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Representation of strongly independent preorders by
vector-valued functions™

David McCarthy' Kalle Mikkola* Teruji Thomas®

Abstract

We show that without assuming completeness or continuity, a strongly independent
preorder on a possibly infinite dimensional convex set can always be given a vector-valued
representation that naturally generalizes the standard expected utility representation. More
precisely, it can be represented by a mixture-preserving function to a product of lexicographic
function spaces.
Keywords. Expected utility; discontinuous preferences; incomplete preferences; lexico-
graphic representations.

JEL Classification. D81.

1 Introduction

The completeness axiom of expected utility theory was questioned even at its inception. |Von
Neumann and Morgenstern| (1953) found it “very dubious”, but claimed that without it, a vector-
valued generalization of expected utility could be obtained, though they did not provide details.
Likewise, the continuity axiom (or axioms, as there are several) has not received strong support.
It is often presented as a ‘merely technical’ condition, adopted simply to underwrite a convenient
representation theorem, and cases are commonly given where its status as normative requirement
is quite doubtful.

This prompts the view that the essence of expected utility is the strong independence axiom.
In this article we show that without assuming completeness or continuity, a strongly independent
preorder on a possibly infinite dimensional convex set can always be given a vector-valued repre-
sentation that naturally generalizes the standard expected utility representation. More precisely,
we show that it can be represented by a mixture-preserving function to a product of lexicographic
function spaces. Let us now explain what that means.

1.1 Product lexicographic representations

Let X be a nonempty convex set of any dimensionﬂ and 7y a preorder (a reflexive, transitive
binary relation) on X. Let V be a real vector space. A function u: X — V is mizture preserving
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(MP) if for all z, y € X, and « € (0,1),
ulaz + (1 - a)y) = au(z) + (1 - a)u(y).

More generally, for any z1,...,z, € X and positive numbers a4, ..., @, summing to 1, it follows
from the equation that w(>_ a;z;) = > asu(x;). The following is the abstract form of the
standard expected utility representation.

(R) There exists an MP function u: X — R such that
T Zxy = u(x) > uy).

It is well known that =y satisfies R if and only if it is strongly independent, complete, and
satisfies either one of the standard continuity axioms, the Archimedean condition or mixture
continuity. If no continuity axiom is assumed, one must look for more general forms of expected
utility representation. Following [Hausner and Wendel| (1952)), one natural direction is to consider
MP functions into a more general class of vector spaces.

Recall that a preordered vector space is a pair (V, 7y ) where V is a vector space, and -y is a
preorder on V such that for any v, w, u € V and a > 0, v 7oy w implies av+u Zy aw—+u. When
(V,Zv) is a preordered vector space and -y is a partial order (a preorder that is antisymmetric),
we say (V, 7z ) is a partially ordered vector space, and when 7y is a complete partial order, we
say (V,zy) is an ordered vector space and 7y is a vector order.

In general, a function u: X — V with values in a preordered vector space is a representation
of the preorder ~x on X if and only if

T Zxy = ulx) Zv u(y).

Thus R says that 2Zx has an MP representation with values in R.

Any function on X with values in a preordered vector space represents some preorder on X,
and it is easy to see that, if the function is MP, then the preorder satisfies strong independence.
A basic version of our main result says that strong independence is necessary and sufficient for
the existence of an MP representation (Theorem |§| below).

However, we can interpret this result more concretely if we recall a standard construction of
ordered vector spaces. Let (J,>}) be an ordered set. The function space RY is a vector space,
under the usual pointwise definition of function addition and scalar multiplication. Define the
lexorder (lexicographic order) > on RY by f >1., ¢ if and only if (firstly) either f = g or there
exists a >j-least j € J such that f(j) # g(j) and (secondly) for that least j, f(j) > g(j). Then
(RJ , >1ex) 18 a lexicographic function space. It is a partially ordered vector space. It is not an
ordered vector space unless > is a well-order. But it has a natural ordered vector subspace. Let
RY . be the subset of R consisting of functions f such that {j € J: f(j) # 0} is well-ordered by
>73. Then (RJV]VO, >lex) is an ordered vector space. As a special case, when J is a finite ordered set
with n elements, we have R = R’ 22 R" with the standard lexorder. Unless otherwise stated,
J is always an ordered set, with RY, RY ~and R™ always taken to be equipped with the lexorder.

We say that an MP function with values in some RY  is lexicographic MP, or LMP for short.

WO

We will be interested in the following property of =~ x:

(LR) There exists an LMP representation u: X — R, of = x, for some ordered set
J.

Since the natural order and the lexorder on R coincide, LR is a natural generalization of R.
When X is a real vector space and 7 x is a vector order, Hausner and Wendel| (1952) show
that 7~ x must satisfy LR. Our first main result generalizes this to the case where X is an arbitrary



convex set and ZZx is a complete strongly independent preorder. We also give minimality and
uniqueness results not given by Hausner and Wendel.

If ~x satisfies LR it must be complete. The standard way of approaching representations of
incomplete preorders is to seek a ‘multi-representation’. That is a representation that consists
of a set of functions, each representing a complete preorder, with the incomplete preorder char-
acterized by some notion of ‘agreement’ among all the functions. It would be straightforward to
state our main result in such terms, but since we are already dealing with vector-valued repre-
sentations in the complete case, it seems more economical to stick within this approach in the
general case.

