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1 Modal Set Theory and Traditional Modal Metaphysics 
Set theory is the study of sets using the tools of contemporary mathematical logic. Modal set 

theory draws in particular upon contemporary modal logic, the logic of necessity and possibility. 

One simple and obvious motivation for modal set theory is the fact that, from a realist 

perspective that takes the existence of sets seriously, sets have philosophically interesting modal 

properties. For instance, perhaps the most the notable and distinctive property of sets is their 

extensionality: sets 𝑎 and 𝑏 are identical if they have exactly the same members; formally, where 

we take variables from the lower end of the alphabet to range over sets: 

Ext ∀𝑎∀𝑏(∀𝑥 𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝑏 → 𝑎 = 𝑏). 

Intuitively, however, extensionality is not a contingent matter, a mere matter of happenstance. 

Rather, there simply couldn’t have been distinct sets that shared all their members; there is no 

such possible world. That is, at a minimum, we want to be able to express that extensionality is a 

necessary truth: 

□Ext □∀𝑎∀𝑏(∀𝑥 𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝑏 → 𝑎 = 𝑏). 

 Clearly, however, there is much more than this to the modal connection between sets and 

their members. For note that, for all □Ext tells us, one and the same set 𝑎 could have vastly 

different members from one world to the next, so long as it remains the case that, in each world, 

no other set has exactly the same members as 𝑎 in that world. Intuitively, however, the intimate 

connection between a set and its members is maintained across worlds; if a set has Angela 

Merkel, say, as a member, it could not possibly have failed to have her as a member. Sets, that is 

to say, have their members essentially; if 𝑥 is a member of 𝑎, then it is a member of 𝑎 in every 

world in which 𝑎 exists, i.e., in every world in which something is identical to 𝑎; formally, 

letting 𝐸!t abbreviate ∃𝑦 𝑦 = 𝑡, for terms 𝑡: 
                                                
* The author is exceedingly grateful to Øystein Linnebo, Neil Barton, and John Wigglesworth for helpful and 
illuminating comments on earlier drafts of this entry. 



 2 

E∈ □∀𝑎∀𝑥(𝑥 ∈ 𝑎 → □ 𝐸!𝑎 → 𝑥 ∈ 𝑎 ), 

Likewise, non-membership; a set cannot “add” new members in one world that it lacks in 

another: 

E∉11 □∀𝑎∀𝑥(𝑥 ∉ 𝑎 → □ 𝐸!𝑎 → 𝑥 ∉ 𝑎 ).1 

 A related philosophical issue is not settled by the preceding principles. Suppose 𝑥 is a 

member of a set 𝑎 here in the actual world and that 𝑎 exists in some other possible world 𝑤. 

Then by E∈, 𝑥 is a member of 𝑎 in 𝑤. But nothing follows about 𝑥’s existence in 𝑤. For all we 

know from E∈, all sets might exist necessarily, even those that have contingent members, 

members that might not themselves have existed. Hence, if that is so, the singleton set {Merkel}, 

for example, would have existed even if Merkel hadn’t. However, on most conceptions of set, 

sets are ontologically dependent upon their members and, hence, could not themselves exist 

without their members existing; there could be no singleton set {Merkel} without Merkel. On 

such a conception, then, we are in need of a further modal principle, namely, that, necessarily, 

sets exist only if their members do: 

Ex □∀𝑎□∀𝑥(𝑥 ∈ 𝑎 → □(𝐸!𝑎 → 𝐸!𝑥)).2 

Given Ex and the assumption that Angela Merkel is a contingent being, ◇¬𝐸!𝑚, it now follows 

that the set {Merkel} too is contingent, as expected; it fails to exist at any Merkel-free possible 

world. 

Surprisingly, at first blush anyway, the assumption that there are contingent beings is neither 

philosophically nor mathematically trivial. Regarding the latter, it is in fact a well-known 

theorem of the simplest and most straightforward system of modal predicate logic that there 

neither are nor could have been any contingent beings, i.e., that, necessarily, everything there is 

exists necessarily: 

Nec □∀𝑥□𝐸!𝑥.3 

                                                
1 E∉ follows from E∈ given the principle Ex below if the modal propositional base of the system is S5. 
2 The necessity operator between the two quantifiers ensures that a set 𝑎 can’t have a member that is 
“incompossible” with it, that is, a member that fails to exist in every world in which 𝑎 exists. Without it, Ex would 
only say that if 𝑥 ∈ 𝑎 is a member of a in some world, 𝑥 ∈ 𝑎 in all worlds. 
3 See (Menzel, 2014a), §2 for a formal proof and a discussion of the surrounding philosophical issues. 
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Avoiding this consequence requires choosing between restrictions (of varying severity) on one’s 

logical system, each with its own virtues and liabilities.4 However, some philosophers — so-

called necessitists — embrace Nec (from which, of course, Ex trivially follows) and choose 

instead to offer sophisticated philosophical explanations of the allegedly mistaken naïve intuition 

that some things might not have existed.5 The choice of a logic and the adoption of a 

philosophical standpoint about the metaphysics of sets are therefore interestingly interdependent. 

 It is not our purpose here to adjudicate these issues. Rather, the point of this initial section 

has been to illustrate one powerful motivation for modal set theory, namely, its usefulness as a 

tool for exploring quite traditional lines of inquiry in modal metaphysics concerning 

contingency, essentiality, ontological dependence, and the like that surface naturally in 

connection with the existence of sets.6 The remainder of this article, however, will be devoted to 

the development of modal set theory with regard to a rather more directed inquiry into both the 

nature and structure of sets that is motivated in particular by the attractive prospect of a 

satisfying explanation of Russell’s Paradox. 

