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Abstract

I argue that the theory of chance proposed by David Lewis has three prob-
lems: (i) it is time asymmetric in a manner incompatible with some of the chance
theories of physics, (ii) it is incompatible with statistical mechanical chances,
and (iii) the content of Lewis’s Principal Principle depends on how admissibility
is cashed out, but there is no agreement as to what admissible evidence should
be. I proposes two modifications of Lewis’s theory which resolve these difficul-
ties. I conclude by tentatively proposing a third modification of Lewis’s theory,
one which explains many of the common features shared by the chance theories
of physics.

1 Introduction

Probability is used to model the actual likelihoods, or chances, of various pos-
sibilities. Probability is also used to model the degrees of belief, or credences, a
reasonable subject has in various possibilities. Now it seems there should be a
relation between the two: if a subject believes that an event has a given chance
of occurring, this should have some bearing on her credence that the event will
occur.

The canonical account of this relation is that of David Lewis (1986). Lewis
proposes that the correct relation between chance and credence is given by
his Principal Principle. Lewis’s account is not just an account of the chance-
credence relation, however; it is partially a theory of chance as well. (A theory of
chance, not a chance theory; I take a chance theory to be a physical theory that
employs chance, such as statistical mechanics or quantum mechanics.) Worries
about the compatibility of the Principal Principle and Humean supervenience
have led to variations of Lewis’s original principle, but the general nature of
these principles and the notion of chance they employ have remained the same.
T'll call Lewis’s theory and these variants the Lewisian theories of chance.

Ceteris paribus it seems your credences should agree with your chances. If
you believe that a coin has a .5 chance of coming up heads, then all else being
equal you should have a .5 credence that the coin will come up heads. But
you don’t always want your credences to accord with the chances. Suppose you
are in possession of a crystal ball which reliably depicts the future, and the
crystal ball shows you that heads will come up. Then your credence in the coin



coming up heads should be near 1, not .5. So it seems you should only let the
chances guide your credences in an outcome when you’re not possession of illicit
or inadmissible evidence.

With the notion of admissibility in hand, the relation between chance and
credence falls into place: your credences should accord with what you think the
chances are unless you're in possession of inadmissible evidence. This is Lewis’s
Principal Principle. (Lewis later abandoned the Principal Principle in favor of
a variant.! The details of this new principle need not concern us; any points
I make assuming Lewis’s original principle will apply mutatis mutandis to this
variant. )

The Lewisian accounts also make assumptions about the objects and argu-
ments of chance. First, the objects. They take the objects of chance to be
de dicto propositions.? Following Lewis, we can take these propositions to be
sets of possible worlds, and understand the chance of these propositions as the
chance of one of those worlds obtaining.

Second, the arguments. They take chance distributions to be functions of
two arguments. The first argument is a set of chance laws, the second is a
history up to a time at some world where those chance laws hold. So on the
Lewisian accounts every chance distribution is entailed by a set of chance laws
and a history.

Both arguments can be picked out by a world and time. The history up to a
time is picked out by the world and time. The chance laws are picked out by the
world alone. So we can also treat chance distributions as functions of a world
and time. In the rest of the paper, when I speak of the ‘past’, ‘future’, etc., I'll
always be speaking relative to the time associated with a chance distribution.
For example, a ‘past event’ will be an event that occurs at a time before the
time associated with the relevant chance distribution.?

In his original paper, Lewis made two further claims about chance. The first
is that the past is no longer chancy; i.e., that a chance distribution assigns only
trivial chances (0 or 1) to events in its past. The second is that determinism
and chance are incompatible. Both of these claims can be derived from the
Lewisian theories given some additional assumptions. The first requires that
the arguments of a chance distribution are admissible. The second requires that
anything entailed by the laws must be assigned a chance of 1.* Proponents of

ILewis’s switch was motivated by worries about the compatibility of the Principal Principle and
Humean supervenience; see Lewis (1999). I discuss these matters more in appendix A. Although
Lewis’s (1999) New Principle and Hall’s (1994) New Principle are often spoken of interchangeably, I
take them to be distinct. The comments I make apply to the former.

2See Lewis (2004), p. 14.

3We can say an event occurs at ¢ iff it’s entailed by a history up to ¢ and is not entailed by any
history up to ¢’ < t.

4These two derivations are provided in Appendix B. Note that neither assumption entails the
other. The first assumption, that a distribution’s arguments are admissible, entails that anything
the chance laws entail is assigned a chance of 1. But the complete laws at a world might entail more
than the chance laws. The second assumption, that anything the laws entail is assigned a chance
of 1, does entail that anything the chance laws entail is assigned a chance of 1. But the second
assumption does not entail (as the first one does) that, for example, whatever is entailed by the
historical argument of a distribution must be assigned a chance of 1.



the Lewisian accounts have generally rejected these assumptions due to wor-
ries regarding the compatibility of chance and Humeanism. Instead, they have
adopted these claims as further, independent assumptions about the nature of
chance.

Despite their popularity, there are several problems with the Lewisian the-
ories of chance. First, they are time asymmetric, and these asymmetries are
incompatible with some of the chance theories considered in physics. Second,
they are incompatible with statistical mechanical chances. Third, the content
of Lewis’s Principal Principle depends on how admissibility is cashed out, but
there is no agreement as to what a precise characterization of admissible evi-
dence should be.

In this paper I will make three proposals regarding a theory of chance. The
first two proposals address these three problems by amending the problematic
parts of the Lewisian theories.® The third proposal offers an account of some of
the common features shared by the chance theories of physics. Since the third
proposal isn’t needed to resolve any particular problems, it’s less motivated than
the first two proposals. The three proposals are independent, however, so those
wary of the third proposal can adopt the first two by themselves.

The rest of this paper will proceed as follows. In the second section I motivate
the first proposal in two steps. In the first part of the second section I'll look
at the temporal asymmetries of the Lewisian accounts, and show how they
conflict with some of the chance theories considered in physics. In the second
part of the second section I'll show how the Lewisian accounts are incompatible
with statistical mechanical chances, and argue that the only tenable account
of statistical mechanical probabilities on offer is that they’re chances. In the
third section I motivate the second proposal. I'll look at whether Lewis’s chance-
credence principle needs an admissibility clause, and argue that we should adopt
a chance-credence principle which does not make use of admissibility. In the
fourth section I'll present the third proposal, and apply it to two of our physical
theories. In the fifth section I'll present two problems that remain, and sketch
some possible responses. I'll conclude in the sixth section.

Much of the discussion of the Lewisian accounts of chance has focused on
the compatibility of chance and Humean supervenience. The work done in this
paper largely crosscuts these issues. Unfortunately, the issue of Humeanism so
pervades the literature on chance that it is impossible to avoid it completely.
In this paper I attempt the following compromise: in the body of the paper I
sidestep issues regarding Humeanism, and I leave a discussion of the (lack of)
implications my proposals have on Humeanism to an appendix.

5Ned Hall has independently proposed that we get rid of admissibility in a recent paper; see Hall
(2004). Frank Arntzenius has independently proposed revisions similar to my first two proposals in
an unpublished paper.



