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Introduction
My aim is to present an outline of an alternative approach to the formal part of an introductory logic course which differs from the standard treatments in that it is based from the beginning on a calculational method.  It is customary to teach syllogism logic using the notation of Aristotle – the four forms and the square of opposition, augmented with either Venn diagrams1,2,3,4 or Euler diagrams5 – and then to move, with a sharp break in notation and technique, to a consideration of truth-functional logic, in the course of which the method of natural deduction is taught.  Finally, predicate calculus is introduced as a system which encompasses these two forms of logic.  I venture to criticize this curriculum on the following grounds:


1.
It seems unnecessarily complicated to learn different techniques for dealing with categorical and hypothetical syllogisms.


2.
The notation commonly used to analyze categorical syllogisms, being largely picture-oriented, is not only cumbersome and unwieldy, but overspecific – for example, there are four different Euler diagrams which are valid representations of “some S are P”.  It is certainly not designed for simple manipulation – and this concern has been noted by others,5,6,7 who have made attempts to work around or to shore up the notational deficiencies.  The importance of convenient notation is well recognized in related fields.  For example, in teaching arithmetic one might be justified in introducing the basic concepts with illustrations of, say, piles of beans.  But imagine how difficult and tedious the subject would be if one actually did arithmetic by manipulating pictures of bean-piles!


3.
The usual method of analyzing categorical syllogisms requires a constant attention to the meanings of the statements under consideration aided only by those over-specific pictures – in fact this, together with the cumbersomeness of the notation, is a major reason why the subject can appear much more difficult and error-prone than is necessary.


4.
Analyzing truth-functional expressions using truth tables is another diagrammatic approach not suited to convenient manipulation.


5.
The method of natural deduction is, indeed, a calculational approach, but it is one more suited for implementation on a computer than for use as a human tool.  It stresses the use of a particular minimal set of rules, and the resulting chains of deduction tend to be long and not obviously convincing, like all proofs from first principles of higher-level concepts.  The student gets no feeling for the properties of the operators concerned, and so is limited in adjusting his approach to the demands of the problem.  For example, the rule set is such that the equivalence does not appear as a particularly useful operator so that the tendency in proofs is to immediately reduce it to mutual implication.  But the equivalence has many quite friendly properties, such as its associativity and the fact that disjunction distributes over it, and eliminating it at the outset cuts off a whole range of calculational possibilities which may be quite pertinent to the problem.  Natural deduction proofs tend to have more of the flavor of a wander through a maze than of an elegant, crafted demonstration.

As regards notation, my development follows the prescriptions of Dijkstra,8 which are that in order to improve the efficiency of the reasoning process one should firstly adopt a notation that addresses the essentials of the problem (and nothing more) and is easily manipulated, and secondly see to it that the required reasoning steps are captured as a small and well-defined repertoire of manipulations.  The notation introduced is first applied to categorical syllogisms, and a simple calculus is developed which enables conclusions to be calculated from premises.  In such derivations, there is no need to waste mental effort wondering about what the English meaning of an intermediate formula is, for it is simply an object to be manipulated according to simple rules.  Arithmetic is powerful and easy because it is done in terms of the manipulation of uninterpreted formulae, and there is no reason why syllogism logic cannot be handled similarly.

Hypothetical syllogisms are then introduced as a natural extension of categorical ones and analyzed by the same methods.  In preparation for predicate calculus, the focus then turns to the exposition of the properties of the operators that have been introduced.  This is first done within the domain of a Boolean calculus applied to singular propositions, and then quantifications are introduced as operators which themselves have properties to be discovered and understood.

The emphasis throughout is on developing the use of a clear and manipulable notation which can be gradually increased in power as the subject matter gets more general, enabling problems to be solved at the level at which they are expressed.

Categorical Propositions
Categorical propositions state a relationship between two sets;  if we denote these sets by capital letters such as “S” or “P” and represent the relationship as a function, we can write the four “standard forms” as follows:


A(S, P)
All S are P


E(S, P)
No S are P


I(S, P)
Some S are P


O(S, P)
Some S are not P

We use the symbol “~” as a prefix operator to denote contradiction: “~A(S, P)” means “It is not the case that all S are P”.  Although the complement of a set S is often denoted by “

”, I prefer, for ease of manipulation, to use “–” as a prefix, so that “A(S, –P)” means “All S are non-P”.  A pertinent property of the complement is that it is an involution: the sets ––S and S are equal.