2 ZF and Russell’s Paradox7 
The years 1897-1903 saw the emergence of a string of related paradoxes concerning the notions 

of number, set, class, property, proposition, and truth.8 Among those concerning sets, Russell’s 

Paradox is undoubtedly the best known and arguably the one most directly responsible for 

subsequent developments in the foundations of mathematics. The argument is well-known. Its 

heart, of course, is the principle of naïve comprehension, i.e., the principle that, for any property 

of things, there is the set of things that have the property. More formally (and somewhat 

anachronistically) expressed in the language of first-order logic, it is the principle that, for any 

predicate	𝜑(𝑥), there is the set of things it is true of: 

NC ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ 𝜑(𝑥)), where ‘𝑎’ is not free in 𝜑(𝑥) 
                                                
4 The system Q of (Prior, 1968) is among the most severely restricted of well-known systems, abandoning in 
particular the interdefinability of □ and à and most familiar principles of propositional modal logic. For examples of 
less severely restricted systems, see (Kripke, 1963), (Menzel, 1991), and (Fine, 1978). 
5 The term “necessitism” and its cognates was coined in (Williamson, 2010), although the view was in large measure 
anticipated and developed in detail in (Linsky & Zalta, 1994). See also (Salmon, 1987) for an influential precursor. 
6 The reader is encouraged to consult (Fine, 1981) for a deep and comprehensive study along these lines. 
7 The exposition in this section and portions of the following is similar to that found in Sections 3-6 of (Menzel, 
n.d.), which was written largely in parallel with the current entry. 
8 See (Cantini, 2014) for an excellent overview. 
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Intuitively, at first sight anyway, the principle seems airtight. For a well-defined predicate 

unambiguously picks out some existing things (or perhaps no things at all), and what more could 

you need for the existence of a set than the existence of its purported members, the things that 

constitute it? For all its intuitive appeal, of course, NC is inconsistent: given the well-defined 

predicate ‘𝑥 ∉ 𝑥’, by NC we have the “Russell set” 𝑟 containing exactly those things 𝑥 that are 

not members of themselves, i.e.,   

R ∀𝑥(𝑥 ∈ 𝑟 ↔ 𝑥 ∉ 𝑥). 

Instantiating for 𝑟, the contradiction that 𝑟 ∈ 𝑟 if and only if 𝑟 ∉ 𝑟 follows immediately. 

 The best known and most influential response to Russell’s Paradox is of course that of Ernst 

Zermelo. To express Zermelo’s ideas, it is useful to speak of mere pluralities of things, where 

such talk is to be thought of as “ontologically innocent”. That is, talk of a plurality of things is 

not to be understood to refer to some additional thing over and above the things we are talking 

about — a set or class or mereological sum that they constitute — but, rather, simply as a 

convenient way of talking about those things jointly, or collectively, as we seem freely to do 

when we use plural noun phrases in sentences like “It took three men to lift the piano” and “The 

fans went wild”. The lesson of Russell’s Paradox, then, in these terms, is that not all pluralities of 

things can safely be assumed to constitute a further thing, viz., a set that contains them; in 

particular, to assume without qualification, as NC would have it, that the things an arbitrary 

predicate is true of constitute a set can be logically catastrophic. At the same time, some 

pluralities seem clearly safe. Zermelo’s brilliantly executed idea (Zermelo, 1908)9 — 

implemented in his axiomatic set theory Z — was to stipulate the existence of some initial sets to 

get things going and then introduce a variety of sound “set-building” operations that lead safely 

from given objects or sets to new sets. We will describe Z in some detail. 

Zermelo begins with the extensionality axiom Ext. His next axiom, the axiom of elementary 

sets, is actually a combination of an existence axiom and a set-building axiom. Specifically, he 

postulates the existence of the empty set ∅, 

ES ∃𝑎∀𝑥 𝑥 ∉ 𝑎, 

                                                
9 Translated as (Zermelo, 1967); see also the informative introductory note by Felgner that accompanies the 
translation of this paper in the polyglot edition (Zermelo, 2010) of Zermelo’s collected works, pp. 160-89. 
Zermelo’s theory included the important but controversial axiom of Choice, though it will play no part here. 



 5 

and introduces the axiom of Pairing, which says, in effect, that any pair of (not necessarily 

distinct) objects 𝑥 and 𝑦 are jointly safe and hence constitute a set {𝑥, 𝑦}:10 

Pr ∃𝑎∀𝑧(𝑧 ∈ 𝑎 ↔ (𝑧 = 𝑥 ∨ 𝑧 = 𝑦)). 

Assuming extensionality, these two axioms alone already give us the power to prove the 

existence of the infinite series of Zermelo numbers ∅, {∅}, {{∅}}, {{{∅}}}, …, so-called because 

they served as Zermelo’s surrogates for the natural numbers. (For convenience, abbreviate them, 

respectively, as ∅A, ∅B, ∅C, ∅D, … .) However, in addition to so-called “pure” sets like these that 

are “built up” solely from the empty set, Zermelo also made room in his theory for the existence 

of arbitrarily many urelements, that is, things that are not themselves sets — persons, planets, 

natural numbers, etc. — and, hence, by Pr, for the existence of “impure” sets built up from them. 

And although he didn’t explicitly assume it as an axiom in 1908, it is in the spirit of his theory to 

take the urelements to constitute a set 𝑈 of their own:11 

Ur ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ 𝑥 ≠ ∅ ∧ ∀𝑦 𝑦 ∉ 𝑥 ). 

Let ZU be Zermelo’s theory Z with the additional axiom Ur. 

NC is of course absent from Zermelo’s theory but a significant remnant of it remains in the 

form of a set-building principle, Separation. Given a predicate 𝜑(𝑥), NC called sets into being 

ex nihilo from the things of which 𝜑 𝑥  is true. Separation, by contrast, only vouches for the 

things 𝜑(𝑥) is true of that are already members of some previously given set: 

Sep ∀𝑏∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ 𝑏 ∧ 𝜑(𝑥)), where ‘𝑎’ is not free in 𝜑(𝑥).12 

Zermelo’s next two set-building axioms are Union,  

Un ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ ∃𝑐 𝑐 ∈ 𝑏 ∧ 𝑥 ∈ 𝑐 , 

which says that the members of the members of a given set 𝑏 constitute a set, and Powerset, 

