
CHAPTER 10

The IDEF Family of Languages

Christopher Menzel, Richard J. Mayer

The purpose of this contribution is to serve as a clear introduction to the modeling
languages of the three most widely used IDEF methods: IDEFO, IDEFIX, and
IDEF3. Each language is presented in turn, beginning with a discussion of the
underlying "ontology" the language purports to describe, followed by presentations
of the syntax of the language - particularly the notion of a model for the language
- and the semantical rules that determine how models are to be interpreted. The
level of detail should be sufficient to enable the reader both to understand the
intended areas of application of the languages and to read and construct simple
models of each of the three types.

1 Introduction

A modeling method comprises a specialized modeling language for represent­
ing a certain class of information, and a modeling methodology for collecting,
maintaining, and using the information so represented. The focus of this
paper will be on the languages of the three most widely used IDEF methods:
The IDEFO business function modeling method, the IDEFIX data modeling
method, and the IDEF3 process modeling method.

Any usable modeling language has both a syntax and a semantics: a set
of rules (often implicit) that determines the legitimate syntactic constructs of
the language, and a set of rules (often implicit) the determines the meanings
of those constructs. It is not the purpose of this paper is to serve as an exhaus­
tive reference manual for the three IDEF languages at issue. Nor will it dis­
cuss the methodologies that underlie the applications of the languages. There
are other sources that discuss these issues ([NIST93a, NIST93b, MMP93]).
Rather, the purpose of this paper is simply to serve as a clear introduction to
the IDEF languages proper, that is, to their basic syntax and semantics. It is
thus hoped that the paper will quickly enable the reader both to understand
the intended areas of application of the languages and, more specifically, to
read and construct simple models of each of the three types.

P. Bernus et al. (eds.), Handbook on Architectures of Information Systems
© Springer-Verlag Berlin Heidelberg 1998

210 Christopher Menzel, Richard J. Mayer

2 Background to the IDEF Languages

The IDEF suite of modeling languages arose in the 1970s out of the U.S.
Air Force Integrated Computer Aided Manufacturing (ICAM) program. The
goal of ICAM was to leverage computer technology to increase manufac­
turing productivity. A fundamental assumption of the program was the
need for powerful but usable modeling methods to support system design
and analysis. Consequently, the program undertook the development of a
suite of "ICAM DEFinition," or IDEF, methods. These included an activ­
ity, or "function," modeling method (IDEFO), a conceptual modeling method
(IDEF1), and a simulation model specification method (IDEF2). IDEFO was
based loosely upon the Structured Analysis and Design Technique (SADT)
pioneered by Douglas Ross [Ros77] and IDEF1 upon the Entity, Link, Key
Attribute (ELKA) method developed chiefly at Hughes Aircraft by Timothy
Ramey and Robert Brown [RB87]. Since the ICAM program there have been
several important developments. First, in 1983, the Air Force Integrated In­
formation Support System (I2S2) program added several constructs to the
IDEF1 method that were felt to make it more suitable as a database schema
modeling method. The result was IDEF1X, which is now more widely used
than IDEFl. Beginning in the late 1980s, work began on a process modeling
method known as IDEF3, and was completed under the Air Force Information
Integration for Concurrent Engineering (lICE) program. IDEF3 subsumes
much of the original role of IDEF2, as it can be used for the specification
of effective first-cut simulation models. Additionally, the IDEF3 language
has an object-state component that can be used for modeling how objects
undergo change in a process. The early 1990s saw the emergence of IDEF4
and IDEF5. IDEF4 is an object-oriented software design method that inte­
grates requirements specified in other methods through a process of iterative
refinement. It also supports the capture and management of design ratio­
nale. IDEF5 is a knowledge acquisition and engineering method designed to
support the construction of enterprise ontologies [Gru93]. Because of space
limitations, these newer methods will not be discussed further in this paper.
Interested readers are referred to [MKB95] and [MBM94].

Recent developments have focused on refinement and integration of the
IDEF languages. That is, the focus has been on the development of both
theory and techniques to support the easy exchange of information between
different IDEF (and non-IDEF) models, and, ultimately, on the automated
exchange and propagation of information between IDEF (and non-IDEF)
modeling software applications. To reflect these developments, "IDEF" is
now usually taken to be an acronym for Integration DEFinition.

The IDEFO, IDEFIX, and, increasingly, IDEF3 methods are widely used
in both government and the commercial business sectors. The focus of this
paper will be on the languages of these methods. In many presentations of
one or another IDEF language, syntax and semantics are intermingled so as
to make them difficult to distinguish. A goal of this paper is to keep this

The IDEF Family of Languages 211

distinction sharp. Thus, each major section begins with a discussion of the
basic semantic, or ontological, categories of the method at hand, indepen­
dent of any syntactic considerations. Only then is the syntax of the language
introduced, first its lexicon (i.e., its more primitive elements), then its gram­
mar (i.e., the rules determine how complex expressions are ultimately built
up from the elements of the lexicon).

3 The IDEFO Function Modeling Language

We begin with the IDEFO function modeling language, the method for build­
ing models of enterprise activities.

3.1 The IDEFO Ontology: Functions and ICOMs

In general, an activity is a thing that happens, whether (in effect) instanta­
neously or over some (possibly fragmented, discontinuous) period of time.
Simple examples of activities include the death of Caesar, Jessie Owens' run­
ning of the 100 yard dash in the finals of the 1936 Olympics, and the writing
of this paper. In IDEFO modeling, however, attention is often focused not
just on actual "as-is" activities, but possible activities as well- the activities
of a merely envisioned company, for example, or those of a proposed virtual
enterprise. Thus, one might say, the primary focus of IDEFO's ontology -
the things that exist according to IDEFO - is the class of all possible activi­
ties, whether actual or not. However, it is not concerned with just any sort of
activity, but with a certain kind, known in IDEFO as a function. Thus, IDEFO
is often referred to as a "function modeling method." An IDEFO function is a
special kind of activity, namely, one that, typically, takes certain inputs and,
by means of some mechanism, and subject to certain controls, transforms the
inputs into outputs - note the parallel with the notion of a mathematical
function wherein a given set of arguments (inputs) is "transformed" into a
unique value (output). (That noted, we shall follow common practice and
usually use the generic term 'activity'.) The notions of input and output
should be intuitively clear. Controls are things like laws, policies, standards,
unchangeable facts of the environment, and the like that can guide or con­
strain an activity, and mechanisms are resources that are used in bringing
about the intended goals of the activity. Thus, for example, in an Implement
Software Prototype activity, relevant controls might be such things as a high­
level software design, software documentation standards, and the operating
systems of the development environment. And the most salient mechanisms
would likely be the programmers on the project (together with their com­
puters). Intuitively, there are no salient inputs to this activity, as nothing is
actually transformed or destroyed as the activity is actually carried out, and
the output is, of course, the completed prototype.

Inputs, controls, outputs, and mechanisms are referred to generally in

212 Christopher Menzel, Richard J. Mayer

IDEFO as concepts, or ICOMs (an acronym for the four types of concept).
The former term is a bit of a misnomer, for, unlike the ordinary meaning of
the term, an IDEFO concept needn't be an abstract or mental entity. Hence,
because it has no connotations from ordinary language, the latter term will be
used here. An lCOM, then, can be any entity - mental or physical, abstract
or concrete - that plays a certain role in an activity. Note, however, that the
same entity might play different roles in different activities. Thus, a particular
NC machine might both be the output of a Make-NC-machine activity, and
the main mechanism for transforming material input into output in a Make­
widget activity. Note also that an lCOM can be a complex object (a car
body, for example) that is composed of many other objects.!