Given an index set I and a family of preordered sets {(V;, v, ): i € I}, we define the product
preorder Zon [, V; by v Zn w if and only if v; 2y, w; for all ¢ € I. It is indeed a preorder. If all
the V;’s are preordered (respectively, partially ordered) vector spaces, so is [ [, V;. In particular,
suppose we have an index set I and for each ¢ € I an ordered set J;. Then we can form the
partially ordered vector space [, RJ,. We say an MP function with values in [, Ry, is product
LMP, or PLMP for short.

The main property we are interested is the following.

(PLR) There exists a PLMP representation u: X — [], Ry, of 2 x, for some ordered
sets J; indexed by some set I.

Since PLR and LR coincide when #I = 1, PLR is a natural generalization of LR, and therefore of
R. Our main result is that for arbitrary convex X, strong independence is necessary and sufficient
for —x to satisfy PLR.

1.2 Motivation

The completeness axiom of expected utility has been amply criticizedﬂ Instead we rehearse
rationales for not assuming continuity, including one that is motivated by incompleteness. For
brevity, we focus on normative aspects

For definiteness, consider two common continuity axioms.

(Ar) For z,y, z € X, if  »=x y >=x z, then (1 — €)x + ez >x y for some € € (0,1).
(MC) For z,y, z€ X, if ex + (1 — €)y >x z for all € € (0,1], then y Zx z.

For strongly independent preorders, Ar is equivalent to the standard Archimedean axiom, while
MC is equivalent to the mixture continuity axiom of |[Herstein and Milnor| (1953).

These and other continuity assumptions are often said to be ‘technical conditions’ that sim-
plify the mathematics but are not entirely normatively compelling. For example, it is common
to claim that when z is, for example, getting an extra dollar, y is the comfortable status quo,
and z is being tortured to death, it is at least rationally permissible to prefer y to all mixtures
of z and z, violating ArE| Similar counterexamples apply to MC: now let « be the status quo, y
be torture, and z torture plus a dollar.

Less direct arguments for not requiring continuity can also be given. For example, in game
theory, dropping continuity has proved useful in the refinement of Nash equilibria. In ethics,
it has been seen as a natural way of retaining the essentials of Harsanyi’s utilitarianism while
avoiding allegedly unwelcome implications such as the ‘repugnant conclusion’ of [Parfit (1986)E|

2See e.g. [Sen| (1970); [Dubra, Maccheroni and Ok| (2004).

3For an entry into empirical reasons for abandoning continuity, see Blume, Brandenberger, and Dekel (1989).
4Gee e.g. [Kreps| (1988); [Gilboal (2009)).

5See, respectively, |Blume et al (1989) and [McCarthy, Mikkola, and Thomas| (2016}).



A different rationale for not assuming continuity comes from the rejection of completeness.
Given completeness, Ar and MC are equivalent for strongly independent preorders, and they
are used more or less interchangeably. Indeed, they both seem to rest on a basic ‘Archimedean
intuition’. But when completeness fails for strongly independent preorders, Ar and MC together
imply that comparability is an equivalence relationﬁ which is inconsistent with the examples
that are typically used to motivate incompleteness. To strengthen this point, consider further

(ArT) For z,y,2 € X, if  =x y, then (1 — €)z + ez =x y for some € € (0,1).

This modest strengthening of Ar rests on the same kind of Archimedean intuition as Ar and MC.
But for strongly independent preorders, Art and MC together imply completeness. Since the
case against completeness has seemed compelling to many writers, and since Ar™ and MC rest
on very similar Archimedean intuitions, one might conclude that the intuitions are unreliable.

1.3 Related literature

We are aware of two treatments of incomplete, strongly independent preorders. Suppose X
is the set of probability measures on some finite set of consequences C'. Assuming a weaker
independence condition than strong independence, |[Fishburn| (1982, Thm. 5.2) shows that there
is an MP function u: X — R"™, with n = #C — 1, such that

T =x Yy = u(r) >ex uy).

However, such ‘one-way representations’ do not in general permit one to recover the preference
relation. This limits their usefulness, and more recent focus has been on representations that
fully characterize incomplete relationsm Thus under the same domain assumptions, Borie| (2016])
showed that a strongly independent preorder satisfies PLR; in addition, each R can be taken
to be R™.

This result is appealingly simple, and applicable to many practical examples. A limitation,
however, is that the domain assumptions exclude a vast range of approaches to the representation
of risk and uncertainty. We give four examples. (i) In the case of objective risk, a typical
setting takes X to be the set of Borel probability measures on a compact metric space. (ii)
In the Anscombe-Aumann setting combining objective risk and subjective uncertainty, it is not
uncommon to allow the set of ‘roulette lotteries’ to be Borel probability measures, or the set
of states of nature to be infinite. (iii) In the Savage setting of subjective uncertainty, the set
of states of nature is generally required to be infinite. (iv) Sometimes non-standard reals are
used to represent infinitesimal probabilities; this is particularly natural given the association of
failures of continuity with (relatively) infinite values.