Equivalence is denoted by “=”.  Two formulae are equivalent if their interpretation is the same in the underlying model.  For example, the fact that the contradiction is also an involution can be expressed via the equivalence relationship:


~~A(S, P)  =   A(S, P)
Involution

We define the following equivalence relationships between the standard functions, which express E, I, and O in terms of A:


E(S, P)  =   A(S, –P)
Obversion


O(S, P)  =  ~A(S, P)
Contradiction


I(S, P)   =  ~A(S, –P)
Contradiction of obversion, or 



“contraversion”, for short

The appropriateness of such definitions is easily justified by translation back into the underlying model, for example: “Some S are P” and “It is not the case that all S are non-P” have the same meaning.

The symmetry of the functions E and I is expressed by the following equivalence relationships:


E(S, P)  =  E(P, S)
Symmetry of E

I(S, P)   =  I(P, S)
Symmetry of I
From these fundamental relationships, others can be deduced.  In making such deductions, the basic techniques are:


1.
Instantiation.  The “S” and “P” in the above formulae refer to any sets – these relationships (or “rules” as we will call them) are templates, into which consistent substitution of instances of particular sets is possible.  For example, given particular sets –Q and R we can instantiate the rule of obversion, substituting –Q for S and R for P throughout, and obtaining E(–Q, R) = A(–Q, –R).


2.
Replacement of equivalences.  In any expression, a proposition (or set) can be replaced by its equivalent (or equal) to produce an equivalent expression.  For example, because of the rule of obversion, we can substitute E(S, P) for A(S, –P) in the rule of contraversion to obtain I(S, P) = ~E(S, P).

A series of such deductive steps – a calculation – is presented in the format illustrated by the following derivation of the rule of contraposition from the symmetry of E:


E(S, P)  =  E(P, S)

=
{obversion}


A(S, –P)  =  E(P, S)

=
{obversion}


A(S, –P)  =  A(P, –S)

The second step exploits the freedom of parameter naming afforded by the status of the obversion rule as a template, and this freedom can be used again to express the contraposition rule as follows (where –P has been consistently substituted for P and then ––P replaced by P):


A(S, P)  =  A(–P, –S)
Contraposition

The presentation used here is a format for mathematical calculation developed by Dijkstra and Feijen.9  It proceeds in simple steps, for each of which a hint is given as to the manipulation involved.  The fact that substitution of equivalences is involved is indicated immediately prior to the hint.  Since the series of manipulations uses only equivalence transformations we can conclude that the last line is equivalent to the first.

Categorical Syllogisms
We represent a categorical syllogism with premises P1 and P2 and conclusion C as the formula:


P1  •  P2      C
where P1, P2, and C are categorical propositions, and the order of P1 and P2 is arbitrary.  P1 and P2 must contain a common set, and C may be designated as “?” in cases where no particular conclusion is necessary.  The above formula can be interpreted as “From P1 and P2 we conclude C, or “P1 and P2 implies C”, so that, in effect, we are using “•” to mean “and” and “” to mean “implies”.

We can now state, as definitions, the basic rules of categorical syllogisms:


1.
A(S, M)  •  A(M, P)      A(S, P)
Barbara

2.
A(S, M)  •  A(P, M)      ?

3.
~A(S, M)  •  A(M, P)      ?

4.
~A(S, M)  •  A(P, M)      ~A(S, P)
Baroco


5.
~A(S, M)  •  ~A(M, P)      ?

6.
~A(S, M)  •  ~A(P, M)      ?
From these basic rules, two others can be derived to complete the set:


7.
A(S, M)  •  ~A(M, P)      ?


8.
A(S, M)  •  ~A(P, M)      ~A(P, S)
Son of Baroco

Note that the demands on memory here are relatively light:  only two rules, Barbara and Baroco, really need to be remembered, although memorization of Son of Baroco might be more convenient than deriving it.  All other combinations lead to no necessary conclusion.  The fact that these rules are consistent with the underlying model can be ascertained by interpreting the formulae.

