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Abstract

It is common to assume that the problem of induction arises only
because of small sample sizes or unreliable data. In this paper, I argue
that the piecemeal collection of data can also lead to underdetermination
of theories by evidence, even if arbitrarily large amounts of completely
reliable experimental and observational data are collected. Specifically,
I focus on the construction of causal theories from the results of many
studies (perhaps hundreds), including randomized controlled trials and
observational studies, where the studies focus on overlapping, but not
identical, sets of variables. Two theorems reveal that, for any collection
of variables V', there exist fundamentally different causal theories over
V' that cannot be distinguished unless all variables are simultaneously
measured. Underdetermination can result from piecemeal measurement,
regardless of the quantity and quality of the data. Moreover, I generalize
these results to show that, a priori, it is impossible to choose a series of
small (in terms of number of variables) observational studies that will be
most informative with respect to the causal theory describing the variables
under investigation. This final result suggests that scientific institutions
may need to play a larger role in coordinating differing research programs
during inquiry.

1 Introduction

The piecemeal construction of theories is an essential part of scientific practice.
Data sets are pooled so that scientists have larger numbers of observations from
which to construct theories; mathematical models are generalized so that a
multitude of equations can be derived from a common set of axioms; and theories
are unified so that multiple phenomena can be explained by a single theory. In
this way, the work of hundreds of scientists, perhaps living on different continents
during different eras, can potentially all contribute to the construction of current
theories.! The history of astronomy is a paradigmatic case of such piecemeal
construction: observations from differing continents were pooled over centuries,
and numerous mathematical theories of planetary motion (e.g., Kepler’s laws)
were generalized and unified by Newton’s law of gravity.

IWhewell (1859) writes, “The fact that science is capable of being resolved into separate
processes of verification, is that which renders it possible to form a great body of scientific
truth, by adding together a vast number of truths, of which many men, at various times and
by multiplied efforts, have satisfied themselves.” pp. 82.



Nowhere is the piecemeal construction of scientific theories more prominent,
however, than in modern social science and medical research. In the social sci-
ences and medicine, scientists must frequently synthesize the results of many
observational studies and/or randomized controlled trials (RCTs) in order to
study the causes of a given phenomena. For instance, there are literally thou-
sands of papers that document the (causal) relationships between heart disease
and factors such as dieting, smoking, and prescription drug use. Although these
thousands of studies share a commonly measured variable (namely, incidence of
heart disease), there are many variables that are measured in some studies but
not in others (e.g, patient’s diet). It is essential to have reliable techniques for
making inferences about the causal relationships amongst all these variables.
Similar remarks apply in the social sciences. For example, economic models of
the causes of poverty incorporate many variables, including race, gender, mar-
ital status, parental income, education level, juvenile record, and so on. No
observational study could feasibly measure all these variables, and yet, it is
crucial that we understand the intricate causal relations amongst all of them.

The piecemeal construction of scientific theories is generally thought to be
desirable for at least two reasons. First, if theories can be developed by amal-
gamating the results of many smaller studies, then researchers can specialize
in the study of particular phenomena. This specialization arguably increases
the quality of the data gathered, as researchers can focus on learning appropri-
ate measurement techniques, analysis methods, and so on. Second, if scientific
theories can be constructed in a piecemeal fashion, then various studies can be
conducted over time, by different researchers, allowing knowledge to be accumu-
lated gradually. This latter advantage is also a practical necessity given financial
and technical constraints on the number of variables that can be measured in a
particular study.

The piecemeal construction of causal theories has been relatively unexplored
in the philosophy of science, despite its central importance for the actual prac-
tice of science. Danks (2005) provided a rule for knowing that there is no causal
relationship between two variables (i.e. neither variable is a cause of the other,
nor do they have a common cause) even when the two variables are never si-
multaneously measured. Tillman, Danks, and Glymour (2008) generalized this
rule into a procedure for integrating arbitrarily many data sets to determine the
full set of causal theories (over all variables under investigation) that are con-
sistent with the data. Their integration procedure exhibits long-run reliability:
as data are collected without bound, it discovers all the causal information that
could possibly be detected given that only particular subsets of the variables are
simultaneously measured.? This research focuses on what could be learned; it
has left open the question of how much (if any) information is lost if one cannot

2Their algorithm is thus asymptotically reliable in the same manner as other causal learning
algorithms. Specifically, as the amount of data grows without limit, the procedures produce
(with probability one) all and only those causal theories that are, in principle, indistinguishable
from the true one (without active experimentation). The Tillman, Danks, and Glymour
algorithm thus shares the common flaw of not providing short-run information, though it
does eliminate the requirement that all variables be simultaneously measured.



measure all variables simultaneously.

