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1 Introduction

In this paper, it is argued that Maximum Likelihood Estimation (MLE) is wrong,
both conceptually and in terms of results it produces (except in two very special
cases, which are discussed). While the use of MLE can still be justified on the
basis of its practical performance, it is argued that there are better estimation
methods that overcome MLE’s empirical and philosophical shortcomings while
retaining all of MLE’s benefits.

2 Background

Maximum Likelihood Estimation (MLE), in its modern form, was proposed and
named by Sir Ronald Fisher (Hald, 1999). It is a form of parameter estima-
tion where chosen parameters maximize the likelihood function P(X16), the
probability of the observed data. MLE chooses parameters as follows:

OriLe = arg max P(X0") (1)

MLE is used to train most generative model architectures, including varia-
tional autoencoders (VAEs) (Pu et al., 2016), normalizing flows (NFs) (Rezende
and Mohamed, 2015), diffusion models (Ho et al., 2020), and generative adver-
sarial networks (GANs) (Goodfellow et al., 2014)!. Any deep learning model
that uses the negative log likelihood as a loss function is performing maximum
likelihood estimation (Vapnik, 1999, 1991). Despite MLE’s ubiquity, it often
produces biased estimators of the underlying true parameters. The most fa-
mous example was pointed out by Neyman and Scott (1948), who showed that
MLE can produce inconsistent results when the number of parameters is large
relative to the amount of data (DasGupta, 2008). In the Neyman-Scott prob-
lem, there is not enough data relative to the number of parameters to mitigate
the bias, leading to what Neyman called “false estimations of the parameters”,
or statistics where the stochastic limits were unequal to the values of the pa-
rameters to be estimated (Stigler, 2007).

IThese observations apply to models trained on a lower bound of the likelihood function,
such as the popular ELBO (Kingma and Welling, 2022).



3 Parameter Estimation

Suppose there is a value? # one wants to obtain that characterizes a population.
Unfortunately, due to the size of the population (which could be infinite), time,
cost, or other considerations, neither 6 nor the population can be observed
directly. Instead, one is given access to a sample from the population X. The
goal of parameter estimation is to guess or estimate 6 as accurately as possible
from X. Use 6 to denote an estimate of §, sometimes explicitly writing 6=H (X)
to show this estimate is a statistic or function of the sample X.

What makes the problem difficult is there can be different populations that
conceivably generated X, each corresponding to a different value of . Ran-
domness is thus introduced due to the the underdetermination of population
parameters from the (usually finite) sample. This situation creates epistemic
uncertainty regarding the true values of the parameters®. The sampling distri-
bution of @ thus represents the uncertainty in recovering 6 from samples of a
distribution parametrized by 6.

In many cases, this uncertainty is removed when sampling the entire pop-
ulation or letting the sample size grow to infinity. This idea is captured by

consistent estimators, or estimators where lim,,_,. E [|é - 9|§} = 0. When the

sample size is finite and the problem is underdetermined, one often desires a
way of choosing the “best” possible parameters over the set of parameters that
possibly generated X. For instance, the sample X, = [0.2,0.4,0.6] could have
been generated from a one-sided uniform distribution UJ0, a], for any value of
a > 0.6. This means there are an uncountably infinite number of populations
that could have given rise to the observed data. Reducing this set of possible
a’s is necessary to get a single estimate of the population parameters.

3.1 Maximum Likelihood Estimation

MLE suggests reducing the set of candidate parameters by choosing the ones
that makes the sample X as likely as possible. On the surface, this is an intuitive
solution to underdetermination, as it lets the data drive the selection process.
However MLE ignores the critical interplay between the sampling distribution of
6 and the parametric form of the distribution under a given choice of parameters.
In summary, MLE has a tendency to overfit the parameters to the sample, often
at the expense of generalizing to the population.

Consider again estimating the value of a for a one-sided uniform distribution
UJ0,al, given a sample X,, = [0.2,0.4,0.6]. MLE chooses the smallest possible
value of a. If a was any larger, the likelihood of X, would decrease since
the density of the distribution is inversely related to its support. This choice
corresponds to estimating a via the largest value in X,,. This is shown in detail
in Appendix A.

2Without losing generality, 6 this can also be a vector.
3The connection between randomness and epistemology has been noted by many; see
(Hoang, 2020; Cox, 1946; Jaynes, 2003; Héjek, 2023).



The problem is that X, is not a plausible sample from U[0,0.6]. If a = 0.6
is really the true value of the parameter, one should not expect to estimate this
value, since the only possible way this value can be estimated is by sampling 0.6
ezactly. In other words, the density of samples that give rise to this estimate
under the estimate itself have Lebesgue measure zero. While X, is rendered
likely by choosing a = 0.6, estimating @ = 0.6 itself from a sample where the
population parameter really is 0.6 is extremely unlikely, occurring almost never

(a.n.).

