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Abstract We study whether it is possible to generalise Seidenfeld et al.’s repre-
sentation result for coherent choice functions in terms of sets of probability/utility
pairs when we let go of Archimedeanity. We show that the convexity property is
necessary but not sufficient for a choice function to be an infimum of a class of lexi-
cographic ones. For the special case of two-dimensional option spaces, we determine
the necessary and sufficient conditions by weakening the Archimedean axiom.

1 Introduction

In a problem of decision making under uncertainty, a subject’s preferences between
a set of alternatives can naturally be modelled by means of a so-called choice
function, that determines those options that are considered admissible to the subject.
The rationality of the subject’s preferences was studied by [2] and [18], and later
axiomatised by [11]. A feature of this axiomatisation is that a rational choice function
always returns a single admissible option, or multiple admissible options that are
indifferent to each other.

Nevertheless, when faced with a set of options a choice function may give more
than one optimal alternative, and this does not necessarily imply that all these chosen
options are indifferent to our subject: they may instead be considered incomparable.
Coherent choice functions were extended to allow for incomparability between the
options by [14]. Under their axiomatisation, they proved a representation theorem
in terms of probability/utility pairs: a choice function C is coherent if and only if
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there is an arbitrary non-empty set S of probability/utility pairs such that f ∈ C(A)

whenever f maximises p-expected u-utility over A for some (p,u) in S.
In [22], we extended the above-mentioned axiomatisation by [14] to choice func-

tions defined on (abstract) options that form a vector space, rather than horse lotteries,
and also let go of two of their axioms: (i) the Archimedean one, because it prevents
choice functions from modelling the typically non-Archimedean preferences cap-
tured by coherent sets of desirable gambles; and (ii) the convexity axiom, because it
turns out to be hard to reconcile with Walley–Sen maximality as a decision rule. By
doing this, we obtained a theory of coherent choice functions that includes coherent
sets of desirable gambles, and therefore most other imprecise probability models,
as particular cases; and that is at the same time more general, because they are not
necessarily completely by pairwise comparisons between the options.

In spite of these advantages, our coherent choice functions also have the drawback
of not leading to a strong belief structure [5]. Such a representation is nevertheless
interesting, because it allows choice functions to be constructed using basic building
blocks. In [22], we did discuss a few interesting examples of special ‘representable’
choice functions, such as the ones from a coherent set of desirable gambles via
maximality, or those determined by a set of probability measures via E-admissibility.

In the present paper, we add more detail to our previous findings by investigating
in more detail the implications of the convexity axiom, while still letting go of
Archimedeanity. We show that, if a representation theorem under convexity were
indeed possible, it would necessarily involve lexicographic probabilities, as studied
by [3], [7] and [13], but that unfortunately such representation is not generally
guaranteed. In order to establish this, we derive some interesting properties of
coherent choice functions in terms of their so-called rejection sets. Our argument
leads us to introduce an additional axiom, whichwe callweak Archimedeanity, which
guarantees representation, at least in the case of two-dimensional option spaces.

Our paper is organised as follows. In Section 2, we recall the basics of coherent
choice functions on vector spaces of options as introduced in our earlier work [22],
and establish a number of properties that will be useful later on. In Section 3, we
recall our definition of lexicographic choice functions from [21] and the properties
of their associated binary preferences. Then we bring up the representation question
of whether a convex coherent choice function is always the infimum of a family of
lexicographic choice functions. Our motivation for focusing on them is that (i) they
have been connected to a representation of preferences in the context of choices over
horse lotteries in [13]; and (ii) that, as we shall show, the subset of maximal choice
functions, that play a similar role in the case of binary preferences, are not sufficient
in the case of choice functions. In order to present our results, we study in quite
some detail the particular case of coherent choice functions on a binary possibility
space, and show in Section 4 that these can be characterised by means of a so-
called rejection set. Based on our results, we are able to answer the representation
question by showing (i) that convexity is necessary but not sufficient for a coherent
choice function to be the infimum of lexicographic choice functions; and (ii) that
a necessary and sufficient condition can be obtained by adding what we call weak
Archimedeanity. The paper concludes with some additional discussion in Section 6.
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2 Coherent choice functions on vector spaces

Consider a real vector space V provided with the vector addition + and scalar
multiplication. We denote by 0 the additive identity. For any subsets A1 and A2 of V
and any λ inR, we let λA1 B {λu ∶ u ∈ A1} and A1+A2 B {u+v ∶ u ∈ A1 and v ∈ A2}.

