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Abstract

Deep learning algorithms are rapidly changing the way in which audio-
visual media can be produced. Synthetic audiovisual media generated with
deep learning – often subsumed colloquially under the label “deepfakes” –
have a number of impressive characteristics; they are increasingly trivial to
produce, and can be indistinguishable from real sounds and images recorded
with a sensor. Much attention has been dedicated to ethical concerns raised
by this technological development. Here, I focus instead on a set of issues
related to the notion of synthetic audiovisual media, its place within a
broader taxonomy of audiovisual media, and how deep learning techniques
differ from more traditional approaches to media synthesis. After reviewing
important etiological features of deep learning pipelines for media manipu-
lation and generation, I argue that “deepfakes” and related synthetic media
produced with such pipelines do not merely offer incremental improvements
over previous methods, but challenge traditional taxonomical distinctions,
and pave the way for genuinely novel kinds of audiovisual media.
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1. Introduction

Recent research in artificial intelligence has been dominated by deep learn-
ing (DL), a class of algorithms inspired by biological neural networks that
can learn automatically to perform certain tasks from large amounts of
data. Much work has been dedicated to developing DL algorithms capa-
ble of perceiving and exploring (real or virtual) environments, processing
and understanding natural language, and even reasoning. Many of these
tasks require DL algorithms to learn from audiovisual media, such as audio
recordings, images, and videos. However, a significant amount of recent
work in DL has also gone towards crafting algorithms that can synthesize
novel audiovisual media, with remarkable success.

Generating audiovisual media with the help of computers is not new.
Software for music, image, and video editing, 3D modeling, or electronic
music composition have existed for some time. Computer-generated imagery
(CGI) is now ubiquitous in animation and even live-action films, as well
as video games. Nonetheless, the recent progress of DL in the domain
of audiovisual media synthesis is rapidly changing the way in which we
approach media creation, whether for communication, entertainment, or
artistic purposes. An impressive and salient example of this progress can
be found in so-called “deepfakes”, a portmanteau word formed from “deep
learning” and “fake” (Tolosana et al., 2020). This term originated in 2017,
from the name of a Reddit user who developed a method based on DL to
substitute the face of an actor or actress in pornographic videos with the
face of a celebrity. However, since its introduction, the term “deepfake”
has been generically applied to videos in which faces have been replaced or
otherwise digitally altered with the help of DL algorithms, and even more
broadly to any DL-based manipulations of sound, image and video.

While deepfakes have recently garnered attention in philosophy, the dis-
cussion has mostly focused on their potentially harmful uses, such as im-
personating identities and disseminating false information (de Ruiter, 2021;
Floridi, 2018), undermining the epistemic and testimonial value of photo-
graphic media and videos (Fallis, 2020; Rini, 2020), and damaging repu-
tations or furthering gender inequality through fake pornographic media
(Öhman, 2020). These ethical and epistemic concerns are significant, and
warranted. However, deepfakes and similar techniques also raise broader
issues about the notion of synthetic audiovisual media, as DL algorithms
appear to challenge traditional distinctions between different kinds of media
synthesis.

Given the lack of a single clear definition of deepfakes, it is helpful to
focus on the more explicit notion of DL-based synthetic audiovisual media,
or DLSAM for short. My aim is in this paper is to elucidate how DLSAM
fit in the landscape of audiovisual media. To this end, I will propose a
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broad taxonomy of audiovisual media (§2), and reflect upon where to place
DLSAM alongside traditional media (§3). Drawing upon the sub-categories
of DLSAM informed by this taxonomy, I will discuss the extent to which
they represent a qualitative change in media creation that should lead us to
expand our understanding of synthetic audiovisual media, or whether they
constitute merely incremental progress over traditional approaches (§4).

2. A Taxonomy of Audiovisual Media

“Media” is a polysemous term. It may refer to physical materials (e.g., tape,
disk, or paper) used for recording or reproducing data (storage media); or,
by extension, to the format in which data is stored, such as JPEG or MP3
for digital image and sound respectively (media format). It may also refer
more broadly to the kinds of data that can be recorded or reproduced in
various materials and formats (media type); in that sense, text, image, and
sound are distinct media, even though they may be stored in the same
physical substrate (e.g., a hard drive).1 By “audiovisual media”, I will
generally refer to artifacts or events involving sound, still images, moving
images, or a combination of the above, produced to deliver auditory and/or
visual information for a variety of purposes, including communication, art,
and entertainment. For convenience, I will refer to media involving sound
only as “auditory media”, media involving still images only as “static visual
media”, and media involving moving images (with or without sound) as
“dynamic visual media”.

Audiovisual media fall into two broad etiological categories: hand-made
media, produced by hand or with the help of manual tools (e.g., paint
brushes), and machine-made media, produced with the help of more so-
phisticated devices whose core mechanism is not, or not merely, hand-
operated (e.g. cameras and computers) (fig. 1). Symphonies, paintings,
and phenakistiscopes are examples of hand-made auditory, static visual,
and dynamic visual media respectively.

Machine-made audiovisual media can be further divided into two cat-
egories: archival and synthetic media. Archival media are brought about
by real objects and events in a mechanical manner. They can be said to
“record” reality in so far as they capture it through a process that is not
directly mediated by the producer’s desires and beliefs. More specifically,
they are counterfactually dependent upon the real objects or events that
bring them about, even if the intentional attitudes of any human involved
in producing them are held fixed. Raw (unprocessed) audio recordings, pho-
tographs, and video recordings are examples of archival audiovisual media.

1As noted by an anonymous referee, it may be argued that, in that final sense but not in
the others, the information conveyed by a particular medium is partially constituted by that
medium.
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What someone believes they are capturing when pressing a button on a
camera or microphone is irrelevant to what the camera or microphone will
in fact record.

This property of archival audiovisual media corresponds more or less to
what Kendall Walton has characterized as “transparency” with respect to
photography in particular (Walton, 1984). In Walton’s terminology, pho-
tographs are transparent because they put us in perceptual contact with
reality: “we see the world through them” (p. 251). Paintings, no matter
how realistic, do not put us in perceptual contact with reality in this way,
because they are not mechanically caused by objects in the painter’s environ-
ment; rather, they might be caused by them only indirectly, through the
meditation of the painter’s intentional attitudes (e.g., the painter’s belief
that the object they are attempting to depict looks a certain way).2 While
Walton focused on the case of archival visual media, it has been argued that
raw audio recordings also transparent in that sense (Mizrahi, 2020).

By contrast with archival audiovisual media, synthetic audiovisual me-
dia do not merely record real objects and events; instead, their mode of
production intrinsically involves a generative component. In turn, these
media can be partially or totally synthetic (fig. 1). The former involve the
modification – through distortion, combination, addition, or subtraction –
of archival media: while they involve a generative component, their also in-
volve source material that has not been generated but recorded. The latter
are entirely generative: they involve the creation of new sounds, images, or
videos that do not directly incorporate archival media, even if they might
be inspired by them.