3.2 Bias

The issue with MLE’s estimate of the one-sided uniform example described
previously is not just that the estimate a is unlikely. Indeed any estimate of a is
highly unlikely. The issue with MLE is that it will almost surely underestimate
a. Consider the PDF of aypg, and find its expected value conditioned on
a variable representing the population value of the parameter, which is nLHa
(this is derived in Appendix A.1). The difference between this and the value of
the parameter, a, is — i a. Because this difference is negative, it implies dayrg
will, in expectation underestimate a.

This difference between the expected value of an estimate and the true value
of the parameter is called the estimator’s bias, defined as b(f,0) = E[0]0] — 6
(Johnson, 2013). In this example, we see that MLE produces biased results by
essentially overfitting. Notice further that as n — oo the bias disappears: this
is due to the lack of uncertainty. In many cases, when there is no uncertainty,
MLE is unbiased (hence why MLE is described as asymptotically unbiased in
much of the literature (Johnson, 2013)). However for many distributions, MLE
is biased when the sample size is finite.

4 What’s So Bad About Bias?

Parameters learned from biased estimators suffer from two serious issues: MAD-
ness and unfairness. MADness is a term in the machine learning literature re-
ferring to generative models that become progressively worse progressively in
quality (precision) and diversity (recall) when trained on their own output (Ale-
mohammad et al., 2023). The term MADness is a reference to bovine spongi-
form encephalopathy (BSE), the medical term for mad cow disease?. This phe-
nomenon has become a growing concern for the machine learning community
due to the availability and ubiquity of synthetic data (Nikolenko, 2021).

The “fully synthetic loop” described by Alemohammad et al. (2023) cor-
responds to a parameter estimation problem where the estimated parameters
6 are used to generate new samples X. From these new samples, the parame-
ters can be estimated again, and so on, forming the basis of what is called a
self-consumed or autophagous loop. This loop is illustrated in Figure 1. While

4Bovine spongiform encephalopathy (BSE) is a neurological disorder believed to be trans-
mitted by cattle eating the remains of other (infected) cattle (Prusiner, 2001).



unbiased estimates center around the true value of the parameter, biased esti-
mates diverge, as shown in Figure 1. This means that MLE estimates are far
more susceptible to MADness than unbiased alternatives.

Estimated Parameter Value

Geometric distribution

Exponential distribution

6 H X~ P(X;0) | 0 =HX) P X~PX;0) [+ 6=HX)
Figure 1: The self-consuming parameter estimation loop.
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Figure 2: MLE vs PLE Estimates of the parameters of various distributions.
Notice how MLE collapses into MADness much faster than PLE. More details
on these experiments can be found in Appendix B.

4.1 Frequentism’s Failure

It is difficult to overstate the significance of the failure of MLE to produce unbi-
ased estimates of population parameters. Although MLE can produce unbiased
estimates when presented with an infinite amount of data, there is no practi-
cal setting where one has access to an infinite amount of data. Furthermore,



even if one could somehow process and access an infinite amount of data, there
would be no reason to estimate, since one could simply exhaust the population
and measure the parameter directly. Additionally, if the number of parameters
scales with the amount of data, even an infinite amount of data will not solve
the bias problem present in MLE, since Neyman and Scott (1948)’s example fa-
mously showed MLE’s bias can cause its results to be inconsistent (DasGupta,
2008).

5 Fixing MLE

The Bayesian perspective provides a path for solving the aforementioned is-
sues with MLE. Under the Bayesian perspective, the sampling distribution of
6 represents the uncertainty choosing 6 from X. However the uncertainty in
estimating 6 is driven by two factors: the first is the underdetermination of 6
from a sample X (which is usually finite). The second is more fundamental: one
wants to capture the population parameters 6 that not only generated X, but
other possible samples one could have observed if one had sampled differently.
MLE successfully resolves the first kind of uncertainty, but ignores the second.