2 The First Proposal

2.1 Time Asymmetry

There are two temporal asymmetries in the Lewisian theories of chance. First,
there is the assumption that the second argument of chance distributions are
histories. Second, there is the claim that the past is no longer chancy. These
asymmetries make the Lewisian accounts incompatible with some of the chance
theories considered in physics, such as the Aharonov, Bergmann and Lebowitz
(ABL) theory of quantum mechanics and classical statistical mechanics.®

Lewis recognized that the temporal asymmetry of his account was a deficit:
“Any serious physicist, if he remains at least open-minded both about the shape
of the cosmos and about the existence of chance processes, ought to do better.””
I propose to do better: I propose to allow the second argument of chance distri-
butions to be propositions other than histories up to a time, and to reject the
claim that the past is no longer chancy.

We will see how the asymmetries of the Lewisian accounts conflict with
classical statistical mechanics in the next subsection. In this subsection we will
look at how these asymmetries rule out the ABL theory.

In standard theories of quantum mechanics the chance of a measurement
result at ¢; is determined by the state of the wave function prior to the mea-
surement, the prior wave function being pre-selected by an earlier measurement
at tg. According to the ABL theory, these chances are incomplete. On the ABL
theory, the chance of a given outcome at t; is determined by the wave functions
prior and posterior to the t; measurement, the prior and posterior wave func-
tions being pre and post-selected by an earlier measurement at fy and a later
measurement at t2.8

Say the ABL theory assigns non-trivial chances to the possible outcomes of
a measurement at t;. On the Lewisian accounts the arguments of this chance
distribution will be the ABL laws and a history up to a time. But a history up to
what time? The ABL laws and this history must entail the chance distribution
on the Lewisian accounts. Since the distribution depends on the results of the
earlier (tp) and later (f2) measurements, histories up to ¢y or ¢; aren’t enough
to entail the distribution. To obtain the desired distribution the history must
run up to ts. But on the Lewisian accounts the past is no longer chancy:
events which occur before the time associated with the chance distribution—
the time the associated history runs up to—receive trivial chances. If the second
argument of the chance distribution is a history up to to, then the distribution
must assign trivial chances to the possible outcomes of the t; measurement.
Since the ABL theory assigns a non-trivial chance to the outcome of the t;

6 Aharonov, Bergmann and Lebowitz (1964), Aharonov and Vaidman (1991). Note that their
theory is not a complete theory; it doesn’t include a particular solution to the measurement problem,
for example.

"Lewis (1986), p. 94

8More generally, the ABL theory assigns chances given pre-measurements, given post-
measurements, and given pre and post-measurements. In this context, I restrict myself to the latter
chances.



measurement, the Lewisian can’t accomodate the chances of the ABL theory.

We can hold on to these asymmetries and reject theories like the ABL the-
ory, but I think we should be wary of outlawing proposed physical theories
on contentious metaphysical grounds. I think a better option is to reject the
asymmetric components of the Lewisian theories of chance.

Note that once we reject the Lewisian account of the arguments of chance
distributions, it’s hard to make sense of the claim that the past isn’t chancy. The
claim that the past is no longer chancy presupposes that chance distributions
can be associated with a time, relative to which some events are in the past.
On the Lewisian accounts chance distributions can be associated with a time
because they’re functions of chance laws and histories, and chance laws and
histories can be picked out by a world and a time. But once we allow the
second argument to be propositions other than histories up to a time, we’re no
longer guaranteed that a world and time will pick out what the second argument
is. So once we reject the Lewisian account of the arguments of chance we’re no
longer guaranteed a way to associate a time with chance distributions, and a
way to make sense of the claim that the past is no longer chancy.

2.2 Statistical Mechanics

Statistical mechanical theories also pose a problem for the Lewisian theories of
chance. I'll draw out some of these problems by looking at a particular statistical
mechanical theory, classical statistical mechanics. Since it will be useful to have
a concrete theory to work with in the rest of this paper, I will sketch the theory
in some detail. For simplicity, I will ignore electrodynamics and assume that all
masses are point particles.

Central to statistical mechanics is the notion of a state space. A state space
is a space of possible states of the world at a time. All of the possibilities in
this space are alike with regards to certain static properties, such as the spa-
tiotemporal dimensions of the system, the number of particles, and the masses
of these particles. The individual elements of this space are picked out by certain
dynamic properties, the locations and momenta of the particles.”

In classical statistical mechanics these static and dynamic properties deter-
mine the state of the world at a time. Classical mechanics is deterministic: the
state of the world at a time determines the history of the system.!? So in clas-

9In versions of classical statistical mechanics like that proposed by Albert (2000), one of the
statistical mechanical laws is a constraint on the initial entropy of the universe. On such theories
the space of classical statistical mechanical worlds (and the state spaces that partition it) will only
contain worlds whose initial macroconditions are of a suitably low entropy.

Earman (1986b), Xia (1992), Norton (2003) and others have offered counterexamples to the claim
that classical mechanics is deterministic. These results have been by and large ignored by the physics
literature on statistical mechanics, and I will follow suit. Two comments are in order, however. First,
these cases spell trouble for the standard distinction between dynamic and static properties employed
by classical statistical mechanics. For example, in some of these cases new particles will unpredictably
zoom in from infinity. Since this leads to a change in the number of particles in the system, it would
seem the number of particles cannot be properly understood as a static property. Second, although
no proof of this exists, prevailing opinion is that these indeterministic cases form a set of Lebesgue
measure zero. If so, we can ignore these cases in this context, since their exclusion will have no effect



sical statistical mechanics each point in the state space corresponds to a unique
history, i.e., to a possible world. We can therefore take a state space to be a
set of possible worlds, and the state space and its subsets to be propositions.
The state spaces form a partition of the classical statistical mechanical worlds,
dividing the classical statistical mechanical worlds into groups of worlds that
share the relevant static properties.

Given a state space, we can provide the classical statistical mechanical prob-
abilities. Let m be the Liouville measure, the Lebesgue measure over the canon-
ical representation of the state space, and let K be a subset of the state space.
The classical statistical mechanical probability of A relative to K is mr(f?([){)

Note that statistical mechanical probabilities aren’t defined for all object
propositions A and relative propositions K. Given the above formula, two
conditions must be satisfied for the chance of A relative to K to be defined.
Both m(ANK) and m(K) must be defined, and the ratio of m(ANK) to m(K)
must be defined.

Despite the superficial similarity, the statistical mechanical probability of
A relative to K is not a conditional probability. If it were, we could define
the probability of A ‘simpliciter’ as m(A), and retrieve the formula for the
probability of A relative to K using the definition of conditional probability.
The reason we can’t do this is that the Liouville measure m is not a probability
measure; unlike probability measures, there is no upper bound on the value a
Liouville measure can take. We only obtain a probability distribution after we
take the ratio of m(A N K) and m(K); since m(AN K) < m(K), the ratio of
the two terms will always fall in the range of acceptable values, [0,1].

Now, how should we understand statistical mechanical probabilities? A sat-
isfactory account must preserve their explanatory power and normative force.
For example, classical mechanics has solutions where ice cubes grow larger when
placed in hot water, as well as solutions where ice cubes melt when placed in
hot water. Why is it that we only see ice cubes melt when placed in hot wa-
ter? Statistical mechanics provides the standard explanation. When we look
at systems of cups of hot water with ice cubes in them, we find that according
to the Liouville measure the vast majority of them quickly develop into cups
of lukewarm water, and only a few develop into cups of even hotter water with
larger ice cubes. The explanation for why we always see ice cubes melt, then,
is that it’s overwhelmingly likely that they’ll melt instead of grow, given the
statistical mechanical probabilities. In addition to explanatory power, we take
statistical mechanical probabilities to have normative force: it seems irrational
to believe that ice cubes are likely to grow when placed in hot water.