                                                
10 We will make free use of the common {𝑥B, … , 𝑥J} notation for finite sets without defining it formally. 
11 The existence of U is not entirely unproblematic, as it could turn out to be inconsistent with the other axioms if 
there are “too many” urelements. See, e.g., (Nolan, 1996) and (Menzel, 2014b). Zermelo himself wasn’t sure how to 
work urelements into his theory until over two decades later; see (Zermelo, 1930) and Kanamori’s informative 
introductory note to its translation in (Zermelo, 2010), pp. 390-430. 
12 Sep renders ES otiose, since it is a truth of (classical first-order) logic that something 𝑥 exists, ∃𝑥𝐸!𝑥, from which 
ES follows directly from Pr and the instance of Sep where 𝜑(𝑥) is 𝑥 ≠ 𝑥. 
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Pow ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ 𝑥 ⊆ 𝑏), 

which tell us that the subsets of a set safely constitute a set. Although formulated decades before 

the mature conception of the set theoretic universe in (Zermelo, 1930), these two axioms clearly 

anticipated it. For, given the initial set 𝑈 of urelements — call it 𝑈A — by Pow the set ℘(𝑈A) of 

all of their subsets exists. By Un there is the set 𝑈B = 	𝑈A ∪ ℘(𝑈A) consisting of all the members 

of  𝑈A and ℘(𝑈A). Applying Pow again we have the set ℘ 𝑈B  of all the subsets of 𝑈B which we 

can then join with 𝑈B itself to yield the set 𝑈C = 𝑈B ∪ ℘(𝑈B). In general: 

D1 
𝑈A = 𝑈

𝑈JNB = 𝑈J ∪ ℘(𝑈J)
 

Even in Zermelo’s early work, then, the sets are naturally taken to have a structure that is 

cumulative and hierarchical, advancing “upwards” via iterations of the powerset and union 

operations, from an initial stock of urelements, in an ever-expanding series of stages, or levels, 

each successive level 𝑈JNB consisting of everything in the preceding level together with all the 

sets that can be formed from them, as indicated in Figure 1. 

Say that one level 𝑈J is higher than another 𝑈O just in case 𝑛 > 𝑚 (equivalently, in light of 

their cumulative nature, just in case  𝑈O ⊂ 𝑈J) and that the level 𝜆(𝑥) of an object 𝑥 is the first 

level of the hierarchy at which it occurs.  Since (a) we begin with a base set 𝑈A of urelements, (b) 

the hierarchy grows discretely from one level to the next, and (c) a set of level 𝑈JNB is always 

constituted by objects in level 𝑈J, it should also be clear that the sets on this conception are all 

well-founded: no set can be a member of itself and, more generally, there are no infinitely 

descending membership chains … ∈ 𝑎JNB ∈ 𝑎J ∈ … ∈ 𝑎B ∈ 𝑎A. Since the axioms above do not 

explicitly rule out such structural impossibilities, it must be done independently by means of a 

separate principle; in Z, this is the axiom of Foundation, which requires every nonempty set 𝑎 to 

have a member with which it shares no members: 
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Fnd 𝑎 ≠ ∅ → ∃𝑦(𝑦 ∈ 𝑎 ∧ ∀𝑧 𝑧 ∈ 𝑦 → 𝑧 ∉ 𝑎 ).13 

We turn now to the critical Zermelian axiom of Infinity. What is particularly important about 

this axiom, especially for purposes here, is not merely that it asserts the safety of an infinite 

plurality but, rather, the safety of a plurality that is unbounded in our hierarchy of finite levels. 

Consider, in particular, the Zermelo numbers ∅A, ∅B, ∅C, … . As 𝜆 ∅T = 𝑈TNB, for all natural 

numbers 𝑖, it follows that, for every level 𝑈J, no matter how high, there is a Zermelo number 

(∅J, for example) that only first occurs in a higher level still; the Zermelo numbers are thus 

unbounded in the hierarchy of levels 𝑈A, 𝑈B, 𝑈C, … and, hence, never constitute a set in any 

finite level. 

 Such unbounded pluralities, then, are of a rather different sort structurally than any we’ve 

encountered hitherto. But, ultimately, from the realist’s standpoint, at least, there doesn’t seem to 

be any more reason to question their safety than there is to question the safety of the urelements 

that we sanction in Ur that get the hierarchy going in the first place or the plurality of subsets of 

a given level that we sanction in Pow that enable us, at any given level, to extend the hierarchy 

to the next level. For, just as in those cases, all of the things in question are there and hence 

                                                
13 Zermelo did not include Foundation in his 1908 axiomatization but, as non-well-founded sets were not defined 
and studied in any systematic way until (Mirimanoff, 1917) and the iterative conception was at most only beginning 
to take shape in Zermelo’s mind, it seems likely that he did not at the time recognize any pressing need for the 
axiom. 
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available for collection into a set. Moreover, as the Zermelo numbers are unbounded in the 

hierarchy of finite levels and hence could not constitute a set at any such level, the set they 

would constitute would definitively not be a member of itself. So there also seems to be no hint 

of a Russell-style paradox in the offing. 

 Accordingly, Zermelo’s Infinity axiom posits the collective safely of the Zermelo numbers 

the way that Ur does for the urelements and Pow does for the subsets of a given set. More 

exactly, it declares that there is a set that contains the Zermelo numbers: 

Inf ∃𝑎(∅ ∈ 𝑎 ∧ ∀𝑥 𝑥 ∈ 𝑎 → 𝑥 ∈ 𝑎 ). 

The set of Zermelo numbers proper — call it 𝜁 (zeta) — can then be derived straightaway by 

Sep.14 

 So the axiom of Infinity implies, not just that there are infinite sets, but that there are infinite 

sets whose members occur at arbitrarily high finite levels of the hierarchy. Hence, intuitively, the 

hierarchy 𝑈A, 𝑈B, 𝑈C, …, of cumulative levels must continue beyond the finite. For this to be the 

case, however, they must first themselves form a set {𝑈A, 𝑈B, 𝑈C, … }. Given their structural 

similarity to the Zermelo numbers ∅A, ∅B, ∅C, …, it certainly seems that they should. But Inf and 

the other axioms are not enough to guarantee this.15 Thus, a further principle is needed, one 

typically attributed to Abraham Fraenkel,16 the axiom schema of Replacement, the addition of 

which to Zermelo’s theory Z(U) gives us ZF(U). Replacement captures the structural intuition 

that if the members of a set can be correlated systematically with a given plurality — each ∅J ∈

𝜁 with 𝑈J, for example, — then that plurality also constitutes a set. More formally, where ∃!𝑥𝜑 

as usual means that something is uniquely 𝜑: 

Rep ∀𝑥∃!𝑦𝜓 𝑥, 𝑦 → ∀𝑏∃𝑎∀𝑦(𝑦 ∈ 𝑎 ↔ ∃𝑥(𝑥 ∈ 𝑏 ∧ 𝜓 𝑥, 𝑦 ). 