Albeit with some extra work in the Savage settingﬁ each of these treatments of risk and
uncertainty can be accommodated under the assumption that X is a convex set with no restric-
tions on its dimension. An analysis of strongly independent preorders on such an X therefore
promises a wide range of applications. Moreover, there is not much cost to treating the general
case as the main tools have long been known. An embedding technique that goes back to [Stone
(1949) reduces the general case to the case where X is a real vector space. This gives access
to general structure theorems for ordered abelian groups and vector spaces, stemming from the
Hahn embedding theorem. In particular, results of [Hausner and Wendel (1952) and |Conrad
(1953) specialize to yield existence, minimality and uniqueness claims for order-isomorphisms
into lexicographic function spaces; a simple extension argument then delivers our main result.

6This and the next claim is proved in [McCarthy and Mikkolal (2017).

7See [Dubra et al| (2004) and [Evren| (2014) for discussion.

8 See e.g. |Ghirardato, Maccheroni, Marinacci, and Siniscalchi| (2003) for an explanation of how relatively
modest assumptions allow the set of Savage acts to be treated as a convex set.



2 Main results

2.1 Results under completeness

For readability, we first present results that use completeness, and then generalize. Throughout,
X is a nonempty convex set. When 7 x is a preorder on X, the following is the central expected
utility axiom.

Strong Independence (SI). For all z,y,z € X and « € (0, 1],

rroxy <= ar+(l—a)zzox ay+ (1 —a)z.

So = x is an SI preorder. The following result generalizes the main theorem of [Hausner and
Wendel (1952)) from vector spaces to arbitrary convex sets.

Theorem 1. Let —x be a preorder on X. Then Zx satisfies LR if and only if it is SI and
complete.

We now introduce three concepts. The ‘lexical’ order type of an SI preorder reflects its
‘hierarchy of relative infinities’; a ‘minimal’ LMP function is an efficient representation of an SI
preorder; it has what we call a ‘functional’ order type. We then show that an SI preorder can
always be represented by a minimal LMP function, and the lexical and functional order types
coincide.

Lezical order type. Suppose given a SI preorder —x on X. Let X2, = {(z,y) € X?: 2 =x y};
it can be seen as the set of positive differences under = x. Define a binary relation =~ x on Xi I
by (z,y) =x (s,t) if and only if for all € € (0,1], ex + (1 — €)t >=x ey + (1 — €)s. This can
be seen as saying that according to - x, the positive difference between s and ¢ is infinitesimal
relative to the positive difference between = and w. Interpreted probabilistically, an arbitrarily
small chance of x rather than y always outweighs a correspondingly almost certain chance of s
rather than ¢.

By contrast, define ~x on X2, by (z,y) ~x (s,t) if and only if for some € € (0,1), (1 —
e)r+et =x (1 —€)y+esand (1 —€)s+ ey =x (1 —e€)t + ex. This can be seen as saying that the
two positive differences are comparable, or relatively finite. The relation ~x is an equivalence
relation on X3 . Let (X?,) = {{(z,y)): (z,y) € X3 ,} be the corresponding partition of
X2, into equivalence classes. Define a preorder Zx on X2, by (z,y) Zx (2,w) if and only if
(z,y) »x (z,w) or (z,y) ~x (z,w). Define a partial order <x on (X2 ) by ((z,y)) <x {(z,w))
if and only if (x,y) Zx (z,w). If ZZx is complete, <x is a total order (a complete partial order).
When ((z,v)) <x ((z,w)), the relatively finite positive differences contained in the latter are
infinitesimal relative to the relatively finite positive differences in the former. We define the
lezical order type of 27 x to be the order type of the poset ((X?,), <x).

Most of the notions just defined naturally generalize concepts introduced in |Hausner and
Wendel| (1952) in the special case where X is a vector space and - x is complete.

Minimality and functional order type. An LMP function v': X — R;';;O is a restriction of an LMP
function u: X = Ry if o £ CJ, u'(-) = u(-)|y» and u and u’ represent the same (complete
SI) preorder on X. It is a proper restriction if J' C J. An LMP function is minimal if it has
no proper restriction. It therefore provides an efficient representation of a preorder in that no
element of its ordered set is inessential to the representation. A minimal restriction of an LMP
function is a restriction that is minimal. The functional order type of an LMP function is the

order type of the associated ordered set.



Theorem 2 (Minimality). (i) Every LMP function has a minimal restriction. Consequently,
every complete SI preorder on a convex set can be represented by a minimal LMP function.

(i1) The lexical order type of a complete SI preorder on a convex set is identical to the func-
tional order type of each minimal LMP function that represents it.

(iii) Every total order type is the lexical order type of some complete SI preorder on a convex
set.

The result provides a natural link between order theory and complete SI preorders. The proof
provides an explicit way of defining a minimal restriction of any LMP function.

Theorem 3 (Uniqueness of minimal LMP representation). Minimal LMP functionsu: X — RJ
and u': X — RY  represent the same preorder on X if and only if there is an isomorphism

F: R —RY  of ordered vector spaces and an element xo of RY, such that v = F o u + .

By analysing isomorphisms between lexicographic function spaces, we can give a more con-
crete criterion. A little roughly, such an isomorphism must be given by a lower-triangular matrix
with positive entries on the diagonal. For the precise statement, let R%J = {z € RY  : x(i) =
0 for all ¢ <y j}.