The natural account of statistical mechanical probabilities is to take them
to be chances. On this account, statistical mechanical probabilities have the
explanatory power they do because they’re chances; they represent lawful, em-
pirical and contingent features of the world. Likewise, statistical mechanical
probabilities have normative force because they’re chances, and chances norma-
tively constrain our credences via something like the Principal Principle.

But statistical mechanical probabilities cannot be chances on the Lewisian

on the probabilities classical statistical mechanics assigns.



accounts. First, classical statistical mechanical chances are compatible with
classical mechanics, a deterministic theory. But on the Lewisian accounts de-
terminism and chance are incompatible.

Second, classical statistical mechanics is time symmetric like the ABL theory,
and is incompatible with the Lewisian accounts for similar reasons. Consider
two propositions, A and K, where A is the proposition that the temperature
of the world at ¢1 is 17, and K is the proposition that the temperature of the
world at ty and to is Ty and T5. Consider the chance of A relative to K. On the
Lewisian accounts the arguments of the relevant chance distribution will be the
classical statistical mechanical laws and a history up to a time. But a history
up to what time? The statistical mechanical laws and this history entail the
chance distribution on the Lewisian accounts. The distribution depends on the
relative state K, and a history must run up to t2 to entail K, so we need a
history up to ts to obtain the desired distribution. Since the past is no longer
chancy, the chance of any proposition entailed by the history up to to, including
A, must be trivial. But the statistical mechanical chance of A is generally not
trivial, so the Lewisian account cannot accommodate such chances.

Third, the Lewisian restriction of the second argument of chance distribu-
tions to histories is too narrow to accommodate statistical mechanical chances.
Consider the case just given, where A is a proposition about the temperature
of the world at t; and K a proposition about the temperature of the world at ¢,
and to. Consider also a third proposition K’, that the temperature of the world
at tg, t1.5 and to is Ty, T1.5 and Th, respectively. On the Lewisian accounts it
looks like the chance of A relative to K and the chance of A relative to K’ will
have the same arguments: the statistical mechanical laws and a history up to t».
But for many values of T} 5, statistical mechanics will assign different chances
to A relative to K and A relative to K.

It’s not surprising that the Lewisian account of the arguments of chance
distributions is at odds with statistical mechanical chances. It’s natural to take
classical statistical mechanics T and the relative state K to be the arguments
of statistical mechanical distributions, since T and K alone entail these distri-
butions. But taking 7" and K to be the arguments conflicts with the Lewisian
accounts, since while K can be a history up to a time, often it is not.

So the Lewisian accounts are committed to denying that statistical mechan-
ical probabilities are chances. Instead, they take them to be subjective values
of some kind. There’s a long tradition of treating statistical mechanical proba-
bilities this way, taking them to represent the degrees of belief a rational agent
should have in a particular state of ignorance. Focusing on classical statistical
mechanics, it proceeds along the following lines.

Start with the intuition that some version of the Indifference Principle—the
principle that you should have equal credences in possibilities you're epistemi-
cally ‘indifferent’ between—should be a constraint on the beliefs of rational be-
ings. There are generally too many possibilities in statistical mechanical cases—
an uncountably infinite number—to apply the standard Indifference Principle
to. But given the intuition behind indifference, it seems we can adopt a modified
version of the Indifference Principle: when faced with a continuum number of
possibilities that you’re epistemically indifferent between, your degrees of belief



in these possibilities should match the values assigned to them by an appro-
priately uniform measure. The properties of the Lebesgue measure make it a
natural candidate for this measure. Granting this, it seems the statistical me-
chanical probabilities fall out of principles of rationality: if you only know K
about the world, then your credence that the world is in some set of states
A should be equal to the proportion (according to the Lebesgue measure) of
K states that are A states. Thus it seems we recover the normative force of
statistical mechanical probabilities without having to posit chances.

However, as Albert (2001), Loewer (2000), and others have argued, this ac-
count of statistical mechanical probabilities is untenable. First, the account
suffers from a technical problem. The representation of the state space deter-
mines the Lebesgue measure of a set of states, and there are an infinite number
of ways to represent the state space. So there are an infinite number of ways
to ‘uniformly’ assign credences to the space of possibilities. Classical statisti-
cal mechanics uses the Lebesgue measure over the canonical representation of
the state space, the Liouville measure, but no compelling argument has been
given for why this is the right way to represent the space of possibilities when
we're trying to quantify our ignorance. So it doesn’t seem that we can recover
statistical mechanical probabilities from intuitions regarding indifference after
all.

Second, the kinds of values this account provides can’t play the explanatory
role we take statistical mechanical probabilities to play. On this account sta-
tistical mechanical probabilities don’t come from the laws. Rather, they're a
priori necessary facts about what it’s rational to believe when in a certain state
of ignorance. But if these facts are a priori and necessary, they’re incapable of
explaining a posteriori and contingent facts about our world, like why ice cubes
usually melt when placed in hot water. Furthermore, as a purely normative
principle, the Indifference Principle isn’t the kind of thing that could explain
the success of statistical mechanics. Grant that a priori it’s rational to believe
that ice cubes will usually melt when placed in hot water: that does nothing to
explain why in fact ice cubes do usually melt when placed in hot water.

The indifference account of statistical mechanical probabilities is untenable.
The only viable account of statistical mechanical probabilities on offer is that
they are chances, and the Lewisian theories of chance are incompatible with sta-
tistical mechanical chances. I propose to amend the Lewisian theories such that
they are compatible with physical theories like classical statistical mechanics
and the ABL theory of quantum mechanics.

The first proposal is to allow the second argument of chance distributions
to be propositions other than histories, and to reject the two additional claims
about chance the Lewisian theories make: that the past is no longer chancy, and
that determinism and chance are incompatible. The two additional claims of
the Lewisian theories stipulate properties of chance distributions that are incom-
patible with time symmetric and deterministic chances; by rejecting these two
additional claims, we eliminate these stipulated incompatibilities. By allowing
the second argument to be propositions other than histories, we can incorporate
the time symmetric arguments needed for theories like the ABL theory and the
more varied arguments needed for statistical mechanical theories.



3 The Second Proposal

On the Lewisian theories, the relation that should hold between credence and
chance is captured by the Principal Principle. Roughly, the Principal Princi-
ple claims that your credences should accord with what you think the chances
are unless you're in possession of inadmissible evidence. The content of this
principle depends on how admissibility is cashed out. If nothing is admissible
the principle is vacuous, if everything is admissible the principle is inconsis-
tent. Unfortunately, there is no agreement as to what a precise characterization
of admissible evidence should be. So the content of the Principal Principle is
unclear.

If a satisfactory chance-credence principle requires something like an admis-
sibility clause, there’s a pressing need to figure out what admissibility is. But
it’s not clear that a satisfactory chance-credence principle does require an ad-
missibility clause. Let’s try to construct such a principle, and look to see why
admissibility is needed.

Intuitively, a subject who knows what the chances are should have credences
which line up with those chances. Let G stand for the arguments of a chance
distribution. G entails the chances it’s the argument of, so a subject whose
total evidence is GG should have credences that line up with the chances that G
entails. If we let ‘chg(-)’ stand for the chance distribution entailed by G, and
let ‘crg(-)’ stand for the credences of a subject whose total evidence is G, we
can express this as

crg(A) = chg(A), if chg(A) is defined. (1)

The added clause is needed because for some arguments and object propositions
cha(A) won'’t be defined. On the Lewisian accounts, for example, chg(A) won'’t
be defined if G isn’t a complete chance theory and a history up to a time.

