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Abstract: Ensuring the proactive detection of transaction risks is paramount for financial institutions, particularly in the context of 

managing credit scores. In this study, we compare different machine learning algorithms to effectively and efficiently. The algorithms 

used in this study were: MLogisticRegressionCV, ExtraTreeClassifier,LGBMClassifier,AdaBoostClassifier, 

GradientBoostingClassifier,Perceptron,RandomForestClassifier,KNeighborsClassifier,BaggingClassifier, DecisionTreeClassifier, 

CalibratedClassifierCV, LabelPropagation, Deep Learning. The dataset was collected from Kaggle depository. It consists of 164 

rows and 8 columns. The best classifier with unbalanced dataset was the LogisticRegressionCV. The Accuracy 100.0%, precession 

100.0%,Recall100.0% and the F1-score 100.0%. However, the best classifier with balanced dataset was the LogisticRegressionCV. 

The Accuracy 100.0%, precession 100.0%, Recall 100.0% and the F1-score 100.0%. 
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1. Introduction 

Credit scoring, an essential practice in the financial industry, involves assessing individuals' creditworthiness based on various 

factors such as payment history, credit utilization, and length of credit history. Traditionally, financial institutions have employed 

manual methods and statistical analysis to evaluate credit scores and determine individuals' likelihood of repaying loans or 

managing credit responsibly. However, with the emergence of advanced data analytics and machine learning techniques, there 

has been a transformative shift in how credit scoring is conducted. By leveraging large datasets and sophisticated algorithms, 

financial institutions can now automate and refine the credit scoring process, enabling faster and more accurate assessments. This 

evolution has not only streamlined lending decisions but also enhanced risk management practices, resulting in improved 

customer experiences and reduced financial losses for lenders [2]. 

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and 

improve from experience without being explicitly programmed. Machine learning focuses on the development of computer 

programs that can access data and use it learn for themselves [1-10]. 

 

The process of learning begins with observations or data, such as examples, direct experience, or instruction, in order to look for 

patterns in data and make better decisions in the future based on the examples that we provide [11-20]. The primary aim is to 

allow the computers learn automatically without human intervention or assistance an adjust actions accordingly [21-30]. 

Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from 

data that is unstructured or unlabeled [31-40]. Deep learning is a technique used to generate face detection and recognize it for 

real or fake by using profile images and determine the differences between them [41-50]. 

Machine learning has revealed to be very rewarding at detecting and classification of Credit Score[51-60]. In spite of the fact that 

supervised learning has been tremendously successful in detecting Credit Score, the progression of Credit Score analysis 

technologies will never end [2]. A Small enhancement in the classifier will save For companies interested in on credit a 

noteworthy amount of money. 

 

2. Literature Survey 

Numerous studies have discussed the fraudulent transactions. The study in [77] stated that the fast evolution of technology all 

around the world was more often used cards as compared to cash in their day to day life. The MasterCard became the highly 

useable equipment for Internet shopping. This up surged in use causes a considerable damage and fraud cases also. It was very 

much necessary to stop the fraud transactions because it impacted on financial conditions over time the anomaly detection was 

having some important application to detect the fraud detection. This paper is mainly focused on checking if the transaction was 

legal or fraud. They presented models like Bidirectional Long short-term memory and Bidirectional Gated recurrent unit. They 

also apply deep learning and Machine Learning algorithms. But their model shows much better results than the machine learning 

classifiers which was 91.37% score. 
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The authors in [78] mainly focused on the solution that tackles the imbalance problem of classification they explore the solution 

for fraud detection using machine learning algorithms. They also find the summarized results and weakness that they get using 

credit card fraud labeled dataset. They give us the conclusion that the imbalanced classification is ineffective when the data are 

highly imbalanced. In this paper, the authors found that the existing methods were costlier and show many false alarms. 