Theorem 4. A function F: RL_ — RY s an isomorphism of ordered vector spaces if and only
if there exist (a) an order isomorphism f:J — I'; (b) for each j € J, a positive real number o;;

and (c) for each j € J, a linear map Fj: RY . — R vanishing on RLJ | all satisfying
F(z)(f(5) = a;z(j) + F;(x).
We also note without proof the well known special case in which J has one element:

Theorem 5. A complete SI preorder satisfies Ar if and only if it has an LMP representation
with values in R.

The other results will be proved in section [3]

2.2 General results

Theorem 6. A preorder on a convex set X satisfies SI if and only if it has an MP representation
in some preordered vector space.

To get the result in terms of PLMP representations, say that a preorder (Y,22) extends a
preorder (Y,7z;) if forall z,y € Y, 2 ~y y = z ~gy,and z =1 y = x >2 y. The
passage from the complete case to the general case rests on the following proposition. It is shown
in Borie| (2016)); we give an alternative proof, discovered independently, that avoids a detailed
construction.

Proposition 7. Every SI preorder =~ x on a nonempty convexr set X is the intersection of its
complete SI extensions. In other words, v Zx y holds if and only if © 2™ y for every complete
SI preorder extending = x .

The following is our main result.
Theorem 8 (PLR representation). = x satisfies PLR if and only if it is strongly independent.

Remark 9. It follows from Theoremthat, if 7~ x satisfies PLR, then then PLMP representation
can always be chosen ‘minimal’ in the sense that the cardinality of the index set I is as small as
possible, and, for each i € I, the LMP function u;: X — R is minimal. Alternatively, if one is
not interested in minimal representations, one can choose every J; in the family to be one and
the same ordered set J. This is because there is in any case an ordered set J containing every J;
as a subset, making RY a subspace of RY .



Remark 10. Given the view that SI is the essence of expected utility, it is natural to ask precisely
what SI is contributing to Theorem [§] Say that a function, not necessarily mixture-preserving,
is PL if it takes values in some product [],RJ,. Thus Theorem 8} I says that any SI preorder
on a convex set can be represented by a PL function that is in addition MP. Now products of
lexicographic function spaces are quite specialized structures; one might anticipate that SI is
responsible for a preorder being representable by any PL function, let alone one that is also MP.
But this turns out to be false:

Theorem 11. FEwvery preorder has a PL representation.

Thus the contribution of SI to Theorem [§is precisely that the preorder can be represented by a
PL function that is MP.

3 Proofs

3.1 Preliminaries

Throughout X is a nonempty convex set. Let V' be the real vector space Span(X — X); this
is a subspace of the vector space Span(X), so that the vector space operations on V are the
restrictions of those on Span(X).

We now explain how to pass between X and V: that is, between SI preorders 7~x on X
and vector preorders -y on V', and between MP functions representing - x and linear functions
representing ~y,. This will enable us to reduce our results to the case where X is a vector space.
The following provides a useful way of representing elements of V.

Lemma 12. V ={\(z —y) : A € (0,00),z,y € X }.
This is Lemma 4.1 in McCarthy, Mikkola, and Thomas| (2017)).

Proposition 13. There is a unique bijection between SI preorders =~ x on X and vector preorders
Zy on 'V such that
xZxy <= xz—yzy 0 foralxyeX. (1)

Proof. Tt is straightforward to check that, given a vector preorder =y, defines a unique SI
preorder =~ X Conversely, given an SI preorder 7y, there is at most one vector preorder =~y
satisfying (1} . Indeed, given v,w € V, we can write v —w = A(z — y) as in Lemma and then
(using the defining properties of a vector preorder) v 7y w <= v—w Zy 0 < )\(x —y) Zv
0 < z—y=y 0 < x7~x y. Thus the relation =y is completely determined by =

All that remains to be shown is that, given Z~x, there exists at least one 7y Satlsfymg
To do this, define =y by

vZyw <= v—w= Nz —y)and z Zx y for some x,y € X, \ > 0. (2)

We have to check that the relation -y defined in this way is a vector preorder satisfying .

It is clearly reflexive. For transitivity, suppose v =y w and w Zy w. Then for some
z,y,s,t € X,and \,u >0, v—w=ANzr—y) and w—u = p(s —t) with z —x y and s = x t.

el . A by

The two equalities imply v —u = \(z — )Jru(s —t) = (>\+H)[(ml”+ i s) = (v + 5t
Since = x is SI, the two inequalities imply mx + ms X )\Jr#y + >\+ut By (2] . ) these together
imply v Zy u, establishing transitivity. Finally, for any v,w,u € V and a > 0: v—w = A(z —y)
for some A > 0 if and only if (av + u) — (ow + u) = ,u(x —y) for some p > 0. By (2),
vy w <= av+u Sy aw+u, so Ty is a vector preorder.




We next claim that holds. Clearly z Z—x y implies z —y =y 0. Conversely, suppose
2 —y Zy 0. Then for some A >0 and s,t € X, z —y = A(s —¢) and s 75 x ¢. The former yields

Tie+ 35t = 3y + x5S By SL s Zx timplies 52+ 5355 Tx 3272 + xagt; substituting
and applying SI again, we obtain x 2~ x y, establishing . O

To pass between MP functions on X and linear functions on V', we will appeal to the following
general and useful result.