This paper argues that the piecemeal construction of causal theories can
drastically increase underdetermination of theories by evidence. I state and ex-
plain two theorems that together show that, for any collection of relevant vari-
ables, there will be distinct causal theories T; and T» that can be distinguished
if and only if all the relevant variables are simultaneously measured. That is,
for any group of related variables, measuring only subsets of the group (no mat-
ter how many) can fail to reveal the full causal structure. The first of these
theorems has an additional implication: namely, that it is impossible to choose
a priori a sequence of small (in terms of number of variables) observational
studies that will be most informative; given two different sequences of differing
observational studies, there will in general be causal theories distinguishable by
one and only one of the series.

The next section briefly outlines the basic commitments of the causal learn-
ing framework discussed here. Specifically, I state and explain two assumptions,
the Causal Markov condition (CMC) and the Causal Faithfulness condition
(CFC), both of which have been unwaveringly defended and staunchly crit-
icized.?> I will not enter into this debate because my goal is to show that,
even assuming the two principles, there will still be causal theories that are
distinguishable only if all relevant variables are simultaneously measured. If
the piecemeal construction of theories can increase underdetermination of theo-
ries even under the most advantageous plausible conditions for causal inference
from observational data, then adopting weaker assumptions will not eradicate
the problem. In Section 3, I illustrate the problem of piecemeal induction us-
ing a medical case study. I show that, given the subsets of variables that were
simultaneously measured in the case study, there are several distinct causal
theories that are not distinguishable (even in principle), but would have been
had different observational studies been conducted. I then state and discuss
the implications of the three central theorems about underdetermination from
piecemeal science.

2 Causal Inference From Observational Data

In philosophy, machine learning, and statistics, two principles have been em-
ployed extensively in drawing causal conclusions from observational data:

e Causal Markov Condition: (CMC) Any variable is conditionally inde-
pendent of its non-effects given its direct causes.

e Causal Faithfulness Condition: (CFC) No two variables are condi-
tionally independent unless so entailed by the CMC.

3For defenses of the CMC, see Hausman and Woodward (2002), Hausman and Woodward
(2004), and Steel (2005). For criticisms of the Markov condition, see Cartwright (2002) and
Cartwright (2007). For criticisms of Faithfulness, see Freeman and Humphreys (1999) and
Cartwright (2007). The case study involving birth control and thrombosis, often cited as
a counterexample to CFC, is discussed in Hesslow (1976) and Cartwright (1989). Both the
CMC and CFC are defended and employed in Spirtes, et. al. (2000).



To understand what the CMC and CFC imply, it is best to consider some ex-
amples. Suppose that smoking increases tar buildup in one’s lungs, and tar
buildup causes lung cancer. Smoking thus causes lung cancer only indirectly.
These relationships can be represented graphically as shown below. In general,
given a set of variables V', one can define a causal theory to be a directed graph
of the sort pictured, which visually represents exactly which variables are causes
of the others. I will use “causal graph” and “causal theory” interchangeably.*

Smoking —— Tar — Lung Cancer

Knowing whether an individual smokes is clearly helpful in predicting whether
the individual will develop lung cancer. However, such knowledge is irrelevant
if one already has accurate information concerning tar buildup: information
about smoking habits matters only because it helps one predict the amount of
tar in the lungs. To see this point more clearly, imagine there is a drug that
completely stops tar buildup. If an individual took such a drug, then smoking
would no longer be a cause of lung cancer in that individual (assuming smoking
only indirectly causes lung cancer by way of tar buildup).

This informal reasoning can be done precisely using the CMC: the variable
“lung cancer” is (informationally and probabilistically) independent of its non-
effect “smoking,” given its direct cause “tar.” The CMC, therefore, captures
the important intuition that indirect causes are correlated with their effects,
but only when one fails to account for the direct causes through which the in-
direct ones exert influence. In contrast with our informal reasoning, the CMC
(and actual instantiations of it) can all be expressed precisely using the lan-
guage of (conditional) probabilities. In this paper, that technical specification
will not be relevant; what matters for our present purposes is simply the fact
that everything discussed in Section 3 can be done precisely in the language of
(conditional) probabilities.