More specifically, there are two ways in which audiovisual media can
be only partially synthetic, depending on whether they result from a global
or local manipulation of archival media. Global manipulations involve ap-
plying an effect to an entire sound recording, photograph, or video. For
example, one can apply a filter to an audio signal to modify its loudness,
pitch, frequency ranges, and reverberation, or thoroughly distort it (which
is traditionally done with effects pedals and amplifiers in some music gen-
res). In the visual domain, one can also apply a filter to an entire image or
video, to adjust various parameters such as hue, brightness, contrast, and
saturation, or apply uniform effects like Gaussian blur or noise. By con-
trast, local manipulations involve modifying, removing, or replacing proper
parts of archival audiovisual media instead of adjusting global parameters.
For example, one can edit a sound recording to censor parts of it, or add
occasional sound effects like a laughing track. In the visual domain, image
editing software like Adobe Photoshop can be used to manipulate parts of
images, and VFX software can be used to manipulate parts of video record-

2There is some debate about whether photographs are actually transparent in Walton’s sense
(e.g., Currie, 1991).
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ings through techniques like rotoscoping, compositing, or the integration of
computer-generated imagery (CGI).

Totally synthetic audiovisual media are not produced by modifying pre-
existing archival media, but consist instead in generating entirely novel
sound or imagery. Traditional forms of synthetic media include electronic
music and sound effects generated with synthesizers or computers, computer-
generated 3D rendering or digital illustration, and animated videos.

Note that the general distinction between archival and synthetic audio-
visual media is orthogonal to the distinction between analog and digital
signals. Analog recording methods store continuous signals directly in or
on the media, as a physical texture (e.g., phonograph recording), as a fluc-
tuation in the field strength of a magnetic recording (e.g., tape recording),
or through a chemical process that captures a spectrum of color values
(e.g., film camera). Digital recording methods involve quantizing an ana-
log signal and representing it as discrete numbers on a machine-readable
data storage. Archival media can be produced through either analog (e.g.,
tape recorder, film camera) or digital (e.g., digital microphone and cam-
era) recording methods. Likewise, some synthetic media can be produced
through analog means, as shown by the famous 1860 composite portrait of
Abraham Lincoln produced with lithographs of Lincoln’s head and of John
Calhoun’s body.

Some of these taxonomic choices might be debatable. For example, hand-
made audiovisual media could be included within the category of synthetic
media, as they involve generating new sounds or images. In that case,
most hand-made media might be considered as totally synthetic, with some
exceptions – such as painting over a photograph. There are also a few edge
cases in which the distinction between archival and synthetic media becomes
less obvious, such as artworks involving collages of photographs in which no
part of the source material is removed or occluded. By and large, however,
the proposed taxonomy is useful as a heuristic to think about different kinds
of traditional audiovisual media.

3. DL-based Synthetic Audiovisual Media

In recent years, the progress of DL in computer science has started trans-
forming the landscape of synthetic audiovisual media. DL is currently the
most prominent method in research on artificial intelligence, where it has
surpassed more traditional techniques in various domains including com-
puter vision and natural language processing. It is part of a broader fam-
ily of machine learning methods using so-called artificial neural networks,
loosely inspired by the mammalian brain, that can learn to represent fea-
tures of data for various downstream tasks such as detection or classification.
Deep learning specifically refers to machine learning methods using deep ar-
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Figure 1: A taxonomy of audiovisual media (DLSAM in red).
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tificial neural networks, whose units are organized in multiple processing
layers between input and output, enabling them to efficiently learn repre-
sentations of data at several levels of abstraction (Buckner, 2019; LeCun
et al., 2015). Deep neural networks can be trained end-to-end: given a
large enough training dataset, they can learn automatically how to perform
a given task with a high success rate, either through labeled samples (su-
pervised learning) or from raw untagged data (unsupervised learning).

Given enough training data and computational power, DL methods
have proven remarkably effective at classification tasks, such as labeling
images using many predetermined classes like “African elephant” or “bur-
rito” (Krizhevsky et al., 2017). However, the recent progress of DL has also
expanded to the manipulation and synthesis of sound, image, and video,
with so-called “deepfakes” (Tolosana et al., 2020). As mentioned at the out-
set, I will mostly leave this label aside to focus on the more precise category
of DL-based synthetic audiovisual media, or DLSAM for short. Most DL-
SAM are produced by a subclass of unsupervised DL algorithms called deep
generative models. Any kind of observed data, such as speech or images,
can be thought of as finite set of samples from an underlying probability
distribution in a (typically high-dimensional) space. For example, the space
of possible color images made of 512x512 pixels has no less than 786,432
dimensions – three dimensions per pixel, one for each of the three channels
of the RGB color space. Any given 512x512 image can be thought of as
a point within that high-dimensional space. Thus, all 512x512 images of
a given class, such as dog photographs, or real-world photographs in gen-
eral, have a specific probability distribution within R786432. Any specific
512x512 image can be treated as a sample from an underlying distribution
in high-dimensional pixel space. The same applies to other kinds of high-
dimensional data, such as sounds or videos.

At a first pass, the goal of deep generative models is to learn the prob-
ability distribution of a finite unlabeled dataset on which they are trained.
When trained successfully, they can then be used to estimate the likelihood
of a given sample, and, importantly, to create new samples that are similar
to samples from the learned probability distribution (this is the generative
component of the model). More precisely, deep generative models learn
an intractable probability distribution X defined over Rn, where X is typi-
cally complicated (e.g., disjoint), and n is typically large. A large but finite
number of independent samples from X are used as the model’s training
data. The goal of training is to obtain a generator that maps samples from
a tractable probability distribution Z in Rq to points in Rn that resemble
them, where q is typically smaller than n. Z is called the latent space of the
model. After training, the generator can generate new samples in X (e.g.,
512x512 images) from the latent space Z.

There are two main types of deep generative models: variational autoen-
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coders (VAEs), used for example in most traditional “deepfakes” (Kingma,
2013; Rezende et al., 2014); and generative adversarial networks (GANs),
used in other forms of audiovisual media synthesis (Goodfellow et al., 2014).
VAEs have two parts: an encoder and decoder (fig. 2, top). They learn the
probability distribution of the data by encoding training samples into a low-
dimensional latent space, then decoding the resulting latent representations
to reconstruct them as outputs, while minimizing the difference between
real input and reconstructed output. By contrast, GANs have a game the-
oretic design that includes two different sub-networks, a generator and a
discriminator, competing with each other during training (fig. 2, bottom).
The generator is trained to generate new samples, while the discriminator
is trained to classify samples as either real (from the training data) or fake
(produced by the generator). The generator’s objective is to “fool” the dis-
criminator into classifying its outputs as real, that is, to increase the error
rate of the discriminator. Over time, the discriminator gets better at detect-
ing fakes, and in return samples synthesized by the generator get better at
fooling the discriminator. After a sufficient number of training events, the
generator can produce realistic outputs that capture the statistical proper-
ties of the dataset well enough to look convincing to the discriminator, and
often to humans.

The intricacies of deep generative models have significant implications
for our understanding the nature of DLSAM, as well as future possibilities
for synthetic media. Before discussing these implications, I will give an
overview of the main kinds of DLSAM that can be produced with existing
DL algorithms. Using the taxonomy introduced in §2, we can distinguish
three categories of DLSAM: (a) global partially synthetic DLSAM, (b) lo-
cal partially synthetic DLSAM, and (c) totally synthetic DLSAM (fig. 1).
As we shall see, the original “deepfakes”, consisting in replacing faces in
videos, can be viewed as instances of the second category of DLSAM, and
hardly span the full spectrum of DL-based methods to alter or generate
audiovisual media. While it is useful, at a first approximation, to locate
different types of DLSAM within the traditional taxonomy of audiovisual
media, it will become apparent later that a deeper understanding of their
etiology challenges some categorical distinctions upon which this taxonomy
is premised.