3.2 IDEFO Syntax: Boxes and Arrow Segments

The world according to IDEFO, then, consists of activities (functions) and
lCOMs. Accordingly, the graphical language of IDEFO contains two basic
constructs: boxes, representing activities, and arrow segments, representing
lCOMs. Arrow segments have a head - indicated explicitly by an arrowhead
when necessary - and a tail. Arrow segments combine to form arrows,
which will be discussed below. The basic constructs of IDEFO are built up
by connecting boxes and arrow segments together in certain allowable ways.
Specifically, the head of an arrow segment can only connect to the bottom,
left side, or top of a box, or to the tail of another arrow segment. The tail of
an arrow segment can only connect to the right side of a box, or to the head
of another arrow segment. The most basic construct of IDEFO is depicted in
a general fashion in Figure 1, along with indications of the type of entity in
the IDEFO ontology each component of the construct signifies.

Notice that the box side to which an arrow segment attaches indicates
the type of lCOM that it represents relative to the activity represented by
that box. Arrow segments representing inputs, controls, and mechanisms for
the function in question attach at the head to the left side, top, and bottom
of a box, respectively, and are said to be the incoming segments of that box.
Arrow segments indicating outputs attach at the tail end to the right side
of a box, and are said to be the outgoing segments of that box. Every box
in a model must have at least one incoming control arrow segment and one
outgoing output arrow segment. A control segment is required because there
must be something that guides, determines, or constrains a well defined en­
terprise function; random, unstructured, unrepeatable activities are beyond
the scope of the IDEFO method. An output segment is required because oth-

1 It should be noted that, when talking in general about a certain kind of activity, as they
are wont, by an ICOM a modeler often means a corresponding class of particular ICOMs,
e.g., the class of NC machine outputs from all Make-NC-machine activities of a certain
sort. Context typically determines whether one is speaking about classes or instances,
and, accordingly, we shall not be overly zealous in specifying which "level" we ourselves
intend at every point in this article.

The IDEF Family of Languages 213

(controls)

... ~
" ~

I
<concept name:> <Function name> <concept name:>

(inputs) · · · · (output.v)

· ·
<n>

~
t
" 0
u ...
V

(mechanLnns)

Figure 1: The Basic IDEFO Construct

erwise there would be no purpose served by the activity, and hence it would
add no value to the enterprise. Inputs, though typical, are not required, as
not every function involves the consumption or transformation of some ob­
ject, e.g., writing an email message. Similarly, some activities, e.g., high-level
planning, may require no separate, identifiable mechanism.

3.3 IDEFO Diagrams

Boxes and arrow segments are combined in various ways to form diagrams.
The boxes in a diagram are connected by sequences of arrow segments, which
can fork and join within a diagram as depicted in Figure 2.

S3 •

~
~

Joining arrow segments

Forking arrow segments

Figure 2: Arrow Segment Forking and Joining

In IDEFO, a join typically indicates either (physical or conceptual) com-

214 Christopher Menzel, Richard 1. Mayer

position or generalization. Hence, a (three-segment2) join is often said to
indicate the bundling of two lOOMs into another, and the more complex or
more general 100M is sometimes referred to as a "bundle." Thus, in Fig­
ure 2, 51 might signify the 100M Ad and 52 the !COM Envelope and 53 the
composite 100M, or bundle, Mail-promo, whose instances consist of sealed
envelopes containing copies of the advertisement in question. (In cases of
composition there is often an underlying enterprise activity, but one which is
not considered significant enough to warrant explicit representation.) Again,
51 might signify the 100M Inventory Entry, 52 the 100M Billing Entry, and
53 the more general, bundled 100M Account Entries. As the term indicates,
it is usually best to think of bundled lOOMs like fiber bundles in fiber-optic
cables: instances of two lOOMs that are bundled together into a third are
not mingled indistinguishably together, as in a confluence of two rivers; they
are simply packaged together and, without losing their original characters,
both delivered as inputs, controls, or mechanisms to the same functions.

A join can also simply indicate recognition of a single 100M whose in­
stances stem from different sources. In this case, all three segments involved
in a join indicate exactly the same 100M. Such cases are usually signified by
attaching a label only to the "merged" segment (53 in Figure 2).

A fork, naturally, is the "dual" of a join. That is, a fork indicates either
(physical or conceptual) decomposition or specialization. Forks are therefore
also commonly said to indicate an unbundling of one 100M into two others
(one of which might be identical with the initial 100M). As with joins, a fork
can also simply indicate the recognition of a single 100M whose instances
are used as inputs, controls, or mechanism for different functions.

To illustrate, consider the diagram in Figure 3 which represents, from an
accounting perspective, the activities initiated by the receipt of a customer
order. As illustrated, the connected boxes in an IDEFO diagram are repre­
sented in a "stair step" fashion (on a page or computer screen) from top left
to lower right. Each box from top left to lower right is numbered sequen­
tially beginning with 1 (with one exception, noted below); this is the box's
box number. In the diagram in Figure 3, the two forks following the arrow
segment labeled 'Fulfillment Files' indicate that the bundled 100M Fulfillment
Files includes both Customer Records that are used as controls on the Deliver
function and the Price Tables and Tax Tables that serve as controls on the
Bill function. Similarly, the join that merges into the arrows segment labeled

2Because arrow segments in standard lDEFO syntax must be either horizontal or vertical
except perhaps for 90 degree bends, forks and joins can involve no more than four arrow
segments - to the join in Figure 2 one could add a segment symmetrical to S2 that joins
the other three from above; analogously for the fork. Theoretically, this is no limitation, as
one can get the semantic effect of an n-segment fork or join simply by means of a series of
three-segment forks or joins. This semantic equivalence is one example of why one ought
not to read any temporal significance into arrow segments. For example, a series of joins
in a model all indicating physical compositions would not have any implications for how
(instances of) the indicated leOMs are actually composed in instances of the activity being
modeled.

The IDEF Family of Languages 215

Tax Requirements

1 Fulfillment Files
Orders Record ~

r' 1

c!tomer RecordsJ' Price Tables ~ r-Tax Tables

Inventory B1try
Deliver \. Delivered Products

Ordered Products -" Account Entitles

2~
f-'\-Billing Entry

Tralactions -.r- Bill
---' ----. Invoices

3

Dehveryman Account clerk

Figure 3: An IDEFO diagram

'Account Entries' indicates that the Account Entries bundle includes both In­
ventory Entries and Billing Entries. The fact that the segments forking from
the segment labeled 'Account Clerk' are unlabeled indicates that an Account
Clerk is used as a mechanism in both the Bill and Record functions.

An arrow is a certain kind of sequence of arrow segments within a dia­
gram. An arrow originating at one box and ending at another indicates a
resource connection between the indicated functions - though one of those
functions may be only implicit if one end of the arrow's initial or final seg­
ment is not attached to anything in the diagram. Thus, syntactically, an
IDEFO arrow within a diagram D is defined to be a connected sequence of
arrow segments in D such that at least one end (i.e., the tail of its initial
segment or the head of its final segment) is attached to a box and the other
is either attached to a box or unattached to anything in the diagram. Thus,
for example, in Figure 3, the Orders arrow segment is itself an arrow, as is the
sequence consisting of the Fulfillment Files segment, the unlabeled segment
it is attached to it (which, by convention, also signifies the Fulfillment Files
bundle), and the segment labeled 'Tax Tables'. Arrows (arrow segments) that
are unattached at one end are known as boundary arrows (boundary arrow
segments).

216 Christopher Menzel, Richard J. Mayer

3.4 IDEFO Models

An IDEFO model is a hierarchically arranged collection of IDEFO diagrams.3

The hierarchy is actually an (inverted) tree: there is a single root node, and
each node of the tree has some finite number of "daughters"; every node
except the root has only one "mother". The root node of an IDEFO model is
known as the top-level, or context, diagram of the model. 4 Unlike every other
diagram in the model, the top-level diagram contains only one box. This box
represents - at the coarsest granularity - the single high-level activity that
is being represented by the entire IDEFO model.