Given any subset A of an option space V , we define its positive hull posi(A) as
the set of all positive finite linear combinations of elements of A:

posi(A) B {
n

∑
k=1

λkuk ∶ n ∈ N,λk ∈ R>0,uk ∈ A} ⊆ V,

and its convex hull CH(A) as the set of convex combinations of elements of A:

CH(A) B {
n

∑
k=1

αkuk ∶ n ∈ N,αk ∈ R≥0,
n

∑
k=1

αk = 1,uk ∈ A} ⊆ posi(A) ⊆ V .

A subset A of V is called a convex cone if it is closed under positive finite linear
combinations, i.e. if posi(A) = A. A convex coneK is called proper ifK∩−K = {0}.
With any proper convex cone K ⊆ V , we associate an ordering ⪯K on V , defined for
all u and v in V by u ⪯K v⇔ v − u ∈ K.

The vector space of options V , ordered by the vector ordering ⪯K, is called an
ordered vector space ⟨V,⪯K⟩. We will refrain from explicitly mentioning the actual
proper convex cone K we are using, and simply write V to mean the ordered vector
space, and use ⪯ as a generic notation for the associated vector ordering. Finally,
with any vector ordering ⪯, we associate the strict partial ordering ≺ as follows:

u ≺ v⇔ (u ⪯ v and u ≠ v) ⇔ v − u ∈ K ∖ {0} for all u,v in V .

We call u positive if u ≻ 0, and collect all positive options in the convex cone V≻0 ∶=
K ∖ {0}. From now on, we assume any ordering ⪯, generic but fixed. So we assume
that V is an ordered vector space, with vector ordering ⪯.

We denote byQ(V) the set of all non-empty finite subsets of V , a strict subset of
the power set of V . When it is clear what option space V we are considering, we will
also use the simpler notationQ. Elements A ofQ are the option sets amongst which
a subject can choose his preferred options.

Definition 1 A choice function C on an option space V is a map

C∶Q → Q∪ {∅}∶ A ↦ C(A) such that C(A) ⊆ A.

We collect all the choice functions on V in C(V), often denoted as C when it is clear
from the context what the option space is.

The idea underlying this simple definition is that a choice function C selects the
set C(A) of ‘best’ options in the option set A. Our definition resembles the one
commonly used in the literature [1, 14, 16], except perhaps for an also not entirely
unusual restriction to finite option sets [8, 12, 15].
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Equivalent to a choice function C, we may consider its corresponding rejection
function R, defined by R(A) B A∖C(A) for all A inQ. It returns the options R(A)
that are rejected—not selected—by C. We collect all the rejection functions on V in
the set R(V), often denoted as R when it is clear from the context what the option
space is.

We focus on a special class of rejection functions, which we will call coherent.

Definition 2 We call a rejection function R on V coherent if for all A, A1 and A2 in
Q, all u and v in V , and all λ in R>0:

R1. R(A) ≠ A;
R2. if u ≺ v then u ∈ R({u,v});
R3. a. if A1 ⊆ R(A2) and A2 ⊆ A then A1 ⊆ R(A);

b. if A1 ⊆ R(A2) and A ⊆ A1 then A1 ∖ A ⊆ R(A2 ∖ A);
R4. a. if A1 ⊆ R(A2) then λA1 ⊆ R(λA2);

b. if A1 ⊆ R(A2) then A1 + {u} ⊆ R(A2 + {u}).

We collect all coherent rejection functions on V in the set R̄(V), often simply
denoted as R̄ when it is clear from the context which vector space we are using.

These axioms are a subset of the ones introduced in [14], which in our previous
work [21] we duly translated from horse lotteries to our abstract options. Our Ax-
iom R2 is slightly more restrictive than its counterpart for horse lotteries considered
by [14], but our other axioms are slightly less restrictive.