Theorem 14. Let X be a nonempty set. LetY, Z be vector spaces and let f : X —-Y,q9: X - Z
be such that (f,g)(X) = {(f(z),g9(x)) : x € X} is conve.

Then we have g(z) = g(z') = f(x) = f(2') for all z,a’ € X if and only if f = Lg+ yo for
some linear L : Z —'Y and some yy € Y.

Moreover, the restriction of L to Span(g(X) — g(X)) is unique.

Proof. To take the last statement first, suppose that f = Lg + yo and also f = L'g + .
Subtracting, we see that L and L’ differ by the constant yo —y;, on g(X), and therefore they are
equal on Span(g(X) — g(X)).

For the first statement, consider the condition

g(z) =g(a") = f(x)=f(a’) forallz,a’ € X. (3)

It is clear that holds if f is of the form f = Lg + yo. For the converse, let U = (f, g)(X); it
is a convex set by assumption. Let A := Span(U — U); it is a linear subspace of Y x Z. In light
of Lemma (12| applied to U, the condition is equivalent to the condition that A contains no
elements of the form (y,0) with y # 0. Since A is a linear subspace, we find that

(y,2),(y,2) e A = y=1y.

A is therefore the graph of a partial function L from Z to Y. By definition, the domain of L is
the projection of A to Z, namely Span(g(X) — g(X)), and L is characterized by the equation

A= {(L(2),2): € Span(g(X) — g(X))}.

Also, L is a linear function since A is a linear subspace. Extend L arbitrarily to a linear
function from Z to Y. Fix (y,z) € U and set yo = y — L(2). Then for any z € X, we have

f(@) = L(g()) + vo- O

Given a vector space W, say that two MP functions u,u’: X — W are equivalent if they
differ by a constant; that is u(-) = u/(-) + wo for some wy € W. Let [u] be the equivalence class
containing u.

Proposition 15. Let W be a real vector space. There is a unique bijection between equivalence
classes [u] of MP functions X — W and linear functions L: V. — W that satisfies

u(z) —u(y) = Lx —y) for allu € [u],z,y € X. (4)

Proof. Let u: X — W be an MP function. Fix zo € X, and define ¢.: X — V by «(z) = = — zo.
Then (u,:)(X) is convex. Clearly ¢(z) = v(2') = wu(x) = u(z’) for all z,2’ € X. By
Theorem there is a unique linear L: V — W satisfying u = Lt + wq for some wy € W, so
(equivalently) satisfying . This L only depends on the equivalence class of u. Conversely,
given a linear L: V — W, define u: X — W by u(z) = L(z — zo); then u and L satisfy (4),
establishing the bijection. O



Proposition 16. Suppose 7 x and 7y are as in Proposition satisfying , and that [u] and
L are as in Propositz'on satisfying . Suppose also that the W of Proposz'tion 18 equipped
with a vector preorder Zw. Then each u € [u] is a representation of Zx if and only if L is a
representation of 7y .

Proof. For right to left, suppose L represents 7y. By and , rroxyser—yry 0&
L(z —y) Zw 0 & u(x) Zw u(y) for each u € [u]. For left to right, suppose each member of [u]
represents ~ . Given v,w € V, by Lemmachoose x,y € X, A > 0 such that v—w = Az —vy).
Then by (1)) and (4) and the fact that -y is vector preorder, v Zy w S v—w Ty 0 S x—y Ty
O zrzrzxyeux)wuly culz) —uly) zZw ol Llz—y) Zzw 0 Llv—w) Zw 0 <

L(v) Zw L(w), so L represents Zy . O

3.2 Proof of Theorem [

The left to right direction is clear from the fact that RY  is an ordered vector space. For right

to left, let V' and -y be as in Proposition Let [v]~, denote the equivalence class of v € V
under the equivalence relation ~y . Define a relation >z on Z := V/~y by

[Vl 22 [W]ny = v Zv w.

Then (Z,>7) is an ordered vector space. By Hausner and Wendel (1952, Thm. 3.1) there is
an ordered set J and a linear L': Z — RY, that represents >z. Then L: V — R} given by
L(v) :== L'([v]~, ) is a linear function that represents ZZy. Let [u] be as in Proposition [15| with

W =RI . By Proposition each member of [u] is an MP function X — RJ  that represents

X

3.3 Proof of Theorem 2l

We first consider the case when X =V is a vector space, and then show reduce the general case
to this one.

Proposition 17. Let V be a vector space and L: V — RY  be linear. Then L has a minimal
restriction. Moreover, L is minimal if and only if, for every j € J, there is some v € V such
that j is the least element of J with v(j) # 0.

Proof. Let 7y be the vector preorder on V represented by L. For any x € R let J(z) be the
least element of J such that z(J(z)) # 0. Let J. == {J(L(v)) : v =y 0}. Define L*: V — Ri;,
by setting L*(v) := L(v)|;,. We claim that L* is a minimal restriction of L. It follows that L is
minimal if and only if J = J*, which is equivalent to the last claim of the proposition.