 

In the study [79] DT, LR, and RF algorithms were operated to measure the operation for credit card fraud identification. On 

behalf of a rather unbalanced dataset oversampling was required. After oversampling, 60% legal and 40% unlawful transactions 

are found. R language was used for the implementation of these algorithms. Accuracy of LR is 90.0%, RF 95.5%, and DT 94.3%. 

Sensitivity, error rates, and specificity are also measured. RF algorithm performs nicely amongst them. 

 

In the study [80] an automatic classification and guide classification were used in fraud identification as properly as one of a kind 

ML algorithm is compared to pick out the frauds. RF, SVM, and LR were used. They find out about targets to advance a threat 

scoring model. All the algorithms were tested and RF was performed properly and accomplished with the best possible accuracy. 

And this algorithm was effortless to practice and works precisely on a massive dataset. The result confirmed that sort of algorithm 

performs very properly in the real-world. 

 

In the study [81] some ML algorithms were proposed to test the performance of fairly unbalanced data. SVM, RF, DT, and LR 

are operated to take a look at the potential. These algorithms were examined on pre-processed and uncooked data. The accuracy 

of these algorithms was SVM 97.5%, RF 98.6%. DT 95.5% and LR 97.7% respectively. The RF performs very well on a large 

quantity of information however it suffers from speed. If records are more pre-processed then SVM can work properly amongst 

them. 

In the study [82] SVM was used to identify transactions as valid or fraudulent. The SVM analyzed the past transaction habits of 

the cardholder. When a new transaction happens, by marking it as an unlawful transaction, it deviates from its previous behavior. 

On SVM, the highest fraud detection score was 91%. 

The study in [83] suggested a deep network method for fraud detection. To manipulate the data skew troubles that occur in the 

dataset, the log transformation was used. For the training of difficult examples, the focal reduction is utilized to the network. The 

effects showed that the different classical models such as SVM and LR are outperformed by using the neural network model. 

 

In the study [84] a hybrid strategy was proposed for identifying credit card frauds by operating the DT and Rough Set method 

that can be used in detection. The total work has utilized the usage of the software’s WEKA and MATLAB. After the 10-time 

execution of the proposed and existing method, the proposed technique performed well with 84.25%. 

 

In the study [85] an algorithm Lightgbm was proposed for detecting frauds. After that, a comparison was made with other methods 

like Logistic Regression, SVM, and Xgboost. The accuracy of Lightgbm was 98% as opposed to Logistic Regression 92.60%, 

SVM 95.20%, and Xgboost 97.10% but Lightgbm performed very properly when is compared to others. 

In the study [86] REDBSCAN algorithm was used to decrease the number of samples and it helped to remain the form of data. 

The comparison made with the SVM technique and AUC of SVDD was 97.75% and SVM 94.60%. When SVDD was applied 

except REDBSCAN, it took 194 seconds and when utilized with REDBSCAN, it took 1.69 seconds which was much faster. 

REDCSCAN algorithm provided faster and preferred results. 

 

3. Methodology 

The researchers are attempting to develop credit technologies that uses machine learning and deep learning techniques to  

determine whether the credit score are High, average or low. 

 

3.1 Dataset 

We collected the dataset called “Credit Score” from Kaggle Depository for Credit Score detection. The dataset consists of 164 

records with 8 features. 

The features of the fraudulent transaction dataset are shown in Table 1. 
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Table1: shows the features in the dataset 

Features Description 

Credit Score object credit score (High, Average, Low) 

Age Age of the person 

Gender object gender (Female, Male) 

Income Income level of the person 

Education object education ("Bachelor's Degree", "Master's Degree", 'Doctorate', 'High School Diploma', 

"Associate's Degree") 

Marital Status object marital education (Single, Married) 

Number of Children Number of Children 

Home Ownership object home ownership (Rented, Owned) 

 

3.2 Dataset Analysis 

Model efficiency is measured using product performance metrics such as accuracy, recall, precision and F1-Score. 