If we assume Bayesianism, we can translate (1) into a constraint on reason-
able initial credence functions, or hypothetical priors. (Hypothetical priors are
‘prior’ because they represent the subject’s credences prior to the receipt of any
evidence, and ‘hypothetical’ because it is unlikely that one ever is in such a
state.) Bayesianism states that a subject whose total evidence is G should have
credences equal to their hypothetical priors conditional on G. Letting ‘hp(-)’
stand for the hypothetical priors of a subject, we can express Bayesianism as

crq(A) = hp(A|G), if hp(A|G) is defined. (2)

The added clause is needed here because hp(A|G) won’t be defined if hp(G) = 0.
Using (2), we can present (1) as the following chance-credence principle:'!

hp(A|G) = chg(A), if hp(A|G) and chg(A) are defined. (3)

UStrictly speaking, (3) is not a reformulation of (1), since (3) is slightly weaker than (1). (3) will
fail to apply when hp(A|G) is undefined, whereas (1) does not have this limitation. In section five
we will see that problems with the standard definition of conditional probability will motivate the
adoption of primitive conditional probabilities. With this adoption hp(A|G) will always be defined,
and (1) and (3) will be equivalent.



This is similar to the rule that Lewis proposes, but without a clause regarding
admissibility. If we add such a clause, we get the following principle:

hp(A|GE) = chg(A), if GE is admissible relative to chg(A),  (4)
and hp(A|G) and chg(A) are defined.

This is a version of Lewis’s Principal Principle.

Why is (4) preferable to (3)? Le., why is (3) inadequate without an admissi-
bility clause? If we assume that the arguments of a distribution are admissible,
as Lewis originally did, then (4) is a strictly stronger principle than (3). We
get (3) as a special case of (4) when F is a tautology. So if we're worried about
(3), we should be worried that (3) isn’t strong enough without an admissibility
clause: it doesn’t give us all the relations between chance and credence that we
intuitively think should hold.

(3) and (4) by themselves don’t tell us anything about our current credences
if we have evidence. For (3) or (4) to have a bearing on our current credences,
we need to employ a rule which relates our hypothetical priors to our credences,
like Bayesianism. So let’s assume that Bayesianism holds.

In the first section, I motivated the introduction of admissibility with the
following story:

“Ceteris paribus it seems your credences should agree with your
chances. If you believe that a coin has a .5 chance of coming up
heads, then all else being equal you should have a .5 credence that
the coin will come up heads. But you don’t always want your cre-
dences to accord with the chances. Suppose you are in possession of
a crystal ball which reliably depicts the future, and the crystal ball
shows you that heads will come up. Then your credence in the coin
coming up heads should be near 1, not .5. So it seems you should
only let the chances guide your credences in an outcome when you’re
not possession of illicit or inadmissible evidence.”

Now, it’s true that you don’t always want your credences to accord with the
same chances. If your total evidence is G, then your credence in heads should
line up with chg(H). If a crystal ball then gives you some new evidence F,
and chgg(H) # chg(H), then your credences should no longer line up with
chg(H). But this doesn’t raise any problems for (3). (3) only requires that
your credences line up with the chances when your total evidence is the same
as the arguments of those chances. As your evidence changes, so do the chances
(3) requires your credences to line up with.

But we might worry about cases where our total evidence doesn’t equal the
arguments of any chance distribution. On the Lewisian picture of the arguments
of chance distributions, for example, the crystal ball’s evidence might be such
as to leave us with a chance theory and a partial history up to a time as our
total evidence E. Since E isn’t the argument of a chance distribution, it’s not
clear what constraints (3) will place on our credences. With the worry that (3)
is too weak in mind, it’s natural to worry that (3) doesn’t tell us enough about
what our credences should be in these cases.

10



If we assume Bayesianism, though, then (3) is strong enough to capture all
of the relations between chance and credence that we think should hold. We can
divide our uncertainty into two kinds, uncertainty about the outcome of chance
events and uncertainty about other things. We should only expect chances to
have a bearing on our uncertainty about the outcome of chance events. But
once we eliminate our uncertainty about other things, (3) and Bayesianism are
enough to completely fix our credences in the outcomes of chance events. So no
admissibility clause is needed to strengthen (3).

To see that (3) and Bayesianism fix our credences, let’s look at a simple case.
Assume with the Lewisian that chance distributions are functions of chance laws
and histories. Consider a world where there are only three chance events, three
fair coin flips, that take place at times t; through t3, respectively. Consider a
subject at this world who knows the laws T" and the history up to tg, Hy. Let T
and Hy entail everything about the world except how the coin tosses come up,
so the subject knows everything about the world except the outcome of these
chance events.

In this case the subject knows she’s in one of 8 possible worlds. (3) and
Bayesianism entail that her credence in each world should be %. If the subject
learns the history up to t1, Hip, then she’ll be left with 4 worlds, and (3) and
Bayesianism will entail that her credence in each of these remaining worlds
should be i. Now consider the case we were worried about: what if she gets
evidence such that her total evidence E consists of the laws and a partial history
up to ¢17

We know this new evidence will leave her with at least 4 worlds. Precisely
how many and which worlds are left will depend on what her new evidence is.
But once we’re told what the new evidence is, it’s trivial to determine what her
new credences should be. She should set her credence in the worlds incompatible
with the evidence to 0, and normalize her credences in the rest. That is, like
any good Bayesian she should conditionalize.

Call (3) the Basic Principle. The second proposal is to discard the admissibil-
ity clause that Lewis built into the Principal Principle, and to adopt something
like the Basic Principle instead.'? An admissibility free chance-credence prin-
ciple like the Basic Principle and an updating rule like Bayesianism tell us all
we need to know about the relation between credence and chance. In section
four I will use the Basic Principle to show how our credences are constrained
by the chances of some of our actual chance theories. I will sketch the chances
of two of the complete chance theories considered in physics, classical statistical
mechanics and statistical Bohmian mechanics, and then sketch the acceptable
priors of a subject with respect to these theories.

12 Although admissibility is no longer needed to decipher the relation between credence and chance,
admissibility-free principles like the Basic Principle provide us with the means to provide a precise
characterization of what admissibility is. For example, we can characterize ‘admissible evidence’ as
used in (4) as follows: GE is admissible relative to chg(A) iff the priors (4) would then assign are
the same as the priors recommended by (3); i.e., hp(A|GE) = hp(A|G). With a characterization of
admissibility in hand, the Principal Principle is no longer vague. But since we only eliminate this
vagueness by using the Basic Principle, the Basic Principle is the more fundamental of the two. For

another way of cashing out admissibility, see Hall (2004).
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4 The Third Proposal

The third proposal is an account of the arguments and objects for which chance
distributions are defined, and of their relation to the values assigned by chance
theories. Unlike the first two proposals, the third proposal is not motivated by
any particular problems. As such, it is more tentative than the first two. In
support of the third proposal, I offer the following: it is compatible with the
chance theories considered in physics, and, if true, it explains several similarities
between the chance theories that physics considers that would otherwise be
accidental.