The CMC also captures important intuitions about common causes. Ex-
panding the above example, suppose smoking also directly causes stained fin-
gernails. Then knowing whether an individual has yellow fingernails would
provide no additional evidence of his or her chances of lung cancer, if one knows
whether the individual smokes. The variable “yellow fingernails” is (informa-
tionally and probabilistically) independent of its non-effect “lung cancer” given
its direct cause “smoker.”

40f course, one often desires to know much more than simply which variables cause which
others. Causal theories, for example, should ideally also tell one how strong the causal con-
nection is between two variables. I focus on causal graphs because they represent the minimal
amount of information that one generally desires when constructing causal theories for a set
of variables.
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The CMC uses causal structure to place constraints on the informational /probabilistic
relationships between variables. The CFC essentially does the converse: infor-
mally, it says that variables that are (conditionally) independent are not (di-
rectly) causally connected. The CFC thus encodes and generalizes a completely
standard principle of scientific inference: if variations in one factor are uncorre-
lated with variations in another, then (barring rich, domain-specific knowledge)

the factors are not directly causally connected.

Given CMC and CFC, one can define two causal theories/graphs to be in-
distinguishable if they imply that the same conditional independencies for a set
of variables. Intuitively, two causal theories are indistinguishable if no amount
of observational data could allow one to conclude which is correct, unless one
employed domain-specific knowledge beyond the probabilistic relations amongst
the variables. Returning to the fictitious example above, what causal theories
are indistinguishable from the theory that smoking causes tar buildup, which in
turn causes lung cancer? It turns out there are two more such theories, namely,
ones that assert (1) lung cancer causes tar buildup, which in turn causes smok-
ing, or (2) tar buildup is a common cause of both smoking and lung cancer.
The three theories are depicted below. Of course, in this example, background
knowledge is sufficient to show that these rival theories are implausible, but in
general, such domain-specific knowledge may not be available.

A simple graphical criterion determines whether two causal theories are in-
distinguishable, but it requires two additional definitions. Say that two variables
X and Y are adjacent if one is the cause of the other. Second, suppose X and
Y both cause Z, but that neither X nor Y causes the other. Then Z is called
an unshielded collider with respect to X and Y. Verma and Pearl’s theorem
asserts the following:®

Theorem 1 (Verma and Pearl) Assuming CMC and CFC, two causal graphs
are indistinguishable if and only if they have the same adjacencies and unshielded
colliders.

Verma and Pearl’s result is stunning. Although two indistinguishable causal
theories might differ with respect to whether X is a cause of Y or vice versa,
they will agree that there is some direct causal link between the two. Con-
versely, differences in conditional probabilities imply differences in adjacency
and unshielded collider structure. This theorem thus provides a ground (as-
suming CMC and CFC) for inferring significant, though often not complete,
causal knowledge from observational data alone. Crucially, however, Verma
and Pearl’s theorem assumes that all variables can be simultaneously measured.

5Pear]l and Verma (1991).



For example, two theories might be distinguishable because one implies that X
is independent of Y given Zy, Zs, ..., Z, while the other does not. Yet deter-
mining whether such a conditional independence holds requires simultaneously
measuring X,Y, 71, Zs,...,Z,. What happens if we cannot perform such a
simultaneous measurement?

3 Piecemeal Causal Inference

Suppose that smoking is an indirect cause in two ways: by increasing the buildup
of tar in one’s lungs, and also by decreasing the amount of oxygen supplied to
one’s lungs.

Smoking
RN
Oxygen Tar

Lung Cancer

In this case, even if we know the tar buildup, an individual’s smoking habits
will not be independent of lung cancer because knowledge of smoking habits
provides evidence of oxygen deprivation, which is assumed to also be a cause of
lung cancer.® However, if one knew both how much tar occupied an individual’s
lungs and the supply of oxygen to the lungs, then smoking would be once again
irrelevant to predicting whether an individual will develop lung cancer (given
CMC, and assuming this is the true causal structure). More precisely, smoking
is conditionally independent of lung cancer given both tar buildup and oxygen
levels.

Consider what can be learned about the relationship between smoking and
lung cancer in this fictitious example if one could only measure any proper
subset of the four variables, rather than all simultaneously. As shown above,
smoking habits are not conditionally independent of lung cancer given only tar
buildup, and by symmetric reasoning, the two variables are dependent given
only oxygen deprivation as well. And no other (three-variable) proper subset
contains both of the relevant variables. Intuitively, it appears that one cannot
rule out a direct causal link between smoking and lung cancer unless one can
measure all four variables simultaneously.

