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Abstract The conspicuous similarities between interpretive strategies in classical
statistical mechanics and in quantum mechanics may be grounded on their employ-
ment of common implementations of probability. The objective probabilities which
represent the underlying stochasticity of these theories can be naturally associated
with three of their common formal features: initial conditions, dynamics, and observ-
ables. Various well-known interpretations of the two theories line up with particular
choices among these three ways of implementing probability. This perspective has
significant application to debates on primitive ontology and to the quantum measure-
ment problem.
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1 Introduction

A perusal of the literature reveals that rather little has been written down concern-
ing the analogies between interpretations of quantum mechanics and of statistical
mechanics—though such analogies have hardly escaped notice. Indeed, interpretive
work on the two theories has proceeded largely independently. My aim in this paper
is to go some way in rectifying the omission by drawing out these analogies explic-
itly, in particular by showing how they may be grounded on the way in which the
theories’ stochasticity, as I will call it, is represented and interpreted, with the further
aims of showing how this integrative perspective can shed light on current issues in
the philosophy of physics and suggest fruitful possibilities for future investigation.

Quantum mechanics and classical statistical mechanics are both theories of sta-
tistical physics, whose empirical content depends on the objective probabilities that
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arise in these theories.1 The presence of these objective probabilities indicates that
an element of randomness—or stochasticity,2 as I will prefer to say—is an essen-
tial element in the theories’ explanations and descriptions.3 My first point is that this
stochasticity can be represented theoretically in three ways: in the determination of
the system’s initial conditions, in the evolution of its states, or in the realization of its
physical properties. I then show that this furnishes a nice typology of familiar inter-
pretations of statistical mechanics and of quantum mechanics, one where the apparent
analogies between corresponding interpretations are made manifest.

Although, as said, there has been little written on these analogies in general, there
is one well-known interpretational analogy which has been drawn out in some detail,
namely, between (a certain popular version of) Bohmian mechanics and the so-called
“Boltzmannian” approach to classical statistical mechanics (Allori et al. 2014; Allori
and Zanghı̀ 2004; Dürr 2001; Dürr et al. 1992, 1995; Goldstein 2001, 2012). The
basis of this particular analogy has been identified by their proponents as ontologi-
cal in character. In both theories the basic entities of the world are characterized as
particles moving deterministically in space and time, just as in classical particle me-
chanics. However, each necessarily goes beyond classical particle mechanics by, inter
alia, introducing probabilities (or likelihoods of some kind), via macroscopic states
and quantum states, respectively. Since the underlying dynamics is deterministic in
both cases, the only way that objective probabilistic indeterminism can enter these
interpretive pictures is in the setting of initial conditions (or, equivalently, in the real-
ization of a particular complete deterministic history of particle motions from the set
of possible motions). Accordingly, in statistical mechanics one sees the invocation
of an initial “past state” (Albert 2000) and, analogously, in quantum mechanics the
positing of a “quantum equilibrium” initial state (Dürr et al. 1992), both of which
serve this essential requirement.

While proponents of these interpretations tend to highlight the common “primi-
tive ontology” as the origin of the analogy (Allori and Zanghı̀ 2004), I suggest that
one can equally well point to the common implementation of stochasticity in terms
of the selection of initial conditions. It follows from taking this point of view—that

1 Quantum statistical mechanics would seem to be an important separate case to consider, but I will
not discuss it as such, essentially for the reasons given in (Wallace 2014, §9) and (Wallace forthcoming
a, §7). To put the point briefly: a state in quantum statistical mechanics is nothing more than a special
kind of quantum state. Thus, it is sufficient to discuss states and probabilities in quantum mechanics,
for this general case subsumes quantum statistical mechanics. This is in contrast to the case of classical
statistical mechanics, which is not just a special case of classical mechanics. Statistical mechanics involves
probabilities essentially in a way that classical mechanics does not.

2 The term “stochasticity” might suggest the idea of a stochastic state dynamics, as in the term “stochas-
tic dynamics”. To some extent this is what I intend, although I do intend it somewhat more broadly, in-
dicating a particular source of process randomness, but where that source may be identified in different
aspects of the theoretical apparatus. I choose to use it for two reasons. One, relying solely on the term
“probability” would most likely have far more misleading connotations than “stochasticity”, given the
long-standing and complex philosophical discussions about the interpretation of probability. Two, my ap-
proach will make important use of an ontic interpretation of physical probabilities, as I explain in §3, in
which case they do indicate a genuine element of stochasticity in the world.

3 This stochasticity can be thought to exist either in the world itself, i.e., as genuinely ontically, or to
arise merely through an agential posit (McCoy 2018). In this paper I will prefer the former viewpoint for
convenience, although nearly everything I say is consistent with the latter interpretation.
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the implementation of stochasticity grounds the analogy and not a common ontologi-
cal picture—that the possible interpretive analogies between quantum mechanics and
statistical mechanics do not end at Bohmian mechanics and Boltzmannian statistical
mechanics.

There are several reasons to take up the interpretive framework proposed here.
In the first place, it makes heretofore merely implicit analogies explicit and explains
them. In the second, it opens up the landscape of interpretations that may be con-
sidered in classical statistical mechanics, a landscape which has been little explored
so far. In the third, it suggests how one might take advantage of ideas developed in
one theoretical context and apply them to the other. This is because having an explicit
grounding for the analogies serves as a conceptual map, of sorts, between the two the-
ories, which one can use to connect or translate interpretational issues between them.
In some cases this might problematize some unexamined presuppositions on one side
of the analogy; in others it might suggest novel solutions which were apparent on one
side but not the other.4

To indicate some of the potentially fruitful possibilities afforded by this point of
view, I will consider how two interpretive issues in quantum mechanics, the quan-
tum measurement problem and primitive ontology, arise also in statistical mechanics
by exploiting the analogies I draw. First, I show how debates on primitive ontology
in quantum mechanics can be reprised in classical statistical mechanics when one
makes use of the full menu of interpretive options suggested by my proposal. I fo-
cus on the particular problems presented in (Belot 2011) to illustrate its application.
Second, I show how certain presentations of the quantum measurement problem may
be seen as essentially posing an interpretive question concerning how to conceive of
the stochasticity of quantum mechanics. I do this by constructing an analog of one of
these presentations (Maudlin 1995) in classical statistical mechanics and indicating
that the possible solutions to the problem are precisely the possibilities identified by
my framework. Note, however, that in neither case will I advance any particular res-
olution to these problems here, as this paper’s focus is on developing the interpretive
framework itself.

I begin in §2 with the aforementioned Boltzmann-Bohm analogy, as it is most
familiar and will be a useful contrast for my approach. In §3 I motivate and introduce
my interpretive framework, situating various interpretations of statistical mechanics
and quantum mechanics within it along the way. In §4 I connect the discussion of
primitive ontology in quantum mechanics to the interpretive framework of this pa-
per. Then in §5 I suggest how one can generate a statistical mechanical measurement
problem analogous to (a certain presentation of) the quantum measurement problem,
to which each of the implementations of stochasticity offers a solution strategy. Fi-
nally, §6 is a brief conclusion.