5.1 The True Goal of Parameter Estimation

The true goal of parameter estimation is not necessarily to maximize P(X]|0).
It is instead to find the 6 that parametrizes the population. 6 is a fixed (but
unknown) value one wishes to find, so in Bayesian terms, P(6) represents one’s
confidence or degree of belief that the population parameter equals the argument
value. The posterior distribution P(6|X) represents one’s updated belief about
0 after observing X. On the surface, a reasonable way to estimate parameters
given data X is by maximizing this posterior distribution, an estimation method
called Maximum A Posteriori (MAP):

P(X|0")P(¢)

Orine? = arg g P(O|X) = axg e —

= argmax P(X|0")P(0")

(2)
MAP and MLE go wrong by failing to take into account that P(X) itself de-
pends on the fixed value of 6 one wishes to estimate. We make the connection
between the sample X and the population parameters explicit by showing the
conditionality of the posterior on 6:

Oyiaprix = argnlgz}xP(Q/|X,0) = arg %%XP(X|9/79)P(9/|9) (3)

Here, P(6'|0) represents the probability one would estimate 6 if the true pa-
rameters are in fact §. Crucially, P(0’|0) does not only depend on the sample
X; instead it represents the probability of estimating 6’ from any counterfactual
sample Y that could have been sampled by 6. This new form needs to take into

SMLE is a case of MAP with a uniform prior P(6).



account any possible sample that could have been generated by 6, since, as dis-
cussed at the beginning of the section, the goal is to choose 6 that parametrizes
the population, not just the sample X. Let fy be the parameters estimated
from the counterfactual sample Y. We can then write the corrected MAP as
follows, letting I be the indicator function:

buisprrs = argugx P(X[9',6) [ 1 = 6[0)P(Y|0)dY (1)
Y
Notice here that [, I(¢ = 0y [Y)P(Y[0)dY = Eypll(¢' = 0y)], the ex-
pected value of when the estimated parameters from X equal the estimated
parameters from the given counterfactual sample Y. Since 8/ = H(X) is a
statistic of the sample, we can write the overall estimate in terms of the func-
tion H which estimates parameters from of a sample. Noting that our estimation
method H could equally be applied to X or any other sample Y, we rewrite the
optimization in terms of H.

Ovarrix = H(X)
H — argmgx P(X|H'(X),6)Eyjo[[(H'(X) = H'(Y)]. )

6 Simplification

Needless to say, while Equation 5 is theoretically justified for estimating pa-
rameters, is difficult to solve for a myriad of reasons. The first is it requires
knowledge of 6 to generate the counterfactual samples Y. If 6§ was known a
priori, we would have no reason to estimate 6 from samples in the first place.
Furthermore, the indicator function inside the expectation, I(H'(X) = H'(Y)),
is not easy to compute: it requires computing the measure of when any estimate
from a counterfactual sample equals the current estimator.

Computing this estimate can be made tractable with a few simplifying as-
sumptions. The first is to remove the dependence of the estimate on knowledge
of 6. The likelihood function is already implicitly conditioned on 6, since this
value parametrizes the population X is sampled from. For the expectation term,
Evyg[I(H'(X) — H'(Y)], we can use H'(X) as a proxy for the true parameters.
With this change, Y is a sample drawn from a distribution parametrized by
H'(X) rather than by 6 itself: without knowledge of 6, we use our estimate of
0.

Next, we can simplify the computation of the expectation by removing the
indicator function. For P(X|H'(X),0)Ey g x)[I(H'(X) = H'(Y)] to take a
nonzero value, it is necessary that Ey g/ (x)[H'(X) — H'(Y)] = 0. We can
turn this into an equality constraint on the optimization itself; we maximize the
likelihood function such that there is no expected difference between our current
estimate and an estimate from a counterfactual sample taken from distribution
parametrized by the current estimate. This is captured via Evy g x)[H'(X) —
H'(Y)] = 0. Using these assumptions, we arrive at the following form for
parameter estimation.



Opre = H(X),
H = axg max POK; H'(X) s.t. By oo [H'(Y) ~ H'(X)]=0. (6)

The equality constraint can be simplified via
Evmx)[H'(Y) — H'(X)] = / H'(Y)P(Y)dY — H'(X)
Y

This assumption is the same as saying choose H' such that, over Y ~ H'(X),
H'(X) = Ey|mx)[H'(Y)] (7)
With this, we arrive at the final form for the PLE for a set of parameters:

OprLe = H(X),
H = axg max POK; /(X)) s.t. H'(X) = Byjpo0[H'(Y)] (8)

7 Implementing PLE Computationally

The constraint in Equation 8 requires taking an expectation over all counter-
factual data Y for each choice of H'. While this expectation is impossible to
compute practically when dealing with infinite sets, it can be estimated via via
Monte Carlo approximation. Parametric boostrapping for bias correction, such
as that described by Hall (1992), is a special case of PLE where Monte Carlo
Estimation is used to approximate Ev g/ (x)[H'(Y)].
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A Details of the One-Sided Uniform

Consider a n samples drawn from the following uniform distribution
X =[X1,...,Xpn), X, ~U[0,a] i =1,...,n.

