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Abstract—It is argued that logic, and in particular mathemati-
cal logic, should play a key role in the undergraduate curriculum
for students in the computing fields, which include electrical
engineering (EE), computer engineering (CE), and computer
science (CS). This is based on 1) the history of the field of
computing and its close ties with logic, 2) empirical results
showing that students with better logical thinking skills perform
better in tasks such as programming and mathematics, and 3) the
skills students are expected to have in the job market. Further, the
authors believe teaching logic to students explicitly will improve
student retention, especially involving underrepresented minori-
ties. Though this work focuses specifically on the computing fields,
these results demonstrate the importance of logic education to
STEM (science, technology, engineering, and mathematics) as a
whole.

Index Terms—IEEE, logic, engineering education, computer
science education, student attrition, retention,

I. INTRODUCTION

LOGIC is a branch of philosophy concerned with drawing
valid inferences, and in the West can be traced back to

the work of Aristotle [1]. Aristotle’s work was an important
step towards formalizing logic, but as Frege and Leibniz
complained, logical relations made in natural languages can
be vague and ambiguous [2]. As a result, Frege and Leibniz
suggested natural languages be replaced by formal languages,
a goal which eventually led the development of what is
now called mathematical logic. According to logician Jon
Barwise, “Modern mathematical logic has its origins in the
dream of Leibniz of a universal symbolic calculus which could
encompass all mental activity of a logically rigorous nature, in
particular, all of mathematics [3].” Significant progress towards
Leibniz’s dream was made in the 19th century by Augustus
De Morgan [4] and George Boole [5], both of whom used
mathematics to describe Aristotle’s syllogisms [6]. This helped
to formalize the field of mathematical logic.

About a century later, Claude Shannon showed the applica-
bility of Boole’s Laws of Thought [7] to designing electronics
in his masters thesis titled “A symbolic analysis of relay and
switching circuits” [8]. Mathematician Herman Goldstine con-
sidered Shannon’s work “one of the most important master’s
theses ever written, [helping] change digital circuit design
from an art to a science [9].” It was Shannon’s knowledge
of logic that allowed him to establish the fundamentals of
digital circuit design over a decade before the invention of the
transistor in 1947 [10].
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Many of the pioneers in electrical engineering and computer
science had strong foundations in logic, which is necessary
to understand the history of these fields and their subsequent
developments. As a result, the authors of this paper propose
that teaching logic should form a necessary and foundational
part of the undergraduate curriculum in these areas, which are
subsequently called the computing fields. Unfortunately, there
has been a curricular shift away from deductive logic, to a
greater focus on induction, in large part due to the success of
machine learning, which is primarily inductive [11]. If students
are to understand and contribute to the computing fields, they
need to understand topics from logic and mathematical logic;
in particular, deductive reasoning, first-order logic, and set
theory.

II. RELATED WORK

A. Computational Thinking

The term “computational thinking” refers to an idea intro-
duced by computer scientist Jeannette Wing, who argues in
a 2006 paper that the underlying thought processes are more
important for success in computer science than mere program-
ming [12]. This is similar to an argument made by Dijkstra in
1988 [13], who suggested introductory programming courses
should not allow students to test their programs “in order to
drive home the message that this introductory programming
course is primarily a course in formal mathematics.” While Di-
jkstra’s suggestion may be too radical for many (and there are
likely additional goals for introductory programming courses
than purely teaching formal mathematics [14]), he is correct
to emphasize the role of valid thinking in writing programs.

The term computational thinking is not always well defined
[15, 16], however it usually includes logical thinking and
principles assumed to be useful to computer scientists such
as abstraction [17]. The authors of this paper agree with
Wing: education in the computing fields should emphasize the
thought processes necessary for tasks such as programming
over programming skill alone. The teaching of logic, and in
particular mathematical logic including first order logic and
set theory [3], can thus be seen as teaching explicit topics
relevant to computational thinking.

B. Mathematical Thinking

1) What is Mathematical Thinking: Mathematical Thinking
involves reasoning about mathematics using topics from logic,
and in particular mathematical logic. Many of these topics
are necessary for understanding engineering mathematics, such
as deductive reasoning relevant to proof theory [18], and set
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theory relevant to linear algebra [19]. Given the importance of
mathematics for the computing fields, in particular for special-
izations such as communication, statistics, signal processing,
and machine learning, it is vital that students are to think
mathematically. For instance, a 2010 paper by Lauri Hietalahti
goes through several examples where mathematical reasoning
is relevant to solving problems in power systems, concluding
“mathematical thinking is a vital skill needed in electrical
engineering [20].”