3.1 Global partially synthetic DLSAM
In this first category are audiovisual media produced by altering global
properties of existing media with the help of DL algorithms. Examples
in the auditory domain include audio enhancement and voice conversion.
Audio enhancement straightforwardly consists in enhancing the perceived
quality of an audio file, which is especially useful for noisy speech recordings
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Figure 2: The simplified architectures of a VAE and a GAN.
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Figure 3: An example of super-resolution (adapted from Chan et al., 2021).

(Hu et al., 2020), while voice conversion consists in modifying the voice of
the speaker in a recording to make them sound like that of another speaker
without altering speech content (Huang et al., 2020).

In the visual domain, this category includes both static and dynamic
visual enhancement and style transfer. Like its auditory counterpart, vi-
sual enhancement consists in improving the perceived quality of images and
videos. It encompasses “denoising”, or removing noise from images/videos
(Zhang et al., 2016); reconstituting bright images/videos from sensor data
in very dark environments (Chen et al., 2018); “debluring”, or removing
visual blur (Kupyn et al., 2018); restoring severely degraded images/videos
(Wan et al., 2020); “colorization”, or adding colors to black-and-white im-
ages/videos (Kumar et al., 2020); and “super-resolution”, or increasing the
resolution of images/videos to add missing detail (Ledig et al., 2017, see fig.
3). Visual style transfer consists in changing the style of an image/video
in one domain, such as a photograph, to the style of an image/video in an-
other domain, such as a painting, while roughly preserving its compositional
structure (Gatys et al., 2015).

3.2 Local partially synthetic DLSAM
Audiovisual media produced by altering local properties of existing media
with DL algorithms can be subsumed under this second category of DLSAM.
In the auditory domain, this concerns in particular audio files produced
through source separation. Speech source separation consists in extract-
ing overlapping speech sources in a given mixed speech signal as separate
signals (Subakan et al., 2021), while music source separation consists in de-
composing musical recordings into their constitutive components, such as
generating separate tracks for the vocals, bass, and drums of a song (Hen-
nequin et al., 2020). Auditory media produced through source separation
are instances of local partially synthetic media, insofar as they involve re-
moving parts of a recording while preserving others, instead of applying a
global transformation to the recording as a whole.
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Figure 4: Face swapping “deepfake” (adapted from Perov et al., 2021).

In the visual domain, this category encompasses images and videos pro-
duced through “deepfakes” in the narrow sense, as well as inpainting, and
attribute manipulation. In this context, “deepfake” refers to face swapping,
head puppetry, or lip syncing. Face swapping is the method behind the
original meaning of the term (Tolosana et al., 2020). It consists in replacing
a subject’s face in images or videos with someone else’s (fig. 4). State-of-
the-art pipelines for face swapping are fairly complex, involving three steps:
an extraction step to retrieve faces from sources images and from the target
image or video (this requires a mixture of face detection, facial landmark
extraction to align detected faces, and face segmentation to crop them from
images); a training step that uses an autoencoder architecture to create la-
tent representations of the source and target faces with a shared encoder;
and a conversion step to re-align the decoded (generated) faces with the
target, blend it, and sharpen it (Perov et al., 2021).

Head puppetry or “talking head generation” is the task of generating a
plausible video of a talking head from a source image or video by mimicking
the movements and facial expressions of a reference video (Zakharov et al.,
2019), while lip syncing consists in synchronizing lip movements on a video
to match a target speech segment (Prajwal et al., 2020). Head puppetry
and lip syncing are both forms of motion transfer, which refers more broadly
to the task of mapping the motion of a given individual in source video to
the motion of another individual in a target image or video (Kappel et al.,
2021; Zhu et al., 2021). Face swapping, head puppetry, and lip syncing are
commonly referred to as “deepfakes” because they can be used to usurp
someone’s identity in a video; however, they involve distinct generation
pipelines.

Inpainting involves reconstructing missing regions in an image or video
sequence with contents that are spatially and temporally coherent (Xu et
al., 2019; Yu et al., 2019). Finally, attribute manipulation broadly refers to
a broad range of techniques designed to manipulate local features of images
and videos. Semantic face editing or facial manipulation consists in manip-

11



Figure 5: Semantic face editing of a photograph of Bertrand Russell with text prompts,
produced with StyleCLIP (Patashnik et al., 2021).

ulating various attributes in an headshot, including gender, age, race, pose,
expression, presence of accessories (eyewear, headgear, jewelry), hairstyle,
hair/skin/eye color, makeup, as well as the size and shape of any part of the
face (ears, nose, eyes, mouth, etc.) (Lee et al., 2020; Y. Shen et al., 2020;
Viazovetskyi et al., 2020). Similar techniques can be used to manipulate
the orientation, size, color, texture, and shape of objects in an image more
generally (Y. Shen and Zhou, 2021). As we shall see, this can even be done
by using a linguistic description to guide the modification of high-level and
abstract properties of persons or objects in an image, e.g. adding glasses to
a photograph of a face with the caption “glasses” (Patashnik et al., 2021,
fig. 5).
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3.3 Totally synthetic DLSAM
In this last category are audiovisual media entirely synthesized with the help
of DL algorithms, rather than produced by altering pre-existing media. Such
synthesis can be conditional, when samples are generated conditionally on
labels from the dataset used for training, or unconditional, when samples are
generated unconditionally from the dataset. In the auditory domain, totally
synthetic DLSAM include speech synthesis, which consists in generating
speech from some other modality like text (text-to-speech) or lip movements
that can be conditioned on the voice of a specific speaker (J. Shen et al.,
2018); and music generation, which consists in generating a musical piece
that can be conditioned on specific lyrics, musical style or instrumentation
(Dhariwal et al., 2020).

In the visual domain, this category includes image and video generation.
These can also be unconditional (Tian et al., 2021; Vahdat et al., 2021),
or conditioned for example on a specific class of objects (e.g., dogs) from
a dataset (Brock et al., 2019), on a layout describing the location of the
objects to be included in the output image/video (Sylvain et al., 2020), or
on a text caption describing the output image/video (Ramesh et al., 2021).

The progress of image generation has been remarkable since the intro-
duction of GANs in 2014. State-of-the-art GANs trained on domain-specific
datasets, such as human faces, can now generate high-resolution photorealis-
tic images of non-existent people, scenes, and objects.3 The resulting images
are increasingly difficult to discriminate from real photographs, even for hu-
man faces, on which we are well-attuned to detecting anomalies.4 Other
methods now achieve equally impressive results for more varied classes or
higher-resolution outputs, such as diffusion models (Dhariwal and Nichol,
2021) and Transformer models (Esser et al., 2021).