One axiom we omit from our coherence definition, is the Archimedean one.
Typically the preference associated with coherent sets of desirable gambles does not
have the Archimedean property, see [22], so letting go of this axiom is necessary if
we want to explore the connection with desirability.

The second axiom that we do not consider as necessary for coherence is what we
will call the convexity axiom:
R5. if A ⊆ A1 ⊆ CH(A) then R(A1) ∩ A = R(A), for all A and A1 in Q;
As shown in [21], this axiom is incompatible with Walley–Sen maximality [17, 24]
as a decision rule, in the manner that will be made explicit later on.

An interesting rescaling property that we shall need further on is the following:

Proposition 1 Let R be a rejection function onQ satisfying axiomsR3a,R4a andR5.
Then for all n in N, all u1, u2, . . . , un in V and all µ1, µ2, . . . µn in R>0:

0 ∈ R({0,u1,u2, . . . ,un}) ⇔ 0 ∈ R({0, µ1u1, µ2u2, . . . , µnun}). (1)

If we replace 0 by any non-zero option u, this result need no longer hold.
We have learned from dire experience that in verifying whether a rejection func-

tion is coherent, Axiom R3b is often hardest to check. But under various additional
conditions, it has a number of equivalent formulations that may simplify this task:

Proposition 2 Let R be any rejection function on Q, and consider the following
statements:

(i) R satisfies Axiom R3b;
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(ii) (∀A ∈ Q)(∀u ∈ R(A))u ∈ R({u} ∪ A ∖ R(A));
(iii) (∀A ∈ Q)(∀v ∈ R(A) ∖ {0})(0 ∈ R(A) ⇒ 0 ∈ R(A ∖ {v}));
Then (i) implies (ii), and the converse holds if R satisfies Axiom R3a. Moreover, if R
satisfies Axiom R4b, then (i) and (iii) are equivalent.

Using Proposition 2, we can find an easy characterisation of Axiom R1.

Corollary 1 Consider any rejection function R that satisfies Axioms R3b and R4b.
Then R satisfies Axiom R1 if and only if 0 ∉ R({0}).

For two choice functions C and C′, we call C not more informative than C′—and
we write C ⊑ C′—if C(A) ⊇ C′(A) for all A in Q. The idea behind this is that
a more informative choice function selects the admissible options more selectively
from within the option set. The relation ⊑ is reflexive, antisymmetric and transitive,
so the set C of all choice functions ordered by ⊑ is a partial order. Moreover, it is
actually a complete lattice: given any set C′ ⊆ C of choice functions, its infimum
inf C′ and supremum supC′ exist in C, and are given by (inf C′)(A) = ⋃C∈C′ C(A)

and (supC′)(A) = ⋂C∈C′ C(A) for all A in Q. This translates naturally to rejection
functions.

3 The link with desirability

In [22], we have studied in some detail how the coherent choice functions in the sense
of Definition 2 can be related to coherent sets of desirable options (gambles). In the
present section, we investigate what remains of this connection when we require in
addition that our choice functions should satisfy Axiom R5.

We recall that a set of desirable options D is simply a subset of the vector space
V . The underlying idea is that the subject strictly prefers each option u in this set to
the status quo 0. As we did for choice functions, we pay special attention to coherent
sets of desirable options.

Definition 3 A set of desirable options D is called coherent if for all u and v in V ,
and all λ in R>0:
D1. 0 ∉ D;
D2. V≻0 ⊆ D;
D3. if u ∈ D then λu ∈ D;
D4. if u,v ∈ D then u + v ∈ D.
We collect all coherent sets of desirable options in the set D̄.

More details can be found in [24], [25], [10] and the references therein.
AxiomsD3 andD4 guarantee that a coherent D is a convex cone. This convex cone

induces a strict partial order ½D on V , by letting u ½D v⇔ 0 ½D v −u⇔ v −u ∈ D,
so D = {u ∈ V ∶ 0 ½D u} [6, 10]. D and ½D are mathematically equivalent: given
one of D or ½D , we can determine the other unequivocally using the formulas above.
When it is clear from the context which set of desirable options D we are working
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with, we often refrain from mentioning the explicit reference to D in ½D and then
we simply write ½. One of the axioms says that ≺ ⊆ ½D .