                                                
14 Specifically, by letting 𝑏 be the set given by Inf and letting 𝜑 𝑥 	be	∀𝑦[ ∅ ∈ 𝑦 ∧ ∀𝑧 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑦 → 𝑥 ∈
𝑦], i.e., the predicate “𝑥 is in every set 𝑦 that contains ∅ and the singleton of any of its members”. 
15 To see this, very briefly: where 𝑉] is the set of hereditarily finite pure sets, let 𝑊_ = 𝑉] ∪ 𝑈 and 𝑊JNB = 𝑊J ∪
℘(𝑊J), for 𝑛 ∈ ℕ, and let 𝑊 = ⋃J∈ℕ𝑊J. It is easy to see that 𝑊 is a model of Z and that 𝑈T ∈ 𝑊 for all 𝑖 ∈ ℕ but 
that 𝑈A, 𝑈B, 𝑈C, … ∉ 𝑊. The author thanks Noah Schweber and Joel David Hamkins for this construction. 
16 Skolem independently identified the need for Replacement, and his explicitly first-order formulation of the 
principle is essentially the one that is mostly used today. See (Fraenkel, 1922) and (Skolem, 1922); an English 
translation of the latter can be found in (van Heijenoort, 1967), pp. 290-301. 
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Let 𝐿 𝑦  mean that 𝑦 is one of our finite levels.17 Letting 𝜓(𝑥, 𝑦) be ‘𝑥 ∈ 𝜁 ∧ 𝐿 𝑦 ∧ 𝑥 ∈ 𝑦 ∧

∀𝑧 𝐿 𝑧 ∧ 𝑥 ∈ 𝑧 → 𝑦 ⊆ 𝑧 ’, i.e., “𝑥 is a Zermelo number and 𝑦 is its level”, we have a 1-1 

correlation between the members of 𝜁 and the levels 𝑈B, 𝑈C, … and, hence, by Rep, they 

constitute a set to which (by Pr and Un) we can add the initial level 𝑈A of urelements; so all the 

levels jointly constitute our desired set {𝑈A, 𝑈B, 𝑈C, … }. By Un their union is a set, so all the 

members of all the finite levels do indeed form a set 𝑈] of their own, the first transfinite level of 

the hierarchy18 — the result, as it were, of putting a “disk” atop the hierarchy of finite levels 

depicted in Figure 1 indicating its “completion” in a further level. That of course is not the end of 

the hierarchy but simply a new starting point for iterating the powerset and union operations to 

generate yet further levels 𝑈]NB, 𝑈]NC, …, which (by Rep) jointly form a set and (by Un) hence 

constitute a new limit level 𝑈]N], and thus once again further levels 𝑈]N]NB, 𝑈]N]NC, …, and 

so on, as depicted in Figure 2. In general, then, by including a limit clause representing the 

continual “completion” of these unbounded series of levels, we can define the entire transfinite 

cumulative hierarchy for all ordinal numbers, finite and transfinite alike: 

D2 
𝑈A = 𝑈

𝑈cNB = 𝑈c ∪ ℘ 𝑈c
𝑈d = ⋃ced𝑈c,	for limit ordinals γ

 

This intuitive and deeply satisfying conception of the structure of the set theoretic universe 

yields a compelling explanation of Russell’s Paradox: a plurality safely constitutes a set if and 

only if it is bounded in the full cumulative hierarchy, that is, if and only if there is some level of 

the hierarchy at or before which the plurality “runs out”; more formally: a level 𝑈c such that, for 

everything 𝑥 in that plurality, 𝜆(𝑥) is no higher than  𝑈c, in which case those things are 

“available” to be collected into a set at the next level 𝑈cNB. However, some predicates — 

notably, ‘𝑥 ∉ 𝑥’ — pick out absolutely unbounded pluralities, pluralities that never “run out” by 

                                                
17 𝐿(𝑦) is definable without any mention of finitude as: ∀𝑎[(𝑈 ∈ 𝑎 ∧ ∀𝑏 𝑏 ∈ 𝑎 → 𝑏 ∪ ℘ 𝑏 ∈ 𝑎 ) → 𝑦 ∈ 𝑎], i.e., 
“𝑦 is in every set that contains the set 𝑈 of urelements and also contains 𝑏 ∪ ℘(𝑏) whenever it contains 𝑏, for any 
set 𝑏”. 
18 𝜔 is the first transfinite ordinal number, the first “counting number” after the natural numbers. It is also the first 
limit ordinal, i.e., the first ordinal 𝛼 > 0 such that, if 𝛽 < 𝛼, then 𝛽 + 1 < 𝛼. See (Devlin, 1991), Ch. 3 for a good 
introduction to transfinite ordinals and cardinals and their arithmetic. 
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any level.19 Accordingly, as in Russell’s Paradox, the assumption that they do — i.e., the 

assumption that they constitute sets — leads to contradiction. 

3 Modal Set Theory and the Completion Problem 

Unfortunately, as satisfying and illuminating as this explanation might be, a serious puzzle 

remains for the realist who wants to take the existence of sets seriously: the full cumulative 

hierarchy is itself a well-defined plurality; why is it not safe? That is, why does the hierarchy 

itself fail to be “completed”? Note the question is not: Why is there no universal set, i.e., no set 

containing all the urelements and all the sets? As we’ve just seen, the iterative conception of set 

provides a cogent answer to that question: only those pluralities that “run out” by some level of 

the cumulative hierarchy constitute sets at the next level and, obviously, the entire hierarchy is 

not such a plurality; there is no level at which the members of all the levels form a set. Rather, 

                                                
19 In the cumulative hierarchy, where all sets are well-founded, no set is a member of itself so ‘𝑥 ∉ 𝑥’ is in fact true 
of everything. 
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the question is: Why is the hierarchy only as “high” as it is? Why do all the urelements and sets 

that there actually are fail to constitute a further level that kicks off yet another series of 

iterations? For the same justification we had for “completing” the hierarchy of finite levels 

appears to apply no less to the full hierarchy: all of the urelements and sets in all the levels are 

there, as robustly as the members of the finite levels; and, moreover, since the set they would 

constitute — call it 𝑈l — would be of a higher level than its members and, hence, would not be 

a member of itself, just as in the case of 𝑈], no obvious threat of paradox looms. Call this the 

completion problem. 