2) Mathematical Logic and Proofs: A common way of
trying to teach and mathematical thinking involves assign-
ing proofs. Mathematician Susanna Epp claims the reason
computer science (and, by extension, engineering) students
are tasked with doing proofs is to teach them to “operate
in a mathematically sophisticated environment...[and enhance
their] logical reasoning [21].” Furthermore, as Steve Reeves
points out, “The activity of constructing and reasoning about
programs in not all that different from the activity of con-
structing and reasoning about proofs [22].”

However, if students are to gain any benefit from proof
writing, they must first understand the underlying logical and
mathematical principles that give rise to valid vs invalid proofs.
Unfortunately, as Epp observed when teaching introductory
proof writing courses for mathematics and computer science
students, “very few have an intuitive understanding of [logical]
reasoning principles [21].” She explains:

[M]y students’ difficulties were much more pro-
found than I had imagined. Indeed, I was almost
overwhelmed by the poor quality of their proof-
writing attempts. Often their efforts consisted of
little more than a few disconnected calculations and
imprecisely or incorrectly used words and phrases
that did not even advance the substance of their
cases. My students seemed to live in a different
logical and linguistic world from the one I inhabited,
a world that made it very difficult for them to engage
in the kind of abstract mathematical thinking I was
trying to help them learn. [21]

Epp thus concluded that instruction in formal logical reasoning
skills would help lay the required foundation for proof writing
and understanding. The authors of this paper agree: teaching
proof writing can be a promising way to further develop logi-
cal thinking once students understand the deductive principles
necessary for doing proofs and the relevance of these proofs
to their educational goals.

3) Mathematical Thinking and Problem Solving: Mathe-
matical thinking is often linked to problem solving, a key skill
for future engineers and designers [23]. In fact, mathematician
Paul Halmos went so far as to claim the heart of mathematics
is “problems and solutions [24].” Both the Accreditation Board
for Engineering and Technology (ABET) and the Engineering
Concil (EC) list problem solving as a criteria for accred-
itation [25]. Furthermore, the National Science Foundation
(NSF) established various engineering education coalitions for
addressing topics including open-end problem solving and
the development of a curriculum based on first principles
[26], topics related to developing mathematical thinking. If
the goal of education in the computing fields is teaching

students to solve problems, and mathematical thinking and
thus mathematical logic can help students solve problems, then
such education should include topics from mathematical logic
that can improve their thinking and help them understand the
mathematics required for their major.

III. LOGIC IN THE COMPUTING FIELDS

A. Logic in the History of Computing

Many of the most influential figures in the field of com-
puting were trained in and contributed to mathematical logic.
For instance, Alonzo Church, an important figure in computer
science, was a founding editor of the Journal of Symbolic
Logic, publishing “A Bibliography of Symbolic Logic” in
1936 [27] and “An Introduction to Mathematical Logic” in
1956 [28]. His doctoral student, Alan Turing, developed ideas
around algorithms and computation with what is now called
Turing machines, getting his PhD in 1938 with a dissertation
titled “Systems of Logic Based on Ordinals” [29]. Some
believe Turing’s 1936 work [30] was directly inspired by
logician Kurt Godel’s 1931 incompleteness theorems [31, 32].
Another of Church’s doctoral students was Stephen Cole
Kleene, who also studied mathematical logic. Kleene’s thesis
was titled “A Theory of Positive Integers in Formal Logic
[33]”. Kleene’s pioneered the branch of mathematical logic
called recursion theory, and helped to form basis of what are
now regular expressions. Much of Kleene’s syntax, such as the
star, is still used by computer scientists when pattern matching
[34].

John Von Neumann, before his work on computer architec-
ture [35] also did work in mathematical logic. In 1923, he
published a paper on the construction of the natural numbers
[36] and his 1925 dissertation produced an axiomatization of
set theory [37]. Fellow physicist and mathematician Freeman
Dyson attributed Von Neuman’s incredible success to his
“unique gift as a mathematician was to transform problems
in all areas of mathematics into problems of logic” [38].