We can associate a set of desirable options DR with every given rejection function
R by focusing on its binary rejections:

u ½DR v⇔ u − v ∈ DR ⇔ u ∈ R({u,v}) for all u,v in V .

For more details, we refer to [22, Section 3]. DR is a coherent set of desirable options
if R is a coherent rejection function. Conversely, if we start out with a coherent set
of desirable options D then the set {R ∈ R̄ ∶ DR = D} of all coherent rejection
functions whose binary choices are represented by D, is non-empty, and its smallest,
or least informative, element RD B inf{R ∈ R̄ ∶ DR = D} is given by:

RD(A) B {u ∈ A ∶ (∃v ∈ A)v − u ∈ D} = {u ∈ A ∶ (∃v ∈ A)u ½ v} for all A in Q.
(2)

It selects all options from A that are dominated under the ordering ½D , or in other
words, its corresponding choice function is based on Walley–Sen maximality.

Proposition 3 ([21, Proposition 11]) Given any coherent set of desirable options
D, then 0 ∈ RD({0} ∪ A) ⇔ D ∩ A ≠ ∅ for all A in Q.

Although RD is coherent when D is, it does not necessarily satisfy the additional
Axiom R5, as shown in [21, Example 1]; the sets of desirable options D for which
RD does satisfy the convexity axiom are identified in the next proposition.

Proposition 4 ([21, Proposition 12])Consider any coherent set of desirable options
D, then the rejection function RD satisfies Axiom R5 if and only if posi(Dc) = Dc .

This proposition seems to indicate that there is something special about coherent
sets of desirable options whose complement is a convex cone too. We give them a
special name that will be motivated and explained next.

Definition 4 A coherent set of desirable options D is called lexicographic if
posi(Dc) = Dc or, equivalently, if posi(Dc) ∩ D = ∅. We collect all the lexico-
graphic coherent sets of desirable options in D̄L.

The set D̄L of lexicographic sets of desirable options is non-empty. It includes,
for instance, the so-called maximal sets of desirable options, see [21], which is the
subclass of those coherent sets of desirable options satisfying

(∀u ∈ V ∖ {0})(u ∈ D or − u ∈ D). (3)

We collect all the coherent sets of desirable options that satisfy Equation (3) above
in the set D̂.
The reason why we call the elements of D̄L lexicographic lurks behind a close
connection with the well-studied lexicographic probability systems.
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Definition 5 A lexicographic probability system is an `-tuple p B (p1, . . . , p`) of
probability mass functions on a possibility space X . We associate with this tuple p
an expectation operator Ep B (Ep1, . . . ,Ep` ), and a (strict) preference relation ≺p
on L(X), defined by: f ≺p g⇔ Ep( f ) <L Ep(g) for all f and g in L, where, for
every h in L, Ep(h) B (Ep1(h), . . . ,Ep` (h)), is an element of an `-dimensional
vector space. We call ` the number of layers of the lexicographic probability system.

An important property that a lexicographic probability system pmay ormay not have,
is that of having no non-trivial Savage-null events: p has no non-trivial Savage-null
events if for every x in X , there is at least one k in {1, . . . , `} for which pk(x) > 0.

We have showed in [21, Section 5] that any lexicographic set of desirable options
D defines a lexicographic probability system with no non-trivial Savage-null events,
and vice versa. Lexicographic sets of desirable options are therefore an elegant and
simple representation of lexicographic probability systems.

To get some feeling for what these lexicographic models represent, we first look
at the special case of binary possibility spaces {H,T}, leading to a two-dimensional
option space V = L({H,T}) provided with the point-wise order. It turns out that
lexicographic sets of desirable options (gambles) are easy to characterise there.