4 (Callender 2007) offers one useful example of the latter case: by exploiting the aforementioned (onto-
logical) analogy between Boltzmannian statistical mechanics and Bohmian mechanics, Callender applies
ideas and strategies from the former to address the issue of how probabilities in the latter emerge and
should be interpreted. This case will be discussed further in §2.
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2 Boltzmannian-Bohmian Interpretations of Mechanics

According to their supporters, the key idea behind Boltzmannian statistical mechan-
ics and Bohmian quantum mechanics is that these theories are fundamentally about
individual systems of microscopic entities (Allori et al. 2014; Allori and Zanghı̀ 2004;
Dürr 2001; Dürr et al. 1992, 1995; Goldstein 2001, 2012), usually assumed to be col-
lections of particles. Whereas the standard “Gibbsian” techniques in statistical me-
chanics are often understood to invoke a fictitious ensemble of microscopic systems
(Lavis 1977) and standard quantum mechanics a “wave function” in place of classical
particles or fields, Boltzmannian and Bohmian mechanics are said to have a clear on-
tology of “local beables” (Bell 2004). This is said to be a virtue because, as a matter
of method, “the first step in the construction of a physical theory is to establish what
are the mathematical entities (particles, fields, strings,...) with which one intends to
describe physical reality” (Allori and Zanghı̀ 2004, 1744). Supposing that this is a
sage piece of guidance, let us follow it to see where it leads.5

2.1 Classical Mechanics

So let us begin with a mathematically precise description of the physical reality which
these theories purport.6 This physical reality is essentially based on the description
of physical reality given by classical particle mechanics. It is set within the classical
conception of Euclidean space Σ and time τ (where these are supplied with the appro-
priate mathematical description—set theory will be mostly sufficient for my purposes
here). At each instant t ∈ τ, every physical particle i ∈ N (for n labeled particles) has
some location x(t,i) ∈ Σ in space, which one may describe mathematically with a map
τ×N→ Σ. Thus, for a particular particle i at time t we have (t, i) 7→ x(t,i).

If one models classical space and time as a four-dimensional spacetime Στ, then
each particle traces out a continuous motion γi ⊂Σ

τ (the image set of a curve with pre-
image τ) in spacetime (its worldline).7 The key idea behind this construction is that,
with a particular motion γi in one’s hands, one has all the physical content related
to an individual particle available (given relevant observable functions to represent
its physical properties). So in the simple case of classical mechanics, this ontological
starting point leads directly to the complete descriptive content of the theory.

Mechanics is not usually described in terms of this space-and-time picture, in-
stead making use of the notion of a configuration q = (x1, x2, . . . , xN), which specifies
the location xi of each particle i in the abstract configuration space Q = ΣN . With
configuration space, we can re-express the map τ×N→ Σ as a new map τ→ Q = ΣN

(i.e., by currying). Thus, for a particular time t we have t 7→ qt = (x1, x2, . . . , xN)t. This

5 Some readers who are very familiar with the theories discussed in this section may wish to skip ahead
to §2.4 for its upshot. However, the following subsections are not intended to merely rehash standard
material but to illustrate how the analogy between statistical mechanics and quantum mechanics develops
by the lights of the Boltzmannian/Bohmian, how it leads to a common interpretive challenge, and how that
challenge can be resolved.

6 See (Souriau 1997) for a more thorough presentation of the terms and concepts employed throughout
these sections.

7 This motion can be projected down onto space Σ as a trajectory γi parameterized by time.
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move to configuration space is fully equivalent to the space-and-time picture; it is just
a convenient redescription.

To describe motions based on configuration space we need to make use of the
extended configuration space Qτ. Each individual motion γi of each particle i in
spacetime can be incorporated into a single continuous motion ζ ⊂ Qτ in extended
configuration space.8 Again, nothing is lost (and equally nothing is gained, save con-
venience) by moving to configuration space, as a motion ζ is sufficient to capture all
the physical content related to a complete physical system, an entire classical system
of particles (given relevant observable functions to represent their physical proper-
ties).

The establishment of physical reality has so far proceeded handsomely, and there
is no reason to question the ontological starting point from a physical point of view.
Still, while the collection of motions γi or the single motion ζ is descriptively ade-
quate, it is not yet explanatorily adequate, for we lack the dynamical underpinnings
(which may or may not be part of reality, depending on one’s point of view) required
for a mechanical explanation. To incorporate these underpinnings into our descrip-
tion of physical reality, we need to specify not only of the position of each parti-
cle at a time but also its velocity (or momentum) for an initial value problem to be
well-posed. Therefore, it is necessary to expand configuration space to incorporate
the additional “degrees of freedom”, constructing the (time-indexed) phase space Γt,
which has twice the degrees of freedom of Q: half of them are the positional degrees
of freedom and half the velocital or momental degrees of freedom.

A deterministic dynamics for a specific system can then be represented as a one-
parameter family of bijective maps φt : Γt → U, indexed by time t, where U is the
space of dynamically possible motions of the system in extended configuration space
Qτ. These dynamical maps send elements of the phase space (“microstates”) at a
time t, (q, p)t ∈ Γt, to the system’s full motion ζ through extended configuration space
Qτ. In the usual case the time subscript may be dropped, as the time-indexed phase
spaces are isomorphic. Note also that we may obtain time evolution between instants
by composing dynamical maps with inverse dynamical maps. For example, for the
evolution of a state between time t and t′ we use the map φtt′ : φ−1

t′ ◦φt, so that (q, p)t ∈

Γt 7→ (q′, p′)t′ ∈ Γt′ , or, when the instantaneous phase spaces are isomorphic, simply
(q, p) 7→ (q′, p′).

Mathematically speaking, the picture of reality obtained by following these in-
cremental steps, beginning with nothing more than space, time, and particles, is un-
questionably elegant and powerful. Perhaps there is room to question the ontological
grounds of the dynamics, which may seem obscure. Various philosophical strategies
may be employed, however, to reduce, eliminate, or otherwise prescind from the os-
tensible ontological significance of dynamical laws. After all, the descriptive content
is contained entirely in the kinematical motions, not the dynamics.

8 This motion can also be projected down onto configuration space Q as a trajectory ζ parameterized
by time, just as particle motions can be projected down onto space Σ and parameterized by time.
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2.2 Bohmian and Boltzmannian Addenda

In Boltzmannian statistical mechanics one adds to the classical picture above first
the notion of a macrostate. While microstates are characterized (as before) by cer-
tain microscopic properties of particles (position and either momentum or velocity),
macrostates are introduced to represent various macroscopic properties (like pres-
sure). In the Boltzmannian picture, the latter are realized, however, by microstates
in the following sense: if M is the collection of the macrostates of some system,
then there is a projection map π : Γ → M that partitions the phase space Γ into
macroregions associated bijectively with the macrostates. Therefore, if one knows
the macrostate of a system, then one does not automatically know its underlying mi-
crostate; however, given a microstate, the corresponding macrostate of the system is
absolutely determined. Furthermore, the macrostate dynamics is entirely determined
by the microstate dynamics in virtue of this projection relation: a “macrostate mo-
tion” ν through Mτ is given by the projected microstate dynamics π ◦ φt (where I
abuse terminology to allow π to project from microscopic motions in Qτ to macro-
scopic motions Mτ in the obvious way). Thus, much as in classical particle mechan-
ics, a motion in an extended (microscopic) phase space is sufficient to capture all the
descriptive content of a system described by Boltzmannian statistical mechanics. So
far so good.

Bohmian mechanics also goes beyond the classical picture, adding quantum states
in the form of quantum wave functions. These are particular (L2) complex-valued
functions on configuration space Q→C. The wave function dynamics is given by the
Schrödinger equation (which is not determined completely by the particle dynamics,
as the macrostate dynamics is in Boltzmannian statistical mechanics). I treat the wave
function dynamics as maps of the form Ut :H →Hτ indexed by time t, whereH is
the Hilbert space of wave functions (ignoring overall phase factors). Importantly, the
particle dynamics in Bohmian mechanics is not the same as the dynamics in classical
particle mechanics. Instead, it depends only on the particle configuration (not the sys-
tem’s state in phase space) and on the wave function. Thus, the particle dynamics of
Bohmian mechanics, usually represented by the so-called “guidance equation” (for
the particles are said to be “guided” by the wave function), can be given by maps of
the form φ

ψt
t : Q→Qτ, indexed by time t and the quantum state ψt at time t. Neverthe-

less, despite the differences, a motion ζ in the extended particle configuration space
is sufficient to capture all the physical content of a system described by Bohmian
mechanics, exactly as in classical particle mechanics.