The mother-daughter relation holding between two diagrams in an IDEFO
model signifies that the daughter node is the decomposition of a box in the
mother node. A decomposition of a box B is a diagram that represents a
finer-grained view of the function signified by B. Such a diagram D is known
variously as a decomposition diagram, detail diagram, or child diagram for B,
and B is known as the parent box of D. Only one detail diagram per box is
allowed in an IDEFO model.

By convention, a detail diagram contains three to six boxes. The tradi­
tional justification for this is that a diagram with fewer than three boxes does
not contain sufficient detail to constitute a useful decomposition; similarly, a
diagram with more than six boxes contains detail that should be suppressed
within that diagram and unpacked in a decomposition. Many users have
found this "3-6 box rule" too constraining and have proposed replacing it
with a "2-9 box rule," and in fact the latter rule has been incorporated into
a proposed IEEE IDEFO standard [IEEE97].5

A simple IDEFO model for a computer assembly activity can be found
in Figure 4. Each diagram within a model has a diagram number, and each
box within a diagram a unique node number. The top level diagram of a
model has the diagram number A-O ("A-minus-zero") and its single box has
the node number AO. The number of every other diagram is simply the node
number of its parent box (as every diagram but the top-level diagram is the
child diagram of some box). The node number of a box in the AO diagram
(i.e., the child diagram of the AO box) is An, where n is box's box number
within the diagram. The node number of a box within every other child
diagram is simply the result of concatenating the diagram's diagram number
with the box's box number. Thus, the node number of Assemble CPU is AI,
while that of Install Storage Devices is A13.

Let B be a box and D a diagram within a model M. B is an ancestor
of D (within M) just in case B is either the parent box of D (in M), or the

3This is not strictly correct, as an IDEFO model is typically taken also to include textual
annotations and glossary, but as the focus of this article is the graphical language proper,
we have chosen to ignore these more pragmatic elements of a model.

4In fact the top-level diagram for a model can itself be embedded within other, "envi­
ronmental" context diagrams, but this subtlety will not be discussed in this paper.

5 At the time of this writing, this document had successfully gone to ballot, and was
under revision.

The IDEF Family of Languages 217

AO

A1

Figure 4: A Simple IDEFO model

parent box of a diagram containing some ancestor of D (that is, just in case
B is either the parent box of D, or the parent box of the diagram containing
the parent box of D, or the parent box of the diagram containing the parent
box of the diagram containing the parent box of D, and so on). Conversely,
D is a descendent of B in M just in case B is an ancestor of D in M. Given
this, we note that boundary arrow segments in a non-context diagram D
within a model indicate ICOMs that are present in the activity indicated
by some ancestor B of D - for D is simply a decomposition of B or of an
activity indicated by a box in one of the descendents of B. Consequently,
a boundary arrow segment that is unattached at its tail (respectively, head)
can be correlated with an incoming (respectively, outgoing) arrow segment for
some ancestor of D. Such a correlation is typically accomplished by labeling
both arrows with the same name. 6 Conversely, and more strongly, every
incoming or outgoing segment of a box with descendents should be correlated
with an appropriate boundary arrow segment in one of its descendents (else

6Traditionally, IDEFO has used a somewhat awkward system of "ICOM codes" to
achieve such correlations. However, ICOM codes are both unnecessary, as the same ef­
fect can be achieved by the consistent use of names, and are also largely rendered otiose
by modern modeling support software which can track such correlations with ease.

218 Christopher Menzel, Richard J. Mayer

the exact function of the indicated lCOM must not be clear).
If an arrow segment S attached to a parent box is correlated with a bound­

ary segment S' that is not in its child diagram, then S is said to be tunneled
downwards, and the arrow segment S' with which it is correlated is said to be
tunneled upwards. Thnneling simply provides a mechanism for "hiding" the
role of a given lCOM in a function through the successive decompositions of
the box representing that function until the appropriate level of granularity
is reached.

4 The IDEFIX Data Modeling Method

Just as IDEFO introduces a specialized ontology tailored for capturing busi­
ness activities, and a specialized language for building models of those activ­
ities in terms of that ontology, so IDEFIX introduces a specialized ontology
and a corresponding language tailored to build database models. We begin
with a discussion of its ontology.

4.1 The IDEF1X Ontology: Entities, Attributes, and
Relationships

Not surprisingly, the ontology of IDEFIX corresponds closely to the ontolo­
gies other database modeling languages such as the Entity-Relationship (ER)
and NIAM modeling languages. The basic ontological categories of IDEFIX
are entities,attributes, and relationships. We discuss each category in turn.7

4.1.1 Entities

Entities are simply classes of actual or - when "to be" situations are being
modeled - possible things in the world. Entities can comprise concrete
objects, such as employees and NC machines; more idealized objects such
as companies and countries; and even abstract objects like laws and space­
time coordinates. The things comprised by a given entity are known as the
members or instances of the entity. IDEFIX entities thus correspond to ERA
entity sets and NIAM entity classes.s

7It should be noted that we will only be discussing so-called "key-based" views. Offi­
cially, IDEFIX models can contain numerous "views", where a view, like the notion of a
model here, is a structured collection of entity boxes and relationship links. Views differ
in the constraints they satisfy. Specifically, the ER view does not require the identification
of keys, and allows "nonspecific", many-to-many relationships (see below for definition of
these notions). For the sake ·of brevity, in this paper we are identifying models with what
are known as "fully-attributed" views in IDEFIX, in which keys must be identified and all
many-to-many relationships must be resolved into functional relationships.

8The term 'entity' is rather unfortunate, since in ordinary language it is a rough syn­
onym for 'thing' or 'object', i.e., for individual instances of classes rather than classes
themselves. IDEFI uses the more appropriate term 'entity class'.

The IDEF Family of Languages 219

4.1.2 Attributes

Every entity has an associated set of attributes. Attributes are simply func­
tions, or mappings, in the mathematical sense: an attribute associates each
instance of a given entity with a unique value. An attribute a is for a given
entity E if it is defined on all and only the instances of E.9 In IDEFIX,
the set of values that an attribute can return is known as the attribute's
domain.1o The domain of every attribute referred to in an IDEFIX model
is always one of several familiar data types; specifically, it is either the type
string, a numerical type of some ilk, the type boolean, or else a subtype of one
of these basic types. So, for example, common attributes for an EMPLOYEE
entity might be Name (of type string), Citizenship (subtype of string, viz.,
names of countries), Yearly-salary (positive integer), Marital-status (boolean),
and so on.

A central notion in IDEFIX is that of a candidate key, or simply, key.
A key for an entity E is a set of attributes for E that jointly distinguish
every instance of the entity from every other. More exactly, where a is an
attribute, let a(e) be the value of a applied to e. Let A be a set of attributes
for an entity E. Then A is a key for E just in case, for any distinct instances
e, e' of E, there is an attribute a E A such that a(e) =I a(e'). Ideally, a key
should be a smallest set of this sort, in the sense that no proper subset of a
key is also a key. If an attribute a is a member of a key, it is said to be a key
attribute.

4.1.3 Relationships

Relationships are classes of associations between instances of two (possibly
identical) entities. In the context of IDEFIX, one of the two entities is
identified as the parent entity and the other as the child entity. Let R be a
relationship, and let EP be its parent entity and Eg its child. Then the one
general requirement on relationships is that for each instance e of Eg there
is at most one instance e' of EP such that e is associated (by R) with e'.n
Also, typically, in an IDEFIX model, no instance of a relationship's child
entity fails to be associated with an instance of its parent, though this is not
always required. (See the notion of an "optional" non-identifying relationship
below.) If E is the child of a relationship Rand E' the parent, then R will
be said to link E to E'. (This is not standard IDEFIX terminology, but it
proves very useful for exposition.)