Proposition 5 ([21, Proposition 16]) All lexicographic coherent sets of desirable
gambles on the binary possibility space {H,T} are given by:

D̄L ∶= {Dρ,DH
ρ ,D

T
ρ ∶ ρ ∈ (0,1)} ∪ {D0,D1} = {Dρ ∶ ρ ∈ (0,1)} ∪ D̂,

where, for all ρ in (0,1),

Dρ ∶= {λ(ρ − I{H}) ∶ λ ∈ R} + L>0 = span({ρ − I{H}}) + L>0

DH
ρ ∶= Dρ ∪ {λ(ρ − I{H}) ∶ λ ∈ R<0} = Dρ ∪ posi({I{H} − ρ})

DT
ρ ∶= Dρ ∪ {λ(ρ − I{H}) ∶ λ ∈ R>0} = Dρ ∪ posi({ρ − I{H}})

D0 B { f ∈ L ∶ f (T) > 0} ∪ L>0

D1 B { f ∈ L ∶ f (H) > 0} ∪ L>0.

Definition 6 A coherent rejection function R is called lexicographic if R = RD for
some D in D̄L. We collect all the lexicographic coherent rejection functions in R̄L.

Proposition 6 ([21, Proposition 23])Consider an arbitrary coherent set of desirable
options D. Then

inf{R ∈ R̄ ∶ R satisfies Axiom R5 and DR = D} = inf{RD′ ∶ D′
∈ D̄L and D ⊆ D′

}.

Therefore, they also represent the least informative coherent choice function that
satisfies Axiom R5, taking into account that Axiom R5 is preserved when taking
infima.
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4 No representation of choice functions on a binary space

Lexicographic choice functions seem to fulfil the role of probability mass in our
theory without any Archimedean axiom. This is in contradistinction with the theory
of choice functions on horse lotteries with an Archimedean axiom [14], where the
most informative choice functions are those that are induced by probability mass
functions. [14] show that every coherent choice function on horse lotteries (also
satisfying their Archimedean axiom) is an infimum of such maximally informative
choice functions. This ensures that coherent choice functions with the Archimedean
axiom constitute a so-called strong belief structure [5]. The relevance of such strong
belief structures is that they allow for a simple account of conservative inference.

Since coherent sets of desirable options are represented by their dominating
maximal ones, it is natural to wonder if they fulfil the same representational role for
choice functions.

Example 1 Consider the binary space {H,T} and let us define the coherent set of
desirable gambles D B { f ∈ L ∶ f (H) + f (T) > 0}. Clearly, Dc = { f ∈ L ∶

f (H)+ f (T) ≤ 0} is a convex cone, so D is a lexicographic set of desirable gambles,
and hence, by Proposition 4, RD is coherent and satisfies Axiom R5.

Is RD representable by a subset of {RD̂ ∶ D̂ ∈ D̂}? To answer this in the negative,
consider the option set A in Q0 that consists of the gambles { f ,− f ,0}, where
f (H) = 1, f (T) = −1. Then neither f nor − f belongs to D, whence by Proposition 3,
0 ∉ RD(A). However, A ∩ D̂ ≠ ∅, for every D̂ in D̂. To see this, it suffices to take
into account that any maximal set of desirable options shall include either f or − f
because of Equation (3). This means that RD is not representable by subsets of D̂,
even though RD satisfies Axiom R5. ◊

Thus, a representation in terms of appropriately chosen {RD̂ ∶ D̂ ∈ D̂} is impos-
sible. But since we have seen in Proposition 6 that lexicographic rejection functions
seem to fulfil at least some representing role in our theory without Archimedeanity, it
seems at least possible that there might be a representation result in terms of R̄L—in
terms of lexicographic rejection functions. This brings us to the central question of
this section: is, in parallel with the result by Seidenfeld et al. [14], every coherent re-
jection function R that satisfies the Axiom R5 an infimum of lexicographic rejection
functions, or in other words, is R = inf{R′ ∈ R̄L ∶ R ⊑ R′}, or equivalently,

R(A) = ⋂{R′(A) ∶ R′ ∈ R̄L and R ⊑ R′} for all A in Q?

We will show in this section that, unfortunately and perhaps somewhat surprisingly,
this is generally not the case, by studying in more detail the special case of coherent
rejection functions on two-dimensional option spaces.