Clearly, Boltzmannian statistical mechanics and Bohmian quantum mechanics
share many salient features. First, the basic ontology of the interpretations, our start-
ing point, is particles moving in space and time. But, importantly, they also include
some extra structure: macroscopic states or quantum wave functions (which may or
may not be part of the basic ontology, depending on how these are interpreted (Ney
and Albert 2013)). Still, since a motion in extended configuration space is sufficient
to capture the physical content of a system described by Bohmian mechanics, Boltz-
mannian statistical mechanics, or classical mechanics, one might well say, with Bell,
that “in physics the only observations we must consider are position observations,
if only the positions of instrument pointers” Bell (1982, 996). Second, the dynam-
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ics of the particles and of the extra ontology are fully deterministic. Therefore, the
core of the two theories is essentially that of classical mechanics, with only slight
modifications needed to account, respectively, for certain macroscopic phenomena
(temperature, the approach to equilibrium, etc.) or quantum phenomena (spin, entan-
glement, etc.).9 That this common picture of microscopic entities moving in space
and time is applicable in such varied theories is, one must admit, surely a point in its
favor.

2.3 Probability

However, this picture is still incomplete in the cases of statistical mechanics and of
quantum mechanics, since both theories depend essentially on probabilities for their
empirical content, and this is captured principally by statistics of observables. In sta-
tistical mechanics the relevant empirical frequencies are of the macroscopic prop-
erties; in Bohmian mechanics they are of quantum observables (that are, according
to Bohmian doctrine, of course, ultimately reducible to particle positions). Thus we
must account for probabilities in our theoretical description in addition to everything
that has come so far. Probabilities are implemented in the theory in somewhat differ-
ent ways, but the statistics come out looking very similar, as we will now see.

In Boltzmannian statistical mechanics, probability distributions are associated
with macrostates (with finite-measure macroregions of the microscopic phase space).
The initial probability distribution ρ0 (on phase space Γ) of a system in an initial
macrostate M0 is stipulated to be uniform with respect to the Liouville measure µ
associated with the underlying phase space and to have this uniform support only
on the macroregion π−1M0 (identified with the macrostate M0). Since the probability
distributions are defined on phase space (they are maps Γ→ [0,1]), the dynamics of
these probability distributions (the Liouville dynamics) is fully determined by the de-
terministic particle dynamics. Thus, the probability distribution at time t, ρt, is given
by ρ0 ◦φt0. In effect, one pushes ρ0 forward from Γ0 to Γt using the dynamical maps
for the microstates.

In statistical mechanics, the empirically relevant observables are macroscopic ob-
servables, since it is presumed that microstates are epistemically (or at least practi-
cally) inaccessible. These should naturally be defined on macrostates, but it is just
as well to define them on phase space (since one could easily pull macroscopic ob-
servables defined on the macrostates back onto phase space with the projection map
π). Thus, we may treat any observable O as a map Γ → R, just as in classical me-
chanics, and use them to calculate statistics. For example, the expectation value of O
at time t for a system that started in an initial macrostate with associated probability
distribution ρ0 is given by the following formula:

〈O〉ρt =

∫
Γ
ρtOdµ. (1)

9 In order to capture novel quantum phenomena (like spin), Bohmian mechanics must be able to capture
spin observables in terms of position observables. See (Daumer et al. 1996), (Goldstein 2017, §11), or
(Dürr and Teufel 2009, §8.4) for the Bohmian resolution.
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As one can see, the expectation value essentially sums together the values of the
observable O in each microstate in Γ, weighted by the probability assigned to that
microstate by ρt.

In quantum mechanics, the wave function, while certainly no probability distri-
bution in and of itself, is nevertheless a proxy of sorts for the probabilistic content
of the theory. Bohmian mechanics, which privileges the position basis, and, hence,
the wave function, does permit the identification of an initial probability distribution
in “quantum equilibrium” (Dürr et al. 1992). This means that the initial probability
distribution ρ0 (on configuration space) is such that the probability of a particular
initial configuration is given by the squared amplitude of the initial wave function:
ρ0 = |ψ0|

2. In this case the guidance equation consistently gives the dynamics of ρ0,
so that one can write the probability distribution at time t as ρt = ρ0 ◦φ

ψ0
t0 .10

Quantum mechanical observables (like position q) are standardly represented as
self-adjoint operators O :H →H on the space of quantum states. In Bohmian me-
chanics, quantum observables are, again, understood to be ultimately reducible to
position measurements, so they are not to be interpreted “realistically” (Daumer et al.
1996). Nevertheless, their formal use is unobjectionable to the Bohmian. Still, we
may simplify our formalism by preferring the position basis and writing observables
as functions of particle configurations: O : Q→ R. The expectation value for an ob-
servable O in Bohmian mechanics then closely resembles the expectation value in
statistical mechanics:

〈O〉ρt =

∫
Q
ρtOdq. (2)

Thus the analogy which began with the theories’ primitive ontology continues all the
way to their empirical content (which takes the form of statistics of observables).

2.4 Deterministic Probabilities

It is here, though, that the purported picture of reality wavers somewhat. Trying
to assimilate the probabilistic posits of the previous section into theories that aim
to maintain a classical ontic picture of deterministic particle mechanics leads to a
significant philosophical problem in interpreting these probabilities.11 In brief, it is
as follows. On the one hand, if the particle configurations determine all observable
properties, what can probability represent other than a measure of uncertainty over
what the actual configurations are? On the other hand, it cannot be mere uncertainty,
since the empirical content of the theories is entirely contained in statistics of observ-
ables and, hence, is determined by the probability distribution one uses to describe a
system—these probability distributions, in other words, have empirical significance.
In statistical mechanics such conflicting concerns have been raised in the context of

10 By “equivariance”, the probability distribution ρt at time t, which is determined by pushing forward
the particle dynamics flow onto the space of probability distributions, will also be equal to |ψt |

2 = |U0tψ0 |
2,

as determined by the wave function dynamics U0t = U−1
t ◦U0. Cf. (Dürr et al. 1992, 855).

11 See (McCoy 2018) for a more complete discussion, on which this section is based.
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discussions over the “paradox of deterministic probabilities” (Loewer 2001; Wins-
berg 2008; Lyon 2011). Bohmian mechanics, given the relevantly shared structure,
faces the same concern (Callender 2007).

Many philosophers interested in the question of how to interpret such physical
probabilities have been motivated by the “Humean” approach to laws and chances
popularized by Lewis (1973, 1981, 1983).12 The Humean is skeptical of strong on-
tological interpretations of laws, chances, and other modal connections which would
inflate ontology beyond simple, familiar, actual entities (particles moving around in
space and time being a particular favorite). Although Humeans accept that laws,
chances, etc. play an important explanatory role in science, they argue that these
things objectively reduce to their preferred ontology.

To avoid the potential conflict between the determinism of the dynamical laws and
any indeterminism arising from statistical mechanical probabilities, Loewer (2001)
chooses to adopt just such a Humean approach in his prominent solution, in which
he proposes that probabilities be assigned to possible microscopic initial conditions.
That is, there are (Humean) chances for a system (or the whole universe) to begin in
the various initial microstates, after which the actual initial microstate’s evolution is
deterministic ever after. The Humean, of course, does not believe that there was an ac-
tual “chancy” event which brought about the initial state of the system (or universe).
A Humean of Loewer’s stripe only claims that the best, objective systematization of
the actual, occurrent facts about the world allows one to describe the world theoreti-
cally in just this way. Evidently, though, setting such Humean scruples aside, one can
of course give a realist interpretation of these chances as well (Demarest 2016).

As it happens, a similar solution to this problem is offered by Dürr et al. (1992)
in the context of quantum mechanics, by way of the already mentioned “quantum
equilibrium”. Although their preferred story differs in detail,13 Loewer’s Humean
account might well be applied here too, by supposing that the initial chances for the
particles of the system (or universe) to begin in the possible initial configurations are
given by |ψ|2, the norm squared of its wave function.14

2.5 Reflections

Having seen the analogies between Boltzmannian statistical mechanics and Bohmian
quantum mechanics drawn out in detail, let us now reflect on where following the
methodological advice with which we began has led us. From common ontological
assumptions we were led to a common interpretive challenge and then to similar ap-
proaches to resolving it. Indeed, the shared mathematical and physical structure of the
two theories makes this seemingly inevitable. As said, the Bohmian-Boltzmannians

12 This stance has been defended by Loewer (1996, 2001, 2004) and, in an alternative version, by (Frigg
and Hoefer 2015) in the context of statistical mechanics.