Granted, the completion problem does not appear to be as grave and immediate a threat to the 

coherence of set theory as Russell’s Paradox. But it does raise disturbing questions for the realist: 

if there is no answer to the completion problem, then there is an essential element of randomness 

to set existence. For once we acknowledge that there are pluralities that inexplicably fail to 

constitute sets, it is hard to see what grounds there are for picking and choosing between those 

that do and those that don’t: in particular, if the same reasons for accepting that the finite levels 

𝑈A, 𝑈B, 𝑈C, … constitute a set seem to hold for all the levels of the hierarchy without their 

constituting a set, then what reason to do we have for accepting that the finite levels 𝑈A, 𝑈B, 𝑈C, … 

do? Or that any plurality does for that matter? Without a solution to the completion problem, 

then, the actual structure of the hierarchy appears to be unknowable; any claims to knowledge of 

it would appear to be groundless, as the objects of the purported knowledge might well concern 

entities that simply do not exist. 

 Putnam (1967) was the first to argue explicitly that such questions are answered by taking the 

principles underlying the iterative conception of set to be essentially modal and, more 

specifically, by suggesting that a set is not to be understood in terms of the actual existence of a 

finished thing but as the possibility of its formation (p. 12):20 

[T]here is not, from a mathematical point of view, any significant difference 

between the assertion that there exists a set of integers satisfying an 

arithmetical condition and the assertion that it is possible to select integers so 

                                                
20 See (Hellman, 1989) for a detailed development of Putnam’s ideas.   
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as to satisfy the condition. Sets, [to parody] John Stuart Mill, are permanent 

possibilities of selection.21 

Parsons (1977) spells the idea out a little less metaphorically in a thesis — call it Parsons’ 

Principle — that addresses the completion problem directly: any given plurality of things “can 

constitute a set, but it is not necessary that they do.” Thus, necessarily, no matter how many 

cumulative levels there might be, the absolutely unbounded pluralities that don’t in fact 

constitute sets in any level nonetheless could have constituted sets. The answer to the completion 

problem on this potentialist conception of sets, then, is simply that there neither is nor could be a 

“completed” cumulative hierarchy. Rather, instead of the completed stages of the cumulative 

hierarchy, we have a potential hierarchy, i.e., roughly speaking, an infinite hierarchy of 

possibilities where, given any possible completion of the hierarchy up to a given level 𝑈c, there 

is always a more expansive possibility in which some of the mere pluralities of 𝑈c constitute sets 

— in the “maximal” case, a possibility comprising the entire next level 𝑈cNB. The completion 

problem only arises on the  assumption that all the levels — hence all the sets — that there could 

be (relative to an initial set 𝑈A of urelements) are already actual and, hence, that the hierarchy of 

sets is complete, that there is no more “collecting” of pluralities into sets that can be done. For 

only under that assumption — call it actualism — is it mysterious why the hierarchy is only as 

high as it is, why it (or indeed any absolutely unbounded plurality) fails to constitute a further 

set. The potentialist rejects the actualist assumption: the unbounded pluralities of one possible 

world always constitute sets in further, more comprehensive worlds. 

 What becomes of ZF on the potentialist conception? Thought of semantically, the potentialist 

conception suggests (roughly put) that an assertion to the effect that a certain set exists — and 

hence occurs at some level of the cumulative hierarchy — should be understood as an assertion 

that it is possible that such a set exist; likewise, assertions about all sets should be understood, 

not simply as assertions about the sets that in fact exist but, roughly speaking, about all the sets 

there could be, all the sets in any possible world.22 Formalized, this insight yields what Linnebo 

(2013) calls the potentialist translation 𝜑◇ of a sentence 𝜑 of ordinary set theory, viz., the result 
                                                
21 There are intimations of Putnam’s idea in Cantor, notably in an 1897 letter to Hilbert : “I say of a set that it can be 
thought of as finished ... if it is possible without contradiction (as can be done with finite sets) to think of all its 
elements as existing together, and so to think of the set itself as a compounded thing for itself ; or (in other words) if 
it is possible to imagine the set as actually existing with the totality of its elements.” (Ewald, 1996), p. 927. 
22 My exposition from this point draws heavily upon (Linnebo, 2010; 2013). This work in turn was strongly 
influenced by (Parsons, 1983). 
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of replacing every existential quantifier occurrence ∃ in 𝜑 with its modalized counterpart ◇∃ and 

every universal quantifier occurrence ∀ with □∀. The idea, then, is that, if a statement 𝜑 of 

ordinary ZF set theory is purportedly true in the cumulative hierarchy, its modalized counterpart 

𝜑◇ will be true in the potential hierarchy. This in turn might suggest that modal set theory will 

simply consist in formulating the theory ZF◇ that results from replacing the axioms of ZF with 

their potentialist translations. But that would not in and of itself be terribly interesting. Instead, 

modal set theorists like Parsons and Linnebo opt for the far more illuminating tack of taking the 

potentialist conception itself as primary and, hence, by axiomatizing its fundamental principles, 

deriving the axioms of ZF◇. 

 The first task toward that end is to identify the right propositional modal logic for the 

potentialist conception. Expressed in terms of possible worlds, the basic underlying intuition is 

that the universe of sets in a given world 𝑤 can always be increased — for any world 𝑤 there is 

an accessible world 𝑤′ that includes, not only everything already in 𝑤, but new sets whose 

members are mere pluralities in 𝑤.23 This can be captured more formally by means of several 

intuitive constraints on world domains 𝐷(𝑤) and the accessibility relation 𝑅. Specifically, 

growth is reflected in the constraint that, if 𝑅𝑤𝑤′, then 𝐷 𝑤 ⊆ 𝐷(𝑤r).24 𝑅 itself should be a 

partial order (i.e., reflexive, transitive, and anti-symmetric) — each world 𝑤′ accessible from a 

world 𝑤 represents a way in which some of the mere pluralities of 𝑤 constitute fully-fledged sets 

in 𝑤′, but different pluralities of 𝑤 might constitute sets in different accessible worlds. 