It has also become increasingly easy to guide image generation directly
with text. DALL-E, a new multimodal Transformer model trained on a
dataset of text–image pairs, is capable of generating plausible images in
a variety of styles simply from a text description of the desired output
(Ramesh et al., 2021). DALL-E’s outputs can exhibit complex compositional
structure corresponding to that of the input text sequences, such as “An
armchair in the shape of an avocado”, “a small red block sitting on a large
green block”, or “an emoji of a baby penguin wearing a blue hat, red gloves,
green shirt, and yellow pants”. DALL-E has been developed jointly with

3See https://www.thispersondoesnotexist.com for random samples of non-existent faces gener-
ated with StyleGAN2 (Karras et al., 2020), and https://thisxdoesnotexist.com for more examples
in other domains. By ”photorealistic images”, I mean images that the average viewer cannot
reliably distinguish from genuine photographs.

4The reader can try guessing which of two images was generated by a GAN on https://www.
whichfaceisreal.com (note that the model used for generating these images is no longer the state
of the art for image generation).
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another multimodal model, called CLIP, capable of producing a natural
language caption for any input image (Radford et al., 2021). Using CLIP
to steer the generation process, it is also possible to produce images with
GANs from natural language descriptions of the desired output (Galatolo
et al., 2021; Patashnik et al., 2021; see fig. 5).

If these trends continue – and there is no reason for them to slow down
significantly as hardware improvement and architectural breakthroughs con-
tinue to spur larger and more efficient models –, it is only a matter of time
before DL algorithms allow us to generate high-resolution stylized or photo-
realistic samples of arbitrary scenes that are consistently indistinguishable
from human-made outputs. In the domain of static visual media, that goal
is already within sight for medium to large resolutions (around 1024x1024
pixels at the time of writing). The domain of dynamic visual media presents
a significantly greater challenge, as the spatiotemporal consistency of the
scene needs to be taken into account. Nonetheless, it is plausible that we
will be able to synthesize realistic and coherent video scenes at relatively
high resolution in the short to medium term, beyond mere face swapping in
existing videos.

4. The Continuity Question

DL has expanded the limits of synthetic audiovisual media beyond what
was possible with previously available methods. Nonetheless, the extent to
which DLSAM really differ from traditional synthetic audiovisual media is
not immediately clear, aside from the obvious fact that they are produced
with deep artificial neural networks. After all, each of the three categories
of DLSAM distinguished in the previous section – global partially synthetic,
local partially synthetic, and totally synthetic – has traditional counterparts
that do not involve DL. In fact, it is not implausible that many DLSAM,
from visual enhancement to face swapping, could be copied rather closely
with more traditional methods, given enough time, skills and resources. DL
undoubtedly cuts down the resource requirements for the production of
synthetic media, making them easier and faster to generate. But one might
wonder whether the difference between DLSAM and traditional media is
merely one of performance and convenience, lowering the barrier to entry
for the media creation; or whether there are additional differences that
warrant giving a special status to DLSAM in the landscape of audiovisual
media. More specifically, the question is whether DLSAM simply make it
easier, faster, and/or cheaper to produce audiovisual media that may have
otherwise been produced through more traditional means; or whether they
also enable the production of new forms of audiovisual media that challenge
traditional categories. Let us call this the Continuity Question.

There are two ways to understand the claim that DLSAM might be dis-
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continuous with – or qualitatively different from – traditional audiovisual
media. On an epistemic reading, DLSAM may not threaten the taxonomy
itself, but simply make it more difficult for media consumers to tell where a
specific instance of DLSAM lies within that taxonomy. On an ontological
reading, DLSAM genuinely challenges the taxonomy itself, by undermin-
ing some categorical distinctions on which it is premised. The epistemic
reading of the discontinuity claim is clearly correct if one insists on making
all instances of DLSAM fit within the traditional taxonomy of audiovisual
media. For example, it is increasingly easy to mistake photorealistic GAN-
generated images of human faces (in the category of totally synthetic media)
for actual photographs of human faces (in the category of archival media).
It should be noted, however, that traditional methods of media manipula-
tion also enable such confusions; DL-based techniques merely make it easier
to fool media consumers into misjudging the source of an item. In that
respect, DLSAM do not represent such a radical departure from previous
approaches to media creation.

In what follows, I will focus instead on the ontological reading of the Con-
tinuity Question. I will review a number of ways in which DLSAM differ
from other audiovisual media, and ask whether any of these differences gen-
uinely threatens the traditional taxonomy. Answering this question largely
depends on the choice of criteria one deems relevant to distinguishing kinds
of audiovisual media. So far, I have mostly considered etiological criteria,
which form the basis of the taxonomy illustrated in fig. 1. If we leave
etiology aside, and simply consider the auditory and pictorial properties
of DLSAM, it seems difficult to see how they really differ from traditional
media. It is also doubtful that DLSAM can be squarely distinguished from
traditional media with respect to their intended role, be it communication,
deception, art, or entertainment – all of which are also fulfilled by tradi-
tional methods. However, I will argue that the etiology of DLSAM does
play a crucial role in setting them apart from other kinds of audiovisual
media, for a few different reasons, beyond the surface-level observation that
they are produced with DL algorithms. Once we have a better understand-
ing of how DSLAM are produced, it will become clear that they challenge
some categorical distinctions of the traditional taxonomy.

4.1 Resource requirements
One respect in which DLSAM clearly differ from traditional synthetic media
is the resources they require for production. First, deep learning techniques
have considerably lowered the bar for the level of technical and artistic
skills required to manipulate or synthesize audiovisual media. Virtually no
artistic skills are required for to make a photograph look like a line drawing
or a Van Gogh painting with style transfer, to produce a rock song in the
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style and voice of Elvis Presley using a variational autoencoder,5 to change
the eye color, hairstyle, age, or gender of a person in a photograph,6 or to
generate an abstract artwork with a GAN.7

For a while, advanced technical skills and access to powerful and expen-
sive hardware were still required to produce DLSAM. When the original
“deepfakes” came onto the scene in 2017, for example, it was far from trivial
to generate them without prior expertise in programming and deep learn-
ing. However, this changed dramatically over the past few years. Many
smartphone apps now leverage deep learning to manipulate audiovisual me-
dia with the click of a button. Popular social media apps like Instagram,
Snapchat, and Tiktok offer a broad range of DL-based filters that auto-
matically apply complex transformations to images and videos, including
so-called “beauty filters” made to enhance the appearance of users. Like-
wise, third-party standalone apps such as FaceApp and Facetune are en-
tirely dedicated to the manipulation of image and video “selfies”, using DL
to modify specific physical features of users ranging from age and gender to
the shape, texture, and tone of body parts. Using these apps requires no
special competence beyond basic computer literacy.

More polished and professional results can also be achieved with user-
friendly computer software. For example, DeepFaceLab is a new software de-
signed by prominent deepfake creators that provides “an easy-to-use way to
conduct high-quality face-swapping” (Perov et al., 2021). DeepFaceLab has
an accessible user interface and allows anyone to generate high-resolution
deepfakes without any coding skills. NVIDIA recently released Canvas, a
GAN-powered software to synthesize photorealistic images given a simple se-
mantic layout painted in very broad strokes by the user (Park et al., 2019).8
Even Photoshop, the most popular software for traditional image manipula-
tion, now includes “neural filters” powered by deep learning (Clark, 2020).
These pieces of software are not merely used for recreational purposes, but
also by creative professionals who can benefit from the efficiency and con-
venience of DL-based techniques.