Calculations of syllogisms are effected by substitutions in the premises of equivalents, using the equivalence rules, or rearrangements consistent with the symmetry of •, until a formula is obtained which matches one of the implication rules, at which point a conclusion can be drawn.  As a first illustration, we derive Son of Baroco from Baroco itself:


A(S, M)  •  ~A(P, M)

=
{symmetry of •}


~A(P, M)  •  A(S, M)


{Baroco}


~A(P, S)
This proof introduces the idea of the replacement of a premise or conclusion by substitution of a consequent for an antecedent based on an implication rule.  If the calculation includes one or more implication substitutions, we can conclude that the expression on the last line is implied by that on the first.

Here is a second example, showing the validity of Camestres (AEE-2):


A(P, M)  •  E(S, M)

=
{obversion}


A(P, M)  •  A(S, –M)

=
{contraposition, looking for Barbara}


A(P, M)  •  A(M, –S)


{Barbara}


A(P, –S)
=
{contraposition}


A(S, –P)
=
{obversion}


E(S, P)
A third example illustrates a case in which it is not possible to draw a definite conclusion.  As familiarity increases, the hints can become less detailed:


“Some P are M, and some M are S”
=
{by definition}


I(P, M)  •  I(M, S)

=
{contraversion (twice)}


~A(P, –M)  •  ~A(M, –S)

=
{contraposition}


~A(P, –M)  •  ~A(S, –M)


{rule 6}


?
=
{by definition}


“No conclusion can be drawn”
A final example proceeds from ordinary English to a conclusion:


“No good people are criminals, and some criminals are not sane”
=
{G = good people, C = criminals, S = sane people}


E(G, C)  •  O(C, S)

=
{obversion, contradiction}


A(G, –C)  •  ~A(C, S)

=
{contraposition}


A(G, –C)  •  ~A(–S, –C)


{Son of Baroco}


~A(–S, G)
=
{contradiction}


O(–S, G)
=
{G = good people, –S = insane people}


“Some insane people are not good”
If one is set the task of determining, given particular premises, whether a particular conclusion is necessary, possible, or impossible, the procedure is as follows:  if the conclusion can be calculated from the premises then it is necessary, if its contradiction can be derived then it is impossible, and if neither of these can be done then it is merely possible.

This calculus is so simple that one can become adept at it with relatively little practice.  It is not necessary to learn the square of opposition; no dubious diagramming is required; no validity rules (or, worse, tables of valid syllogism types with considerations of mood and figure) need to be committed to memory; and the whole tedious ecology of standard form statements, including the concepts of quality, quantity, and distribution, is rendered irrelevant.

Syllogisms with Alternation
An “Aristotelian” version of this calculus, valid only on the assumption of non-empty set S, can be obtained by introducing the extra rule:


A(S, P)    ~A(S, –P)
Alternation

This allows the derivation of some weaker conclusions, for example EAO-2:


E(P, M)  •  A(S, M)

=
{obversion}


A(P, –M)  •  A(S, M)

=
{contraposition, symmetry}


A(S, M)  •  A(M, –P)


{Barbara}


A(S, –P)

{alternation, involution}


~A(S, P)
=
{contradiction}


O(S, P)
The rule can be applied to a premise as well as to a conclusion, as the following derivation of Darapti (AAI-3) illustrates:


A(M, P)  •  A(M, S)


{alternation, assuming non-empty M}


~A(M, –P)  •  A(M, S)

=
{contraposition (twice)}


~A(P, –M)  •  A(–S, –M)


{Baroco}


~A(P, –S)
=
{contraversion, symmetry}


I(S, P)
This last example can serve to illustrate the care that must be taken with the application of weakening rules – if alternation was applied to both premises of Darapti a ? conclusion would result.