First we show that L* is a restriction of L, i.e. for all v,w € V, L(v) >jex L(w) & L*(v) >1ex
L*(w). Defining x = v — w, and using the linearity of L and L*, this rearranges to

L(%) 1ex 0 L*(2) >1ex 0 forallz € V. ()

Now, if L(z) = 0 then by construction L*(x) = 0, so (5)) holds. On the other hand, if L(x) # 0,
then L*(z) # 0, and indeed J(L(z)) = J(L*(z)) and L(x)(J(L(x))) = L*(x)(J(L*(x))). But
L(z) >1ex 0 < L(x)(J(L(z))) > 0, and similarly for L* in place of L; so again holds.

To show that L* is minimal, suppose that L’': V — R% is a restriction of L*, with J' C J,.
Pick j € J.\J'. By definition of J, there is some v; >y 0 such that J(L(v;)) = j. If L' (v;)(k) =0
for all k € J’ such that j <y k, we get L'(v;) = 0, implying v; ~v 0, a contradiction. Otherwise,
pick the least k € J' such that j <; k and L'(v;)(k) # 0. Since J' C J., we can pick vj >y 0



such that J(L(vx)) = k. Then for some real o > 0, L'(awi) >1ex L' (vj), implying avy >v v;.
But j <y k implies L*(vj) >1ex L*(awy), hence v; =y awy, a contradiction. Thus there can be
no such L', so L* is minimal. 0

Proposition 18. Suppose [u]: X — RY  and L: V — R correspond in the sense of Proposi-
tion . Then each u € [u] is minimal if and only if L is minimal.

Proof. Let I/ C J. Define v/: X - RY_and L': V — RY_ by u/(-) = u(-)|y and L'(-) = L(-)|p-
Let 7~ x be the SI preorder on X represented by u (or any u € [u]). Let 7y be the vector preorder
on V given by Proposition Then L represents -y by Proposition

Claim: u' (equivalently: each u € [u']) represents 7~ x if and only if L’ represents 7~y . This
implies each u € [u] is minimal if and only if L is minimal, as needed.

To prove the claim, note that by (), u'(z) — u/(y) = L'(z — y) for all z,y € X. For right to
left, suppose L' represents Zy. Fix x,y € X. Thenz Zx y S -y Zy 0 & L'(z —y) >1ex 0 &
u'(z) — u'(y) Z1ex 0. This shows that «', and hence each u € [u'], represents = x.

For left to right, suppose u’ represents —x. Fix v,w € V. By Lemma choose z,y € X,
A > 0 such that v —w = Az —y). Then v Zy w & L(v — w) >1ex 0 & L(z — y) >1ex 0 &
u(m) - u(y) Zlex@ xz tX Yy = ’LL/((E) Zlex U/(y) ~ ul(x) - U/(y) Zlex 0« Ll(w - y) Zlex 0 &
L'(v) >10x L'(w). This shows that L’ represents v, establishing the claim. O

Proposition 19. The functional order type of any minimal linear LMP function on a vector
space is identical to the lexical order type of the (complete) vector preorder it represents.

Proof. Let V be a vector space and L: V — RJ  be linear and minimal. Let 7y be the complete
vector preorder L represents. Define a mapping G: (VZ,) — J by ((v,w)) — J(L(v —w)); recall
that J(L(v — w)) is the least j € J such that L(v — w)(j) # 0. It is sufficient to prove that G is
an order isomorphism.

Now (v,w) =~y (s,t) implies that for some € € (0,1), (1 — €¢)L(v — w) >jex €L(s —t) and
(1—€)L(s—t) >1ex eL(v—w), so we must have J(L(s—t)) = J(L(v—w)). Similarly, (v, w)>v (s,t)
implies that for all € € (0,1), eL(v — w) >1ex (1 — €)L(s —t), so J(L(v —w)) < J(L(s —t)). The
first of these implies that G is well-defined, and since <y is a total order, together they imply
that for all (v,w), (s,t) € V2., ((v,w)) <v ((s,t)) < J(L(v —w)) <5 J(L(s —t)). Thus G is an
order embedding.

It remains to show that G is surjective. Recall from Proposition [17] that, since L is minimal,
every j € J is of the form J(L(v)) for some v >y 0. But then j = G({(v,0))). O

We omit proof of the following lemma, which is straightforward from and the definitions
of the inequalities.

('Tay) ;X (S7t) Zf and Onkl/ Zf (l‘ - y,O) EV (S - lf,O)
(i) Let (V,Zv) be a preordered vector space. Then for (v,w) € Vi, (v,w) =y (v—w,0),

and for (v,0) € VZ, and A >0, (v,0) =y (Mv,0).

Lemma 20. (i) Suppose 7 x and 7y correspond as in Proposition . For z,y,s,t € X,

Proposition 21. Suppose = x and =y correspond as in Proposition , Then they have identical
lexical order types.