B. Logic’s Lasting Legacy

Many modern ideas in the computing fields are also inspired
by ideas in logic. Edgar Codd based the relational model for
database systems on set theory and propositional logic [39].
Ole-Johan Dahl, one of the fathers of object oriented program-
ming (along with Kristen Nygaard), taught formal methods for
30 years, believing “computer science students should know
the principles of program reasoning, and that this would make
them better programmers even without performing detailed
verification [40].” Stephen Cook, who formalized the notions
of polynomial time and NP-completeness [41] (independently
discovered by Leonid Levin [42]) also published in proposi-
tional calculus [43] and the logic of proofs [44].

One can see from their work that these individuals were
able to make contributions to computing due, at least in
part, to their understanding of logic. Furthermore, since logic
was instrumental to the development of computing and is
needed for understanding its historical and current concepts,
the authors of this paper believe it should play a critical role
in the computing curriculum.
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IV. EMPIRICAL SUPPORT FOR TEACHING LOGIC

Research suggests students with stronger logical and math-
ematical thinking skills perform better on tasks in the com-
puting fields such as programming. One study, looking at high
school students in Turkey, found “students’ mathematical and
logical thinking skills predicted their computational thinking
skills [45].” Another study, performed on college freshmen,
found a significant correlation between logical thinking skills
and programming achievement, concluding that “Learners with
strong logical thinking skills can program more efficiently than
those without [46].”

Despite these correlations, until recently it was less clear
that logical thinking could be improved by explicitly studying
logic. A 1936 study performed on adolescent boys found
improved test scores for students who had an hour of logic
instruction every week for three months, suggesting teaching
logic can improve thinking. On the other hand, a 1986 study
looking at students’ performance on the famous Wason selec-
tion task [47], concluded “deductive reasoning is not likely
to be improved by training on standard logic [48].” Some
researchers expressed doubt that the Wason selection task
measures reasoning due to how much success rates depend on
the relevance of the task in question [49]. If true, this suggests
[48] is premature, if not outright wrong, to conclude deductive
reasoning cannot improved with instruction in logic.

Still, Cheng’s findings are informative in that they suggest
students may not initially see the relevance of learning logic to
their desired educational goals without proper motivation. Ed-
ucational research on task value suggests students’ educational
outcomes are influenced by how important and relevant they
perceive course material [50]. In other words, the effectiveness
of teaching logic may depend on the extent students believe
learning logic will help their academic or professional career.
This is discussed this more in Section VI.

More recent work has supported the hypothesis that logical
reasoning can be improved. A 2016 study by Attridge et. al
found a significant increase in the abstract reasoning skills of
students who had some previous experience in logic [51]. A
2022 study found that teaching students concepts from propo-
sitional logic, such as deductive arguments and Venn and Euler
diagrams, improved their logical reasoning skills [52]. The
authors conclude the explicit instruction of logic will improve
students’ performance on tasks in the computing fields such
as programming, algorithmic reasoning, and hardware design.

V. THE IMPORTANCE OF LOGIC FOR INDUSTRY

A. Logic and Hardware Design

Understanding logic is not just essential for those wanting to
become research scientists in academia - it is also important
for students pursuing a career in industry. If the curriculum
of computing fields is to mirror what is expected of recent
graduates, particular attention must be paid to the role of elec-
tronic design automation (EDA) which performs many tasks
previously done by hardware engineers. Gone are the days
when computer engineers explicitly place and route transistors
on a PCB (printed circuit board). Instead hardware designers
routinely use hardware description languages (HDLs), such as

Verilog or VHDL to describe the desired behavior or logic
of the device in question [53, 54]. HDL is sent to a logic
synthesizer [55], where a netlist is generated. In some cases,
the netlist is placed and routed onto a Field Programmable
Gate Array (FPGA), or it is turned into masks which are etched
for Application Specific Integrated Circuits (ASICs). This
increased design abstraction means strong logical thinking
skills are more important than they ever have been [20, 56, 57],
since computers can arrange and route the hardware using
optimization-based approaches once the behavior is specified.
As a result, being able to formally and symbolically describe
the desired logical behavior of a device is a necessary skill
for those who want a career in hardware design and computer
architecture.

B. Logic and Software Design

1) Logic and Programming: Strong mathematical logic
skills are also important for those seeking employment design-
ing software. This is because a computer, in the end, is a device
built to follow a set of explicit instructions. Programming thus
involves conveying what these instructions are in a precise
manner. Since all errors in software can be traced back to
human error and poor thought, it is important for programmers
to be able to think rigorously and formally enough to avoid
costly, and in some cases deadly, errors [13]. For a particularly
harrowing incident of a fatal software bug, see the infamous
Therac-25 [58]. Such errors can be avoided when programmers
write code that is provably and verifiably correct.