Hypothetical Syllogisms
We can generalize the syllogism calculus by adopting a new interpretation.  Say we view S not as the set itself but as the condition which must be satisfied for membership in the set, and interpret A(S, P) as “For every thing in the universe of discussion, if it satisfies S, then it satisfies P” (an interpretation consistent with “all elements of the set S are elements of the set P”).  The interpretation of O(S, P) (= ~A(S, P)) would be “It is not the case that, for every thing in the universe of discussion, if it satisfies S then it satisfies P”.  For singular propositions, the “for every” phrase in the interpretation can be dropped.  The possibility of nothing satisfying S is not excluded, and so we do not retain the use of the rule of alternation.  All of the other rules of the syllogism calculus are, however, still valid under this new “conditional” interpretation.

Syllogisms fitting this interpretation are called hypothetical syllogisms, and since now S can intelligibly stand alone as a premise, we have the extra rules:


A(S, P)  •  S      P
Modus ponens


A(S, P)  •  P      ?
Affirming the consequent


A(S, P)  •  –P      –S
Modus tollens


A(S, P)  •  –S      ?
Denying the antecedent

The four similar rules with first premise of ~A(S, P) all conclude ?.  A simple example of a calculation involving the new rules is:


“Population growth would have meant overcrowding; but there is no overcrowding”
=
{G = population growth, V = overcrowding}


A(G, V)  •  –V

{modus tollens}


–G

=
{G = population growth}


“There has been no population growth”
Two statement forms related to the conditional are the disjunctive “For every thing in the universe of discussion, either it satisfies S or it satisfies P”, which we denote for brevity as D(S, P), and the negative conjunctive “not both S and P”, which we denote by C(S, P).  The following equivalences can easily be shown to be consistent with the conditional interpretation of A:


D(S, P)  =  A(–S, P)
Disjunction


C(S, P)  =  A(S, –P)
Negative conjunction

Combining these definitions with the new hypothetical syllogism rules leads, with the help of contraposition, to the following theorems:


D(S, P)  =  D(P, S)
Symmetry


D(S, P)  •  S      ?
Affirming a disjunct


D(S, P)  •  –S      P
Denying a disjunct


C(S, P)  =  C(P, S)
Symmetry


C(S, P)  •  S      –P
Affirming a conjunct


C(S, P)  •  –S      ?
Denying a conjunct


D(S, P)  =  C(–S, –P)
De Morgan’s rule

These new functions can be used in syllogism analysis in the same manner as were the categorical functions, as the following mixed syllogism illustrates:


“Some animals in the groups we are studying are not vertebrates.  However, animals in these groups cannot have both no exoskeleton and no backbone”
=
{N = animal, V = vertebrate (with backbone), X = exoskeleton}


O(N, V)  •  C(–X, –V)

=
{contradiction, negative conjunction, involution}


~A(N, V)  •  A(–X, V)


{Baroco}


~A(N, –X)
=
{contraversion}


I(N, X)

=
{N = animal, X = exoskeleton}


“Some of these animals have an exoskeleton”
In this way, the analysis of hypothetical syllogisms can be taught as a natural extension of work already done with categorical syllogisms, rather than by embarking on a new subject with totally different notation and terminology.

Generalized Syllogisms
Up to this point the calculus has been applied to syllogisms with at most two premises.  Its extension to the general case of n premises is straightforward, as the following simplification of a sorites illustrates:


I(P, Q)  •  A(Q, R)  •  E(R, S)  •  A(T, S)

=
{contraversion, obversion}


~A(P, –Q)  •  A(Q, R)  •  A(R, –S)  •  A(T, S)

=
{contraposition (to set up Baroco)}


~A(P, –Q)  •  A(–R, –Q)  •  A(R, –S)  •  A(T, S)


{Baroco}


~A(P, –R)  •  A(R, –S)  •  A(T, S)

=
{contraposition (to set up Barbara)}


~A(P, –R)  •  A(R, –S)  •  A(–S, –T)


{Barbara}


~A(P, –R)  •  A(R, –T)

=
{contraposition (for another Baroco)}


~A(P, –R)  •  A(T, –R)


{Baroco}


~A(P, T)

=
{contradiction}


O(P, T)