The three proposals are largely independent, so those who reject the third
proposal can still accept the first two. In any case, the third proposal provides a
useful framework for working with the chance theories of physics, and a fortiriori
for figuring out the constraints that these theories place on our credences. If all
three of the proposals are correct, we can say quite a lot about chance, chance
theories, and the chance-credence relation. I do not claim, however, that this
provides a complete theory of chance. Among other things, the proposals leave
two issues unresolved; issues which come into the spotlight once we look closely
at the chance theories of physics. In the next section I will briefly present these
issues, and sketch some possible responses.

The third proposal is that every chance theory T has the following struc-
ture. First, the worlds of the theory can be partitioned into coarse sets. The
coarse sets are the broadest regions of possibility to which the theory assigns
well defined chances. In classical statistical mechanics the coarse sets are the
state spaces; i.e., sets of classical statistical mechanical worlds which share the
relevant static properties.

Second, the coarse sets can be partitioned into fine sets. The fine sets provide
the smallest units of possibility to which the theory assigns well defined chances.
In classical statistical mechanics the fine sets are the points of the state spaces;
i.e., individual possible worlds.

Third, each coarse set is associated with a countably additive measure. Each
measure is defined on an algebra S over the associated coarse set C, where S
includes all of the fine sets of C but no proper subsets of these sets except the
empty set.'® These measures encode the chances of the theory, although they
themselves need not be probability measures. In classical statistical mechanics
these measures are the Liouville measures over the state spaces.

Given this structure, I propose that the chances of the theory T are as

follows: for any propositions A and K, either (i) chrg(A4) = mT(rfé?(I)(), where

m is the measure T associates with a coarse set C that contains K, or (ii)
chrk (A) is undefined, if the above prescription fails to pick out a unique well-
defined value. This entails that chrx (A) is defined iff (a) T"is a complete chance
theory and K is a subset of a coarse set C' of T, (b) the ratio of m(A N K) to
m(K) is defined, and (¢) AN K and K are elements of S, the algebra over

13A countably additive measure over (C, S) is a function m : S — [0, co], where S is a sigma algebra
over C, such that m() = 0, and such that if s; € S are disjoint, then m(U2,s;) = > 2 m(s;). A
sigma algebra S over C'is a non-empty family of subsets of C' which is closed under complementation
and countable unions.
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which m is defined. As we saw in section two, this lines up with the chances
that classical statistical mechanics assigns and the conditions under which the
classical statistical mechanics chances are defined.

With this picture of chance theories in hand, let’s turn to the question of how
our priors should be constrained by the chances according to an admissibility
free chance-credence rule like the Basic Principle. There may be a number of
objective constraints on one’s priors, but in this context we’re only interested
in those imposed by the chances. So let us assume a version of subjective
Bayesianism on which the Basic Principle is the only objective constraint on
our priors.

Given the structure outlined above, we can divide up the space of possible
worlds into smaller and smaller regions by applying finer and finer partitions.
We can partition the space of possible worlds into chance theories T;, partition
the chance theories into coarse sets C;, partition the coarse sets into fine sets
Fj,, and partition the fine sets into individual worlds W;.'"* Now consider an
arbitrary proposition, A. We know that if some sets X; form a partition of A,
we can express hp(A) as

hp(A) =D hp(A A X)) th D)hp(A1X)) (5)

By applying (5) repeatedly for each of the above partitions, we can express
hp(A) as

hp(A) = th ) hp(A[T;)
= th )hp(C;|Ti)hp(A|T;Cy)

= th )V hp(Ci|Ty)hp(Fy| T;C5)hp(A|TiC; Fy,)

(N

= Y hp(T)hp(C5|T) hp(F|T,C) hp(Wi| T,.C Fy ) p(A| T, C Fi W)
i,5,k,

= > hp(Ty)hp(C5|Ty) hp(Fy | Cy) hp(Wi| ) hp( A W) (6)
i,k

So we can determine the value of hp(A) by figuring out the values of the five
sets of terms in (6).1°

The first set of terms are of the form hp(7;), and represent our prior in a
chance theory. Since we need to assume that a particular chance theory holds
before we can get any chances, how we should divide our priors among chance
theories is beyond the scope of chance. So our priors in the first set of terms

14What about theories without chances? We can take these to all correspond to some dummy
chance theory Ty with only one coarse set and one fine set, and divide the priors assigned to that
“theory” among individual possible worlds directly.

15T'm implicitly assuming that the indices 4, j, k, [ range over countably infinite members at most.
Strictly speaking, this assumption should be discarded and these sums should be replaced by integrals
over the appropriate probability densities.
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will be determined by subjective considerations. The second set of terms are
of the form hp(C;|T;), and represent our prior in a coarse set given a chance
theory. Since we need to fix on a coarse set before a theory can assign chances,
how we should divide our prior in a chance theory among its coarse sets is also
beyond the scope of chance. So our priors in the second set of terms will also
be determined subjectively.

The third set of terms are of the form hp(Fj|C;), and represent our prior
in a fine set given a coarse set. This is the regime where chances come in. If
hp(Cj) > 0 and chr, ¢;(Fy) is defined, then the Basic Principle applies and
hp(F|C;) = chr,c;(Fy). So our priors in these terms will generally be fixed
by the chances. If hp(Cj) = 0 or chr, c,(F})) is not defined, then the Basic
Principle won’t apply. To the extent to which the other constraints the chances
have imposed and your previous prior assignments leave it open, your prior in
hp(Fy|Cj) will be determined subjectively.

The fourth set of terms are of the form hp(W;|F}), and represent our priors
in an individual world given a fine set. Since the fine sets are the smallest units
to which chances are assigned, once we’ve fixed on a fine set the chances have
nothing more to say. So as with the first two sets of terms, our priors in the
fourth set of terms will be determined subjectively. The fifth set of terms are
of the form hp(A|W;), and represent our priors in A given an individual world.
These are trivial to determine. If W; € A then hp(A|W;) = 1, if W; ¢ A then
hp(A[W,) = 0.

Given the third proposal, it’s clear where and to what extent the chances
constrain our priors. Likewise, it’s clear how to determine what our priors are
in the worlds of a given chance theory. We subjectively determine our priors in
the chance theory and its coarse sets, align our priors in the fine sets of these
coarse sets using the chances, and then subjectively determine our priors in in-
dividual possible worlds. So to determine our priors in the classical statistical
mechanical worlds, we determine our subjective prior in classical statistical me-
chanics, divide this subjectively among the state spaces, and divide our prior in
each state space among its points in accordance with the statistical mechanical
chances. Since the points of state space are individual possible worlds, we don’t
need to divide our priors any further.

We’ve seen how the third proposal works for classical statistical mechanics.
Let’s look at how the proposal works for a different chance theory, statistical
Bohmian mechanics, the complete chance theory encompassing Bohmian me-
chanics and quantum statistical mechanics. Unlike classical statistical mechan-
ics, the chances of statistical Bohmian mechanics are generally segregated into
the chances of Bohmian mechanics and the chances of quantum statistical me-
chanics. To apply the third proposal to statistical Bohmian mechanics we need
to glue the chances of Bohmian mechanics and quantum statistical mechanics
together, and fit them into the framework given above.

Fortunately, this framework makes this easy to do, since it can be applied to
Bohmian mechanics and quantum statistical mechanics independently. It then
becomes clear how to merge the two theories into a single theory in the above
framework.

I will first give a brief description of quantum statistical mechanics and
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Bohmian mechanics. To avoid a lengthy discussion of these theories, I won’t
present them in as much detail as I presented classical statistical mechanics.
Instead, I will simply give a gloss of their relevant features, and then sketch how
each fits into the above framework.