Aswith hardware, there is increasing abstraction in software,
in part due to the proliferation and adoption of high level
and object oriented programming languages such as Python,
Javascript, and C# [59]. These higher level languages remove
many of the underlying hardware concepts such as pointers
and registers, allowing more development time to be spent de-
scribing the desired behavior of a program than implementing
it. Furthermore, due to advances in compiler technology, less
development time is needed to test different implementations
of the same algorithm, meaning more time can be spent writing
algorithms than writing code.

This is not to say discussions of the underlying hardware
or software mechanisms should be removed or de-emphasized
from the curriculum. Instead instructors should focus students’
efforts and energy learning skills that transfer well to their
future careers. The authors of this paper believe understanding
logic is key for reasoning about algorithms and programming,
and will clearly transfer to what students will be expected to
do. In essence, logical thinking is much more future proof
than specific programming languages, hardware, or packages
which could be irrelevant in a few years.

2) Programming, Logic, and the Role of AI: Artificial
Intelligence based programming tools, including large lan-
guage models (LLMs) such as ChatGPT [60] perform well
on inductive tasks, such as translating code from one pro-
gramming language to another. However these AI models
often struggle with deductive reasoning and propositional logic
[61]. As a result, the quality of code generated from these
models varies and there are no guarantees that the results
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produced are correct [62]. While AI may can be used as a
tool to help programmers with mundane or repetitive tasks,
authors propose programmers with strong logic and deductive
reasoning skills need not fear replacement by AI.

C. Additional Benefits of Learning Logic

There may be additional benefits to learning logic beyond
improving technical skills. One such area is writing: while
many engineering students avoid writing classes [63] (perhaps
even choosing engineering due to a preference for numbers
over words), one book suggests many professional engineers
spend over 40% of their working time writing [64]. Teaching
students to write by emphasizing valid arguments and avoiding
fallacies offers a clear path for improving the structure and
clarity of writing [65]. Further, because the same principles
of valid argumentation are those that produce valid hardware
and software, a parallel can be made between clean hardware,
clean code, and clean writing. In fact, many of deficiencies
found in engineering report writing, such as inappropriate
narrative and poor organization [66], can be framed as logical
fallacies such as non-sequiturs. Once engineers can identify
these issues, they can work towards eliminating them, improv-
ing the quality of their writing.

VI. TEACHING LOGIC

A. Emphasizing the Role of Logic

Currently, topics from logic may be introduced in discrete
math courses, often required for computer science majors,
and digital design courses, usually required for electrical
engineering and computer engineering majors. For instance,
some discrete mathematics textbooks introduce propositional
logic and set theory in the context of proofs [67], and many
digital design textbooks introduce logical connectives and truth
tables in the form of logic gates such as NANDS and XORs
[55, 68].

One potential pitfall of this method of teaching logic is
students may fail to see the connection between the underlying
logical principles in in different courses and contexts. This
creates a challenge to learning transfer [69] because these
topics are only taught in the context of a single course or field
of study. For instance the disjunction is fundamental the com-
puting fields, but the different names, notations, and courses it
is presented in may prevent students from recognizing they can
leverage skills and experience they have already developed.

As a result, the authors of this paper suggest introduc-
ing topics such as first order logic simultaneously with the
different contexts it applies to when it is introduced. For
example, while teaching about propositions and logical con-
nectives, instructors can show how these connectives are used
in proofs, circuit design, HDL, machine code, and high level
programming languages. This allows students to see the wide
applicability of logic while they are learning it, increasing
task value [50]. This is important because a common reason
students choose engineering or computer science is so they can
design and build things. Introducing logic alongside different
applications gives students practice seeing the relevance of
theory to practical design work. The above suggestion is

consistent with suggestions in the literature for mitigating
the common complaint that engineering contains too much
math and theory: [70], for instance, recommends adopting a
problem-based learning approach and include practice along-
side theory (not as a replacement for it).