Another example is the constructive dilemma:


“If P then Q, and if R then S, and either P or R”
=
{by definition}


A(P, Q)  •  A(R, S)  •  D(P, R)

=
{disjunction}


A(P, Q)  •  A(R, S)  •  A(–P, R)

=
{contraposition (twice)}


A(P, Q)  •  A(–S, –R)  •  A(–R, P)


{Barbara}


A(P, Q)  •  A(–S, P)


{symmetry, Barbara}


A(–S, Q)

=
{disjunction, symmetry}


D(Q, S)

=
{by definition}


“Either Q or S”
Boolean Calculus
For singular propositions, we can show how the functions A, C, and D can be expressed in terms of the operators (=, , •, and ~) already used.  In this way we can move, again very naturally, into a general Boolean calculus, showing that the rules of the syllogism calculus are in fact embedded in the properties of these operators.

The necessary generalization is to consider expressions containing functions as themselves representing conditions – for example, C(S, P) is the condition in which it is not the case that both of the conditions S and P are satisfied.  Since both the contradiction and the complement express “it is not the case that ...”, we will use the same symbol, “~”, for both.  Now in the case of two premises P1 and P2 we have used P1 • P2 to assert “both P1 and P2”.  Therefore:


C(S, P)  =  ~(S  •  P)

The function A(S, P), which we have interpreted as “if S then P”, can equally well be rendered as “from S we can conclude P” or, in the notation used to represent a conclusion:


A(S, P)  =  S    P

Since D(S, P), “either S or P”, is equivalent to C(~S, ~P), we have:


D(S, P)  =  ~(~S  •  ~P)

The fact that this is such a convoluted expression for such a simple and ubiquitous notion as “or” motivates us to introduce, for convenience, a new operator “”, such that:


D(S, P)  =  S    P

Obviously, • and  are intimately related; the De Morgan equivalences:


~(S    P)  =  ~S  •  ~P


~(S  •  P)  =  ~S    ~P

can be easily calculated from the above definitions.  Also, because D and C can be expressed in terms of A,  can be related to • or :


S    P  =  ~(S  •  ~P)
 to •


S    P  =  ~S    P
 to 
Since we are treating expressions as conditions on an equal footing with elementary conditions, the equivalence of two expressions is the same as the equality of two conditions, two conditions being equal when they are satisfied by the same set of things.  Consider now under what circumstances S • P would be equivalent to S  P.  This could be the case if and only if S and P were equal, so that the condition “S = P” is equivalent to “S • P is equivalent to S  P”:


(S = P)  =  ((S • P) = (S  P))
Golden rule

Note that we are using parentheses to make it unambiguous which operations are to be performed in which order.  As the complexity of the expressions being considered is increasing, it is useful to prevent the proliferation of parentheses by formally defining the binding power of each operator – from lowest to highest it is =, , • and , ~.  For example, in the golden rule expression above, all of the parentheses are rendered redundant, and this simplification makes evident the calculational possibilities of the rule provided by the associativity of =, an opportunity which is developed elegantly by Dijkstra and Scholten.10
We have not provided a translation for the conclusion “?”; in Boolean calculus we will confine ourselves only to rules which make a specific conclusion.

In developing Boolean calculus, the textbooks head straight for truth tables, again advocating diagramming rather than calculation.  A far more powerful and satisfying approach is the one taken by Dijkstra and Scholten,10 who focus on developing an understanding of the properties of the operators.  The pertinent properties are:


1.
Symmetry.  An operator x is symmetric if S x P  =  P x S.  The operators •, , and = all have this property;  does not.


2.
Idempotence.  An operator x is idempotent if S x S  =  S.  Since nothing new is introduced by stating the same premise twice, • is idempotent.  So is , but = and  are not.


3.
Associativity.  An operator x is associative if S x (P x Q)  =  (S x P) x Q.  The presence of this property allows the freedom to write S x P x Q, leaving open the placement of the parentheses.  In the discussion of syllogisms with more than two premises we assumed this property for • without stating it;  and = are also associative, but  is not.