Proof. Consider the map ((z,y))x — ((x —y,0))y. We claim that this is an order isomorphism
(X3,) — (VZ,), which is sufficient for the result. By Lemma [20(i), the mapping is well-defined
and an order embedding. Given ((v,w))v € (VZ,), by Lemma[l2land (), v — w = A(z — y) for
some z =y y. By Lemma 20ii), ((v,w))y = ((v — w,0))v = ((z — ,0))v, so the mapping is
onto, hence an order isomorphism. O

10



Proof of Theorem 2l (i) Fix an LMP function u: X — R . Let ~x be the complete SI
preorder it represents. Let 2~y be the vector preorder corresponding to - x, as in Proposition
Let L: V — RJ  be the linear function corresponding to [u], in the sense of Proposition By
Proposition L has a minimal restriction L*: V — RI_ for some J* C J. Let u*: X — R
be the MP function correspond to L* in the sense of Proposition By Proposition u*
represents 2~ x, and by Proposition this implies ©* is minimal. Therefore u* is a minimal
restriction of u. The second sentence of (i) then follows from Theorem

(ii) Let 7~ x be a complete SI preorder on X, and u: X — R a minimal LMP function that
represents it. Let 7y be the vector preorder corresponding to 7~x as in Proposition and
L:V — RJ the linear function corresponding to u as in Proposition By Proposition
L represents ~y. By Proposition L is minimal. Obviously, the functional order type of u
is identical to the functional order type of L, namely the order type of J. By Proposition
the functional order type of L is identical to the lexical order type of %y ; by Proposition
the latter is identical to the lexical order type of 7 x. Since u was arbitrary, this establishes the
result.

(iii) Let J be an ordered set of a given total order type. Then (R

WO ?

>lex) is such a preorder.
O

3.4 Proof of Theorem [3

To prove this and Theorem |4} we will refer to some terminology and results from (Conrad| (1953)).
A real vector space is what he would call an ‘abelian operator group with operator domain R’.
RJ, is what he calls a ‘T-group’, and indeed a ‘T-sum’, for I' := J. Recall that J(x) is our
notation for the least element of J such that x(.J(z)) # 0. A linear map L: V — RJ allows us to
define a ‘T-valuation’ on V, by setting I'V = {J(L(v))} for any non-zero v € V, and this makes
V also into a I'-group (Conrad’s Theorem 1.1). It also makes L into a homomorphism between
I'-groups.

A ‘c-subgroup’ of R | is a linear subspace S such that, for any j € J, there is an x € S with
J(x) = j. With all this in mind, Conrad’s III(a) on his p. 15 unpacks to:

Conrad Result A. If L, L': V — R are linear embeddings of a vector space V/
onto c-subgroups of RY,  such that Jo L = Jo L', then there is a linear isomorphism

F: R}, — R suchthat J = JoF, and such that L' = F o L.

(The conditions involving J ensure that L, L', and F are I'-homomorphisms.) Moreover, Con-
rad’s Corollary on his p. 14 entails

Conrad Result B. If F: R} — R} is a linear embedding onto a c-subgroup of

RJ . such that J = J o F, then F is an isomorphism.

Now back to the proof of Theorem [3| It is obvious that v and ' represent the same preorder
on X if they are related in the stated way. To prove the converse, let L and L’ be the linear
maps corresponding to [u] and [u/] in the sense of Proposition By Propositions [17| and L
and L’ are both minimal representations of the same vector preorder on V. Because u, ', L, L’
are related by equation , it suffices to find an isomorphism F: RS ~— R;‘;O of ordered vector
spaces such that L' = F o L.

Quotienting V' by ker L = ker L/, we can assume that L and L’ are embeddings. More-
over, Proposition [19| shows that we can identify J with J', and, according to the proof of that
proposition, do so in such a way that, for any v € V., J(L(v)) = J(L'(v)).

Proposition tells us that, since L: V — RJ_ is minimal, for every j € J there is some
v € V such that j = J(L(v)). In Conrad’s terminlogy, this means that L and L’ map V onto

11



c-subgroups of RY . Result A stated above then says that that there is a linear isomorphism
F:Rl - Rl =RY suchthat L' = F o L and such that J = .J o F.

It remains to show that this F is order-preserving. Given x € RY | it suffices to show that
Z >1ex 0 if and only if F(x) >1ex 0. We can choose v € V such that J(L(v)) = J(z) and
(then rescaling as necessary) L(v)(J(x)) = x(J(z)). This means that J(L(v) — x)) >5 J(x). It
follows that J(F(L(v) —z)) >3 J(F(z)), and therefore that F(L(v))(J(F(z))) = F(x)(J(F(x))).
Therefore £ >1x 0 <= L(v) >1ex 0, and F(z) >1ex 0 <= F(L(v)) = L'(v) >1ex 0. Since
L(v) >1ex 0 <= L'(v) >1ex 0, we find that  >jex 0 < F(x) >jex 0, as desired.

3.5 Proof of Theorem [4]

Suppose that F: RJ — R{V/O is a function with the stated form. Using f to identify J and J’,
this means

F(x)(§) = ajz(f) + Fj ().
Such an F is clearly a linear, order-preserving embedding. Moreover, F is an isomorphism of RJ
onto a c-subgroup of RY . By Conrad’s Result B stated above, F' must be a linear isomorphism.
Thus F' is an isomorphism of ordered vector spaces.

Conversely, suppose that F': RY ~— R“E;O is an isomorphism of ordered vector spaces. Let us
show that it has the stated form. Recall that, for any x € R] . we write J(z) for the least j € J
such that x(5) # 0; similarly, for € RY_, J'(x) is the least j* € J' such that 2:(j') # 0. Since F is
order-preserving, it must be the case that J(z) >y J(y) = J'(F(z)) >y J'(F(y)). Therefore
there is a unique order-preserving function f: J — J’ characterised by the property that, for any
reRY, f(J(x)) = J'(F(z)). Since F is an isomorphism, f is an order-isomorphism.