As with classical statistical mechanics, quantum statistical mechanics consid-
ers spaces of possibilities that share certain static properties, such as spatiotem-
poral dimensions of the system, the number of particles, etc. The elements
of these spaces are picked out by certain dynamic properties, in this case the
property of having the same wave function at a given time. Quantum statistical
mechanics assigns a canonical measure over these possibilities from which the
chances are derived.'6

Bohmian mechanics is an interpretation of quantum mechanics that adds
hidden variables to the formalism, in this case the positions of the particles. In
Bohmian mechanics a complete description of a system at a time is given by the
static properties considered above and the wave function and particle positions
of the system. Both the wavefunction and the particles evolve deterministically,
so a complete description of the system at a time fixes the history of the system.
Bohmian chances come in when we consider possibilities that have the same
wave function and relevant static properties but differ in particle positions.
Bohmian mechanics assigns a special measure over this space which determines
the chances.!”

The framework given above straightforwardly applies to each of these the-
ories. In quantum statistical mechanics the coarse sets are sets of possibilities
that share the relevant static properties, and its fine sets are the sets of pos-
sibilities with the same wave function. In Bohmian mechanics the coarse sets
are sets of possibilities that share the relevant static properties and have the
same wave function, and its fine sets are the sets of possibilities with the same
particle positions. Since the relevant static properties, wave function, and par-
ticle positions at a time determine the history of a system, these fine sets are
individual possible worlds.

Since the fine sets of quantum statistical mechanics are the coarse sets of
Bohmian mechanics, gluing the two theories together is simple. Let the coarse
sets of quantum statistical mechanics be the coarse sets of the combined theory,
and let the fine sets of Bohmian mechanics be the fine sets of the combined
theory. Then we get the appropriate measures for the combined theory, sta-
tistical Bohmian mechanics, by essentially taking the product of the quantum
statistical mechanical measures and the Bohmian mechanical measures.

With statistical Bohmian mechanics formulated in terms of the above frame-
work, we can sketch what our priors should be in the manner given above. First
we determine our subjective prior in statistical Bohmian mechanics, and divide
this subjectively among the coarse sets of the theory. Then we divide our prior

16In quantum statistical mechanics one generally works with probability density operators, not
probability measures over states, and the density operators underdetermine the probability measures
that could be used to justify it. But a satisfactory justification for the density matrix used in quantum
statistical mechanics can (and perhaps must) be obtained from a measure over states. For one way

to do this, see Tumulka and Zanghi (2003).
17See Berndl, Daumer, Durr, Goldstein and Zanghi (1995).
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in each coarse set among its fine sets in accordance with the chances. Since in
this case the fine sets are individual possible worlds, we don’t need to divide
our priors any further.

Although we’ve considered the combination of quantum statistical mechanics
and Bohmian mechanics, a similar procedure can be used to obtain the complete
chance theory of quantum statistical mechanics and other quantum mechanical
interpretations.'® For genuinely indeterministic interpretations, for example, we
can obtain the chances of histories that share the relevant static properties by
essentially taking the product of the quantum statistical mechanical chances for
their initial wave functions and the stochastic chances of their histories given
those initial wave functions.

5 Two Problems

These three proposals leave a number of issues unresolved. Two of these is-
sues become particularly urgent when we look closely at the chance theories of
physics. In this section I will raise these two issues, and sketch some possible
responses.

5.1 The first problem

The first problem concerns the tie between credence and chance. Assume that,
like Lewis, we formulate our chance-credence principle in terms of hypothetical
priors. The problem then is that our priors in worlds where chance theories like
classical statistical mechanics only end up being constrained by trivial chances.
That is, the values of the non-trivial statistical mechanical chances are epistem-
ically irrelevant, since they have no effect on our priors.

A rigorous derivation of this result is given in Appendix B.3, but the fol-
lowing is a rough sketch of how the problem arises. If the relative state K of
a statistical mechanical chance is of infinite measure, then that chance will be
trivial or undefined.'® So the relative state K of a non-trivial chance must be
of finite measure. Now, any prior you have in a classical mechanical state space
is required by the chances to be spread uniformly over that space in accordance
with the Liouville measure. Since the state spaces of classical statistical me-
chanics are of infinite measure, any finite measure region of such a space will
be assigned a 0 prior.2? So the relative state K of a non-trivial chance will be

8By this I mean complete quantum mechanical interpretations, not interpretations whose content
hangs on vague terminology or which are otherwise imprecise. I take it that I am under no obligation

to provide a precise account of the chances of chance theories which are not themselves precise.

On some quantum mechanical interpretations the status of quantum statistical mechanics changes
to the extent that a procedure for gluing quantum mechanics to quantum statistical mechanics isn’t
needed. For example, Albert (2001) has argued that if we adopt the GRW interpretation of quantum

mechanics an additional statistical theory isn’t needed to explain thermodynamic phenomena.
m assuming the extended real number line and the standard extension of the arithmetical
operators over it; in particular, that == = 0 if z is finite, and 2 and § are undefined.

20There is one state space of finite measure, the trivial state space of a system with no particles.

But since the chances associated with this space are trivial, we can safely ignore it.
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assigned a 0 prior. But the Basic Principle only applies if one’s prior in the argu-
ments T'K of the chance distribution are non-zero, since otherwise hp(A|TK) is
undefined. Since one’s prior in the relative state K of any non-trivial chance will
be 0, it follows that the Basic Principle never applies to non-trivial statistical
mechanical chances.

We saw the source of the problem in section two. The problem arises be-
cause chance-credence principles like (3) and (4) attempt to equate statistical
mechanical chances with conditional priors. But as we saw in section two, we
can’t equate the statistical mechanical chance of A relative to K with a condi-
tional probability. To do so would require us to make sense of the probability
of A simpliciter, where the probability of A simpliciter is set equal to the Li-
ouville measure of A. But the Liouville measure is not a probability measure,
since there is no upper bound to the values it can assign. So these values gener-
ally won’t make sense as probabilities. The clauses in (3) and (4) that require
hp(A|TK) and chri(A) to be defined prevent contradictions by severing the
chance-credence connection in problematic cases. But after severing the prob-
lematic chance-credence connections we find that most statistical mechanical
chances don’t have an effect on our priors, and those that do are trivial.

One way to respond to this problem is to adopt a chance-credence princi-
ple like (1) that equates chances with credence-given-total-evidence. Since this
principle doesn’t attempt to equate chances with conditional probabilities, it
avoids the problems that (3) and (4) run into. But if, like many Bayesians, we
would like to encode the constraints on how we should update in our hypothet-
ical priors, then we would like our chance-credence principle to be formulated
in terms of priors.

A second way to respond to this problem is to adopt Alan Hajek’s (2003)
proposal to reject the standard definition of conditional probabilities. Hajek
proposes that we take conditional probabilities to be primitive, and understand
the formula p(A4|K) = 2 (];?;\(I)() to be a constraint on the values of conditional

probabilities when p(K) > 0. Adopting Hajek’s proposal avoids the problem
because hp(K) = 0 no longer entails that hp(A|TK) is undefined, and thus (3)
can still apply when chpg (A) is non-trivial. If we adopt this response, we can
keep something like (3) as our chance-credence principle.