The target feature is class which is a multilevel categorical variable feature with 0 (Low), 1 (Average) and 2 (High). There are 

113 High (68.9٪), 36 Average (22٪) and 15 Low (9.1٪) As expected, more than half of the data is High and the rest of the data is 

divided between Average and Low. The following visualization confirms this large discrepancy (see Figure 1). 

 

Figure 1: shows the distribution of credit scores. 

 

Finally, it would be interesting to know if there are any significant correlations between our predictors, especially with 

regards to our class variable (class). One of the most visually appealing ways to determine that is by using a heatmap. 
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Figure 2: shows the heatmap of all features of the training dataset 

 

As can be seen in Figure 2, some of our predictors do seem to be correlated with the Credit Score variable. Nonetheless, there 

seem to be relatively significant correlations for such variables. This can probably be attributed to the factor: class imbalance 

might distort the importance of certain correlations with regards to our Credit Score variable. 

 

Furthermore, we have checked the negative correlation and positive correlation with Credit Score varible as can be seen in 

Figure 2. 

 

It turned out that the features with positive correlation are: Home Ownership, Income, Age, Marital Status, Education, and 

Number of Children. 

 

And the negative correlation is: Gender. 
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Figure 3: shows the violin plot of numerical features of the training dataset 

 

 
Figure 4: shows the bar chart of numerical features of the training dataset 

 

 

3.3 First Experiment: 

We have used the dataset as is (unbalanced). We have split the dataset into three datasets: training, validating and testing. The 

ratio of the splitting was (60 x 20 x 20). We have trained and tested each model and recorded the results (accuracy, Precision, 

Recall, F1- score and time required for the training process in seconds) as can be seen in Table 2. 
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Table2: shows the result of the 12 models without SMOTE (unbalanced dataset) 

Model Name Accuracy Precision Recall F1_score 
Time in 

Sec 

LogisticRegressionCV             100.00% 100.00% 100.0% 100.00% 1.05 

ExtraTreeClassifier                100.00% 100.00% 100.0% 100.00% 0.01 

LGBMClassifier                   96.00% 96.57% 96.0% 95.49% 0.20 

AdaBoostClassifier               96.00% 96.57% 96.0% 95.49% 0.20 

GradientBoostingClassifier       96.00% 96.57% 96.0% 95.49% 0.37 

Perceptron                               76.00% 70.00% 76.0% 71.20% 0.02 

RandomForestClassifier            100.00% 100.00% 100.0% 100.00% 0.26 

KNeighborsClassifier                100.00% 100.00% 100.0% 100.00% 0.01 

BaggingClassifier       96.00% 96.57% 96.0% 95.49% 0.04 

DecisionTreeClassifier            96.00% 96.57% 96.00 95.49% 0.01 

CalibratedClassifierCV              76.00% 70.00% 76.0% 71.20% 0.07 

LabelPropagation   100.00% 100.00% 100.0% 100.00% 0.01 

Deep Learning 100.00% 100.00% 100.0% 100.00% 0.10 

This dataset is severely imbalanced (most of the Credit Score High). So, the algorithms are much more likely to classify new 

observations to the majority class and high accuracy won't tell us anything. To address the problem of imbalanced dataset we 

can use undersampling and oversampling data approach techniques. Oversampling increases the number of minority class 

members in the training set. The advantage of oversampling is that no information from the original training set is lost unlike in 

undersampling, as all observations from the minority and majority classes are kept. On the other hand, it is prone to overfitting. 

There is a type of oversampling called SMOTE (Synthetic Minority oversampling Technique), which we are going to use to 

make our dataset balanced. It creates synthetic points from the minority class. 