13 Dürr et al. (1992, 1995)’s view relies on the notion of “typicality” (which Goldstein (2001, 2012) also
invokes in statistical mechanics) rather than probabilities. As I find the available criticisms of their use of
typicality convincing (Frigg 2009; Luczak 2016), I will not discuss the notion here.

14 Although, again, one does not have to believe, in a Humean spirit, that there was such an actual chancy
beginning, one may do so (Callender and Weingard 1997).
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emphasize the shared structure that comes from common ontological assumptions as
the basis of the analogies between the two theories, and they take this “clear” onto-
logical starting point as a point in their favor.15 But given the significant philosophi-
cal maneuvering required to make sense of the probabilities introduced by statistical
mechanics and quantum mechanics, this appears to require taking on quite a lot of
“quantum philosophy” with one’s “quantum physics”.

While I find the inherent philosophical tensions in such an approach interesting,
what is immediately relevant for my purposes is that a different common assumption
has emerged through efforts to avoid the potential conflict with determinism. That
assumption was that the source of all objective probabilities is an initial assignment
of probabilities to initial configurations or states. What if we take this idea as the
source of the analogy instead? Let us suppose that as a first step in the interpretation
of a probabilistic physical theory we establish where stochasticity enters into physical
reality. Then, by taking what is stochastic about the theory to be the selection of
initial conditions, we might realize that this interpretation is precisely one which
allows for a microscopic ontology of deterministically evolving classical particles—
should one like to “insist that ‘particles’ means particles” (Dürr et al. 1995, 137). I
will pursue the idea behind this starting point in the next section by developing three
alternative implementations of stochasticity, which will show that the particular way
that Boltzmannians and Bohmians interpret their theories is merely one particular
choice of how to characterize the probabilistic content of statistical mechanics and
quantum mechanics.

3 Stochasticity in Physics

In interpreting classical statistical mechanics and quantum mechanics, we should rec-
ognize as a first step that these are theories of statistical physics: their predictive em-
pirical content depends essentially on probabilities and is captured in the form of
statistics (Wallace 2015). This is in contrast to other physical theories, like particle
mechanics, general relativity, and thermodynamics, whose empirical content is not
essentially statistical and does not rely on essentially on probabilities. This differ-
ence tells us that probabilities play an epistemically special role in statistical physics.
Philosophically, one would like to understand how to speak about the world such that
the empirical content of the theory takes this form.

As this task depends on understanding how probabilities are involved in generat-
ing empirical content, much of the distinctive interpretational challenge will concern
understanding the nature of probability. This is a notoriously vexed subject in phi-
losophy, and my approach cannot hope to comprehend all the possibilities that have
been considered. My strategy is instead to presume a generically ontic interpretation
of physical probabilities in this paper.

What I mean by an ontic interpretation of physical probabilities is that the prob-
abilities reflect some element of randomness or chanciness in the world. This pre-

15 For my part, I doubt point particles and other such “mathematical entities” are somehow clearly con-
crete objects of experience, pace Dürr et al. (1995). But the reader is invited to consult his or her own
perceptual faculties.
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sumption makes it easiest to demonstrate the interpretive analogies I see between
statistical mechanics and quantum mechanics. It also makes the probabilities of the
theories trivially objective, something which can be difficult to obtain on other inter-
pretations.16 An ontic interpretation is simple and clear: it straightforwardly presumes
that probabilities represent real worldly structure, much like other formal features of
physical theories are taken to represent real worldly structure. Of course, one can
always raise skeptical challenges to this presumption and alternative interpretations,
but indulging in them here would only be a distraction. Nevertheless, I am also not
endorsing any particular interpretive position about the nature of probabilities by em-
ploying an ontic manner of speaking about probabilities; much less do I commit to
any further metaphysical characterization of ontic probabilities in terms of disposi-
tions, propensities, or whatnot.

Given an ontic interpretation of probabilities in statistical physics, I suggest that
there are only a few distinct options available for implementing genuine chances
in quantum mechanics and statistical mechanics. To see how these three options are
suggested, we need to look at how the empirical content of the theories is represented.
This is, again, in the form of statistics. The simplest statistical moment, the mean or
expectation value, will be sufficient to demonstrate the point.

In classical statistical mechanics, the statistical state of a system is conveniently
taken to be represented by a probability distribution ρ : Γ→ [0,1] on phase space Γ.
One can construct the corresponding probability measure out of it by making use of
the natural Liouville measure dµ associated with the phase space.17 The expectation
value of an observable O when the system is in state ρ is then

〈O〉ρ =

∫
Γ
ρOdµ, (3)

where the integral is over all phase space points x ∈ Γ.
For the moment, I enjoin resistance against the familiar interpretation of the points

x ∈ Γ as microscopic states with ontic significance—especially as configurations of
particles with specific momenta. To make this interpretation less inviting, we may
confine our attention to a particular observable O : Γ→ R and look at the probability

16 A referee suggests relaxing my presumption from ontic to merely objective. I take it that what makes
probabilities objective is that they are determined in some way by facts about the world. Ontic probabilities,
or chances, are objective because such probabilities are grounded in chancy features of the world. Other
kinds of probability may arguably also be objective. For example, frequentist probabilities are determined
by facts about the world, namely frequencies, and so are Humean chances; probabilities also may be
grounded by ergodic facts about temporal behavior or through the method of arbitrary functions. Plainly,
these accounts of non-ontic objective probability (epistemic probability) are a motley bunch, and they do
not generally hook into the formalism of statistical physics neatly (they add in epistemic considerations,
after all). For this reason, presuming probability to be merely objective would obscure the points I make
in this paper, which are clearest on an ontic interpretation, where one conceives the formalism as more
directly representational than one does on a non-ontic interpretation. I relate my views on these various
kinds of probability in more detail in (McCoy 2018).

17 One might equally well take the probability measure P, so constructed, as the statistical state. A prob-
ability measure P associated with a phase space Γ is a map L→ [0,1], that is, from Lebesgue-measurable
subsets L of Γ to the real-number interval [0,1], which satisfies the usual probability axioms. It could also
be defined in terms of the probability distribution for Lebesgue-measurable sets U ∈ L by U 7→

∫
U ρdµ.
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space associated with its image set O[Γ] (McCoy forthcoming): The Lebesgue mea-
surable sets L may be pushed forward onto O[Γ] using O; I denote this collection of
subsets as LO. The statistical state ρ can be pushed forward onto O[Γ] as well using
O; the probability distribution ρO is therefore O∗ρ. With these three pieces, O[Γ],LO,
and ρO, we have defined a probability space. The Lebesgue measure dω on R is a nat-
ural standard of integration which we could use to write an expectation value formula
like (3), but for future convenience I will incorporate the probability distribution into
a new integration measure dOρ by defining it as ρO dω. In this case one may write the
expectation value of any particular observable O as

〈O〉ρO =

∫
O[Γ]

ωdOρ, (4)

whereω ∈O[Γ] is a particular observable outcome. By this procedure we have quined
away the microstates of phase space, with the additional benefit of making the the-
ory’s empirical content manifest solely in terms of observable outcomes (ω) and
(proxies for) statistical states (dOρ).