Moreover, that the formation of new sets proceeds discretely is reflected in the requirement that 

𝑅 be weakly well-founded.25 Finally, if 𝑤B and 𝑤C represent distinct expansions of the set 

theoretic universe of a world 𝑤 — different “choices” of which mere pluralities of 𝑤 to take to 

constitute sets — it should still be possible in each world to form the sets constituted in the other; 

given the constraint on domains, the pluralities that constitute sets in 𝑤B will still be available in 

𝑤C and vice versa. Hence, a further natural condition is that accessibility be directed, that is, that, 
                                                
23 For fairly obvious reasons, possible world semantics can only be considered a useful heuristic, as Kripke models 
are themselves by definition sets. Hence, no Kripke model could purport to represent (in a one-to-one fashion) all 
possible sets without opening the door once again to Russell’s Paradox. 
24 This will of course have the consequence that, for any object 𝑥, including urelements, it will be a logical truth that 
𝑥 exists necessarily, □𝐸!𝑥. That is the right result, as the constraints in question are only meant intuitively to capture 
possible ways of extending the set theoretic universe of a given world 𝑤; nothing in 𝑤 “goes away” as new sets are 
added in accessible worlds. 
25 𝑅 is weakly well-founded if every nonempty set 𝑆 of worlds contains an 𝑅-minimal world, i.e., a world 𝑤 ∈ 𝑆 
such that, for all other 𝑢 ∈ 𝑆, not-𝑅𝑢𝑤. (𝑅 is well-founded if it is a strict partial order — irreflexive and transitive — 
that satisfies this definition.) 
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for any two worlds 𝑤B, 𝑤C accessible from a given world 𝑤 there is a third world accessible from 

both and, hence, one whose sets include all those formed in either world. The propositional 

modal logic determined by these conditions on accessibility is S4.2, the normal modal logic that 

includes the familiar axioms of the logic S4, viz.,  

T □𝜑 → 𝜑 

4 □𝜑 → □□𝜑 

corresponding to reflexivity and transitivity, respectively, and the axiom 

G ◇□𝜑 → □◇𝜑 

corresponding to directedness.26 And to S4.2 is added classical quantification theory with 

identity and the axiom ‘𝑥 ≠ 𝑦 → □𝑥 ≠ 𝑦’ expressing the necessity of difference.27 

Now, as seen above, it is useful to describe the axioms of ZF informally in terms of 

pluralities. To characterize the potentialist conception properly with the tools of modal logic, it is 

essential to quantify over them explicitly in order to identify the logical principles that govern 

their behavior. Accordingly, we introduce plural variables ‘𝑥𝑥’, ‘𝑦𝑦’, etc. and a new type of 

atomic formula ‘𝑦 ≺ 𝑥𝑥’ to indicate that 𝑦 is one of the things 𝑥𝑥. The inference rules for plural 

quantifiers parallel those for first-order quantifiers exactly.28 

Several principles capture the existence and nature of pluralities. First, given the ontological 

innocence of plural quantification, the plural counterpart to NC is harmless: 

PC ∃𝑥𝑥∀𝑦(𝑦 ≺ 𝑥𝑥 ↔ 𝜑(𝑦)), where ‘𝑥𝑥’ does not occur free in 𝜑(𝑦), 

that is, simply put, for any predicate 𝜑(𝑦), there are the things it is true of.29 Next, the modal 

properties of pluralities are captured in two axioms expressing the stability of the ≺ relation, that 

                                                
26 There is no axiom corresponding to antisymmetry because it is not definable in propositional modal logic. See, 
e.g., (Blackburn, de Rijke, & Venema, 2001), §4.5. Well-foundedness can be axiomatized in a bimodal extension of 
propositional modal logic with both “forward-looking” and “backward-looking” necessity operators. See (Studd, 
2013). 
27 The necessity of identity is a well-known theorem of this logic. 
28 See (Linnebo, 2014) for a comprehensive overview of the logic of plural quantification. 
29 As Linnebo points out (2013, p. 210), PC entails the existence of an “empty” plurality. This can be avoided at the 
cost of some inconvenience. As to PC’s harmlessness, note that a Russell-style argument to a contradiction from PC 
with 𝜑 𝑦 = ‘𝑦 ⊀ 𝑦’ (assuming that construction is even permitted syntactically) breaks down, as it is in general 
invalid to infer from the fact that all things (distributively) have a property 𝐹, that any things (collectively) have 𝐹. 
Hence, from ∀𝑦𝜑(𝑦) we cannot legitimately infer 𝜑 𝑥𝑥 ; in particular, we can’t infer 𝑥𝑥 ≺ 𝑥𝑥 ↔ 𝑥𝑥 ⊀ 𝑥𝑥 from 
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is, that, for any plurality 𝑥𝑥 and object 𝑦 in a given world 𝑤, 𝑦 will be among the things 𝑥𝑥 in an 

arbitrary accessible world 𝑤′ if and only if it is among them in 𝑤: 

Stb≺N 𝑦 ≺ 𝑥𝑥 → □(𝑦 ≺ 𝑥𝑥) 

Stb≺{ 𝑦 ⊀ 𝑥𝑥 → □(𝑦 ⊀ 𝑥𝑥). 

However, these axioms don’t rule out the possibility that 𝑥𝑥 grows in a further world 𝑤′, that 𝑥𝑥 

includes a new object 𝑧 that only first comes to exist in 𝑤′. This possibility is ruled out by means 

of a schema that ensures that pluralities are inextensible: 

InEx≺ ∀𝑦(𝑦 ≺ 𝑥𝑥 → □𝜑) → □∀𝑦(𝑦 ≺ 𝑥𝑥 → 𝜑).30  

Let MPFO be this system of plural first-order modal logic. 

 The next task is to extend MPFO to a basic modal set theory BMST. Like ZF, BMST 

axiomatizes the two fundamental structural properties of sets, viz., extensionality and 

foundation,31 which are captured simply by adopting the axioms Ext and Fnd (hence also their 

necessitations). Recall from Section 1 above, however, that sets also have their members 

essentially, as expressed in the principles E∈ and E∉.32 Both of these principles, as well as the 

inextensibility of membership, are entailed by the following: 

𝐄𝐃∈ ∃𝑥𝑥□∀𝑦 𝑦 ≺ 𝑥𝑥 ↔ 𝑦 ∈ 𝑎 . 

Together with the stability and inextensibility principles for pluralities above, 𝐄𝐃∈ says that, for 

any set 𝑎, one and the same plurality of things constitute 𝑎 in every (accessible) possible world. 

