number of
finite pieces.

4.3 The “Absurdity” of Counting?

To illustrate where Zeno’s Paradox goes wrong, I will tweak the example a bit.
Suppose I am counting real numbers and want to count from the number 1 to
the number 3. Conventional wisdom tells me I can simply say “one, two, and
three” and be done. But to get from 1 to 2, I must pass through the real number
1.5 and to get there, I must past through 1.25, and so on. It would be absurd to
suggest I need to speak each possible real number in between 1 and 3 in order
to “count” them.

My point here is that for any nontrivial counting to be done, one needs to
pick a starting point (call this number a) and another number b, where b ̸= a.
However once a and b are picked, there will always exist a number between
them: a+b

2 . In fact, between any two real numbers, a and b with a ̸= b, there
are an uncountably infinite number of reals between them (one way to see this

is to let b2 =
a+ a+b

2

2 ). Regardless, the real numbers 1, 2, and 3 are obviously
finite (and so are each of the unaccountably infinite number of reals between
them). Is it really the case that whenever I count the reals, I am completing an
actual infinity?

Here it is important to distinguish the fact that while there are an infinite
number of reals in any interval with nonzero (Lebesgue) measure, it is impossible
to enumerate these in any practical way. In other words, regardless of whether
infinite sets actually exist (in some Platonic Realm, in the mind of God, etc)
we cannot hope write them down the way we can enumerate finite sets. One
reason for this is there are a finite number of elementary particles in the universe,
so any attempt to do so would run out of ink. While counting from one real
number to another will pass an infinite number of reals, I am not “completing”
or “enumerating” this infinite set 7.

7It is prudent to remember that the reals were constructed in such a way to make a
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4.4 Returning to Zeno

Returning to Zeno’s paradox, it is clear that any step Atalanta “forward” (from
A to B) will entail her crossing an infinite number of “points” or sub-intervals
- at least, if these intervals or crossings form a continuum in the same way
the real numbers do. My claim is that they do not - there are only a finite
number of particles Atalanta will cross, and the length “A” to “B” is not a true
continuum (at least not in the way we construct the real numbers). While we
can imagine A and B as geometric points in a continuum of Euclidian space on
the real numbers, this is an analogy based on mathematical axioms and abstract
reasoning. I believe it is premature to argue this is the way “things really are.”

To make the argument that Atalanta cannot move forward at all because
space can be viewed as a continuum with an infinite number of points is like
arguing one cannot count from 1 to 3 because there are an infinite number of
reals between them. Of course, one cannot count from 1 to 3 by enumerating
all the reals, but one can count a finite number of sub-intervals, each of which
with finite Lebesgue measure, that construct said continuum.

What compounds the difficulty understanding this is that Arabic numerals
1 and 3 are overloaded in the sense that they can refer to real numbers, rational
numbers, integers, and more. So when one counts 1, 2, 3, they can be counting
the integers (and thus are not skipping anything “in-between”) or they can claim
to be counting the reals (counting, not enumerating). While the jump from 1
to 2 means something different in the real number system than it does for the
integers, it is possible to do such counting in either case.

4.5 The problem with points and the Zero Dilemma

The paradox of geometric points is that shapes, lines and other geometric ob-
jects that take up an extended region of space are “made up of” points, which
by construction have zero volume [16]. This creates problems because of the
intuitive notion that something with a value (or volume) of zero should stay
zero, even if you add it an infinite number of times 8. We face a choice between

1. Affirm an (infinite) sum of zeros can eventually give you a finite number,
or

2. Reject the existence of zero-size parts of an object.

I agree with Huemer and take the second route - in fact the very word “zero-
size part” seems to me an oxymoron: we can shrink our parts down very very
small, but we cannot make these parts zero without changing what the symbol 0
represents. This illustrates what I call the “zero dilemma,” and despite the fact
that mathematicians have reached a general consensus about this, it appears
philosophers have not.

continuum and fill in holes left by the rational numbers (such as
√
2) - thanks Dedekind and

Cauchy!
8A sequence of all zeros is clearly absolutely convergent
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To explain this dilemma, consider the line segment on the closed interval from
[1, 3] ⊂ R. The “length” (more formally, Lebesgue measure) of this interval is 2.
However we can think of this length in many ways: the first is a continuum from
1 to 3 with measure 2. The second is a continuum from 1 to 2 (with measure 1)
joined with another continuum from 2 to 3 (with measure 1). More generally,
we can think of dividing up the interval up into k equally spaced parts, each
with measure 1

k . Conventional mathematics (field arithmetic) tells us that the

overall length of this interval is 2k · 1
k = 2k

k = 2 so long as k ̸= 0 (Recall that
multiplicative inverses are specified to exist by the Field Axioms except for 0,
see M5 in 1.12 of [15]).

Now, suppose that we broke convention and used field arithmetic on the
extended real numbers 9. By Field Axiom M5 we would have a multiplicative
inverse for ∞, which would be 1

∞ . Here comes the fun part: We know 2k
k = 2,

regardless of what k equals. So let us choose k = ∞, which gives us 2∞
∞ .