Now, for j € J, define W; = {z € RY : J(z) >; j} C Ry = {z e RY, : J(z) >y j}. The
function z — z(j) is a linear map RJ /W, — R, restricting to an isomorphism R%J/W; — R.
Similarly for j € J' define W = {z € RY :J'(x) >5j} CRYJ.

The definition of f entails that L maps W; isomorphically onto W}(j) and RY%J isomorphically

onto R%V,éf(j). Therefore x — L(x)(f(j)) is a linear function R&O/Wj — R. Any such function is
of the form z +— ax(j) + Fj(x), for some real a and some Fj;: RY, /R%:J — R. It is clear that «
must be positive in order for L to be order-preserving.

Remark 22. |Conrad| (1953) proves a closely related result as his Theorem 5.2.

3.6 Proof of Theorem

It is straightforward to check that given an MP representation of 7~ x with values in a preordered
vector space, ~x must satisfy SI. For the converse, suppose that =~ x is an SI preorder. By
Proposition [13| there is a corresponding vector preorder on the vector space V = Span(X — X),
satisfying Choosing any o € X, we have an MP function u: X — V, u(z) = x — zo. In
light of , this is a representation of >~ x.

3.7 Proof of Proposition

Given a preorder (Y, 7y ), write Ay y to mean neither z 2y y now y Zy x.
com

Proposition 23. If (V,Zv) is a preordered vector space, then v 7y w if and only if v ZZP™ w
for all complete vector preorders ;9™ extending Zv .

Lemma 24. Suppose given vg € V such that vy Ay 0. Then there exists a complete vector
preorder ZP™ extending v such that vo <§°™ 0.
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Proof. Let us show that there exists a vector preorder 7} , not necessarily complete, extending
v and such that vy <, 0. In fact, we can define 22}, by the rule:

wi’VO <~ El)\ZOZ’w-i-)\'Uotvo.

Then, by Zorn’s Lemma, a maximal such extension Z{?™ exists. This extension must be complete,
since otherwise we could find a further extension using the same trick. O

Proof of Proposition [23} Suppose that v Zy w. Then v Z{®™ w, for all complete vector
preorders Z{?™ extending Sy, by definition of ‘extending’. Conversely, suppose that v 2Z{?™ w,
or equivalently vy = v —w Z{™ 0, for all such 7Z$P™. We cannot have vy <y 0, for that would
require vy <{*™ 0. Nor can we have vy Ay 0: by Lemma we would then have some Z{°™ with

vg <™ 0. Therefore we must have vg 22y 0, hence v ZZy w, as desired. O

Proof of Proposition [7] This is immediate from Propositions [13] and 23] O

3.8 Proof of Theorem

Suppose that >~y satisfies PLR, or more generally that ~x has an MP representation in a
preordered vector space. Then it is easy to check that =~ x satisfies SI.

So, conversely, suppose that = x satisfies SI. Let I be the set of its complete SI extensions. For
each i € I, let u;: X — RJi be a LMP representation of the ith complete SI extension; it exists
by Theorem [1} Taking all the u; together, we obtain a PLMP function u: X — [[,R%,. We
have u(x) 7 u(y) if and only if u;(z) >1ex wi(y) for all 4, or, equivalently, if and only if x ™ y
for every complete SI extension of 7 x. Applying Proposition [7} we find that u(z) >p u(y) if
and only if 7 x y. Thus u is a PLMP representation of - x.

3.9 Proof of Theorem [11]

Our proof extends that of (Chipman| (1960, Theorem 3.1) to the case when 7~ x is incomplete.
Let (X, Zx) be a preordered set. Define U, == {y € X |y Zx =}, and let U == {U, |z € X}.
Let A be the least ordinal whose cardinality is equal to that of /. Since )\ is an ordinal, it is

a well-ordered set; so under the lexorder >, R = Ri‘vo.

Arbitrarily index members of & with ordinals less than A, so that U = {Us: 8 < A}. Define

a function f: X — R* by

1, ifxeUg;

0, otherwise.

f(@)(B) = {

It is easy to see that if 7 x is complete, then f represents 7~ x.

But in general, let ¥ be the group of permutations on A. For ¢ € ¥, define of: X — R
by (of)(x)(B) = f(x)(c~*p). Finally, define F: X — [] . R* by F(z), = (¢f)(x). We claim
that when [ s, R* is equipped with the product order -y, the PL function F represents - x.
Equivalently,

r5xy < (0f)@) Ziex (0f)(y) Vo € L. (6)

To see this, note that for all 0 € X, z,y € X, 2 =x y = (0f)(z) >ex (0f)(y) and
x~xy = (of)(z) = (cf)(y). Suppose z Ax y. Then there is a least ordinal v < A such that
f@)(y) =1 and f(y)(y) =0, and a least ordinal § < A such that f(z)(§) =0 and f(y)(d) = 1.
Let ¢/ € ¥ be the permutation (vd). If v < §, then f(z) >1ex f(y) but (o' f)(y) >1ex (¢’ f)(2).
Similarly, if § < 7, then f(y) >1ex f(z) but (o' f)(2) >1ex (6’ f)(y). These observations establish

().
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