9Partial attributes - i.e., attributes that are not defined on all the instances of an
entity - are allowed in ER views.

lOThis is another unfortunate choice of terminology, as the term 'domain' in mathematics
is the usual name for the set of arguments for a function, and the term 'range' denotes the
set of its possible values, i.e., the attribute's "domain" in the sense of IDEFIX.

11 In ER views, "non-specific" relationships are allowed that don't satisfy this require­
ment; specifically, in a non-specific relationship an instance ofthe child might be associated
with more than one instance of the parent.

220 Christopher Menzel, Richard J. Mayer

It is convenient to think of a relationship R as a class of ordered pairs
(a, b) such that the first element a of each such pair is an instance of R's
child entity and the second element b is an instance of its parent entity. The
general requirement on relationships, then, can be expressed simply as the
requirement that a relationship R be functional, in the sense that, for a E Ef}
and bEEP, if Rab (i.e., if (a, b) E R) and Rac, then b = c. Given this, to
say that a given instance e of R's child entity Ef} is associated (by R) with
an instance el of R's parent entity EP is simply to say that eRel; likewise, to
say that a given instance e of EP is associated with an instance el of Ef} is
to say that ReI e. We say that R is total if for each instance e of Ef} there is
an instance el of EP such that Reel. Otherwise R is said to be partial. Since
relationships R are functional, we will sometimes write 'R(a)' to indicate the
unique object b such that Rab (when it is known that there is such an object
b).

4.1.3.1 Cardinality The cardinality of a relationship R signifies how
many instances of the child entity a given instance of the parent is associated
with. Often a relationship has no specific cardinality; one instance of the
parent might be associated by R with two instances of the child, another with
seventeen. The most that can be said in such cases is that the relationship has
a cardinality of zero, one, or more, which is true under any circumstances.
But often enough this is not the case. IDEFIX marks out in particular the
following cardinalities for R: one or more (signifying that R, viewed as a
function from Ef} to EP, is onto, or surjective); zero or one (indicating that
R, viewed as a function, is one-to-one, or injective); exactly n; and from n to
m.

4.1.3.2 Attribute Migration The functionality of relationships leads
to the important notion of key attribute migration. Suppose R links E to
g and let 0: be a key attribute for the parent entity EI. Because R maps
each instance e of E to a unique instance el of E I , a new (migrated) attribute
for E can be defined as the composition Roo: of 0: and R. 12 Thus, more
procedurally, to discover the value R 0 0:(e) of the migrated attribute Roo: on
a given instance e of E, one first finds the instance el of g associated with
e by R, and then applies 0: to el; i.e., R 0 o:(e) = o:(R(e)). This is the value
of the migrated attribute on e. (An example is given below.)

The notion of migration is often documented misleadingly so as to suggest
that a migrated attribute in the child entity of a relationship is the very
same attribute as the migrating attribute in the parent entity. Since they are
attributes for different entities, however, the two must be distinct. It is more
correct to characterize migration as a relation involving two attributes and a
relationship. More exactly, let R be a relationship and 0: and 0:1 attributes,
and let E be the child entity of R and EI the parent entity. Then we say that

12Where, as usual, f 0 g(x) = g(!(x)).

The IDEF Family of Languages 221

a' migrates from E' to E as a via R if and only if (i) a and a' are attributes
for E and E', respectively, (ii) R links E to E' and (iii) for all instances e
of E, aCe) = a'(R(e)). We will call a' the migrating attribute and a the
migrated attribute (relative to R). Note that a migrated attribute relative to
one relationship can itself be a migrating attribute relative another.

4.1.3.3 Categorization Relationships A particularly important type
of relationship in IDEFIX is a categorization relationship. Basically, a cat­
egorization relationship is just the identity relation restricted to a certain
subclass of a given entity; that is, a categorization relation maps a mem­
ber of a subclass of a given entity to itself in that entity. The importance
of these relationships is that they are used to form categorization clusters,
which divide a given entity - known as the generic entity in the cluster -
into several disjoint subclasses or category entities. Thus, the generic entity
in a cluster might be the entity EMPLOYEE, and SALARIED_EMPLOYEE and
HOURLY _EMPLOYEE the category entities in the cluster. A category cluster
is complete if the category entities jointly constitute a partition of the generic
entity, i.e., if every instance of the category entity is an instance of a (unique)
category entity.

It is often useful to identify a discriminator attribute for a category cluster
that returns, for each instance of the generic entity, a standard name for its
category. Thus, the discriminator attribute for the EMPLOYEE cluster above
would return either the string 'SALARIED...EMPLOYEE' or 'HOURLY ...EMPLOYEE'
on each generic entity instance. (For incomplete clusters, a discriminator
attribute would have to be either undefined on generic instances that are in
no category, or else would have to return a string indicating this, e.g., 'NIL'.)

4.2 The IDEFIX Language and its Semantics

Entities, attributes, and relationships constitute the basic ontology of IDE FIX,
the basic categories of things that one talks about in the IDEFIX language.
In this section we describe the language itself and its semantical connections
to these objects.

The basic syntactic elements of the IDEFIX language are entity boxes,
attribute names, and various kinds of relationship links. These elements,
of course, signify entities, attributes, and relationships, respectively. An
IDEFIX model is a collection of entity boxes, attribute names, and relation­
ship links that satisfy certain conditions, which we will state in the course
of our exposition. As with our account of IDEFO, then, we will continue
to use the term 'model' to indicate a certain kind of complex syntactic en­
tity. However, an entity, attribute, or relationship can be said to be "in"
a model insofar as that entity, attribute, or relationship is indicated by a
corresponding entity box, attribute name, or relationship link in the model.

Entity boxes come in two varieties, ones with square corners and ones
with rounded corners, as indicated in Figure 5.

222 Christopher Menzel, Richard J. Mayer

<entity-namelentit),-number> <entity-namelentity-number>

Figure 5: Entity Boxes

The ai are attribute names. The names aI, ... , an, written above the line,
indicate the members of a distinguished key for the indicated entity, known
(in the context of a model containing the given entity box) as the primary key
for the entity. n here must be at least 1; that is, it is required that a primary
key be identified for every entity indicated in a model. The same entity, of
course, could have a different primary key in a different model, although,
of course, it would have to be denoted by a correspondingly different entity
box in that model. a n+l, ... , a n+m indicate other, non-key attributes for the
entity.

Which of the two kinds of box to use for an entity in a model depends on
the kinds of relationships that link that entity to other entities indicated in
the model. Perhaps the most common type of relationship between entities
in a model is an identifying relationship, the IDEFIX syntax for which is
given in Figure 6. To define this notion, note first that it is a requirement on
IDEFIX models that, for any relationship R, all and only the attributes in
the primary key of R's parent entity migrate to its child entity via R. 13 R
is an identifying relationship if all of the attributes in the parent's primary
key migrate via R as attributes in the child's primary key; otherwise R is a
nonidentifying relationship. The idea here is that, procedurally, an instance
e of the child entity in a relationship can be identified - i.e., its key attribute
values determined - only by first identifying e's associated instance e' in the
parent entity, i.e., by first determining all of its (e"s) key attribute values. If
an entity E is the child entity in an identifying relationship R in a model, then
a box with rounded corners is used to indicate E in that model. Otherwise,
a box with square corners is used.

A simple example is given in Figure 7. In this example, the primary
key attribute DepLnumber migrates as the attribute Worksjn.DepLnumber,
which appears as a primary key attribute of EMPLOYEE. The relationship
is therefore, by definition, an identifying one. In the example, Emp_numbers
alone are not in general sufficient to distinguish one EMPLOYEE from an-

13Migrated attributes are sometimes referred to as "foreign keys", or, a bit less problem­
atically, "foreign key attributes", and are often marked with the expression '(FK)'. This
marking is otiose if the full name of the migrated attribute is given (i.e., if a role name is
used in naming the attribute; see below) but can be heuristically useful if role names are
suppressed.