Also we shouldn't use accuracy score as a metric with imbalanced datasets (will be usually high and misleading), instead we 

should use f1-score, precision/recall score and confusion matrix 

 Recall of fraud cases (sensitivity) summarizes true positive rate (True positive/True positive + False Negative) - 

how many cases we got correct out of all the positive ones 

 Recall of non-fraud (specificity) summarizes true negative rate (True negative/True negative + False positive) - 

how many cases we got correct out of all the negative ones 

 Precision of fraud cases (True positive/True positive + False positive) summarizes the accuracy of fraud cases 

detected - out of all predicted as fraud, how many are correct 

 Precision of non-fraud cases (True negative/True negative + False negative) summarizes the accuracy of non-

fraud cases detected - out of all predicted as non-fraud, how many are correct 

 F1-score is the harmonic mean of recall and precision. 

 

3.4 Second Experiment: 

We have balanced the dataset using SMOTE technique. The class feature (credit score) now is balanced (50% for fraud 

transaction and 50% for non-fraud transaction) as in Figure 5. Then we have split the dataset for three datasets: training, validating 

and testing as in the first experiment. The ratio of splitting was (60 x 20 x 20). We have trained and tested each model and 

recorded the results (accuracy, Precision, Recall, F1-score and time required for the training process in seconds) as can be seen 

in Table 3. 
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Figure 5: credit score feature (credit score) is balanced 

 

 

Table3: shows the result of the 12 models with SMOTE (balanced dataset) 

 

Model Name Accuracy Precision Recall F1_score 
Time 

in Sec 

LogisticRegressionCV             100.00% 100.00% 100.0% 100.00% 1.21 

ExtraTreeClassifier                100.00% 100.00% 100.0% 100.00% 0.02 

LGBMClassifier                   100.00% 100.00% 100.0% 100.00% 0.25 

AdaBoostClassifier               100.00% 100.00% 100.0% 100.00% 0.19 

GradientBoostingClassifier       100.00% 100.00% 100.0% 100.00% 0.46 

Perceptron                               98.04% 98.15% 98.04% 98.02% 0.02 

RandomForestClassifier            98.04% 98.15% 98.04% 98.02% 0.30 

KNeighborsClassifier                98.04% 98.15% 98.04% 98.02% 0.02 

BaggingClassifier       98.04% 98.15% 98.04% 98.02% 0.04 

DecisionTreeClassifier            98.04% 98.15% 98.04% 98.02% 0.01 

CalibratedClassifierCV              94.12% 94.32% 94.12% 94.07% 0.13 

LabelPropagation   94.12% 94.32% 94.12% 94.07% 0.02 

Deep Learning 98.04% 98.15% 97.22% 97.60% 0.09 

As can be seen from table 2 and table 3 the followings: 

 In the unbalanced dataset, the Recall and F1-Score is low for most models.  

 The only models with unbalanced dataset and have very high Recall and F1-Score are: LogisticRegressionCV, 

ExtraTreeClassifier, RandomForestClassifier, KNeighborsClassifier and LabelPropagation only.  

 In the balanced dataset, the Recall and F1-Score is very high for all models.  



International Journal of Academic Information Systems Research (IJAISR) 

ISSN: 2643-9026 

Vol. 8 Issue 5 May - 2024, Pages: 1-1 

www.ijeais.org/ijaisr 

  

 The top two highest models are LogisticRegressionCV and ExtraTreeClassifier.  

 Some models can give high recall and F1-Score regardless of the dataset balanced or unbalanced. 

 

After finishing the training of the 13 models we determined the best features in the dataset by Plotting Feature Importance using 

Bagging Classifier because it is the best classifier as in Figure 5. 

 
Figure 6: Feature Importance 

4. Conclusions 

Good prediction results can be achieved with imbalanced datasets as well as with balanced ones. LogisticRegressionCV        

,ExtraTreeClassifier,and LGBMClassifier gave us the best results being able to detect 100.0% Credit Score. There is no perfect 

model and there will always be a trade-off between precision and recall. It is up to the company and its objectives to decide which 

approach is the best in each particular situation. 
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