The recent progress of text-to-image generation discussed in the previ-
ous section is a further step towards making sophisticated audiovisual media
manipulation and synthesis completely trivial. Instead of requiring users to
fiddle with multiple parameters to modify or generate images and videos,

5See https://openai.com/blog/jukebox for an example.
6See https://www.nytimes.com/interactive/2020/11/21/science/

artificial-intelligence-fake-people-faces.html.
7See https://thisartworkdoesnotexist.com. Of course, curating aesthetically interesting im-

ages from thousands of generated samples still requires a trained eye, just like the easy of use of
digital photography does not make everyone an artist.

8The method can also be tried in this online demo: http://nvidia-research-
mingyuliu.com/gaugan.
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it allows them to merely describe the desired output in natural language.
As we have seen, GAN-based algorithms like StyleCLIP enable users to
change various attributes of a subject in a photograph with simple captions
(fig. 5, Patashnik et al., 2021), and can even be used through an easy user
interface without programming skills.9 Other previously mentioned meth-
ods based on multimodal Transformer models allow the synthesis of entirely
novel images from text input (Ramesh et al., 2021). A similar procedure has
been successfully applied to the manipulation of videos through simple text
prompts (Skorokhodov et al., 2021). It is plausible that further progress in
this area will eventually enable anyone to modify or generate any kind of
audiovisual media in very fine detail, simply from natural language descrip-
tions.

While deep learning techniques often come at a high computational
cost, many kinds of DLSAM can now be created with consumer hardware.
For example, the aforementioned smartphone apps offload much of the DL
processing to the parent companies’ servers, thereby considerably reducing
the computational requirements on the users’ devices. Almost any modern
smartphone can run these apps, and produce close to state-of-the-art DL-
SAM in a variety of domains, at no additional computational cost. Given
these developments, it is no surprise that consumer-facing companies like
Facebook, Snap, ByteDance, Lightricks, Adobe, and NVIDIA – the devel-
opers of Instagram, Snapchat, Tiktok, Facetune, Photoshop, and Canvas
respectively – are at the forefront of fundamental and applied research on
DL-based computer vision and image/video synthesis (e.g., Halperin et al.,
2021; He et al., 2017; Karras et al., 2021; Patashnik et al., 2021; Tian et al.,
2021; Yu et al., 2019).

Taken together, the lowered requirements on artistic skill, technical com-
petence, computational power, and production time afforded by deep learn-
ing algorithms have dramatically changed the landscape of synthetic audio-
visual media. Using traditional audio, image, and video editing software to
obtain comparable results would require, in most cases, considerably more
time and skill. What used to require expertise and hard labor can now be
done in a few clicks with consumer-level hardware. By itself, this impressive
gap does not seem to challenge traditional taxonomical distinctions: DL al-
gorithms make synthetic media easier and faster to produce, but this does
not entail their output do not fit squarely within existing media categories.
One might be tempted to compare this evolution to the advent of digital
image editing software in the 2000s, which made retouching photographs
easier, faster, and more effective than previous analog techniques based on
painting over negatives. However, this comparison would be selling the nov-
elty of DLSAM short. The range of generative possibilities opened up by
deep learning in the realm of synthetic media far outweighs the impact of

9See https://youtu.be/5icI0NgALnQ for some examples.
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traditional editing software.

4.2 New generative possibilities
I suggested earlier that some DLSAM could be imitated to some degree with
traditional techniques given enough time and means, including professional
tools and expertise. While this has been true for a long time, the gap
between what can be achieved with and without DL algorithms is widening
rapidly, and an increasing number of DLSAM simply se5em impossible to
produce with traditional methods, no matter the resources available.

A good example of this evolution is the manipulation of facial features
in dynamic visual media, which was the purpose of the original deepfakes.
The progress of VFX has led the film industry to experiment with this
kind of manipulation over the past few years, to recreate the faces of ac-
tors and actresses who cannot be cast in a movie, or digitally rejuvenate
cast members. Thus, Rogue One (2016) features scenes with Peter Cushing,
or rather a posthumous computer-generated duplicate of Cushing painstak-
ingly recreated from individual frames – the actor having passed away in
1994. Likewise, Denis Villeneuve’s Blade Runner 2049 (2017) includes a
scene in which the likeness of Sean Young’s character in the original Blade
Runner (1982) is digitally added. For The Irishman (2019), Martin Scors-
ese and Netflix worked extensively with VFX company Industrial Light &
Magic (ILM) to digitally “de-age” Robert De Niro, Al Pacino, and Joe Pesci
for many scenes of the movie. The VFX team spent a considerable amount
of time studying older movies featuring these actors to see how they should
look at various ages. They shot the relevant scenes with a three-camera rig,
and used a special software to detect subtle differences in light and shadows
on the actors’ skin as reference points to carefully replace their faces with
younger-looking computer-generated versions frame by frame.

These examples of digital manipulation are extraordinarily costly and
time-consuming, but certainly hold their own against early DL-based ap-
proaches rendered at low resolutions. State-of-the-art deepfakes, however,
have become very competitive with cutting-edge VFX used in the industry.
In fact, several deepfakes creators have claimed to produce better results at
home in just a few hours of work on consumer-level hardware than entire
VFX teams of blockbuster movies with a virtually unlimited budget and
months of hard work.10 These results are so impressive, in fact, that one of
the most prominent deepfakes creator, who goes by the name “Shamook”
on Youtube, was hired by ILM in 2021. The paper introducing DeepFace-
Lab is also explicitly targeted at VFX professional in addition to casual
creators, praising the software’s ability to “achieve cinema-quality results

10https://www.forbes.com/sites/petersuciu/2020/12/11/deepfake-star-wars-videos-portent-
ways-the-technology-could-be-employed-for-good-and-bad
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with high fidelity” and emphasizing its potential “high economic value in
the post-production industry [for] replacing the stunt actor with pop stars”
(Perov et al., 2021).

Other forms of partial audiovisual synthesis afforded by DL algorithms
are leaving traditional techniques behind. Text-to-speech synthesis sounds
much more natural and expressive with DL-based approaches, and can be
used to convincingly clone someone’s voice (J. Shen et al., 2018). These
methods, sometimes referred to as “audio deepfakes”, have been recently
used among real archival recordings in a 2021 documentary about Anthony
Bourdain, to make him posthumously read aloud an email sent to a friend.
The fake audio is not presented as such, and is seamless enough that it was
not detected by critics until the director confessed to the trick in an interview
(Rosner, 2021). Voice cloning can also be combined with face swapping or
motion transfer to produce convincing fake audiovisual media of a subject
saying anything (Thies et al., 2020). Traditional methods simply cannot
achieve such results at the same level of quality, let alone in real time.

Total synthesis is another area where DL has overtaken other approaches
by a wide margin. It is extremely difficult to produce a completely photore-
alistic portrait of an arbitrary human face or object in high-resolution from
scratch without deep generative models like GANs. Dynamic visual syn-
thesis is even more of a challenge, and even professional 3D animators still
struggle to achieve results that could be mistaken for actual video footage,
especially when humans are involved (hence the stylized aesthetic of most
animated movies). The progress of DL opens up heretofore unimaginable
creative possibilities. This remark goes beyond DL’s ability to generate
synthetic audiovisual media of the same kind as those that produced with
traditional methods, simply with incremental improvements in quality –
e.g. resolution, detail, photorealism, or spatiotemporal consistency. DL
challenges our taxonomy of audiovisual media, and paves the way for new
kinds of synthetic media that defy conventional boundaries.