B. What to Teach and When?

The authors of this paper suggest teaching logic by be-
ginning with Boolean Algebra, including the Law of the
Excluded Middle and the Law of Non-Contradiction [71].
A connection can made between Boolean Algebra and the
behavior of semiconductor devices such as transistors. From
here, logical connectives such as disjunctions and conjunctions
can be introduced, teaching students to represent compound
logical statements on paper, with circuit diagrams, and in pro-
gramming languages. Here, students can be reminded that the
voltage along a wire or a bit stored in memory can represent
whether a given proposition is true, and can practice design
work in hardware and software with these basic building
blocks. From here, set theory can be introduced, allowing
for quantification and completing first-order logic [3]. Further
topics that can be included involve that of state and memory,
allowing for sequential logic [55] and a discussion of finite
state machines [67].

VII. LOGIC AND ATTRITION

A concern for the computing fields is attrition, the phe-
nomenon of students “dropping out” of engineering and com-
puter science to another field [72]. Attrition rates in electrical
engineering and computer engineering are typically higher
than all other engineering fields, with often more than half
dropping out [73, 74]. Computer science is similar; one study
found a 38% attrition rate in computer science, with this
number varying by institution from about 30% to 60% [75, 76]
These numbers are particularly pronounced for minorities in
STEM, such as Black and Hispanic students [77, 78].

One survey found that the number one factor students cited
for not completing an engineering degree was that they were
“not performing academically [79].” Another survey found that
the top reason students gave for not completing an engineering
degree was coursework related, which included comments of
classes being too theoretical, too hard, or having too much
math [70]. With this in mind, it is perhaps unsurprising that
a common explanation for the high attrition rates in computer
science is “poor math skills and problem solving abilities
[80].” Given that the computing fields tend to be more math
and theory intensive than other engineering disciplines, this
helps to explain their higher attrition rates.

Teaching mathematical logic can develop students’ analyti-
cal thinking skills, thus preparing them for the mathematical
rigor of their future courses. Furthermore, the authors of
this paper suggest teaching logic will particularly help first
generation and minority students, who often enter college dis-
proportionately unprepared. One study suggests that the lower
average Math SAT scores of minority students [77] may reflect
a lower level of quantitative and analytical knowledge [81]. If
minority students are disproportionately unprepared for their
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engineering courses, and unpreparedness leads to attrition, one
would expect to observe (as is observed empirically) higher
attrition rates for minority students. This is compounded by
the fact that many instructors may fail to distinguish between
poor talent and poor preparation, prematurely discouraging
minority students from continuing in the computing fields [72].
If electrical engineering and computer science departments
are committed to improving retention, they should ensure
all students have the prerequisite skills expected in their
coursework. The authors of this paper argue that logic and
mathematical logic will teach many of these required skills,
and will be especially beneficial for students unaccustomed to
the mathematical sophistication demanded by their major.

VIII. FUTURE WORK

Given the importance of logic to the computing fields, it is
surprising that no studies have tested whether students who
take a course in mathematical logic improves their outcomes
in these fields. Future work should thus not only test this
general hypothesis, but also focus on testing which topics
from mathematical logic improves student success in different
courses. Courses with clear relevance to mathematical logic are
digital design courses, proof-based mathematics courses such
as real analysis and linear algebra, and courses with material
from discrete mathematics such as algorithms. Perhaps it is
the case that set theory or modal logic is important for under-
standing probability while deductive logic is more important
for building compilers.

One of the challenges to collecting data on this subject is
that mathematical logic is often only offered by philosophy
departments, and thus may not be listed or count towards a
student’s credits for graduation. As a result, students may only
take such a class if and when their schedule allows, which may
be their junior or senior years. Unfortunately, this means they
may miss out on being able to use these skills when they could
be the most helpful, such as in sophomore and junior-level
mathematics and theory courses. Furthermore, relegating logic
to a free elective means the students who are more likely to
take such a course (or understand its relevance) may be those
who are already better prepared, such as those who attended
a high school that offered advanced placement (AP) courses
to count for college credit. Failing to include logic into the
curriculum explicitly may thus inadvertently worsen the gap
between better and poorer prepared students.

IX. CONCLUSION

This paper has argued for fundamental importance of logic
in electrical engineering and computer science curricula. Given
the history of computing and the skills future engineers are
expected to have, the authors believe the question is not
whether logic should be taught, but rather how it should be
taught to improve problem solving and design skills. Special
attention should thus be paid to task value and the extent to
which students see learning logic as relevant to their future
goals. For students in the computing fields, demonstrating the
relevance of logic to students is made easier given the clear

parallels between logic and mathematics, digital design, pro-
gramming, and computing history. Future work can perform
experimental studies on the most effective ways to teach topics
from mathematical logic, such as deductive reasoning and set
theory, to engineering and computer science students.
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