5.2 The second problem

The second problem concerns how we understand the objects of chances. The
problem arises for chance theories whose models have certain physical symme-
tries. Consider an example of this problem in classical statistical mechanics.?!
Take a classical statistical mechanical state space S. Consider two disjoint re-
gions in S of finite and equal Liouville measure that are related by a symmetry
transformation. That is, the points in the first region map to the points in the
second by a rotation about a given axis, a spatial translation, or some other sym-
metry of the relevant systems. Let Ay and As be the first and second regions,

21Similar kinds of case have been raised in the context of the hole argument by Marc Wilson (1993),
Gordon Belot (1995) and Frank Arntzenius (manuscript).
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and let K be the union of these regions. What is the statistical mechanical
chance of A; relative to K7 Since the Liouville measure of Ay is half that of K,
the chance of A; relative to K should be % Likewise, the chance of K relative
to K should be 1.

Now, the objects of statistical mechanical chances are regions of state space.
We have been assuming that the objects of chances are de dicto propositions, i.e.,
sets of possible worlds. So it needs to be the case that we can take regions of state
space to correspond to sets of possible worlds. In situations with symmetries
like the one sketched above, it’s hard to see what set of worlds to associate with
a region of state space like A;. The worlds in A; are qualitatively identical to
the worlds in Ao, and qualitatively identical worlds are generally thought to be
numerically identical. So if we say A; contains a world if any of its state space
points correspond to that world, then it will contain the same worlds as Ay and
K. But if A7 and K are the same proposition, then the chance of A; relative
to K should be the same as the chance of K relative to K, which it is not.
Alternatively, if we say A; contains a world iff it contains all of the state space
points that correspond to that world, then A; will contain no worlds. But if A;
is the empty set, then it follows from the probability axioms that chyi (A1) = 0,
which it does not.??

The problem stems from the tension between three individually plausible
assumptions. The first assumption is that our chance theories successfully assign
the chances they seem to assign. The second assumption is that there are no
non-qualitative differences between possible worlds. This assumption addresses
the intuitive difficulty of making sense of qualitatively identical but distinct
possible worlds. The third assumption is that the objects of chances are de
dicto propositions. This captures the intuition that chances are about the way
the world could be. In these terms, the problem is that our chance theories
seem to assign chances which are hard to make sense of if we take the objects
of chance to be sets of possible worlds and take qualitatively identical worlds to
be identical.

A natural response to this problem is to reject one of these three assumptions.
One option is to reject the first assumption, and reject as unintelligible any ap-
parent chance assignments whose objects or arguments don’t neatly correspond
to sets of possible worlds. In the context of classical statistical mechanics, this
constraint will be that the object and relative state of a chance assignment must
contain either all of the state space points corresponding to a world or none of
them. In the above example, this gets around the problem of making sense of
the chance of A relative to K by denying that such chances are intelligible.

Another option is to reject the second assumption, and use haecceities to
individuate between qualitatively identical worlds. With haecceities we can dis-
tinguish between worlds related by symmetry transformations, and make sense
of chances with these worlds as objects. In the above example, this makes ana-
lyzing the chance of A; relative to K straightforward, since Ay and K represent
distinct and well-defined sets of possible worlds.

A third option is to reject the third assumption and take the objects of

22That chg(+) is a probablity function over possible worlds follows from the criteria laid out in
section four and the assumption that the objects of chances are sets of possible worlds.
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chances to be something other than (de dicto) propositions. On this approach
Aq would not correspond to a set of possible worlds; instead, the chance of A;
relative to K would be made intelligible by resorting to an alternative account of
the relevant space of possibilities. This option is more open ended then the first
two. In addition to providing a different account of the objects of chance, this
response requires a different chance-credence principle. Chance-credence princi-
ples like the Basic Principle and the Principal Principle equate values associated
with the same objects; i.e., equate the chance of a proposition with a credence
in a proposition. Changing the objects of chance from propositions to non-
propositions requires a modification of the chance-credence principle to account
for this. Either the chance-credence principle must be modified to account for
how chances in non-propositions link up with credences in propositions, or the
chance-credence principle must be modified so that chances in non-propositions
are linked up with credences in non-propositions, and an account of credence in
these non-propositions must be provided.

6 Conclusion

I have made three proposals regarding a theory of chance. The first proposal
amends the Lewisian theory to accommodate physical theories like statistical
mechanics and the ABL theory of quantum mechanics. I suggest we allow the
second argument of chance distributions to be propositions other than histories
up to a time, and I suggest that we reject the two further claims about chance
that the Lewisian accounts make: that the past is no longer chancy and that
determinism and chance are incompatible. The second proposal disambiguates
the relation between credence and chance. Here I suggest we adopt a chance-
credence principle without an admissibility clause, such as the Basic Principle.
The third proposal is a partial account of the structure of chance theories, and
the relation between the values of chance and the arguments and objects of
chance distributions. I suggest that each chance theory should be associated
with coarse sets, fine sets, and countably additive measures which determine
the theories’ chances.

Although I am optimistic that this makes some progress toward a complete
theory of chance, further work remains to be done. I will end by noting three
issues that require investigation. First, we need to clarify and analyze the
possible responses to the problems raised in section five. I have briefly sketched
some possible responses, but more needs to be done to see what other options are
available, and to evaluate which of these responses we should adopt. Second, I've
assumed that the objects of belief are de dicto propositions. Work may need to
be done to see if, and how, chance-credence rules like the Basic Principle need to
be modified when we consider de se and de re beliefs.?? Third, I have presented

28ee Lewis (1983). The Basic Principle can be used without modification in the context of de
se beliefs. The Basic Principle is then a constraint on a special subset of de se beliefs: beliefs in
centered propositions that contain all and only those centered worlds that correspond to some set of
possible worlds. Interestingly, recent literature on the sleeping beauty problem has looked, in part, at
the interaction between de se beliefs and the admissibility of chances (see Elga (2000), Lewis (2001),
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the third proposal as tentative because I think it possible, if not likely, that some
of the details of this proposal will be changed in a satisfactory final theory. One
possible modification, for example, would be an extension of the proposal to
accomodate non-standard probability spaces.?* It is an open question what
form the third proposal will eventually take.?
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Appendix

A. Humeanism

Much of the literature on chance has focused on the compatibility of a satisfac-
tory chance-credence principle and Humean supervenience. My three proposals
have little bearing on this issue, as I will show. The majority of this section will
look at the impact of adopting an admissibility-free chance-credence principle
on the debate over Humeanism. I will end with a quick note on the bearing of
my other two proposals on this debate.

Lewis (1994) and others have noted that at worlds where Humean superve-
nience holds, a chance theory T will generally assign a positive chance to —T.
Consider a simple Humean theory, frequentism. On this account, the chance of
a chance event is determined by (i) assigning a chance to outcomes equal to the
actual frequency (past and future) of these outcomes, while (ii) treating these
events as independent and identically distributed. Now consider a world where
frequentism is true, and where there are only two chance events, two coin flips,
one which comes up heads and one which comes up tails. Then the chance of
a coin flip coming up heads is %, and the chance of two coin flips coming up
heads is i. But if the coin came up heads twice, then frequentism would assign
chance 1 to the coin toss coming up heads. So it seems that Humean chances
undermine themselves: they assign a positive chance to an outcome on which
they wouldn’t be the correct chances. More generally, they assign a positive
chance to some other chance theory being true.