                                                                                                                                                       
∀𝑦(𝑦 ≺ 𝑥𝑥 ↔ 𝑦 ⊀ 𝑦). For more on distributive vs. collective quantification, see, e.g., (Scha, 1984) and (McKay, 
2006). 
30 To see how this might work to ensure inextensibility, suppose 𝑥𝑥 is a plurality in 𝑤 and that 𝑎 exists in some 
accessible world 𝑤’ but is not in 𝑤 (and hence that, at 𝑤, 𝑎 ⊀ 𝑥𝑥) and suppose for reductio that 𝑎 ≺ 𝑥𝑥 at 𝑤′. Let 𝜑 
be the formula ‘𝑦 ≠ 𝑧’. Then, where ‘𝑧’ takes 𝑎 as value, ‘∀𝑦(𝑦 ≺ 𝑥𝑥 → □𝑦 ≠ 𝑧)’ is true at 𝑤 but ‘∀𝑦(𝑦 ≺ 𝑥𝑥 →
𝑦 ≠ 𝑧)’ is false at 𝑤′, contradiction. Note that for this axiom to work, it is critical in general that, in the evaluation of 
𝜑 at a world 𝑤, free variables are not taken to be implicitly universally quantified but, rather, that the free variables 
of 𝜑 be allowed to take values outside of 𝐷(𝑤). For in general there is no guarantee that there will be some 
predicate involving at most the things in 𝑤 that is necessarily true of each of the things 𝑥𝑥 but of nothing else in any 
accessible world. 
31 Foundation follows semantically from the weak well-foundedness of the accessibility relation 𝑅 and the 
fundamental potentialist assumption that the members of any set that first comes to be in any world 𝑤 is constituted 
by objects that exist in some world 𝑢 such that 𝑅𝑢𝑤. See (Linnebo, 2013) , pp. 216-17. 
32 Since □𝐸!𝑎 is a simple theorem of MPFO, the antecedents 𝐸!𝑎 of the conditionals in the consequents of these two 
principles are superfluous in the context of BMST. 
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 As noted above, the potentialist correlate to any statement asserting the existence of a given 

set is a statement asserting that it is possible that such a set exist. BMST has but a single such 

principle. Recall that the general intuitive motivation for the naïve comprehension principle NC 

was that the existence of the members of a purported set should suffice for the existence of the 

set, which we can now express generally, and formally, in terms of plural quantification: 

GNC ∀𝑥𝑥∃𝑎∀𝑦(𝑦 ∈ 𝑎 ↔ 𝑦 ≺ 𝑥𝑥). 

Given the innocent principle PC, NC (and catastrophe) follow immediately from GNC. As 

we’ve seen, both actualist and potentialist accounts have explanations of where GNC goes 

wrong based intuitively on the iterative conception of set. On both accounts, in one sense or 

another, sets are “constructed” level-by-level without end, the new sets of one level constituted 

by the mere pluralities of previous levels. Hence, necessarily, the plurality of all the sets in all 

the levels, and unbounded pluralities generally, fail to constitute sets. Both accounts thus agree 

on where GNC gets it wrong: necessarily, there are pluralities that don’t constitute sets. 

Additionally, however, the potentialist conception avoids the completion problem by explaining 

where GNC almost gets it right: not every plurality constitutes a set, but any plurality could. 

From the potentialist standpoint, then, GNC simply missed the implicit modality in claims of set 

existence; what we need is just its potentialist translation: 

C □∀𝑥𝑥◇∃𝑎□∀𝑦(𝑦 ∈ 𝑎 ↔ 𝑦 ≺ 𝑥𝑥). 

That is, necessarily, any plurality of things could constitute a set consisting of exactly those 

things. This, of course, is a precise formalization of Parsons’ Principle. Let BMST be the result 

of adding the axioms Ext, Fnd, 𝐄𝐃∈, and C to MPFO. 

 It is a simple matter to show that BMST proves the potentialist translations of all of the ZF 

axioms except Pow, Inf, and Rep.33 As these are by far the most powerful axioms of ZF, this 

shows that our basic intuitions about pluralities and sets as expressed in BMST — in particular, 

Parsons’ Principle C — only get us so far. To see this with regard to Pow, suppose we have a 

plurality 𝑥𝑥 in some world 𝑤. By principle C there is a world 𝑢 accessible from 𝑤 in which they 

constitute a set 𝑏. Obviously, all the “subpluralities” of 𝑥𝑥 — all the things 𝑦𝑦 such that each of 

                                                
33 See (Linnebo 2013, p. 221) and (Parsons 1983), Appendix 2. The addition of the urelement axiom Ur, which 
neither Linnebo nor Parsons includes in their discussions, would involve no significant complications to these 
results. 
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them is one of the things 𝑥𝑥 — also exist in 𝑤. But neither C nor the structure of worlds and 

their domains in the underlying semantics provides any guarantee that any of them (other than 

𝑥𝑥) constitute a set in 𝑢, let alone all of them. Indeed, for all we know on the potentialist 

conception to this point, the subpluralities of 𝑥𝑥 might be inexhaustible in the sense that, for any 

world 𝑢 accessible from 𝑤, there is always a further world 𝑣 accessible from 𝑢 at which some 

subplurality of 𝑥𝑥 only first constitutes a set (hence, a subset of 𝑏). If so, there is no world where 

all possible subsets of 𝑏 exist, in which case the power set of 𝑏 is impossible, contrary to 𝐏𝐨𝐰◇, 

i.e., ◇∃𝑎□∀𝑥(𝑥 ∈ 𝑎 ↔ 𝑥 ⊆ 𝑏). 

 To derive 𝐏𝐨𝐰◇, then, an additional principle is required that rules out this sort 

inexhaustibility. Intuitively, this is accomplished most naturally by assuming that worlds more 

directly reflect the levels of the cumulative hierarchy; that is, by assuming, not only that the 

newly-formed sets of a given world are mere pluralities of some preceding world, but that set 

formation is always maximal: that the newly-formed sets of a world are all those that can be 

constituted from the mere pluralities of a preceding world.34 This assumption can be expressed 

elegantly in a single axiom to the effect that, much like its members, the subsets of a given set 𝑎 

are constant across possible worlds: 

𝐄𝐃⊆ ∃𝑥𝑥□∀𝑦 𝑦 ≺ 𝑥𝑥 ↔ 𝑦 ⊆ 𝑎 . 

𝐏𝐨𝐰◇ now follows straightaway from BMST + 𝐄𝐃⊆. 