The IDEF Family of Languages

E'

~ Parent Entity Box

~ Relationship Link
Relationship Name ~ p

E 4 ~ [/I:] ~ Cardinality Indicator

{31

1-----------1 ~ Child Entity Box

Figure 6: Syntax for Identifying Relationships

223

otherj Emp_numbers are unique only within DEPARTMENTs. Hence, one
must also know the Dept-number of the DEPARTMENT in which an EM­
PLOYEE works to distinguish him or her from every other EMPLOYEE.
Hence, the primary key for EMPLOYEE also contains the migrated attribute
Works_in. Dept-number. Note that the relationship name 'Worksjn', or some
related identifier (known in the context as a "role name"), becomes part of the
name of the migrated attribute. This is to indicate the relationship relative
to which the migration has occurred. By convention, if there is no possibility
of confusion, the very same name is used for the migrated attribute. Thus,
because there is no such possibility in the example (since there is only one re­
lationship linking EMPLOYEE to DEPARTMENT), 'Dept-number' could have
been used in both entity boxes. An attribute like Dept-number or SSN that
is not migrated relative to any relationship in the model is said (relative to
that model) to be owned by the entity it is defined on.

One further construct in Figure 6 requires comment, viz., the cardinality
indicator K,. This marker, of course, indicates the cardinality of the relation.
The brackets around K, signify that cardinality indicators are optional. If no
indicator is present, then the relationship in question can have any cardinality.
'P', by contrast, indicates the relationship is many-to-onej 'Z' that it is one
to zero or onej a specific numeral v indicates that the cardinality is exactly
n, where v denotes nj and v-I-' indicates a cardinality of n to m, where v and
I-' denote nand m, respectively.

224 Christopher Menzel, Richard J. Mayer

DEPARTMENT
DepLnumber

DepLname
BldQ...number

.­EMPLOYEE
Works_in. DepLnumber
Emp_number

Emp_name
SSN (AK)
Address

Figure 7: Example of an Identifying Relationship

As noted above, if R is not an identifying relationship (and no identify­
ing relationship links Eg to any other entity in the model), then a square­
cornered box is used to indicate the child entity. A dashed line rather than a
solid line is used to indicate non-identifying relationships. A non-identifying
relationship R is said to be mandatory if R is a total function from Eg to
EP, i.e., if every instance of R's child entity is associated with an instance of
R's parent entity; otherwise R is said to be optional. For example, let E' be
a class of offices in a business and let E be the class of computers that exist
in the business, and let R be the Located-in relationship. Most, but perhaps
not all, computers will be located in offices, but some might, e.g., have been
sent out for repair, and hence are not located in any office. IT this can be the
case, then Located-in is an optional relationship.14

An optional relationship is indicated by a dashed line with a small dia­
mond at the parent end of the link, as shown in Figure 8.

14Strictly speaking, the difference between mandatory and optional relationships really
applies more accurately to the labeled relationship links in a model. Entities, attributes
and relationships form what in mathematical logic are known as interpretation of the basic
syntactic elements of IDE FIX. An interpretation can be'said to validate an IDEFIX model
if its entities, attributes, and relationships comport with the constraints expressed in the
model (e.g., if the relationship associated with a one-to-n link really is one-n). To call a
relationship link mandatory, then, is to say that it can only be associated semantically in
any interpretation with a relationship that is a total function. The interested reader is
referred to [End72].

The IDEF Family of Languages 225

E' E'

E • • E
(h f31

~m+1 f3m+l

Figure 8: Syntax for Non-identifying Relationships

Any subset of an entity's attributes in a model that constitute a further
key is known as an alternate key for the entity (relative to that model). The
names of members of an alternate key are marked with the string '(AK)', as
illustrated by the attribute SSN in Figure 7. Should there be more than one
alternate key, then the keys are ordered (arbitrarily) and the names of the
attributes in the first key are marked with the string '(AKl)', those in the
second with '(AK2)', and so on. (It is possible, but uncommon, that the same
attribute be in different alternate keys, and hence for an attribute name to
be marked by more than one of the terms '(AKn)').

Finally, the syntax for a complete categorization cluster with three cate­
gory entities is exhibited in Figure 9. A name for the discriminator attribute
is written alongside the circle beneath the generic entity box. In general, clus­
ters with n category entities are represented with n relationship links running
from the lower of the two horizontal lines beneath the circle to n entity boxes.
Note that the names of the primary key attributes for every category entity
are identical with their counterparts in the generic entity. This reflects the
fact, noted previously, that the relationship linking a category entity to its
generic entity is the identity relation. Hence, each key attribute in the generic
entity migrates to each category entity as a restricted version of itself that
is defined only on those instances of the generic entity that are instances of
the category entity. This "near identity" of the migrating and migrated at­
tributes warrants using the same attribute name in the boxes for both generic
and category entities.

Incomplete categorization relationships are indicated in precisely the same

226 Christopher Menzel, Richard J. Mayer

G

0<1

O<n ~ Generic Entity B ox

O<n+1

08 ~ Discriminator Name

CI I C2 I C3 I
0<1 0<1 0<1

O<n O<n O<n

i31 'Y1 6

Category Entity Boxes

Figure 9: Complete Categorization Cluster Syntax

way, except that a single rather than a double horizontal line is used beneath
the circle.

5 The IDEF3 Process Modeling Method

The IDEF3 modeling method is used to construct models of general enterprise
processes. Like IDEFO and IDEFIX, it has a specialized ontology and, of
course, a corresponding language, which we detail in the following sections.

5.1 The IDEF3 Ontology: DOBs, Objects, and
Intervals

Because the terms 'process' and 'activity' are rough synonyms in ordinary
language, one might wonder what distinguishes the subject matter of IDEFO
from that of IDEF3. In one sense, nothing; both are concerned with the
modeling of actual and possible situations. The difference is a matter of focus:
features of situations that are essential to IDEFO activities are generally
ignored in IDEF3; and, conversely, features essential to IDEF3 processes are
ignored in IDEFO. More specifically, because IDEFO is concerned primarily
with the ways in which business activities are defined and connected by their
products and resources, IDEFO activities are characterized first and foremost

The IDEF Family of Languages 227

in terms of their associated inputs, outputs, controls and mechanisms. By
contrast, because IDEF3 is intended to be a general process modeling method
without, in particular, a specific focus on products and resources, an IDEF3
process - also known as a unit of behavior, or UOB, to avoid the connotations
of more familiar terms - is characterized simply in terms of the objects it
may contain, the interval of time over which it occurs, and the temporal
relations it may bear to other processes. Thus, IDEFO (by default) ignores
the temporal properties of situations (in particular, it is not assumed that
an activity must occur over a continuous interval), and it highlights certain
roles that objects play in them. By contrast, IDEF3 (by default) ignores those
roles and simply records general information about objects in situations and
the temporal properties of, and relations among, situations. IDEF3 is thus
particularly well-suited to the construction of models of general enterprise
processes in which the timing and sequencing of the events in a process is
especially critical. Notably, it is a particularly useful language to use in the
design of complex simulation models.

5.2 The IDEF3 Language and its Semantics

The basic elements of the IDEF3 lexicon for building process models are
illustrated in Figure 10. DOB boxes, of course, in the context of an IDEF3

UOB box

<UOB Label>

AND

<Node refll> I <IDEF refll>

Precedence Link

Junctions

Sync
AND

OR

Sync
OR

Figure 10: The Basic IDEF3 Process Description Lexicon

XOR

model, signify DOBs, and precedence links signify a certain kind of temporal
constraint. Every DOB box has an associated elaboration, i.e., a set oflogical
conditions, or constraints, written either in English or, more ideally, in a
formal logical language. A DOB box can signify a given DOB A only if the
latter satisfies the logical constraints in the elaboration of the former. In such
a case we say that A is an instance of the DOB box. Junctions, too, can have
elaborations.