However 2∞ = ∞, so we have

2 =
2k

k
=

2∞
∞

=
∞
∞

= 1 =⇒ 2 = 1. (1)

We can structure this absurd result in the following syllogism:

1. If infinity exists in a field (i.e. exists as a real or rational number), then
1 = 2

2. But 1 ̸= 2

3. Therefore, infinity does not exist in a field.

Mathematicians do not like contradictions (unless it helps with their proofs),
which is why there seems to be consensus that the symbol ∞ does not refer to
a number at all. For many mathematicians, the symbol ∞ simply refers to the
upper bound of every subset of the (extended) real number system. For the
philosopher who still thinks infinity can be reached by successive addition of
finite numbers, it seems they have the following options:

1. Reject that the field of rationals or reals are truly closed under addition

2. Reject that infinity can be reached by addition of reals or rationals

As we shrink our intervals down to zero measure (the “length” of a point):
as k → ∞, our intervals become smaller but we have more of them. We can
make these intervals as small as we would like and still have a finite volume
(hence the idea of limits), however as soon as these intervals reach exactly zero
size we have problems like the one above. This forms what I call the “Zero
Dilemma” 10. One can choose from the following:

9The extended reals include the real numbers plus the symbols (not numbers) +∞ and
−∞; they do not form a field [15]

10Not to be confused with Kotaro Uchikoshi’s work “Zero Time Dilemma”
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1. The symbol 0 does not refer to nothingness, but rather some quantity
that, when added an infinite number of times, forms a nonzero number
(i.e.

∑∞
i=1 0 = 2)

2. 0 refers to nothingness, but infinity is “powerful” enough to give you some-
thing from nothing (i.e. ∞ · 0 = 2)

3. ∞ is not a “number” and shouldn’t be used as such - it is simply an idea,
useful as an upper bound.

I hope the reader can understand why myself (and many mathematicians) take
the third option of the zero dilemma: I personally would much rather ban
infinity from field operations than either redefine zero (to not mean “nothing”)
or to allow what appears to be metaphysical absurdities like a violation of
Leibniz’s’ principle of sufficient reason (PSR) [9]. Indeed we can understand
why 0 was excluded from having a multiplicative inverse for fields - it causes
more problems than it solves. Intuitively, I think this makes sense: we can take
the “opposite” of any finite quantity and get another finite quantity. But the
opposite of nothingness could be anything 11

4.6 Relationship to Hyperreals

Like the extended real numbers, hyperreals are a way of extending the real
numbers to include infinitesimals and infinite quantities. Here the reciprocal of
infinite quantities are infinitesimals - numbers that are infinitely small but still
non-zero.

5 Discrete Ontology

In this section, I propose a description of reality that avoids any of the contradic-
tions or difficulties associated with infinity. In this description, the fundamental
level of reality is constructed of discrete phenomena (hence the name “discrete
ontology”), even though it can be approximated by continuous mathematics.
In other words, discrete ontology is a description of reality where everything is
fundamentally quantized – there are no infinities, infinitesimals, or actual con-
tinuums. I will first discuss how items themselves are made of discrete parts
before moving into the more controversial claim about the discreteness of space
and time.

5.1 Discrete Items

At the fundamental level, objects are made up elementary particles. The most
popular estimation of the number of particles in the (observable) universe is

11Recall the various absurdities that come from dividing by zero, and why mathematicians
leave division by zero as “undefined” - attempting to define it as a fixed value in one situation
causes more problems and contradictions in other situations.
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Eddington’s calculation of appoximately 1079 [4]. which is a unfathomably large,
yet still finite. Now consider a flat surface like a tabletop: despite being able to
describe it as a continuous “line,” we know it is made up of a finite number of
such particles, arranged in such a way that it feels and appears continuous.

5.2 Discrete Space

Consider a computer simulation of a 3-dimensional space: objects in the simula-
tion will have a position represented by numbers stored inside these computers.
These numbers can be integers, or more commonly, floating point numbers that
allow for very large (and very small) values. The point here is a computer is
clearly a discrete object: it is made up of a finite number of transistors and can
only represent finite numbers (finite in quantity, and numbers that are either
finitely large or finitely close to zero). In other words, even a highly detailed
simulation of a 3D environment that appears to be continuous is quantized
to a certain degree in reality. The “value” of infinity in computers is often
represented as a special number that forms an “upper bound” - it is a number
achieved when results of mathematical operations overflow [2]. As per the IEEE
754 standard, the “value” of (positive) infinity is a floating-point number where
the sign and fraction bits are all zeroes while the biased exponent bits are all
ones. In other words, the number infinity is not stored; rather a certain bit
sequence is reserved to “act like” infinity in an expected way.

Likewise, in space there is a fundamental limit to how precise we can measure
space, given by Planck length (≈ 3.5 × 10−35m) [13]. As a result I believe we
should at least remain agnostic about whether below this limit, space itself is
made up of a “grid” or forms an actual continuum.

5.3 Discrete Time

Returning to the computer analogy, computers are driven by a clock, often
made of crystal, which allows for pulses or triggers at a regular interval. The
clock’s trigger advances the “state” of the computer, which is necessary for
sequential logic. The appearance of continuous motion from a computer (in
videos, computer games, simulations) is illusory since each frame is an images
generated by a discrete number of computations and displayed at a regular rate.
Just like a film can appear continuous (despite being made of a discrete number
of frames or images), I am proposing that time itself may be fundamentally
discrete. As in the case of space, there is a limit to how finely we can measure
time, given by Planck time (≈ 5.39× 10−44s), which forms a sort of “sampling
rate.” As of this writing, no current physical theory can describe timescales
shorter than Planck time. It is at least possible that at this period (or perhaps
below it) time itself is quantized.
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