While this formal redescription may aid in the avoidance of the premature reifi-
cation of microstates, it more importantly reveals a key formal similarity to expec-
tation values in quantum mechanics. Taking the simple case of projection-valued
measures, if we let O be a self-adjoint operator on the Hilbert space H and ψ be
a particular pure quantum state, then the probability distribution ρO on the set of pos-
sible observable outcomes σ(O) (the spectrum of O) is determined by the Born rule:
ρ :ω 7→ 〈ψ,Pωψ〉, the inner product of ψ and the projection operator Pω (that projects
onto the eigenspace associated with ω) applied to ψ. Now, let dOρ be the integration
measure incorporating the probability distribution ρO. Then the quantum expectation
value is expressible essentially just as in (4):

〈O〉ρO =

∫
O[H]

ωdOρ. (5)

In formulas like this, orthodox quantum mechanics (Wallace forthcoming b) trans-
parently supplies us with the empirical content of the theory. Moreover, in ortho-
dox interpretations of quantum mechanics there are, of course, no underlying “mi-
croscopic states” (let alone states interpreted in terms of particles). There are just
quantum states represented by vectors in Hilbert space. Although presenting statis-
tical mechanics’ empirical content in a similar form, solely in terms of observables
and statistical states, is somewhat unorthodox, it does serve to neatly highlight the
theories’ shared structure used to represent their empirical content. From this onto-
logically neutral point, one can then freely ask further questions about unexpressed
representational structure, without ontological prejudice.18

Time evolution must also be incorporated into the picture we have so far. Let us
assume that the states, or rather our proxies for states, the probabilistic integration
measure dOρ, evolve in time rather than the operators. I defer saying more about

18 This is all the clearer when the theories are formulated in terms of operator algebras, but the technical
complexities of formulating statistical theories in these terms would be too much a digression here. For
the relevant perspective, see, e.g., (Landsman 2017) and (Rédei and Summers 2007).
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whether the dynamics is deterministic or indeterministic and how it operates for the
moment. In any such case, since I assume that the observables do not change over
time, any operation of the dynamics can only affect the integration measure. To mark
its time-dependence, therefore, I will add a superscripted t to it as a reminder:

〈O〉tρ =

∫
O[·]

ωdOt
ρ. (6)

Thus, the empirical content of statistical physics, here demonstrated by exam-
ple in the form of an expectation value, is generated by observables, states, and
dynamics (where the latter two have been combined in the integration measure).
By merely inspecting how their empirical content is formulated, it is apparent that
there are essentially three possible ways to conceive of chances operating in statisti-
cal physics—three possible interpretations of stochasticity. These are (1) that initial
states are chancy, (2) that the operation of the dynamics is chancy, and (3) that the
realization of (observable) properties themselves is chancy.19 Let us consider each of
these in turn.

First, if one supposes that what is random about a physical system (as described
by these two theories) is its initial conditions and nothing else, then it follows that
every observable property O of the system has a value determined by the outcome of
this random trial for all times ever after. Nothing else is left to chance but this initial
random trial or chance event, and the chances for each outcome are given by an initial
probability distribution ρ0. If follows that the use of statistical states at times other
than the initial one (such as expectation values like (6)) must be essentially epistemic
in nature: they represent uncertainty over the actual realized outcome of the trial.
Importantly, this interpretation mandates characterizing the deterministic evolution
of the system after the initial random trial by introducing “hidden variables”. These
actual (hidden variable) states can be used to construct a deterministic dynamics for
all times (except for the initial time, where the state is indeterminstically fixed by
a random trial) and can represent the system’s actual properties via an ontological
interpretation (in terms of particles or whatnot).

This interpretation of stochasticity is the one found in the specific interpretations
of statistical mechanics and quantum mechanics discussed in the previous section.
In Boltzmannian statistical mechanics the hidden variable are classical mechanical
states (usually interpreted as particle states), and in Bohmian quantum mechanics
they are configurations of local beables (particles or whatnot). The outcome of the
initial chance event, then, is a particular initial classical state or configuration of be-
ables. This state evolves deterministically and at every time all observable properties
of the system are determined by it. As observers, we assume that we know the ini-
tial probabilities associated with the initial states (ρ0) but not the initial microstate.

19 Other authors have made similar claims about how many kinds of probability there are in physics, but
as far as I am aware none has offered a typology like I have and none has provided any rationale for their
proposal. For example, Maudlin (2007b, 2011) claims that there are three kinds of objective probability:
stochastic dynamics, Humean chance, and deterministic chance. Given a distinction between objective
probabilities and ontic probabilities (chances), these categories are clearly not exhaustive: they are merely
three (popular) examples of objective probability. The first is a kind of ontic probability, the second might
be a kind of ontic probability, depending on how understands Humean chances, and the third is a kind of
epistemic probability.
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With ρ0, however, we can calculate statistics for the system’s observables since we
know how it evolves in time (via the deterministic dynamics). In this way, the “ini-
tial chance” story makes sense of all the formalism introduced in the previous section
(recognizing, of course, that this story may be modified by fictionalizing or otherwise
eschewing the reality of initial chances, as in the Humean chance account).

Second, if one supposes that what is random about a physical system is solely its
state transitions (the operation of its dynamics), then there are (at least some) state
transitions that are not completely determined by the sequence of preceding states.
That is, at least some of the evolution of the probability distribution incorporated into
the expectation value formula is not determined. In such interpretations involving
dynamical stochasticity, expectation values and the other statistical moments deter-
mined by the state are the complete predictable empirical content of the system. Of
course, in the wake of state transitions (whether indeterministic or deterministic), a
history of observable outcomes is generated by the system’s evolution. However, as
this generated history is to some extent subject to randomness, one cannot expect
exact agreement between the generated histories of observable outcomes and the ex-
pectations generated by the statistical predictions (although one does of course expect
statistical agreement).

There are many ways indeterministic evolution could be implemented with stochas-
tic dynamics.20 Accordingly, there are several examples of this kind of interpretation
of stochasticity in quantum mechanics and statistical mechanics. Although the details
of how stochastic mechanisms are incorporated into dynamics vary between quantum
mechanics and statistical mechanics (and even within the theories), it is not worth ex-
amining them in all their details here; my aim is simply to capture what they have in
common and mention a few examples for illustration.

In quantum mechanics, approaches with indeterministic dynamics are generically
called collapse theories (Ghirardi 2016). The traditional Copenhagen interpretation
invokes wave function collapses during measurement; insofar as it is an interpretation
of quantum mechanics, it is a collapse theory. The reader may well be acquainted with
more rigorous collapse theories. For example, in the Ghirardi-Rimini-Weber (GRW)
approach, quantum states evolve according to the Schrödinger equation most of the
time, but the state of the system occasionally experiences indeterministic “collapses”
to different quantum states. Other versions allow for continuously indeterministic
evolution (e.g., Pearle’s continuous spontaneous localization).21

20 Note that one might claim that the initial chances interpretation is strictly speaking a special case of
this interpretation, one with all the indeterminism effected at an initial time, but I will keep them separate
here.

21 Are these not simply alternative theories to “normal” quantum mechanics? Not mere variants of a
particular interpretation of stochasticity, “since they actually are (in principle) empirically different from
the standard theory” (Ghirardi 2016)? Perhaps. But note that they may also be fashioned so as to not
make any novel empirical prediction at all, for example, by making their indeterministic dynamics mimic
as closely as possible the deterministic state dynamics of the Schrödinger equation. Indeed, as Werndl
(2009, 2011) shows, one can always find some such observational equivalence between deterministic and
indeterministic theories. As the empirically adequate collapse theories appear to be in the latter camp
at present (Ghirardi 2016), the question of whether collapse theories are theories or interpretations is
somewhat moot. In any case, since my aim is not to assess the future of quantum mechanics but interpret
the quantum mechanics we have, I treat collapse theories as interpretations here.
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It is worth noting that in all familiar cases the collapse dynamics is implemented
solely on the level of the quantum state. Nevertheless, the stochastic dynamics ac-
count can be supplied with “hidden variables” which can then be characterized on-
tically, just as in the initial chance approach. The dynamics of the statistical states
in this case will be given in terms of the microscopic dynamics, and the observable
properties of the system can be determined by the hidden variables. This is actu-
ally the usual way that stochastic dynamics is implemented in classical statistical
mechanics (Wallace 2014; Luczak 2016).22 Indeed, many of the most well-known
equations from non-equilibrium statistical mechanics implement the dynamics di-
rectly on microstates, such as the Langevin equation; others, like the Fokker-Planck
equation, implement a dynamics on the level of the statistical state (but are gener-
ally constructed out of a microscopic dynamics). One is not, however, forced to posit
classical microstructure in non-equilibrium statistical mechanics; one could, that is,
follow the example of quantum mechanics and take, say, the Fokker-Planck equation
at face value as a dynamics of statistical states.