228 Christopher Menzel, Richard J. Mayer

5.2.1 Syntax for the Basic IDEF3 Construct

The basic construct of IDEF3 is illustrated in Figure 11. Box 1, with the

Figure 11: The Basic IDEF3 Construct

label 'A' at the "back" end of the link is known as the source of the link and
box 2 with label '8' at the "front" end of the link is known as the destination
of the link. IT Figure 11 is considered as a complete IDEF3 model, box 1
is known as the (immediate) predecessor of box 2 in the model, and box 2
the (immediate) successor of box 1. The '1' in box 1 and the '2' in box 2
a:re the node reference numbers of the boxes, and are assumed to be unique
within a model. The corresponding area to the right of the node reference
number in a UOB box is optionally filled by an IDEF reference number, a
broader identifier for the purpose of locating that model element with respect
to numerous IDEF models.

5.2.2 Semantics for the Basic Construct

The meaning of an IDEF3 model is best understood in terms of its possi­
ble activations, the possible real world situations that exhibit the structure
specified in the model. In the simplest case, an activation of a model is a
collection of UOBs that satisfy the temporal constraints exhibited by the
structure of the precedence links in the model. In general, there are many
different patterns of activation for a given model. However, there is only one
possible activation pattern for simple two box models like Figure 11, viz.,
when a single UOB A of the sort specified in the box 1 is followed by a UOB
8 of the sort specified in box 2. More precisely, a legitimate activation of
Figure 11 as it stands is any pair of situations A and 8 that are instances of
boxes 1 and 2, respectively, and where 8 does not start before A finishes.

5.2.3 Junctions

Junctions in IDEF3 provide a mechanism to· specify the logic of process
branching. Additionally, junctions simplify the capture of timing and se­
quencing relationships between multiple process paths.

5.2.3.1 Junction Types AnIDEF3 model can bethought of as a general
description of a class of complex processes, viz., the class of its activations.
Such a description is rarely linear, in the sense that the processes it picks out

The IDEF Family of Languages 229

always exhibit the same linear pattern of subprocesses. More typically, they
involve any or all of four general sorts of "branch points:"

1. Points at which a process satisfying the description diverges into mul­
tiple parallel subprocesses;

2. Points at which processes satisfying the description can differ in the
way they diverge into multiple (possibly nonexclusive) alternative sub­
processes;

3. Points at which multiple parallel subprocesses in a process satisfying
the description converge into a single "thread;" and

4. Points at which processes satisfying the description that had diverged
into alternative subprocesses once again exhibit similar threads.

IDEF3 introduces four general types of junction to express the four general
sorts of branch points. The first two sorts are expressed by "fan-out" junc­
tions: Conjunctive fan-out junctions represent points of divergence involving
multiple parallel subprocesses, while disjunctive fan-out junctions represent
points of divergence involving multiple alternative subprocesses. The last two
sorts of branch point are expressed by "fan-in" junctions: conjunctive fan­
in junctions represent points of convergence involving multiple parallel sub­
processes, while disjunctive fan-in junctions represent points of convergence
involving multiple alternative subprocesses. There is one type of conjunc­
tive, or AND, junction, indicated by '&'. There are two types of disjunctive
junction: inclusive and exclusive junctions, or OR and XOR junctions, re­
spectively, depending on whether the alternatives in question are mutually
exclusive. OR junctions are indicated by an '0', and XOR junctions by an
'X'.

Junction syntax is illustrated in Figure 12, where 'Y is either '&', '0', or
'X'. Although this figure shows only two UOB boxes to the right of a fan-out
junction and to the left of a fan-in, arbitrarily many are permitted in an
IDEF3 model in general.

8 A

A c

Figure 12: Junction Syntax

230 Christopher Menzel, Richard J. Mayer

5.2.3.2 Junction Semantics The intuitive meaning of junctions is straight­
forward. It will be enough to use Figure 12. Letting'Y be '&.' in the figure,
an activation of the model on the left will consist of an instance A of box
1 followed by instances B and C of boxes 2 and 3. If the junction is syn­
chronous, then B and C will begin simultaneously. (Note in particular that,
for nonsynchronous junctions, there are no constraints whatever on the tem­
poral relation between B and Cj all that is required is that both occur after
A.) Similarly, an activation of the right model in the figure will consist of
instances A and B of boxes 1 and 2 followed by a single instance C of box 3j
and if the junction is synchronous, then, A and B will end simultaneously.

For OR (XOR) junctions, if'Y is '0' ('X'), then an activation of the model
on the left in the figure will consist of an instance A of box 1 followed by either
an instance B of box 2 or an instance C of box 3 (but, for XOR junctions, not
both). If the OR junction is synchronous, then, should there be instances of
both boxes 2 and 3, they will begin simultaneously. Similarly, an activation
of the right model in the figure will consist of an instance of either box 1 or
box 2 (but, for XOR junctions, not both) followed by an instance of box 3.
If the OR junction is synchronous, then, should there be instances of both
boxes 1 and 2, they will end simultaneously.

These semantic rules generalize directly, of course, for junctions involving
arbitrarily many UOB boxes. Control conditions on branching and concur­
rency on a class of processes - e.g., the conditions that determine which of
two paths to follow at an XORjunction - are often placed in the elaboration
of a junction.

5.3 Models and Schematics

An IDEF3 model is a collection of one or more IDEF3 process schematics,
which are built from UOB boxes, precedence links, and junctions in natural
ways. Intuitively, a schematic is simply a single "page" of a model, a view
of (perhaps only a part of) a process from a given perspective at a single
uniform granularity.

Figure 13: A Small IDEF3 Schematic

The IDEF Family of Languages 231

A simple example of a schematic is seen in Figure 13. In this schematic,
a request for material is followed by either the identification of the current
supplier or the identification of potential suppliers. (A condition attached
to the junction might indicate that the latter path is taken only if there is
no current supplier; but this common sense condition, of course, cannot be
derived from the bare semantics of the language alone.) If a current supplier
is identified then an order is placed. Otherwise, the identification of potential
suppliers is followed by both a report to the manager and a request for bids
from the potential suppliers. When both of these tasks are complete, the bids
that have arrived are evaluated and an order placed to the winning bidder.1s

The formal syntax for IDEF3 process schematics is rather laissez-faire;
the onus is on the modeler to construct coherent models, i.e., models with
possible activations. However, although basically straightforward, the syntax
requires more mathematical apparatus than is appropriate here to specify
precisely. Informally, though, there are essentially two main rules:

1. A UOB box can be the source or destination of no more than than one
precedence link; and

2. A schematic must contain no loops.

The motivation behind the first rule is that precedence links with the same
box as source or destination would indicate a point at which there are par­
allel subprocesses diverging or converging, or a point at which" alternative
subprocesses can be seen to diverge or converge across different processes
satisfying the description. The purpose of fan-out and fan-in junctions is
to indicate just such points in a description meant to capture the general
structure exhibited by many possible processes.

Regarding the second rule, a path through a schematic is a sequence
of UOB boxes, junctions, and precedence links such that each element of
the sequence (save the last, if there is a last element) is connected to its
successor. A loop, or cycle, in a schematic is a path in the schematic whose
first element is identical to its last. At first blush, the second rule might seem
highly undesirable, as loops appear to be very common structural features of
many processes. Consider, for example, the process depicted in Figure 14
(in apparent violation of Rule 2).