This intuition is correct. Let T} be the true causal theory described above,
and T5 be a theory just like T except that Tb asserts that smoking is also a direct
cause of lung cancer. The CMC and CFC entail that 77 and T3 have exactly the
same probabilistic relations involving three variables or fewer, and so 77 and T3

6If oxygen deprivation is more strongly tied to lung cancer than tar buildup, then smoking
habits might be a better predictor of lung cancer than tar buildup, even after controlling for
tar buildup. Indirect causes can be better predictors than direct ones when there are multiple
pathways from the indirect cause to the effect.



are indistinguishable if one cannot measure all four variables simultaneously. Of
course, because T7 and T» do not postulate the same direct causal links, they
are distinguishable if all variables are simultaneously measured (by Verma and
Pearl’s theorem).

Although the above example is fictitious, the underlying problem that it
illustrates is not. Danks (2005) considers the task of learning the causal rela-
tions amongst ventilators and blood oxygen saturation in an intensive care unit
setting, assuming one can only measure certain subsets of those variables. The
true causal structure is depicted in the picture below, and the three subsets of
variables measured simultaneously are listed in the table. Danks (2005) demon-
strates that one can learn that neither MinVent nor Intub is the cause of the
other, nor do they have a common cause, even if they are never simultaneously
measured. This demonstration suggests that perhaps, with the proper care and
insight, the results of many observational studies might be fused to yield all
possible knowledge about all the variables. In fact, Danks (2005) used this case
(and others) for optimism about the prospects for piecemeal causal inference.

MinVent Intub

T~ — |

TubeMeas —— PulmVent —— AlvVent —— PAOxygen

" I l

DisVent CO9Exp «+—— ArtCO,
Study 1 ‘ Study 2 ‘ Study 3 ‘
MinVent PulmVent | TubeMeas
Discvent AlvVent Intub
TubeMeas | ArtCOs AlvVent

PulmVent COq PAOxygen

Such optimism must be tempered. Although one can rule out the existence
of a causal link between MinVent and InTub, any amount of data (over these
subsets) will underdetermine whether there is a direct causal link from Min Vent
to AlvVent or one from DiscVent to AlvVent (or both).” There are at least
four distinct causal theories that are compatible with evidence and that would
be distinguishable were all variables measured simultaneously (by Verma and
Pearl’s Theorem). How common such underdetermination is in practice is an
open question. But the theorems below prove that this underdetermination (or
more precisely, its possibility) is not an artifact of the examples I have chosen,
but rather an intrinsic feature of piecemeal causal inference.
Let V be any collection of variables. For instance, V' might be {Smoking, Lung

Cancer,Tar}, or the collection of ventilator measurements, blood oxygen lev-
els, and so on in the medical case study. The following theorem states that the

"The claim can be proven by exhaustive enumeration of the (conditional) independencies
in the different theories.



causal links are always underdetermined if one measures only proper subsets of
V.

Theorem 2 There exist distinct causal theories Th and Ty (over V) with dif-
ferent direct causal links that are distinguishable (given sufficient data) if and
only if every variable in V is simultaneously measured.®

This theorem implies that the piecemeal construction of causal theories from
multiple observational studies always faces the threat of underdetermination
even about adjacency information, regardless of the quantity and quality of
data. Such failures, of course, can be of critical importance, as without correct
causal models, government official might institute policies with unforeseen con-
sequences, and doctors might prescribe medicines or surgeries without sufficient
knowledge of how such treatments might affect patient’s health. Verma and
Pearl’s theorem also implies that the orientations of some direct causal links
can sometimes be learned, depending on whether there are unshielded colliders.
The next theorem shows that this conclusion likewise depends on measuring all
variables simultaneously.

Theorem 3 Suppose that (a) one never simultaneously measures all variables
inV; and (b) there is at least one v € V' such that the full set of variables V\{v}
18 never simultaneously measured. Then there exist causal theories Ty and Ts
such that Ty and Ty postulate the same adjacencies and are indistinguishable with
respect to the observational studies in question, but Ty contains an unshielded
collider that Ty does not.