4.
Distribution.  This is a property involving two operators.  Consider, for example, the statement “both S and either P or Q” – this means exactly the same thing as “either both S and P or both S and Q”.  Expressed in formal terms:  S • (P  Q)  =  (S • P)  (S • Q), and we say that “• distributes over ”.  In a similar way,  distributes over •,  distributes over =, and • and  distribute over themselves.


5.
Transitivity.  An operator x is transitive if (S x P) • (P x Q)    (S x Q).  Both = and  are transitive – in fact we have assumed this as the basis of our calculation technique.


6.
Identity and zero.  Consider a condition which everything in the universe under discussion satisfies.  We represent this condition by T.  Asserting this condition as a premise gives no information useful in deducing a new conclusion because it does not differentiate between any of the things under discussion.  In formal notation, S • T  =  S, and T is said to be the “identity” (or “unit”) of the operator •.



Consider now two conditions which are contradictory, say S and ~S.  Clearly, nothing in the universe under discussion can satisfy both of these – in other words, anything which does satisfy both of these satisfies the condition that nothing in the universe can satisfy.  We represent this condition by F, enabling us to formally express the rule of contradiction:  S • ~S  =  F.  One would expect F to be the complement of T, and this result is calculated as follows:


F

=
{contradiction, with S = T, and symmetry}


~T  •  T

=
{identity of •}


~T



From these definitions, the following results follow directly:


S  F  =  S
Identity of 


S  ~S  =  T
Excluded middle


S • F  =  F
Zero of •


S  T  =  T
Zero of 

S = T  =  S
Identity of =


T is also the left identity of , since T  S  =  S, but not its right; in fact T is the right zero of , since S  T  =  T.


7.
Reflexivity.  An operator x is reflexive if S x S  =  T.  Both = and  are reflexive.

Having now the concept of the condition that everything satisfies, T, we can define a “rule” or “tautology” as any expression that can be reduced to T by substitution of equivalences.  For example, the following calculation shows the rule of contraposition is indeed a tautology:


S  P  =  ~P  ~S
=
{ to  (twice)}


~S  P  =  ~~P  ~S
=
{involution, symmetry}


~S  P  =  ~S  P
=
{reflexivity}


T

This technique can be used in establishing new rules, for example the rule of simplification:


S • P    S
=
{ to }


~(S • P)  S
=
{De Morgan}


~S  ~P  S
=
{symmetry, associativity, excluded middle}


T  ~P
=
{zero of }


T

This rule, in turn, is the basis of several other useful simplification rules, including the following properties of implication:


(S  P  Q)    (S  Q)

(S  P • Q)    (S  Q)
The application of this Boolean calculus to problem-solving is no different in technique from the analysis of syllogisms, as the following illustration shows:


Either the inspector didn’t notice the defect or he considered it unimportant.  He noticed it all right.
=
{N = noticed, U = unimportant}


(~N  U)  •  N
=
{ to }


(N  U) • N

{modus ponens}


U

=
{U = unimportant}


“He must have considered the defect unimportant”
As an example of how a feeling for the properties of the operators can lead to shorter and more convincing proofs than a rigid application of rewrite rules, we work through a textbook example,11 which requires us to prove that:


“If either Jordan or Algeria joins the alliance then if either Syria or Kuwait boycotts it then although Iraq does not boycott it Yemen boycotts it.  If either Iraq or Morocco does not boycott it then Egypt will join the alliance.  Therefore if Jordan joins the alliance then if Syria boycotts it then Egypt will join.”

Representing “Jordan joins” by J, Syria boycotts by ~S, and so on, this is rendered formally as two premises and a conclusion:
P1:
J  A    (~S  ~K    I • ~Y)

P2:
I  M    E

C:
J    (~S  E)

Starting with P1’s consequent:

~S  ~K   I • ~Y

{simplification on both antecedent and consequent}


~S   I

{transitivity, given that simplification of P2 implies I E}


~S    E
Therefore, by transitivity, it is implied that:

J  A   (~S  E)

{simplification}


J   (~S  E)
=
{by definition}


“If Jordan joins then if Syria boycotts then Egypt joins”
This straightforward solution shows the problem to be an exercise in the simplification and transitivity properties of implication, and this is lost entirely in the twenty-three lines of natural deduction that the textbook12 provides as an answer.