The problem with loops is that they are inconsistent with the semantics of
the precedence link. As noted above, the precedence link indicates temporal
precedence. This relation is transitive, that is, if UOB A is before B in time,
and B before C, then A is before C as well. Given that, suppose box bl
is linked to box b2, and b2 to b3 in a model M, and that A, B, and Care
instances ofb!, b2, and b3, respectively, in some activation ofM. By the basic
semantics of the precedence link, A must precede B and B must precede C.
But then, by the transitivity of temporal precedence, A must precede C. Now,

15Henceforth, junction numbers will be suppressed.

232 Christopher Menzel, Richard J. Mayer

Paint part Move to
I--.......... ~ Assembly

3

Figure 14: Process with an Apparent Loop

notice that, on this understanding of the precedence link, a loop in a model
would mean that one point in an activation of the model - one point in a
possible or actual process - could return to an earlier point, and hence that
the later point could precede the earlier point. Clearly, though, given the
direction of "time's arrow," this is not possible; the past remains ineluctably
past and inaccessib1e; once past, no point in time can be revisited.

Why then is there a temptation to use loops in process models? The
answer is clear; in some processes - the one depicted in Figure 14, for
instance - a particular pattern is instantiated many times. It is therefore
convenient and, often, natural simply to indicate this by reusing that part
of a model that represents the first occurrence of this pattern, rather than
iterating separate instances of it. As noted, though, this is not compatible
with the general semantics of the precedence link. Strictly speaking, then,
loops must be "unfolded" into noncycling structures. If there is a bound on
the number of iterations, the corresponding noncycling model will be finite.
Otherwise it will be infinite; the infinite unfolded model corresponding to
Figure 14 is exhibited elliptically in Figure 15.

Figure 15: Unfolded Model of the Process Depicted in Figure 14

That noted, it has already been acknowledged that models with loops
are often convenient and natural. Indeed, given the ubiquity of processes
with iterated patterns, to require modelers explicitly to unfold loops in gen­
eral would rob IDEF3 of a significant degree of its usability. Consequently,
IDEF3 allows models with loops - however, importantly, these are under-

The IDEF Family of Languages 233

stood syntactically not as primitive constructs but as macros for their un­
folded counterparts. So understood, loops are semantically innocuous and
can be used without qualms.

5.3.1 Referents

Loops are typically indicated in IDEF3 by means of referents in process
models. Referents are theoretically dispensable, but are useful for reducing
clutter. In the context of a process model, referents are used to refer to
previously defined UOBs. Referents therefore enhance reuse, as one can
simply refer to the indicated schematic or UOB box without explicitly copying
it into the referring model.

Referents come in two varieties: call-and-wait and call-and-continue. Their
syntax is seen in Figure 16. The referent type of a referent can be either

<Referent type!
<Label>

<Locator>

Call and Continue Referent

Figure 16: Referent Syntax

<Referent type!
<Label>

<Locator>

Call and Wait Referent

'UOB', 'SCENARIO', 'TS', or 'GOTO'. A UOB referent points to a previ­
ously defined UOB box, a scenario referent points to a model ('scenario' is
the name for the complex UOB described by a model), a TS referent points
to an object state transition schematic (see below), and a GOTO points to a
UOB box or model. A GOTO referent indicates a change of process control
to a UOB or scenario indicated by the referenced UOB box, model, or junc­
tion. In each case, the locator in a referent specifies the (unique) reference
number of the UOB, scenario, or state transition in question. Referents, too,
have associated elaborations.

As the names suggest, a call-and-wait referent calls a particular UOB or
transition, and execution of the calling model halts until the called UOB or
transition completes. By contrast, a call-and-continue referent simply calls
a UOB or transition without any halt in the execution of the calling model.
Typically, in IDEF3, a GOTO referent, rather than a backward-pointing
precedence link, is used to express looping;16 thus, on this approach, the
process intended by Figure 14 would be captured as in Figure 17. Use of
precedence links to express looping, however, is permitted.

16More than anything, perhaps, this simply reflects the way most IDEF3 support soft­
ware works.

234 Christopher Menzel, Richard J. Mayer

Paint part Test paint Move to
job X assembly

1 I 2 I 3 I

'---+
I GOTO:

Paint part

Figure 17: Looping with a GOTO Referent

5.3.2 Decompositions

A decomposition of a UOB box in a model is simply another IDEF3 schematic,
one that purports to provide a "finer-grained" perspective on the UOB signi­
fied by the box. In a fully-fledged IDEF3 model, each schematic is either the
decomposition of a UOB box in some other schematic, or else is the unique
"top-level" schematic which is not the decomposition of any other schematic.
That a given box in a schematic in a model has a decomposition in the model
is indicated by shading, as illustrated in Figure 18.

Paint part

1 I

Figure 18: Decomposition Syntax

5.4 Object State Transition Schematics

Initially, process schematics were the only part of the IDEF3language. How­
ever, it soon became apparent that modelers often desired to take "object­
centered" views of processes, views that focus not so much on the situations
that constitute a process, but on the series of states that certain objects
within those processes pass through as the process evolves. This led to the
addition of object state transition schematics, or simply transition schematics
to the IDEF3 language.

5.4.1 Syntax for Basic Transition Schematics

The basic lexicon for transition schematics is shown in Figure 19.
As can be seen, the label for a state symbol displays the name of a state

and, optionally, the name of the general kind of thing that is in the state.
For example, the state of being hot might be labeled simply by means of

The IDEF Family of Languages 235

State Symbol Transition Junctions

® @ @
AND OR XOR

Transition Link

Figure 19: Lexicon for State Transition Schematics

the label HOT. If it is hot water in particular, though, and that fact is
relevant, then the more complex label WATER:HOT could be used. (Node
references and IDEF numbers in state symbols have the same role as in
process schematics, and will be suppressed in the examples to follow.) An
arrow (indistinguishable from a precedence link), known as a transition link,
is used to indicate a transition from one state to another, as illustrated in
Figure 20. 'K1' and 'K2' indicate optional kind (class) names, and '51' and
'52' names for states.

~8
Figure 20: Basic Transition Schematic Syntax

5.4.2 Semantics for Basic Transition Schematics

In general, the semantics of a basic transition schematic is simply that, in
an occurrence of the indicated transition, there is first an object x (of kind
K1) in state 51, and subsequently an object y (of kind K2) that comes to
be in state 52j that is, to have an instance of the transition schematic in
question, it is required that x be in state 51 before y comes to be in state 52.
It is permitted, though perhaps not typical, that x f:. Yj and it is permitted,
though perhaps not typical, that x remain in state 51 after Y comes to be in
state 52.

It is important to note that, despite having the same appearance, the
semantics of the arrow of transition schematics is somewhat different than the
semantics of the precedence link. The precedence link implies full temporal

236 Christopher Menzel, Richard J. Mayer

precedence: in an activation of a simple precedence connection, an instance
of the UOB box at the tail of the link must end no later than the point
at which an instance of the UOB box at the head of the link begins. By
contrast, in an object schematic, the arrow implies precedence only with
regard to starting points: the object that is in the state indicated at the tail
of the arrow must be in that state before the transition to an object in the
state indicated at the head of the arrow. The reason for· this weaker sort
of precedence in state transition schematics is simply the point noted in the
previous paragraph: a transition only involves a change from an object in one
state to an object (possibly the same object, possibly different) in another;
though it may not be typical, the object in the initial state of the transition
needn't cease being in that state after the transition. To allow for this type
of transition, the weaker semantics is used for the arrow in object transition
schematics. There is no potential for confusion, however, as the meaning of
the arrow remains constant within each type of schematic.

5.4.3 Using UOB Referents in Transition Schematics

Because (in the context of process modeling) objects are in states within
UOBs, and because transitions occur inside UOBs, it is useful and infor­
mative to be able to record information about related UOBs in a transition
schematic. This is accomplished by attaching UOB referents to various parts
of a transition schematic. The most common use of UOB referents is to attach
them to the arrow in a transition schematic, as illustrated in Figure 21.