Third, and finally, if one supposes that what is random about a physical system
is solely its observable properties, then it follows that state transitions must be de-
terministic. That is, while the evolution of the statistical state ρ is deterministic, the
realization of actual properties of the system is stochastic. This is contrast to the pre-
vious case, where the evolution of the statistical state is stochastic, and the realization
of actual properties is fully determined by the state. In both cases, however, it is be-
cause of the physical indeterminism present in the system that statistical moments
determined by the state are the complete predictable empirical content of the system.
Again, a history of observable outcomes is generated by the physical stochastic pro-
cess, but this may not be a perfect match with the expectations generated by statistical
predictions based on the statistical state.

Before saying more about this interpretation of stochasticity, it is useful to con-
trast the second and third interpretations with classical mechanics. In classical me-
chanics, the state dynamics is deterministic and states are individuated by the proper-
ties of the system. That is, one says that the states determine the observable properties.
Thus there is a “double determinism” in classical mechanics. The indeterminism of a
probabilistic physical theory like classical statistical mechanics or quantum mechan-
ics (on an ontic interpretation) means that (at least) one of these two roles of state
must become indeterministic. In the stochastic dynamics interpretation, the state dy-
namics is indeterministic, while the observable outcomes remain fully determined
by the state. In other words, observables are not random variables, states are. In the
stochastic observables interpretation, the state dynamics is deterministic, but the ob-
servable outcomes are random. In other words, observables are true random variables,
states are not.

This third interpretive possibility has seldom been acknowledged in the litera-
ture, although there has been some recent discussion (McCoy forthcoming; Frigg
and Werndl forthcoming) in the context of classical statistical mechanics. There are
several older approaches that appear to conform roughly to the basic idea of de-

22 There is, however, a variety of approaches and techniques utilized in non-equilibrium statistical me-
chanics. Unfortunately, there remains very little philosophical work on non-equilibrium statistical mechan-
ics. (Sklar 1993) and (Uffink 2007, §7) give selective summaries.
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terministic state dynamics with stochastic observables, such as those programs that
Uffink (2007) calls “statistical thermodynamics”; also, some aspects of Prigogine’s or
Khinchin’s approach agree with the interpretive philosophy given here, especially in
their rejection of classical microstates.23 Frigg and Werndl (forthcoming) also suggest
several ways in which Gibbs’ approach to equilibrium statistical mechanics might be
interpreted, one of which (that they call “bare probabilism’) is perhaps naturally char-
acterized as a stochastic observables interpretation.24

It is less obvious which interpretations of quantum mechanics are compatible with
this way of conceiving of probabilities. There is at least one popular candidate which
might be thought of as having stochastic observables, that is, were its quantum prob-
abilities understood as chances. This is the many worlds interpretation (or, perhaps
better, the more general “orthodox quantum mechanics” discussed by Wallace (forth-
coming b)). I say this because many worlds quantum mechanics eschews a primitive
ontology of deterministically evolving particles, and it maintains a deterministic state
dynamics at all times. In this way it is similar to the bare probabilism of Frigg and
Werndl (although one must acknowledge the fact that quantum probability is a far
more subtle matter to handle than classical probability). That said, most proponents
of the many worlds interpretation do not attempt to give an ontic interpretation to
quantum probabilities at all, instead favoring, for example, a “functional” interpre-
tation (Saunders 2010; Wallace 2012) or an “epistemic” interpretation (Sebens and
Carroll 2016). What probabilities in many worlds quantum mechanics are has, in-
deed, been a matter of much debate (Greaves 2007), and it would be too much of
a diversion to enter into the debate here, much less propose a novel interpretation
of quantum probabilities along these lines. So I do not mean to push the case that
many worlds quantum mechanic is in the general category of stochastic observables
very far here. In any case, other ideas, for example, an “ensemble” interpretation of
quantum mechanics (Ballentine 1970) or, perhaps, the consistent histories approach
(Griffiths 2019), might also be seen as falling under the stochastic observables inter-
pretation when supplied with an ontic interpretation of probability, especially insofar
as they share relevant features of the approaches to statistical mechanics mentioned
in the previous paragraph.

These, then, are three ways of conceiving of the stochasticity of statistical physics.
They are most easily seen by assuming an ontic interpretation of probability, which
is why I chose to do so, but their usefulness as categories can be extended to other
interpretations of such theories which identify probabilities as merely epistemic. Fur-
thermore, the different starting point of this section, compared to the previous one,
is noteworthy, as it should now be clear that strong assumptions about the primitive
ontology of the theories can easily obscure significant alternative possibilities. It is
for this reason that I began by looking at the statistics which account for the empir-
ical content of such theories. These can be cast in a suggestive form by making use
of the common dynamical structures of statistical mechanics and quantum mechan-
ics. As we observed, stochasticity can be associated, on the face of it, with one of

23 See, e.g., discussion in (Sklar 1993), where such proposals are termed “radical” and “revisionist”
interpretations of statistical mechanics.

24 My own proposal of such an interpretation is presented and defended in (McCoy forthcoming).
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three different components. These three components were the initial conditions, the
dynamics, and the observables of a physical system.

A choice of one of these then suggested a particular interpretation (or class of in-
terpretations) of statistical mechanics and of quantum mechanics. The first leads to,
for example, Boltzmannian statistical mechanics and Bohmian quantum mechanics,
the analogy between which was described in the previous section. Whereas there I
began as the Boltzmannian/Bohmians prefer, with the common ontological posit of
particles moving in space and time, I argued in this section that it is also possible
to view the analogy between the two theories as coming from the choice of an in-
terpretation of stochasticity. The second choice of where to locate stochasticity leads
to another clear analogy, namely between the variety of approaches termed stochas-
tic dynamics in statistical mechanics and the variety of collapse theories in quantum
mechanics. The third choice leads to what I have been calling the stochastic observ-
ables interpretation. Although the link of this interpretation with well-established ap-
proaches in statistical mechanics and quantum mechanics is less developed, I believe
that Gibbsian statistical mechanics and orthodox quantum mechanics serve ably as
suggestive, albeit under-developed, examples. Serious interpretive work is required
for this suggestion to be realized and adequately justified however.

4 Primitive Ontology

The framework for connecting interpretations of quantum mechanics and statistical
mechanics with one another which I developed in the previous section makes it pos-
sible to see how interpretive problems and solutions can be portable from one theory
to the other. In this section and the next I give two explicit examples where this may
be done. In this section I export the present debate concerning “primitive ontology”
in quantum mechanics (Belot 2011; Ney and Phillips 2013; Allori et al. 2014; Esfeld
2014) to classical statistical mechanics. A detailed discussion of this debate and its
importation into statistical mechanics would be a topic in its own right; my aim is
not to survey the entirety of this debate or press for one view or another. It is to show
how substantially the same issue concerning primitive ontology arises in statistical
mechanics, once one recognizes that similar kinds of interpretation are available there
as in quantum mechanics—due to the interpretational analogies I have developed.