At this point we can go back and show that the new apparatus is consistent with the old – that the rules of the syllogism calculus are, in fact, contained in the properties of the Boolean operators.  For example, modus ponens:


(S  P) • S
=
{ to }


(~S  P) • S
=
{distribution}


(~S • S)  (P • S)
=
{contradiction, identity}


P • S

{simplification}


P
Predicate Calculus
The generalization from Boolean calculus to predicate calculus should be quite smooth; the major new concept to be understood is quantification.  Perhaps the easiest way to introduce this is to discuss the properties of universal quantification as an operator.  No longer restricting ourselves to singular propositions, we treat conditions as functions of their subexpressions, and define:


A(S, P)  =  (x :: Sx  Px)
The notation used here is again that of Dijkstra and Feijen,9 who write quantified expressions in the general form (Q dummies : range : term), where Q designates the type of quantification (, , N, (, etc.), and a range expression denoting everything in the universe of discussion (i.e. T) is, for brevity, omitted.

Universal quantification is defined to distribute over •:


(x :: Sx • Px)  =  (x :: Sx) • (x :: Px)
From this, properties of  follow which highlight its connection to conjunction.  The next step is to realize that the quantification concept can be generalized – it does not have to cover the whole universe.  Rules involving ranges further define :


(x : F : Sx)  =  T
Empty range


(x : x = y : Sx)  =  Sy
One-point rule


(x : Sx : Px)  =  (x :: Sx  Px)
Trading


(x : Px  Qx : Sx)  =


   (x : Px  : Sx) • (x : Qx : Sx)
Range splitting
In applying such rules to actual arguments, the method is the same as before, for example:


“All humans are mortal”
=
{Mh = “h is mortal”}


(h :: Mh)


{s = “Socrates” (given to be human), range-splitting, simplification}


(h : h = s : Mh)

=
{one-point rule}


Ms
=
{by definition}


“Socrates is mortal”
Once again, a smooth transition is possible from a simpler domain into a more complex one – yet some textbooks introduce predicate logic as “a third kind of logic”, a “kind of hybrid” of syllogistic and propositional logics.  One wonders just how many different domains of simple logic there are!  And if Venn diagrams, truth tables, and natural deduction proofs are unwieldy and unconvincing in the simpler domains, it is no surprise that the use of them to attempt to cope with the generality of predicate calculus leads to analyses which are unnecessarily complex and difficult to understand.

Consider, for example, another actual textbook problem,13 which requires a proof that there are exactly two professionals in the office, given that there are at least two attorneys, that all attorneys are professionals, and that there are at most two professionals.  The following is a straightforward proof which relies on knowledge of simple properties of numbers and of the counting quantifier; our universe consists of “people in the office”, and Ax means “x is an attorney” and Px means “x is a professional”:


(Nx :: Ax)  ≥  2

{given that (x :: Ax  Px)}


(Nx :: Px)  ≥  2

{given that (Nx :: Px)  ≤  2}


(Nx :: Px)  =  2
The answer given in the textbook14 is thirty-five lines of fairly dense algebra, which not only fails to illuminate the problem posed, but conveys a not-too-subtle message to the student that logic is a complex, difficult, and opaque subject of little practical use.

Conclusion
I would presume that the goal of an introductory logic course, given as a general prerequisite for obtaining a university degree, would be to teach someone to appreciate and emulate the beauty of a clear, crisp, concise argument.  But it is not possible to do this successfully if the tools at one’s disposal for evaluating and constructing arguments are so unwieldy that visualization of and translation back to an underlying model is necessary at every step, or are so inappropriate to the task that a simple problem requires a disproportionately complex treatment.

With this in mind, I have illustrated how introductory logic, from syllogisms up to predicate calculus, can be presented as a unified body of thought expressed in a consistent, manipulable notation – a straightforward, seamless, logical development in which a student can be taught to think in more and more abstract terms, with the calculational tools keeping the increasing complexity under control.
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