UOBI
A

Figure 21: Use of a UOB Referent in a Transition Schematic

The default semantics here is fairly weak. The figure signifies only that in
transitions of the indicated sort there will be an object x in state 51 prior to
or at the start of a UOB A (satisfying the conditions specified in the referent),
and subsequently an object y at some point after the beginning of A. Stronger
conditions - e.g., that x=y, that x and y occur in A, that x be in 51 at the
start of A and y in S2 at its end, etc. - can be added to the elaborations of
appropriate components of the schematic.

Additional referents can be added to a transition link to indicate more
information about associated processes. Relative placement on the transition

The IDEF Family of Languages 237

arrow indicates the relative temporal placement of the associated UOBs.
For instance, the schematic in Figure 22 indicates a transition involving the
occurrence of a pair of UOBs A and B that start simultaneously, and a third
UOB C that starts after A and B. Additionally, because the "B" referent
is a call-and-wait, in any instance of the transition, UOB B must complete
before C can begin. (This will generally be the only sort of context in which
call-and-wait referents are used in transition schematics.)

UOBI
C

Figure 22: Multiple UOB Referents in a Transition Schematic

The semantics for transitions in schematics with multiple referents is
slightly more involved than for simple schematics. In the case of the schematic
in Figure 22, for example, the indicated object x in any such transition is in
Sl at the start of A and B, and it is in state S2 by the end of C. This semantics
generalizes straightforwardly to other cases of multiple referents.

If the relative temporal ordering of the UOBs involved in a transition is
unknown or indeterminate from case to case, a small circle is used to "anchor"
the referents indicating those UOBs, as illustrated in Figure 23.

Figure 23: Temporally Indeterminate UOB Referents in a Transition Schematic

It is not uncommon for a given situation to "sustain" an object in a given
state; a refrigeration process, for example, might sustain a given substance

238 Christopher Menzel, Richard J. Mayer

in a solid state. Situations of this type can be represented by the construct
in Figure 24.

UOBI
A

Figure 24: Sustaining an Object in a State

More generally, in any instance of the schematic in Figure 24, there is
a UOB A of the sort specified by the referent and an object x in state 51
throughout the duration of A. This requires that such an x must exist when
A begins. x could, however, be in state 51 prior to the start of Aj that
is, it could be brought into state 51 by some other process prior to A (the
substance noted above might actually become solid through some sort of
chemical reaction), and then sustained in that state by A.

5.4.4 Complex Transition Schematics

More complex transition schematics can be constructed by adding further
transition arrows and state symbols to existing schematics or by using tran­
sition junctions. A complex schematic is illustrated in Figure 25.

UOBI
Refine initial
design

UOBI
Develop
prototype

UOBI
Write final
report

Figure 25: A Complex State Transition Schematic

The IDEF Family of Languages 239

For the most part, the semantics of complex schematics such as this is a
straightforward generalization of simple schematics, only instead of a single
transition there are several successive transitions. Thus, the schematic in
Figure 25 expresses a transition in which a project evolves from an initial
state to a first milestone state and thence to a second milestone state via the
UOBs of the sort indicated.

Transition junctions permit the construction of more subtle schematics
that express concurrent and alternative paths in a series of transitions. Junc­
tions can take any of the three forms illustrated in Figure 26.

(B)

0*
(C)

Figure 26: Transition Junctions

The semantics of these junctions parallels their process schematic coun­
terparts. If * is '&' in schematic (A) in Figure 26, for example, then the
schematic indicates a transition in which objects Xl. .•. , Xi in states 51, ... , 5i ,

respectively, transition to an object y in state 5. If * is 'X' in (B), then the
schematic indicates a transition of an object X to an object y in exactly one of
the states T1, ... , Tj . Form (C) allows for even more complex transitions. For
example, if * is '0' and ** is '&', then the schematic indicates a transition
in which one or more objects Xl, ••• ,Xi in states 51, ... , 5i transition to objects
Y1, ... ,Yj in the states T1, ... ,Tj , respectively. Similarly for the remaining
possibilities. The syntax and semantics of referents with transition junctions
is straightforward but subject to a number of conventions. The reader is
referred to [MMP93] for details.

240 Christopher Menzel, Richard J. Mayer

5.5 General Kind Schematics

Early in its development, IDEF3 was focused entirely on the representation
of process knowledge, and its language included no transition schematics
(see, e.g., [MME94]). The desire of modelers to describe processes from an
object.:.centered perspective led to the introduction of transition schematics.
Realization of the importance of general ontologies for understanding, shar­
ing, and reusing process models, however, has led to a deeper integration
of the IDEF3 method with the IDEF5 ontology capture method. Indeed,
the IDEF5 ontology description language has become incorporated into the
IDEF3 transition schematic language. This language permits a modeler to
express, not only information about state transitions, but general information
about the objects, classes, and relations. Space limitations prevent a detailed
discussion of this component of IDEF3. Once again, interested readers are
referred to [MMP93j.

Acknowledgments: Christopher Menzel would like to thank Alexander Bocast for
numerous illuminating discussions concerning IDEFO, and for allowing the authors
to borrow heavily from several figures that he designed.

References

[End72] Enderton, H., A Mathematical Introduction to Logic, New York, Aca­
demic Press, 1972

[Gru93] Gruber, T., A Translation Approach to Portable Ontologies, Knowledge
Acquisition 2, 1993, 199-220

[IEEE97] Standard Users Manual for the !CAM Function Modeling Method -
IDEFO, IEEE draft standard, P1320.1.1, 1997

[MMP93] Mayer, R. J., Menzel, C., Painter, M., deWitte, P., Blinn, T., Ben­
jamin, P., IDEF3 Process Description Capture Method Report, Wright­
Patterson AFB, Ohio, AL/HRGA, 1993

[MKB95] Mayer, R., Keen, A., Browne, D., Harrington, S., Marshall, C.,
Painter, M., Schafrik, F., Huang, J., Wells, M., Hisesh, H., IDEF4
Object-oriented Design Method Report, Wright-Patterson AFB, Ohio,
AL/HRGA, 1995

[MBM94] Mayer, R., Benjamin, P., Menzel, C., Fillion, F., deWitte, P., Futrell,
M., and Lingineni, M., IDEF5 Ontology Capture Method Report,
Wright-Patterson AFB, Ohio, AL/HRGA, 1994

[MME94] Menzel, C., Mayer R., Edwards, D., IDEF3 Process Descriptions and

The IDEF Family of Languages 241

Their Semantics, in: A. Kusiak, C. Dagli (eds.), Intelligent Systems in
Design and Manufacturing, New York, ASME Press, 1994

[NIST93a] Integration Definition for Function Modeling (IDEFO), Federal Infor­
mation Processing Standards Publication 183, Computer Systems Lab­
oratory, National Institute of Standards and Technology, 199317

[NIST93b] Integration Definition for Information Modeling (IDEF1X), Federal In­
formation Processing Standards Publication 184, Computer Systems
Laboratory, National Institute of Standards and Technology, 1993

[RB87]

[Ros77]

[Sof81]

Ramey, T., Brown, R., Entity, Link, Key Attribute Semantic Informa­
tion Modeling: The ELKA Method, ms, Hughes Aircraft, 1987

Ross, D., Structured Analysis (SA): A Language for Communicating
Ideas, TSE 3 (1), 1977, 16-34

SofTech, Inc. Integrated computer-aided manufacturing (ICAM) archi­
tecture, Pt. II, Vol. V: Information modeling manual (IDEF1), DTIC­
B062457, 1981

17 At the time of this writing, the IDEFO, IDEFIX, IDEF3, IDEF4, and IDEF5 reports
listed here are available on the World Wide Web at http://www.idef.com.