To this end I focus only on two specific problems related to primitive ontology
raised by Belot (2011): what he calls the “macro object problem” and what I will call
the “extra ontology problem”. An interpretation of quantum mechanics that specifies
properties possessed by regions of spacetime has come to be called a primitive on-
tology. The version of Bohmian mechanics described above, according to which the
material ontology of a quantum system consists in particles (Esfeld et al. 2014), has
a primitive ontology, as do collapse interpretations (Maudlin 2007a) that include an
ontology of “flashes” (Esfeld and Gisin 2014) or “matter densities” (Egg and Esfeld
2015). If one supposes that quantum physics provides a fundamental description of
reality, then, according to proponents of a primitive ontology, it should describe a
world of stuff and things moving around in space and time. Interpretations of quan-
tum mechanics that suppose that the basic quantum description of the world is in
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terms of the quantum state (perhaps out of which macroscopic reality emerges) lack
a primitive ontology. Among these views are wave function realism (Albert 2013;
North 2013) and spacetime state realism (Wallace and Timpson 2010).

That there has been no such analogous discussion in statistical mechanics is pre-
sumably owed to the issue being regarded as long settled. Insofar as one demands a
realist interpretation of statistical mechanics, its ontology is thought to consist of one
class of entity: classical entities like particles (which evolve deterministically). I have
argued, however, that the different interpretations of stochasticity imply that there
are interpretations of statistical mechanics analogous to the interpretations of quan-
tum mechanics, ones which indeed may not reduce to this specific ontology. One can
therefore ask what the ontology of these former interpretations is, as well as how the
ontologies of the two theories, statistical mechanics and quantum mechanics, relate.

Now to the two problems mentioned above. First, Belot’s “macro object problem”
poses the challenge of explaining how quantum mechanics provides truth conditions
for the assignment of properties to ordinary macroscopic objects. If macroscopic ob-
jects are simply composed of microscopic objects and their properties are entirely
reducible to the properties of the latter, then interpretations which adopt a primi-
tive ontology, like Bohmian mechanics, would seem to have an important advantage
in solving the macro object problem. The specification of microscopic properties
in spacetime, after all, is (in the best case) just one relation away from specifying
macroscopic properties in spacetime. Interpretations of quantum mechanics without
a primitive ontology, by contrast, must furnish an evidently more complicated story
for how macroscopic objects possess the properties that they appear to possess.

Let us try to pose a macro object problem in classical statistical mechanics. How
does this theory provide truth conditions for the assignment of properties to ordinary
macroscopic objects? The usual answer is that macroscopic objects (boxes of gas) are
simply composed of microscopic classical mechanical objects (molecules of gas, say)
and their properties are entirely reducible to the latter. To give this answer, however,
one must supplement the statistical state with an actual microstate. Just as collapse
interpretations and Bohmian mechanics possess a primitive ontology in quantum me-
chanics which can address the macro object problem, so too, it seems, can stochastic
dynamics and Boltzmannian approaches be described as having a primitive ontology,
one which makes a significant start towards addressing the macro object problem in
this context. Evidently, other interpretations of statistical mechanics without a prim-
itive ontology will have to furnish a more complicated story in order to address the
problem. That is not to say, of course, that some such story cannot be given, just as it
is not to say so in quantum mechanics.

Second, Belot challenges primitive ontologists in quantum mechanics to make
sense (ontologically speaking) of the quantum state. He claims that their interpreta-
tions are dualistic insofar as their ontologies apparently have two kinds of entity: the
primitive ontology of particles (or what have you) and the quantum state (or wave
function). Interpretations of quantum mechanics without a primitive ontology do not
have this dualism; therefore, they might seem to have an important advantage over
those interpretations which adopt a primitive ontology in addressing this challenge,
the extra ontology problem.
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This problem can also be (and in a way has been) raised in classical statistical
mechanics. Recall that the empirical content of the theories I have been discussing,
formally and epistemically-speaking, requires only a set of observables, a physical
state in the form of a probability measure, and a dynamics for that state. In quantum
mechanics this state is the quantum state and in statistical mechanics it is the statisti-
cal state. Whether one opts for a primitive ontology or not, interpreters of statistical
mechanics should be able to answer the same challenge: how can one make sense of
the statistical state? Indeed, I already showed how one is led directly to this problem
in the Boltzmannian and Bohmian interpretations by assuming a primitive ontology
from the start. This problem is intimately related to the previously mentioned paradox
of deterministic probabilities (Loewer 2001; Winsberg 2008; Lyon 2011)

Let us now proceed a bit further and examine briefly how one might go about
solving the extra ontology problem for the evidently dualistic default interpretation
of statistical mechanics, the Boltzmannian interpretation. I will simply follow Belot’s
approach here. Belot says that there are a few possibilities for interpreting the wave
function: it is a field (of sorts), a law (of sorts), or a property (of sorts). Let us suppose
that a statistical state in statistical mechanics could be interpretable in the same ways
and look at them in turn.

If one thinks of the probability distribution ρ as a field, then it must be a field
defined on some abstract space (e.g., phase space), making a connection to three-
dimensional reality difficult. This is also a problem raised against the wave function
in quantum mechanics. However, it seems to be even more of a problem in statistical
mechanics, since—on the Boltzmannian primitive ontology picture—it is clear that ρ
plays no role in the dynamics of the physical particles, unlike in Bohmian mechanics
where it “guides” the particles.

If one thinks of the statistical state as instead encoding nomological facts, in anal-
ogy to interpretations that take the wave function to do so (Callender 2015), then in
the first place it is not so clear what nomological facts it is encoding. In the second,
the main complaint against conceiving of the wave function as a nomological en-
tity in quantum mechanics also carries over directly to classical statistical mechanics.
That complaint is that wave functions are contingent, since the theory allows that
there could be different initial wave functions and since wave functions also evolve
in time. This is unlike legitimate laws which hold with physical necessity, such as
Hamilton’s equation or the Schrödinger equation (Brown and Wallace 2005; Belot
2011). As initial statistical states are plainly contingent in the same way and for the
same reasons, it does not seem that they can be nomological in nature.

Finally, if one thinks of the statistical state as encoding dispositional properties of
a primitive ontology, then one cannot believe this in the Boltzmannian interpretation,
for in this case the microscopic physics is deterministic and not dispositional. This
is an important difference in comparison to Bohmian quantum mechanics, where the
relevant dispositional properties are said to be the velocities of the particles (the wave
function is responsible for determining them via the guidance equation). In Boltz-
mannian statistical mechanics, however, the particles already possess determined ve-
locities by the microscopic dynamics.

Therefore, in all three cases it seems that the extra ontology problem poses a sig-
nificant problem for the conventional interpretation of statistical mechanics, and this
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point has not been sufficiently appreciated in the literature. Is it problematic enough to
consider alternative interpretations than those that presuppose a primitive ontology?

I happen to believe so. Even if not and these problems can be resolved, it would
seem worth at least exploring the interpretive options available. Why not ask, for
example, which interpretations are committed to a primitive ontology and which are
not? Recall the discussion from the previous section: If one opts for the initial chances
approach, then one can (and arguably must) posit a primitive ontology with deter-
ministic dynamics. This is the paradigmatic case which leads to difficulties with the
extra ontology problem, as we just saw. If one opts instead for the stochastic dynam-
ics approach, then one can also posit a primitive ontology (although one need not).
Unlike the initial chances approach, though, observe that it is possible to character-
ize the statistical state as encoding dispositional properties, since the microdynamics
would not be always deterministic. Perhaps this should be seen as an advantage of
this approach. Finally, if one opts for the stochastic observables approach, then one
can directly characterize the statistical state as encoding dispositional properties of
the macroscopic ontology. It therefore does not face the extra ontology problem (al-
though clearly it does face the challenge of the macro object problem, as does the
stochastic dynamics approach without a primitive ontology).

Obviously, there is much more that can and should be said about this cluster of is-
sues. Here is not the place for a lengthy investigation, for my aim has merely been to
show the applicability of this typology of interpretations and the analogies between
them for linking an important interpretive issue across theories. And so it does: it
helpfully reveals how primitive ontology, probability, and determinism become en-
tangled not only in quantum mechanics but in statistical mechanics as well.