Together, the two theorems show that the piecemeal construction of causal
theories can drastically increase underdetermination. Important features of
causal theories, which can be learned if one can conduct large observational
studies in which all variables under investigation are simultaneously measured,
become inaccessible when one attempts to patch together a series of smaller
studies. It is equally important to recognize what the theorems do not say:
they do not imply that one can never determine the unique causal structure
(over all variables) using piecemeal causal inference. For some causal structures
and particular collections of subsets, it is possible to recover identical informa-
tion through piecemeal methods or through simultaneous measurement of all
variables. This observation about the possibility of success, combined with the
negative theorems, raises a crucial question: is it possible to plan a priori a
series of observational studies on subsets that minimizes underdetermination
of theories? More practically, could scientific institutions coordinate different
research programs so as to minimize the amount of information that is lost by
piecemeal inquiry?

Unfortunately, the answer is “no.” A priori, differing series of observational
studies will generally be of incomparable value, in the sense that one series will
distinguish between theories that the other does not, and vice versa. To make

8Proof sketches for all theorems can be found in the Appendix.



this precise, let U and U’ be distinct collections of subsets of some variables V/
under investigation. For example, in the ICU case, i/ might contain the sets
{MinVent, DiscVent, TubeMass}, {TubeMeas, Intub, PAOzygen, AlvVent},
and { PumVent, AlvVentCOsExp, ArtCOs}. Each set, U or U’, thus represents
a series of observational studies, rather than just a single study.

Say U is as strong as U’ if any two causal theories that can be distinguished
by studies specified by U4’ can be distinguished by conducting the studies spec-
ified by #. That is, anything that we can learn through U’ can also be learned
through U. Say they are equivalent just in case each is as strong as the other.
Then Theorem 2 implies:

Theorem 4 U is as strong as U’ if and only if every member of U’ is contained
in a member of U. In particular, if no member Uy of U is a proper subset of
any other member Uy € U (and similarly for U'), then U and U’ are equivalent
if and only if U =U".

The theorem has striking consequences. Suppose the NIH is considering
funding a series of observational studies to determine the causes of schizophrenia.
Because of the sheer number of variables that might be relevant to schizophrenia,
such studies cannot measure all variables simultaneously, and so the NIH must
pick and choose which observational studies to fund. The above theorem implies
that, without further information, the only rule that would justify the NIH’s
preference for funding one study rather than another is “bigger is better.” In
other words, if one observational study will measures all the variables that
another does, then there is reason to prefer the former to the latter. Otherwise,
there is no a priori reason to prefer one series of observational studies rather
than another; each will distinguish between only some, series-specific sets of
causal theories.

However, the qualification “without further information” is of critical im-
portance. Given prior experiments and observational studies, there might in
fact be principled ways to distinguish between different observational studies
in terms of the informational value that they might possess, as suggested by
Danks (2005). The present results imply, however, that the coordination of dif-
fering research programs must take place during inquiry; we cannot parcel out
responsibilities for particular variable sets or phenomena in advance of knowing
something about the structure of the world. Planning ahead is futile for this
particular problem.

4 Conclusion

The piecemeal construction of theories is a central and unavoidable feature
of scientific practice. Some recent work has suggests that piecemeal causal
inference can nonetheless lead to large-scale causal theories over many variables
(Danks, 2005; Tillman, et al., 2008). T have argued that this optimism must be
significantly tempered: in the construction of causal theories, piecemeal inquiry
can drastically increase the number of distinct theories that are indistinguishable



with respect to all evidence. Moreover, because a priori it is generally impossible
to decide which types of observational studies will be most informative, scientific
institutions might need to play a larger part in coordinating distinct research
programs at successive stages of inquiry.

The arguments above leave two important questions unanswered. First, ex-
actly what types of features of causal theories can be learned from different sets
of observational studies? That is, even if information is lost by piecemeal in-
quiry, can one characterize how much one still might learn from measuring only
proper subsets of a collection of variables? Second, is the piecemeal problem of
induction a more general phenomenon? That is, in what types of inquiry does
such piecemeal construction of theories increase underdetermination, and what
is the extent of that underdetermination? This paper, I hope, spurs future re-
search into these important questions for philosophy of science and for scientific
practice more generally.
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5 Appendix

This appendix provides precise definitions and statements for the three original
theorems stated in the body of the paper, as well as proof sketches. Complete
proofs are available upon request. The appendix assumes the reader is familiar
with directed acyclic graphs, basic probability theory, and Bayesian Networks.
For an introduction to these terms, and their use as causal models, see Spirtes,
et. al. (2000).