Given Lewis’s Principal Principle, this appears to lead to a contradiction:

0 < chyg(=T) = hp(=T|TH) = 0, (7)

where the middle equality is furnished by the Principal Principle. On further
inspection, this does not lead to a contradiction because Lewis’s Principal Prin-
ciple is equipped with an admissibility clause. The admissibilty clause can be
used to disrupt the middle equality of (7) and prevent a contradiction. But we
only avoid a contradiction by making so much inadmissible that the Principal
Principle is useless.

How does the Basic Principle fare? The Basic Principle leads to the same
apparent contradiction as the Principal Principle, and since the Basic Principle
has no admissibility clause, admissibility cannot be used to disrupt the middle
equality of (7). So given the Basic Principle, undermining does appear to lead
to a contradiction. Regardless of whether we adopt the Principal Principle or
the Basic Principle, the Humean seems to be in bad shape.

Lewis (1994) later tried to avoid this problem by adopting an alternate
principle:

hp(A|THE) = chrg(A|T), if THE is admissible relative to chrg (A|T)(8)
and hp(A|THE) and chrp(A|T) are defined.

Since chru(—T|T) = 0 even on a Humean account of chance, adopting (8)
escapes the problem. A similarly modified version of the Basic Principle avoids
the problem in the same way.

22



In either case, the move Lewis proposes is questionable. First, Arntzenius
and Hall (2003) have shown that adopting this principle leads to highly coun-
terintuitive consequences. Second, as Vranas (2002) shows, the problem that
motivated Lewis’s adoption of (8) is only apparent.

Take a world w at which both Humean supervenience S and the chance
theory T hold. Let H be an undermining history of w relative to T', such that
S AN H = =T. T will generally assign a positive chance to w, and so a positive
chance to S. Likewise, T" will generally assign positive chances to some histories
like H, histories that would entail =7 if they held at a world where S held. But
it doesn’t follow from this that T" must assign a positive chance to both H and
S being true, and thus a positive chance to =T. T can assign a positive chance
to H and a positive chance to .S while assigning a 0 chance to the conjunction
of H and S. So Humean chances don’t need to undermine themselves. And this
is true regardless of whether the chance-credence principle has an admissibility
clause.?6

The proposal to adopt an admissibility-free chance credence principle has
little bearing on the issue of Humeanism. The proposal to revise the Lewisian
account of the arguments of chance and to reject the two additional claims the
Lewisian theories make also has little bearing on the issue. What about the
third proposal? At first the third proposal seems at odds with Humeanism. In
presenting the third proposal I implicitly assume that the measures associated
with chance theories are assigned over the worlds where that theory holds; as a
consequence, chance theories will always assign themselves a chance of 1. Since
it appears that on Humeanism the chance a chance theory assigns to itself is
generally less than one, this seems like an anti-Humean assumption. But as
Vranas has shown us, this is a mistake; this assumption is not incompatible
with Humeanism. So neither of these proposals have much bearing on the issue
of Humean supervenience.

B. Derivations
B1. The past is no longer chancy

Let T" be a complete theory of chance at a world, and H any history up to a
time ¢ at that world. Let E be any proposition about the past (relative to t).
Since FE is about the past, H entails either E or its negation.

Now, if H entails E, and chpy(E) is defined, then:

chru(E) hp(E|TH) 9)
hp(ETH)

hp(TH)

26Note that while the revised theory is compatible with the truth of Humean supervenience at this
world, it’s incompatible with the more ambitious claim that Humean supervenience is metaphysically

or nomologically necessary.

Frank Arntzenius has pointed out that Vranas’ treatment still leads to counterintuitive results
for subjects who are confident that Humeanism obtains. Given this, it seems none of the Humean

responses to the undermining problem are without cost.
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=1

The first line follows from the Principal Principle (see section three) and the
assumption that the arguments of a distribution are always admissible relative
to its chances.

On the other hand, if H entails —F, and chry(FE) is defined, then:

chru(E) = hp(E|TH) (10)
hp(ETH)
hp(TH)
hp(—~EETH)
hp(TH)
= 0

As before, the first line follows from the Principal Principle and the assumption
that the arguments of a distribution are always admissible relative to its chances.

So if chru(E) is defined, chrg(F) = 1 or 0. Since this is true for any
proposition E about the past, it follows that the past is no longer (non-trivially)
chancy.

B2. Determinism and chance are incompatible

Let L be the laws at a deterministic world, and T" the complete chance theory
at that world. Let H be any history up to a time at this world, and A be
any proposition. If L is deterministic, then either LH = A or LH = —A,
since deterministic laws and a complete history up to a time entail everything.
Equivalently, either L == AV -H or L = -AV —-H.

Suppose L = AV —H and chrp(A) is defined. Then:

1 = chru(Av-H) (11)
= hp(AV -H|TH)
hp((AV —H) A TH)
hp(TH)
hp(ATH)
hp(TH)
= hp(A|TH)
= chrg(A)

The first line follows from the Lewisian account of the arguments of chance and
the assumption that anything the laws entail gets assigned a chance of 1 by the
chance laws. The latter fact also ensures that chrg(AV —H) will be defined.
The second and last steps follow from the Principal Principle (see section three)
and the assumption that the arguments of a distribution are always admissible
relative to its chances.

So if L = AV —H and chrp(A) is defined, then chrg(A) =1. If L = -AV
—H and chrpg(A) is defined, then an identical derivation yields chrp(—A4) = 1,
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i.e., chrg(A) = 0. So for any history H and any proposition A, if chrp(A)
is defined, chrp(A) = 1 or 0. Le., all of the chance distributions associated
with 7" assign only trivial chances. Since this is true for any chance theory of
a deterministic world, it follows that determinism and (non-trivial) chances are
incompatible.

B3. The First Problem

If we formulate the chance-credence principle in terms of hypothetical priors,
then we find that for chance theories like classical statistical mechanics, our
priors only end up being constrained by trivial chances.

To see this, assume that (3) is our chance-credence principle. Now consider
the Liouville measure of a state space S. If there are no particles in the systems
of a state space, then the space will consist of a single point, and the associated
chances will be trivial.?” So let’s confine our attention to state spaces whose
systems have at least one particle. In classical mechanics there’s no upper bound
on the velocity of a particle, so the Liouville measure of any state space with
particles will be infinite.

Assume the extended real number line and the standard extension of the
arithmetical operators over it; in particular, that = = 0 if z is finite, and 2
and § are undefined. Now consider the chance of A relative to K, for some
arbitrary propositions A, K C S. If m(K) = oo then chpi(A) will either be
undefined (if m(AN K) = oo0) or 0 (if m(A N K) # o0). If m(K) # oo, on the
other hand, then chrx(A) can take on non-trivial values. But if m(K) # oo,
then the chances require hp(A|K) to be undefined, and (3) won’t hook up our
priors to these chances.

To see that the chances require hp(A|K) to be undefined, suppose otherwise,
i.e., suppose that Ap(K) > 0. The chance of K relative to S will be

m(K N.S)
m(S)
since m(K N S) is finite and m(S) infinite. And if hp(K) > 0 then hp(S) > 0,

since K C S, so hp(K|S) is defined. Since both hp(K|S) and chrs(K) are well
defined, (3) applies, and

ChTS(K) = =0, (12)

chrs(K) = 0 (13)
hp(K|S)
hp(K NS)
hp(S)
hp(K)
hp(S)

contradicting our supposition.

21T follow Tolman (1938) here in not taking the total energy to be one of the relevant static
properties. If we do adopt the total energy as one of these properties, then some of the details will
be different.
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