5 The Measurement Problem

The second interpretive issue that I wish to consider is the quantum mechanical
measurement problem. Just as I claimed that the macro object and extra ontology
problems can be posed in statistical mechanics, I claim that a kind of “measurement
problem” can be seen to arise in statistical mechanics. I will suggest a reading of
the measurement problem in quantum mechanics according to which it is a problem
about how to interpret the stochasticity of the theory—in which case it should be
no surprise that there is an analogous problem in statistical mechanics, for statisti-
cal mechanics is a theory which requires an interpretation of stochasticity as well.
By suggesting this reading, however, I certainly do not mean to claim that there is
nothing more to the quantum measurement problem than a problem of interpreting
probabilities in the theory.25 Rather, it seems to me that bringing this aspect of the
problem to light allows one to be clearer about what distinctively quantum aspects of
the problem are actually at issue in quantum mechanics.

Although there are more sophisticated ways one could make the point, I will
make use of the simple, well-known presentation of the measurement problem found

25 Indeed, as a referee points out, the quantum measurement problem is bound up with considerations
like “measurement” appearing as a primitive term in the theory, the preferred basis problem, and entangle-
ment, all of which do not have classical analogs.
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in (Maudlin 1995), specifically what Maudlin calls the “problem of outcomes.” He
argues that the following three seemingly plausible statements are inconsistent in
quantum mechanics:

1. The quantum state of a system is complete, that is, it is sufficient for specifying
all of the physical properties of a system.

2. The quantum state always evolves in accord with a deterministic equation, namely
the Schrödinger equation.

3. Measurements of observable properties have determinate outcomes, that is, mea-
surements reveal that the system possesses definite properties.

The argument for the inconsistency of these claims is familiar. A generic quantum
state is a superposition. Assuming 1 and 2, it follows that a system in a superpo-
sition will not in general have determinate outcomes. Assuming 1 and 3, it follows
that the system in a superposition cannot have evolved deterministically for it to have
determinate properties. Assuming 2 and 3, it follows that the system’s state must be
supplemented, for something must specify which outcomes obtain in a superposition.
According to Maudlin, rejecting 1 leads one to Bohmian mechanics; rejecting 2 leads
one to collapse interpretations; rejecting 3 leads one to the many worlds interpreta-
tion.

We can contrive a very similar argument in the context of statistical mechanics. I
claim that the following three statements are inconsistent:

1. The statistical state of a system is complete, that is, it is sufficient for specifying
all of the physical properties of a system.

2. The statistical state always evolves in accord with a deterministic equation, for
example the Liouville equation.

3. Measurements of observable properties have determinate outcomes, that is, mea-
surements reveal that the system possesses definite properties.

A generic statistical state is essentially a classical superposition. Assuming 1 and
2, it follows that a system in such a state cannot have determinate outcomes, for a
system in such a superposition does not have determinate properties. Assuming 1
and 3, it follows that the system cannot have evolved deterministically for it to have
determinate outcomes. Assuming 2 and 3, it follows that the system’s state must
be supplemented by something that specifies the outcomes that actually obtain in
the superposition. According to the typology of interpretations of this paper, and in
analogy to the quantum mechanical argument, rejecting 1 will lead to some kind
of initial chance account, rejecting 2 will lead to some kind of stochastic dynamics
account; rejecting 3 will lead to some kind of stochastic observables account.

Presented this way, the manifest issue behind these two measurement problems
is how one interprets the stochasticity of a theory of statistical physics. Although
there is no doubt that quantum mechanics brings with it distinctive interpretive issues,
Maudlin’s “problem of outcomes” does not appear to be one of them, for the states of
statistical mechanics suffer from the same indeterminateness as quantum states, and
the possible solutions to the two problems follow essentially the same lines.

Now, I suppose that some will be little impressed with the revelation of these
analogous measurement problems. They will say that this “analogy” is trivial and
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was already obvious (although one looks in vain for someone making it explicit!)
and so too the solution. The very success of statistical mechanics, they might say,
demonstrates that the systems it treats are composed of microscopic entities and, in-
deed, bears out the “atomic hypothesis”. There is no question, then, that one should
reject the first statement, since systems certainly do possess microscopic states and
properties, namely those of atoms and molecules, which can be described in classi-
cal mechanics. Unfortunately this popular story is far too sanguine, and in several
respects. One is that there are various alternative interpretations available that de-
serve a fair evaluation and may on balance be preferable to the old story. Two, even
if there was no reason to question the ontological presuppositions of classical statis-
tical mechanics in the distant past, surely the acceptance of quantum mechanics as
our best microscopic physics should lead us to reconsider what the microscopic en-
tities of classical statistical mechanics really are. It is by no means sure that they are
best understood as classical entities. Three, exploring alternative interpretations may
suggest novel approaches, techniques, and hypotheses in classical statistical mechan-
ics that would be entirely overlooked by presupposing a resolution to this classical
measurement problem.

Finally, it may be of some interest to consider as well how these parallel mea-
surement problems may be solved together, at one stroke, as it were. Although it is
possible that one might favor differing solutions for the two theories, it does seem
natural to prefer common solutions to both problems, for philosophical reasons or
otherwise. Indeed, the Boltzmann-Bohmians see it as an advantage of their position
that they have a common primitive ontology in their favored interpretations; it might
be seen as an additional virtue that they solve the measurement problems in a consis-
tent way. If it is good wisdom to pursue parallel solutions, then the collapse theorist
might look to stochastic dynamics approaches in statistical mechanics, and perhaps
doing so might give a useful perspective on the quantum to classical limit.26 The
same may hold as well for the stochastic observables approaches, perhaps by de-
veloping links between Gibbsian statistical mechanics and some kind of Everettian
interpretation.27

6 Conclusion

I have drawn attention to analogies between interpretations of classical statistical
mechanics and quantum mechanics centered on an important issue which I suggest is
at the heart of these analogies: the interpretation of stochasticity in the two theories.
Rather than discuss probability in all its many traditional interpretations, I focused on
realist, ontic interpretations of probability, where probabilities are understood to be
related to some kind of fundamental randomness in the world. With this interpretive
stance, answering the question of what probability does in statistical theories comes
down to locating a source of stochasticity in the theory. I cast statistical mechanics

26 See, e.g., (Albert 1994), which suggests underwriting statistical mechanics with the GRW collapse
theory.

27 Something of the sort seems to be akin to Wallace’s interpretive stance in recent papers on quantum
and statistical mechanics, for example (Wallace 2014, 2018, forthcoming a).
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and quantum mechanics in a common abstract form, starting from the epistemically
significant empirical content of the theories, the statistics of observables. Stochastic-
ity, I argued, could be associated with three aspects of the theories: its initial condi-
tions, its dynamics, or its observable properties. As it turns out, the usual “realist”
interpretations of the two theories can be seen to line up closely with these choices.
The most well-known analogy, that between Boltzmannian statistical mechanics and
Bohmian quantum mechanics, takes the first option; stochastic dynamics approaches
in statistical mechanics and collapse interpretations in quantum mechanics take the
second; the third option is unusual in that it has been for the most part overlooked
in interpretational work, although I suggested that Gibbsian statistical mechanics and
many worlds quantum mechanics might be understood to take this option, were one
to give their probabilities some sort of ontic interpretation.

To show that this way of thinking about the two theories is fertile, I discussed its
consequences for two major interpretive issues in quantum mechanics: primitive on-
tology and the measurement problem. I argued that debates about these issues could
be reprised in the context of statistical mechanics. Moving the debate about primi-
tive ontology into statistical mechanics puts to question, for example, the nature of a
statistical state: is it an object, a law, a property? I also argued that at least one popu-
lar rendering of the quantum measurement problem translates directly into statistical
mechanics, which I took to reveal that to some extent what is called the quantum mea-
surement problem involves a problem of making sense of its probabilities. I showed
that analogous interpretations of the two theories solve the two measurement problem
in much the same way, which draws further attention to the generally overlooked in-
tertheoretical relation between quantum mechanics and statistical mechanics (instead
of that between quantum mechanics and classical mechanics).
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