 Recall that ES and Pr alone suffice to generate the infinite plurality of Zermelo numbers ∅A, 

∅B, ∅C, … and it was left to Inf simply to sanction a set containing them. If we could prove the  

mere possibility that all the Zermelo numbers exist on the potentialist conception, we could 

immediately invoke principle C to prove the possible existence of a set containing them. 

However, the potentialist is in a slightly more fraught situation. For the potentialist principles to 

this point — the derived principles 𝐄𝐒◇ and 𝐏𝐫◇ in particular — only yield a series of possible 

initial segments of the Zermelo numbers: by 𝐄𝐒◇ it is possible that ∅B exists; and by iterated 

applications of 𝐏𝐫◇, it is possible that ∅A and ∅B exist and hence also that the numbers ∅A, ∅B, 

                                                
34 Linnebo (2013, p. 209, fn 7) suggests that maximality entails that the accessibility relation is linear but that would 
follow only if worlds are individuated extensionally by their domains (which is plausible if, as in (Linnebo 2013), 
the existence of urelements is not assumed). Linearity can be forced axiomatically by any of a variety of axioms; see 
(Chellas, 1980). The system resulting from adding a linearity axiom to S4 in place of G is S4.3 though, as Parsons 
notes (1983, pp. 319-20), S4.3 seems to add nothing over S4.2 for the purpose of deriving set-theoretic 
consequences. 
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and ∅C exist, and so on, but without the entire series of Zermelo numbers ever being 

“completed” in a single possibility. 

 To derive the possible existence of all the Zermelo numbers thus requires a further principle 

asserting, roughly, that whatever is true of the potential hierarchy as a whole, as expressed in the 

potentialist translation 𝜑◇ of some proposition 𝜑 of set theory (hence a proposition containing no 

plural quantifiers35), is possible simpliciter: 

Ref 𝜑◇ → ◇𝜑. 

Thus, in particular, 𝐄𝐒◇ and 𝐏𝐫◇ yield a proposition 𝜑◇ expressing the infinite series of 

possibilities involving larger and larger initial finite segments of the Zermelo numbers.36 By Ref 

that series is reflected in a single possibility containing all — hence, by PC, the entire infinite 

plurality of — the Zermelo numbers, and so by Parsons’ Principle C it is possible that they 

constitute a single infinite set. 𝐈𝐧𝐟◇ follows immediately by some simple modal logic. The 

potentialist translation 𝐑𝐞𝐩◇ of the Replacement schema can be similarly proved by 

strengthening Ref to 

RefN  ◇∀𝒙(𝜑◇(𝒙) → 𝜑 𝒙 ).37 

Importantly, it can be shown that the modalized quantifiers ◇∃ and □∀ “behave proof-

theoretically very much like ordinary quantifiers” (Linnebo, 2013, p. 213), thus explaining why 

they are not found in ordinary set-theoretic practice — mathematicians can, in effect, talk about 

the potentialist hierarchy as if it were actual. 

Concluding Philosophical Postscript. This article has focused chiefly on the technical 

development of modal set theory and its intuitive motivations without any close critical attention 

paid to surrounding philosophical questions. In closing we note briefly that perhaps the most 

significant philosophical challenge to the potentialist conception is to explain the nature of the 

modality in question. For, from an “absolute” metaphysical perspective outside of any given 

                                                
35 Allowing plural quantifiers in 𝜑 without restriction would in fact lead to Russell’s Paradox. 
36 Specifically, 𝜑◇ is ◇∃𝑎∀𝑥𝑥 ∉ 𝑎 ∧ □∀𝑥◇∃𝑦□∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) and hence ◇𝜑 is ◇(∃𝑎∀𝑥 𝑥 ∉ 𝑎 ∧ ∀𝑥∃𝑦∀𝑧 𝑧 ∈
𝑦 ↔ 𝑧 = 𝑥 ). 
37 Again, where 𝜑 contains no plural quantifiers. Parsons (1983, p. 323) relies on a rather different principle to 
derive Inf ◇ and Rep◇. See Linnebo (2013, p. 223, fn 28) for further discussion. 
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possible world, even pure sets are metaphysically contingent beings — in particular, at any given 

possible world 𝑤, those sets in any accessible world 𝑤′ whose members are mere pluralities in 

𝑤. If this is in fact the sober truth about the metaphysics of sets, then set existence is modally 

capricious — two possible worlds can be in all respects identical but for the fact that there are 

pure sets in one that simply and inexplicably fail to exist in the other. Though not identical to the 

completion problem, the apparently inexplicable contingency of set existence on the potentialist 

conception, taken literally, seems to raise questions parallel to those arising from the apparently 

inexplicably nonexistence of certain sets, as noted in the completion problem. 

 Perhaps in response to this difficulty — though neither explicitly says so — both Parsons 

(1977, §IV) and Linnebo (2013, pp. 207-8) suggest that the modality of the potential hierarchy is 

more semantic than metaphysical: at any given time, one’s conception of the “height” of the set 

theoretic universe, hence the range of one’s quantifiers, is determined by one’s strongest large 

cardinal assumptions.38 Once convinced of the existence of a larger cardinal still, pluralities that 

had been absolutely unbounded constitute sets under the stronger assumptions and the range of 

one’s quantifiers broadens accordingly. Thus Linnebo (p. 208): 

A claim is possible, in this sense, if it can be made to hold by a permissible 

extension of the mathematical ontology; and it is necessary if it holds under 

any permissible such extension. Metaphysical modality would be unsuitable 

for our present purposes because pure sets are taken to exist of metaphysical 

necessity if at all.  

However, if after all (pure) sets exist as a matter of metaphysical necessity (so that, in particular, 

any pure sets that could have existed actually exist), as Linnebo appears to suggest here, then the 

completion problem threatens once again to rear its head with all its original force: why are there 

only the pure sets there actually are? If, necessarily, all pure sets exist of metaphysical necessity, 

what explains the fact that there couldn’t have been more, the fact that there are pluralities of 

things such that it is not even metaphysically possible that they constitute sets?39 

These and related metaphysical questions prompted by the potentialist conception of set point 

to a fertile area for exploration in the philosophical foundations modal set theory.  
                                                
38 See also (Fine, 2006). 
39 (Hewitt, 2015, §§2.4-2.6) raises related problems. 
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