From McTaggert to AdS$_5$ geometry

The purpose of this note is to show how an 'AB-series' interpretation of time, given in a companion paper, leads, surprisingly, directly to the physicists' important AdS$_5$ geometry. This is not a theory of 2 time dimensions. Rather, it is a theory of 1 time dimension that has both A-series and B-series characteristics.

To summarize the result, a spacetime in terms of 1. the earlier-to-later aspect of time, and 2. the related future-present-past aspect of time, and 3. 3-d space, automatically gives us AdS$_5$.

I must assume the reader is already familiar with the theory of time proposed in the companion paper Merriam (2019).

In 1+1 spacetime, in terms of t and x, in one convention, we have the invariance of

$$(1) \quad \tau^2 = -c^2 t^2 + x^2$$

under Lorentz transformations. The Minkowski 1+3 invariant is in terms of (t, x^3), such that, in the same convention, $t \rightarrow ict$, for the imaginary unit i and the speed of light c. We want a generalization to a new invariant τ' in terms of the A-series and the B-series and x^3, $(g_{\text{system}}, t, x^3)$ and the transformations that leave it invariant. That's because 1 dimension of time has 2 related parameters, in this theory, 1 for the A-series and 1 for the B-series. But it's not immediately obvious in what way(s) such a generalization is possible, because probability gets involved. Nevertheless we can try. (And this, also, has to do with whether the future is branching.) In what might be called 1+1+1 spacetime, in terms of g, t, and x, it would be nice if there were some kind of invariant

$$(2) \quad \tau'^2 = |c_1|^2 k^2 g^2 - c^2 t^2 + x^2$$

for some complex number c_1, and some new constant k in units of meters per e. This is a new constant, a 'conversion factor' in meters/e, in analogy to the speed of light, which is a constant or 'conversion factor', c, in meters/sec. (Yes they can each be rescaled such that, in their respective units, $k = 1$, and $c = 1$, but that's discussed in the companion paper and is not important right now.) k is the rate the position changes as it becomes from Alice's future into her present and then into her past. c is the rate the position changes when going from earlier to later times. These are, in this theory, not the same thing.

Consider

$$d\tau'^2 = |c_1|^2 k^2 dg^2 - c^2 dt^2 + \sum_{i=1}^{3} dx^2$$

(Wu, 2016) The minus sign between t and g, it was argued in the companion paper, comes from their opposite orientation: earlier-to-later times go into the future while future-present-past times come out of the future. Obviously other ideas are possible, but the simplest thing to try is therefore

$$(4) \quad g \rightarrow -ikg.$$
In which case

\[d\tau^2 = -k^2 dg^2 - c^2 dt^2 + \sum_{i=1}^{3} dx^2 \]

(Another thing to try is \(g \rightarrow -ih'g \) for the imaginary unit \(i \) and some constant \(h' \) based on Plank's constant \(h \), but the dimensions might be off.)

I don't have a degree in physics. But, if I am not mistaken, (5) is the AdS\(_5\) invariant. Let's be clear on the interpretation of (3). It does not have 2 dimensions of time. It is a proposal for an invariant on a different kind of 'spacetime'. It has 3 dimensions of space, and it has one dimension of time, but that dimension has related A-series and B-series characteristics. This might be called AB-spacetime. The A-series characteristics are, of course, 'ontologically private', as defined in the companion paper. Thus, (3) is an invariant on Alice's 'private' AB-spacetime.

To summarize again, a spacetime in terms of (1) the earlier-to-later aspect of time, and (2) the related future-present-past aspect of time, and (3) 3-d space, automatically gives us AdS\(_5\).

References

Merriam, Paul (2019), *A theory of time: bringing McTaggart into physics*,
https://philpapers.org/rec/MERATO-4