For any set V, let DAGy denote the set of directed acyclic graphs whose
vertices are members of V. Next, let V be a set of random variables on a
common measurable space (2, F), and let p be any measure on that space. For
any subset U C V' \ {v,v'}, write

pE (vI|U)

if the variables v and v’ are probabilistically independent conditional on U
with respect to the measure induced by p. For any probability measure p over
(Q, F), define C1C, v to be the set of conditional independence constraints
of the form above satisfied by the variables in V. For any G € DAGy, if p is
a probability measure that is Markov and faithful to G, define CiCq := CICp v
to be the set of conditional independencies implied by the graph G. This is
well-defined because any two measures that are Markov and faithful to the
same graph satisfy the same conditional independence constraints. Two graphs
G,G’" € DAGy are called Markov equivalent (written G = G) if CICg = CICq.

Let G € DAGy and U C V. Define cic?, to be the set of conditional inde-
pendence statements that (i) are implied by G and (ii) mention only variables
in U. Then if 4 C 2V is a collection of subsets of V', define:

acd = | cicg
veu

Given the above definition, one can now generalize the standard Markov equiv-
alence relation =.
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Definition 1 Let G,G’' € DAGy, and let U C 2V. Say G and G' are U-
observationally indistinguishable in principle if and only if cic% = cic¥,.
In such a case, write G =y G'. Let [G]Y = {G' € DAGy : G =y G'} be the set
of DAGs that are U-observationally indistinguishable in principle from G.

Theorem 2 Let V be any set with more than one element, and let U C 2V be
a collection of subsets such that V- ¢ U. Then there exist G,G' € DAGy with
differing adjacencies such that G =y G' but G £ G'.

Proof sketch: Let G be the graph with v; — v; and v; — vy for all i #
1,2. Let G = GU{vy — wvy}. The presence or absence of the v; — wvs
edge requires measuring all variables simultaneously. Therefore, G and G’ have
different adjacencies but G =, G'.

O

Theorem 3 Let V be any set with more than three elements, and let U C 2V
be a collection of subsets such that V- ¢ U and there is some v € V' such that
V\{v} € U. Then there exist G,G’ € DAGy with the same adjacencies such
that G =y G’ but G £ G'.

Proof sketch: Let {v,v1,v2,91,%2,...,Yn—3} be an enumeration of the ele-
ments of V. (Recall that V has at least 3 elements.) Let the edges in G be:

1. From vy to v, and from v to vy

2. From v; to y; for all j

3. From y; to v, and an edge from y; to v for all j
4. From y; to y, for all pairs j and k such that j < k

Let G’ be the result of flipping v — vy in G. First, note that G # G’ as
U1 — v < v9 is an unshielded collider in G’ but not in G. One can easily check,
however, that cic¥, = cic¥, = (), and so G = G'.

O
Definition 2 Let Y C 2V and U C V. Say U is U-redundant if either
1. U el and [Gly = [Gly\v for all G € DAGY
2. U gU and [Gly = [Glyuuy for all G € DAGY
Say U is non-redundant if it contains no U-redundant sets.

Lemma 1 Let V be any set with more than one element and U C 2V be a
collection of subsets. Then U C V is U-redundant if and only if there is U' € U
such that U C U’'. Thus, U is non-redundant if and only if it does not contain
any two distinct sets U and U’ such that U C U’.
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Proof sketch: If U C U’, then U implies no additional conditional indepen-
dence constraints, and so is clearly U-redundant. In the other direction, one
proves the contrapositive. It suffices to show that, for any U € U, if there is no
U’ € U such that U C U’, then one can construct two distinct graphs, G and
G’, such that the independencies from U distinguish G and G’, but the indepen-
dencies from U \ {U} do not. This is possible by Theorem 2. Define two graphs
G and G’ with vertices in U such that G and G’ satisfy identical conditional in-
dependence constraints on all proper subsets of U, but not on U or any superset
of U. Because U does not contain any superset of U by stipulation, the graphs
G and G’, when considered as graphs over V', are U \ {U }-indistinguishable.

O

Lemma 1 has an especially interesting corollary. Let U, U’ C 2V, and say U
is V-as strong as than U’ if U induces the same or finer partition of DAGy than
does U', i.e., [Glu C [Gly for all G € DAGy. Say U and U’ are V-equivalent
if they induce the same partition on DAGy i.e., [Gly = [Glu. Equivalently, U
and U’ are V-equivalent if they are both as strong as the other. Then:

Theorem 4 U is V-as strong as U’ if and only if for every U' € U’, there exists
U e U such that U' C U. In particular, if U and U’ are non-redundant, then U
and U' are V-equivalent if and only if U = U’
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