4.3 Blurred lines
I have previously discussed how DLSAM would fit in a taxonomy of audio-
visual media that encompasses all traditional approaches (see fig. 1). While
this is helpful to distinguish different categories of DLSAM at a high level of
abstraction, instead of conflating them under the generic label “deepfake”,
the boundaries between these categories can be challenged under closer
scrutiny. Indeed, DL-based approaches to media synthesis have started
blurring the line between partially and totally synthetic audiovisual media
in novel and interesting ways.

First, DLSAM arguably straddle the line between partial and total syn-
thesis insofar as they are never generated ex vacuo, but inherit properties
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of the data on which the models that produced them were trained. In or-
der to produce convincing outputs in a given domain (e.g., photorealistic
images of human faces), artificial neural networks must be trained on a vast
amount of samples from that domain (e.g., actual photographs of human
faces). Given this training procedure, there is a sense in which even DL-
SAM generated unconditionally by DL models such as GANs are not quite
totally synthetic, insofar as they leverage properties of preexisting images
present in their training data, and seamlessly recombine them in coherent
ways. Depending on how closely a given output reproduces features from
the model’s training data, this process can resemble partial synthesis. In
fact, it is possible for a GAN to produce an output almost identical to one
of its training samples. This is likely to happen if the model suffers from
“overfitting”, namely if it simply memorizes samples from its dataset dur-
ing training, such that the trained model outputs a near copy of one of
the training samples, rather than generating a genuinely novel sample that
looks like it came from the same probability distribution. Since there is
no robust method to completely rule out overfitting with generative mod-
els, one cannot determine a priori how different a synthesized human face,
for example, will really be from a preexisting photograph of a human face
present in the training data.

More generally, DL-based audiovisual synthesis can vary widely in how
strongly it is conditioned on various parameters, including samples of syn-
thesized or real media. For example, video generation is often conditioned
on a preexisting image (Liu et al., 2020). This image can be a real photo-
graph, in which case it seems closer to a form of partial synthesis; but it
can also be a DL-generated image (e.g., the output of a GAN). Thus, the
link between the outputs of deep generative models and preexisting media
can be more or less distant depending on the presence of conditioning, its
nature, and the overall complexity of the generation pipeline.

The distinction between partially and totally synthetic media is also
challenged by DLSAM in the other direction, to an even greater extent,
when considering examples that I have previously characterized as instances
of partially synthetic media. Many examples of state-of-the-art DL-based
visual manipulation rely on reconstructing an image with a deep generative
model, in order to modify some of its features by adjusting the model’s
encoding of the reconstructed image before generating a new version of it.
The initial step is called “inversion”: it consists in projecting a real image
into the latent embedding space of a generative model (Abdal et al., 2019;
Richardson et al., 2021; Xia et al., 2021). Every image that can be generated
by a generative model corresponds to a vector in the model’s latent space. In
broad terms, inverting a real image i into the latent space Z of a generative
model consists finding the vector z that matches i most closely in Z, by
minimizing the difference between i and the image generated from z (see
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Figure 6: A photograph of Russell and its inversion in the latent space of StyleGAN.

fig. 2).
In fig. 5, for example, the “original” image on the left is not actually a

photograph of Bertrand Russell, but the reconstruction of such a photograph
produced by inverting it into the latent space of a GAN trained on human
faces. The original photograph and its GAN inversion are presented side-
by-side in fig. 6. The two images clearly differ in various respects: the pipe
that Russell holds in his hand in the original photograph is removed, and
various details of the lighting, hair, eyes, nose, ears, lower face, and neck
are slightly altered. While the likeness of Russell is rather well captured,
the imitation is noticeably imperfect. One could not accurately describe the
image on the right as a photograph of Bertrand Russell.

Characterizing images produced by manipulating features through GAN
inversion as only partially synthetic is somewhat misleading, to the extent
that the images were entirely generated by the model, and do not embed any
actual part of the real photograph that inspired them. There is a significant
difference between this process and the form of local partial synthesis at
play, for example, in similar manipulations using traditional software like
Photoshop. In the latter case, one genuinely starts from a real photograph
to modify or overlay some features (e.g., add some glasses); the final results
include a significant proportion of the original image, down to the level of
individual pixels (unless the compression or resolution was changed). With
GAN-based image manipulation, by contrast, what is really modified is not
the original image, but its “inverted” counterpart which merely resembles
it. The resemblance can be near perfect, but there are often noticeable
differences between an image and its GAN inversion, as in fig. 6.

DL algorithms are also blurring the line between archival and synthetic
media. Many smartphones now include an automatic DL-based post-processing
pipeline that artificially enhances images and videos captured with the cam-
era sensor, to reduce noise, brighten the image in low-light condition, fake
a shallow depth of field by emulating background blur (so-called “portrait
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mode”), and/or increase the media’s resolution. Audiovisual media cap-
tured with these devices hardly qualifies as “archival” in the traditional
sense. While there is always a layer of post-processing reflecting technical
and aesthetic preferences in going from raw sensor data to an audio record-
ing, image, or video, these DL-based pipeline go further in augmenting
the sensor data with nonexistent details synthesized by generative models.
Super-resolution is a good example of that process (fig. 3). In principle,
the goal of super-resolution is simply to increase the resolution of an image
or video. In practice, however, even when there is a ground truth about
what an image/video would look like at higher resolution (i.e., if it has been
downscaled), it is virtually impossible for a super-resolution algorithm to
generate a pixel-perfect copy of the higher-resolution version. While the
image reconstructed from the very pixelated input in fig. 3 is undoubtedly
impressive, and strikingly similar to the ground truth, it is far from identical
to it. If all images produced by a camera were going through such a super-
resolution pipeline, it would be misleading to characterize them as archival
visual media in the sense defined earlier. In the age of “AI-enhanced” au-
diovisual media, archival and synthetic media increasingly appear to fit on
a continuum rather than in discrete categories.

This remark is reminiscent of Walton’s suggestion that depictions cre-
ated through mechanical means may exhibit various degrees of transparency
depending on their production pipeline (Walton, 1984). On Walton’s view,
photographs created by combining two negatives are only partially trans-
parent, because they don’t have the right kind of mechanical contact with
the constructed scene, but they do with the scenes originally depicted by
each negative. Likewise, he argues that an overexposed photograph displays
a lower degree of transparency than a well-exposed one, or a grayscale pho-
tograph than one in color, etc. These are still instances of “seeing through”
the medium, as opposed to hand-made media. As Walton puts it:

Most photographic constructions are transparent in some of their
parts or in certain respects. [...] To perceive things is to be in con-
tact with them in a certain way. A mechanical connection with
something, like that of photography, counts as contact, whereas
a humanly mediated one, like that of painting, does not. (Wal-
ton, 1984, pp. 43-4)

On this view, one can see a scene through a photograph – be in “con-
tact” with it – to various degrees, but most photographic manipulations do
not make the output entirely opaque. What applies to analog photographic
manipulation should also apply, mutatis mutandis, to digital manipulation
with traditional editing software. But how do DLSAM fit in that view?
They seem to put further pressure on a sharp divide between transparency
and opacity. A photograph taken by a smartphone, and automatically pro-
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cessed through DL-based denoising and super-resolution algorithms, does
appear to put us in contact with reality to some degree. In fact, the image
enhancement pipeline might recover real details in the photographed scene
that would not be visible on an image obtained from raw sensor data. These
details are certainly not recovered through a “humanely mediated” contact
with the scene, as would be the case if someone was digitally painting over
the photograph. But they also stretch the definition of what Walton calls a
“mechanical connection” with reality. Indeed, details are added because the
enhancement algorithm has learned the approximate probability distribu-
tion of a very large number of other photographs contained in its training
data. Added details might fall within the correct distribution, yet differ
from the ground truth in significant ways (see fig. 3 for an extreme exam-
ple). The complete process – from the training to the deployment of a DL
algorithm on a particular photograph – could be described as mechanistic,
but the “contact” between the final output and the depicted scene is medi-
ated, in some way, by the “contact” between millions of training samples
and the scenes they depict.