We wish to estimate the parameter a from X so & = a. First, we write out the
likelihood function: Px;(X|a) as

. 0 if & < max(X)
PX|&(X|G) = { 1

= else

Where «a is a scaling factor that ensures the conditional PDF integrates to 1.
Since this function is monotonic with respect to a, the MLE is easily found as
amLe = arg max, Px|a(X[a) = max(X). This also corresponds to the n-th order
statistic.



A.1 Bias of the MLE of the One-Sided Uniform
Now that we have aypg, we can calculate the bias as follows:
b(&MLE) = EX\a[dMLE] —a = Ex|a[max (X)] —a (9)

The expected value of the maximum of X (the n-th order statistic of X) can
be calculated by taking the derivative of the CDF of the maximum value with
respect to the parameter in question:

0 a<0
F(max(X)) = P(max(X) < a) = ¢ (2)" a€|[0,q]
1 a>a
0 a<0
f(max(X)) = P(max(X) = a) { " 4 € [0,
0 a>a
Now we can calculate E[max(X)] as follows:
no [ . n
Ex|q[max(X)] = a—n/o ada = i (10)
Therefore, the bias of the MLE is
A n 1
blamLe) = ey 1a—a =0 1a.

Note that the bias here is negative, implying that the MLE aypg will (in ex-
pectation) underestimate a.

B MLE vs PLE for Various Distributions

This section explains how the plots for Figure 2 were generated. Error bars show
the standard error after either 100 or 1000 different initializations (some of the
figures needed 1000 initializations for the error bars to decrease). Subfigure
1 shows the result from using the closed-form expression of PLE described in
Section 77, Subfigures 2-6 use the data-driven form from Equation 77, with 100
synthetic samples (m = 100) used to estimate the expectation in Equation ??.

Subfigure 1 (top-left) was generated from a one-sided Uniform distribution
X ~ UJ0,a] with true parameter a = 1, using n = 20 datapoints. The MLE is
amLe = max X, which is derived in Appendix A, while apr g = "r—tl max (X),
which is derived in Section ??. The parameter a is estimated each iteration.
Error bars show the standard error after 100 different initializations.

Subfigure 2 (top-middle) shows samples generated from a standard Gaussian
(normal) distribution X ~ Ny, o], with true parameters y = 0,0 = 1. The
mean f and the standard deviation 6 are estimated each iteration. We use

10



pvLE = =300 @; and omee = £ Y0 (z; — p)?, which is derived in Section
??. The PLE estimates use the data-driven form from Equation 77, with 100
synthetic samples (m = 100). The estimates are generated with n = 20 points,
and the results are averaged from 1000 initializations.

Subfigure 3 (top-right) shows samples generated from a Laplacian distribu-
tion X ~ Laplace[u, b] with true parameters ¢ = 0,b = 1. The mean p and
the scale parameter b are estimated each iteration. The MLE of the parameters
are piyLp = median(X) and byrg = = .1, [#; — p|, and PLE estimates use
the data-driven form from Equation ??, with 100 synthetic samples (m = 100).
The estimates are generated with n = 25 points, and the results are averaged
from 1000 initializations.

Subfigure 4 (bottom-left) shows samples generated from a Geometric distri-
bution X ~ Geometric[p], where the true parameter p = 0.5. The parameter p
is estimated each iteration. The MLE of p is pyrg = ﬁ’ and PLE esti-
mates use the data-driven form from Equation ??, with 100 synthetic samples
(m = 100). The estimates are generated with n = 25 points, and the results are
averaged over 1000 initializations.

Subfigure 5 (bottom-middle) shows samples generated from an Exponential
distribution X ~ Exponential[A], where the true parameter A = 0.5). The
parameter \ is estimated each iteration. The MLE of ) is AMLE = ﬁ, and
PLE estimates use the data-driven form from Equation 77?7, with 1001§ynthetic
samples (m = 100). The estimates are generated with n = 25 points, and the
results are averaged over 1000 initializations.

Subfigure 6 (bottom-right) shows samples generated from a Type-I Pareto
distribution X ~ Pareto[d], Where the true parameter b = 1.0. The PDF of
this distribution is f(x,b) = xbﬂ, and b is estimated each iteration. The MLE
of bis by = ST log (:m)) Tog (min (X)) and PLE estimates use the data-
driven form from Equation ?7?, with 100 synthetic samples (m = 100). The
estimates are generated with n = 25 points, and the results are averaged over
100 initializations.

The upper-left and upper-middle sub-figures show PLE estimated parame-
ters slope down slightly. This is due to the fact that for a few runs, the variance
goes to zero and cannot “recover” via a multiplicative constant. These de-
generate runs bring the overall average down slightly, as there is no analogous
degeneracy for large values. In essence, for the few estimates of the variance
that are near zero, the result becomes clipped. This is sometimes described
as variance collapse or model collapse in the literature (Alemohammad et al.,
2023).
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