Walton also highlights that manipulated photographs may appear to
be transparent in respects in which they are not (Walton, 1984, pp. 44).
This is all the more true for DLSAM given the degree of photorealism they
can achieve. A convincing face-swapping deepfake may be indistinguishable
from a genuine video, hence their potential misuse for slandering, identity
theft, and disinformation. Does one really “see” Tom Cruise when watching
a deepfake video of an actor whose face has been replaced with that of
Tom Cruise (fig. 4)? Not quite – but the answer is complicated. The
output does faithfully reflect the features of Tom Cruise’s face, based on
the summary statistics captured by the autoencoder architecture during
training on the basis of genuine photographs of that face. Furthermore, this
process is not mediated by the intentional attitudes of the deepfake’s creator,
in the way in which making a painting or a 3D model of Tom Cruise would
be. A totally synthetic GAN-generated face is a more extreme case; yet it,
too, is mechanically generated from the learned probability distribution of
real photographs of human faces. Neither of these examples appear to be
completely opaque in Walton’s sense, although they can certainly be very
deceiving in giving the illusion of complete transparency.

These remarks highlight the difficulty in drawing a clear boundary be-
tween traditional taxonomic categories when it comes to DLSAM. While
traditional media do include a few edge cases, these are exceptions rather
than the rule. The remarkable capacity of DL models to capture statisti-
cally meaningful properties of their training data and generate convincing
samples that have similar properties challenges the divide between reality
and synthesis, as well as more fine-grained distinctions between kinds of
media synthesis.
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4.4 Manifold learning and disentanglement
The way in which deep generative models learn from data has deeper impli-
cations for the Continuity Question. According to the manifold hypothesis,
real-world high-dimensional data tend to be concentrated in the vicinity of
low-dimensional manifolds embedded in a high-dimensional space (Carlsson,
2009; Fefferman et al., 2016; Tenenbaum et al., 2000). Mathematically, a
manifold is a topological space that locally resembles Euclidean space; that
is, any given point on the manifold has a neighborhood within which it
appears to be Euclidean. A sphere is an example of a manifold in three-
dimensional space: from any given point, it locally appears to be a two-
dimensional plane, which is why it has taken humans so long to figure out
that the earth is spherical rather than flat.

In the context of research on deep learning, a manifold refers more loosely
to a set of points that can be approximated reasonably well by considering
only a small numbers of dimensions embedded in a high-dimensional space
(Goodfellow et al., 2016). DL algorithms would have little chance of learning
successfully from n-dimensional data if they had to fit a function with inter-
esting variations across every dimension in Rn. If the manifold hypothesis
is correct, then DL algorithm can learn much more effectively by fitting low-
dimensional nonlinear manifolds to sampled data points in high-dimensional
spaces – a process known as manifold learning.

There are theoretical and empirical reasons to believe that the mani-
fold hypothesis is at least approximately correct when it comes to many
kinds of data fed to DL algorithms, including audiovisual media. First, the
probability distribution over real-world sounds and images is highly concen-
trated. Sounds and images are intricately structured in real life, and span
a low-dimensional region of the high-dimensional space in which they are
embedded. As we have seen, a 512x512 image can be represented as vector
in a space with 786,432 dimensions – one for each RGB channel for each
pixel. Suppose that we generate such an image by choosing random color
pixel values; the chance of obtaining anything that looks remotely different
from uniform noise is absurdly small. This is because the probability distri-
bution of real-world 512x512 images (i.e., images that mean something to
us) is concentrated in a small region of R786432, on a low-dimensional mani-
fold.11 The same applies to sound: a randomly generated audio signal has a
much greater chance of sounding like pure noise than anything meaningful.

We can also intuitively think of transforming audiovisual media within
a constrained region of their input space. For example, variations across
real-world images can be boiled down to changes along a constrained set

11This toy example ignores the fact that natural images may lie on a union of disjoint manifolds
rather than one globally connected manifold. For example, the manifold of images of human faces
may not be connected to the manifold of images of tropical beaches.
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of parameters such as brightness, contrast, orientation, color, etc. These
transformations trace out a manifold in the space of possible images whose
dimensionality is much lower than the number of pixels, which lends fur-
ther credence to the manifold hypothesis. Consequently, we can expect an
efficient DL algorithm trained on images to represent visual data in terms
of coordinates on the low-dimensional manifold, rather than in terms of co-
ordinates in Rn (where n is three times the number of pixels for a color
image).

Deep generative models used for audiovisual media synthesis are good
examples of manifold learning algorithms. For example, the success of GANs
in generating images that share statistically relevant properties with training
samples (e.g., photorealistic images of human faces) can be explained by the
fact that they effectively discover the distribution of the dataset on a low-
dimensional manifold embedded in the high-dimensional input space. This
is apparent when interpolating between two points in the latent space of a
GAN, namely traversing the space from one point to the other along the
learned manifold: if the image corresponding to each point is visualized as a
video frame, the resulting video shows a smooth – spatially and semantically
coherent – transformation from one output to another (e.g., from one human
face to another).12

Similarly, the autoencoder architecture of traditional “deepfakes” used
for video face-swapping is a manifold learning algorithm. Over the course
of training, it extracts latent features of faces by modeling the natural dis-
tribution of these features along a low-dimensional manifold (Bengio et al.,
2013). The autoencoder’s success in mapping one human face to another, in
a way that is congruent with head position and expression, is explained by
the decoder learning a mapping from the low-dimensional latent space to a
manifold embedded in high-dimensional space (e.g., pixel space for images)
(Shao et al., 2017).

Thus, deep generative models used for audiovisual media synthesis effec-
tively learn the distribution of data along nonlinear manifolds embedded in
high-dimensional input space. This highlights a crucial difference between
DLSAM and traditional synthetic media. Traditional media manipulation
and synthesis is mostly ad hoc: it consists in transforming or creating sounds,
images, and videos in a specific way, with a specific result in mind. Many
of the steps involved in this process are discrete manipulations, such as re-
moving a portion of a photograph in an image editing software, or adding
a laughing track to a video. These manipulations are tailored to a partic-
ular desired output. By contrast, DLSAM are sampled from a continuous
latent space that has not been shaped by the desiderata of a single spe-
cific output, but by manifold learning. Accordingly, synthetic features of

12See https://youtu.be/6E1_dgYlifc for an example of video interpolation in the latent space
of StyleGAN trained on photographs of human faces.

25



DLSAM do not originate in discrete manipulations, but from a mapping
between two continuous spaces – a low-dimensional manifold and a high-
dimensional input space. This means that in principle, synthetic features
of DLSAM can be altered as continuous variables. This is also why one
can smoothly interpolate between two images within the latent space of a
generative model, whereas it is impossible to go from an image to another
through a continuous transformation with an image editing software.

Beyond manifold learning, recent generative models have been specif-
ically trained to learn disentangled representations (Collins et al., 2020;
Härkönen et al., 2020; Y. Shen et al., 2020; Wu et al., 2021). As a gen-
eral rule, the dimensions of a model’s latent space do not match neatly
onto interpretable features of the data. For example, shifting the vector
corresponding to a GAN-generated image along a particular dimension of
the generator’s latent space need not result in a specific visual change that
clearly corresponds to some particular property of the depiction, such as a
change in the orientation of the subject’s face for a model trained on human
faces. Instead, it might result in a more radical visual change in the output,
where few features of the original output are preserved. Disentanglement
loosely refers to a specific form of manifold learning in which each latent di-
mension controls a single visual attribute that is interpretable. Intuitively,
disentangled dimensions capture distinct generative factors – interpretable
factors that characterize every sample from the training data, such as the
size, color, or orientation of a depicted object (Bengio et al., 2013; Higgins
et al., 2018).

The advent of disentangled generative models has profound implications
for the production of DLSAM. Disentanglement opens up new possibilities
for manipulating any human-interpretable attribute within latent space. For
example, one could generate a photorealistic image of a car, then manipulate
specific attributes such as color, size, type, orientation, background, etc.
Each of these disentangled parameters can be manipulated as continuous
variables within a disentangled latent space, such that one can smoothly
interpolate between two outputs along a single factor – for example, going
from an image of a red car seen from the left-hand side to an image of
an identical red car seen from the right-hand side, with a smooth rotation
the vehicle, keeping all other attributes fixed. Disentangled representations
can even be continuously manipulated with an easy user interface, such as
sliders corresponding to each factor (Abdal et al., 2020; Härkönen et al.,
2020).13

Combined with aforementioned methods to “invert” a real image within
the latent space of a generative model, disentanglement is becoming a novel

13See https://www.nytimes.com/interactive/2020/11/21/science/
artificial-intelligence-fake-people-faces.html for interactive examples of disentangled GAN
interpolation with images of human faces.
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and powerful way to manipulate pre-existing visual media, including pho-
tographs, with impressive precision. Thus, the manipulation of simple and
complex visual features in fig. 5 is made not only possible but trivial with
a well-trained disentangled GAN. With domain-general generative models
such as BigGAN (Brock et al., 2019), the combination of inversion and dis-
entanglement will soon allow nontechnical users to modify virtually any pho-
tograph along meaningful continuous dimensions. Multimodal Transformer
models trained on text-image pairs like CLIP make this process even easier
by allowing users to simply describe in natural language the change they
would like to see effected in the output, while specifying the magnitude of
the desired manipulation (fig. 5, Patashnik et al., 2021).

Beyond static visual manipulation, “steering” the latent space of a dis-
entangled generative model has the potential to allow any image to be
animated in semantically coherent ways (Jahanian et al., 2020). There is,
in principle, no difference between dynamically steering the latent space
of a “static” generative model, and generating a photorealistic video. For
example, one could invert the photograph of a real human face into latent
space, then animate it by steering the space along disentangled dimensions
– moving the mouth, eyes, and entire head in a natural way. Thus, the
task of video synthesis can now be reduced to discovering a trajectory in
the latent space of a fixed image generator, in which content and motion
are properly disentangled (Tian et al., 2021). State-of-the-art methods to
remove texture inconsistencies during interpolation demonstrate that latent
space steering can be virtually indistinguishable from real videos (Karras
et al., 2021). In the near future, it is likely that any image or photograph
can be seamlessly animated through this process, with congruent stylistic
attributes – from photorealistic to artistic and cartoonish styles.

The capacity to steer generative models along interpretable dimensions
in real time also paves the way for a new kind of synthetic medium: con-
trollable videos that we can interact with in the same robust way that we
interact with video games (Kim et al., 2021; Menapace et al., 2021). For
example, one can use a keyboard to move a tennis player forward, back-
ward, leftward, and rightward on a field in a synthetic video. One can
imagine that more robust models will soon enable similar real-time control
over generated videos for complex variations and movements. Furthermore,
one could invert a real photograph within the latent space of a generative
model, then animate elements of the photograph in real-time in a synthetic
video output. This kind of synthetic media pipeline has no equivalent with
more traditional methods. The interactive nature of the resulting DLSAM
is only matched by traditional video games, but these still fall short of
the photorealism achieved by deep generative models, lack the versatility of
what can be generated from the latent space of a domain-general model, and
cannot be generated from pre-existing media such as photographs without
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significant processing and manual labor (e.g. with photogrammetry).
Manifold learning and disentanglement play an important role in setting

some DLSAM apart from traditional synthetic audiovisual media. They
further blur the line between the archival and the synthetic domain, since
well-trained generative models capture the dense statistical distribution of
their training data, and can seamlessly produce new sample or reconstitute
existing media from that learned distribution. Disentanglement allows fine-
grained control over the output of such models along specific interpretable
dimensions, creating unforeseen possibility for media manipulation and real-
time synthesis, with many more degrees of freedom than what was possible
from previous techniques.

5. Conclusion

The progress of deep learning algorithms is changing the way in which au-
diovisual media can be produced and manipulated. This change is more
significant than the shift from analog to digital production tools. DL-based
synthetic audiovisual media, including original deepfakes, require a lot less
time, artistic skills, and – increasingly – technical expertise and computa-
tional resources to produce. They also greatly surpass traditional techniques
in many domains, particularly for the creation and manipulation of realistic
sounds, images, and videos.

Beyond these incremental improvements, however, DLSAM represent a
genuine departure from previous approaches that opens up new avenues
for media synthesis. Manifold learning allows deep generative models to
learn the probability distribution of millions of samples in a given domain,
and generate new samples that fall within the same distribution. Disen-
tanglement allows them to navigate the learned distribution along human-
interpretable generative factors, and thus to manipulate and generate high-
quality media with fine-grained control over their discernible features. Un-
like traditional methods, the generative factors that drive the production
of DSLAM exist on a continuum as dimensions of the model’s latent space,
such that any feature of the output can in principle be altered as a contin-
uous variable.

These innovations blur the boundary between familiar categories of au-
diovisual media, particularly between archival and synthetic media; but
they also pave the way for entirely novel forms of audiovisual media, such as
controllable images and videos that can be navigated in real-time like video
games, or multimodal generative artworks (e.g., images and text jointly sam-
pled from the latent space of a multimodal model). This warrants treating
DL-based approaches as a genuine paradigm shift in media synthesis. While
this shift does have concerning ethical implications for the potentially harm-
ful uses of DLSAM, it also opens up exciting possibilities for their beneficial
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use in art and entertainment.14
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