Our counterexample that we will build will be a rejection function on a two-
dimensional option space. Therefore, in the remainder of this section, we concentrate
on the two-dimensional option space V = L(X) of gambles on an uncertain variable
that can assume only two possible values X B {H,T}, which is isomorphic to R2.
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4.1 An equivalent characterisation: rejection sets

As we will see shortly, the coherent rejection functions on the option space V = R2

are uniquely determined by what we shall call a rejection set, consisting essentially
of those option sets that allow us to reject 0 from them. Instead of describing the
gambles that reject 0 directly, this new characterisation will rather use Axiom R4a
to rescale gambles in the second and fourth quadrants

VII B { f ∈ L(X) ∶ f (H) < 0 < f (T)} and VIV B { f ∈ L(X) ∶ f (T) < 0 < f (H)},

obtaining variants that can be described more easily. Indeed, every gamble f1 in VII
can be uniquely described as f1 = λ1(k1 − 1, k1) with λ1 in R>0 and k1 in (0,1), and
similarly, every gamble f2 in VIV as f2 = λ2(k2, k2 − 1) with λ2 in R>0 and k2 in
(0,1), as indicated by the figure below.

H

T
f1

f2

1

1

−1

−1

k1
k2

1

1

(k1, k2)

Definition 7 Given any coherent rejection function R, we define its rejection set
KR ⊆ [0,1)2 as

KR B {(k1, k2) ∈ [0,1)2
∶ 0 ∈ R({(k1 − 1, k1),0,(k2, k2 − 1)})}.

We will call any subset K ⊆ [0,1)2 a rejection set. It will be useful to consider a
number of potential properties of rejection sets K:
K1. monotonicity: if (k1, k2) ∈ K , k′1 ≥ k1 and k′2 ≥ k2, then also (k′1, k

′
2) ∈ K , for all

(k1, k2) and (k′1, k
′
2) in [0,1)2;

K2. non-triviality: (0,0) ∉ K;
K3. a. for all a, b and c in [0,1) such that c < a, a + b < 1, (b,a) ∈ K and

(1 − a,c) ∈ K:

(x,c) ∈ K for all x in (b,1) and (b, y) ∈ K for all y in (c,1);

b. for all a and c in [0,1) such that c < a, (0,a) ∈ K and (1 − a,c) ∈ K:

(0,c) ∈ K;
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c. for all a and b in [0,1) such that 0 < a, a+b < 1, (b,a) ∈ K and (1−a,0) ∈ K:

(b,0) ∈ K;

K4. if k1 + k2 > 1 then (k1, k2) ∈ K , for all (k1, k2) in [0,1)2.
Properties K2 and K3 imply the following useful property:

Lemma 1 Consider any rejection setK ⊆ [0,1)2. IfK satisfiesPropertiesK2 andK3,
then for every a ∈ [0,1], either (0,a) ∉ K or (1 − a,0) ∉ K .

The coherence of R—and the extraAxiomR5 and theweaker Condition (1)—implies
a number of corresponding properties of its rejection set KR :

Proposition 7 Consider any coherent choice function R. Then its rejection set KR

satisfies Properties K1 and K2. Furthermore, if R satisfies Condition (1), then KR

also satisfies Property K3. Finally, if R satisfies Axiom R5 then KR also satisfies
Properties K3 and K4.

Conversely, we now show how to associate a rejection function with any rejection
set K ⊆ [0,1)2. Taking into account Property K2, we only consider sets K that do
not contain 0.

Definition 8 Given any subsetK ⊆ [0,1)2∖{0}, we define its corresponding rejection
function RK as follows. We let

RK({0}) = ∅. (4)

Next, for any A in Q0, we let 0 ∈ RK(A ∪ {0}) if at least one of the following
conditions holds:

A ∩ L>0 ≠ ∅ (5)
(∃λ1 ∈ R>0,(k1,0) ∈ K)λ1(k1 − 1, k1) ∈ A (6)
(∃λ2 ∈ R>0,(0, k2) ∈ K)λ2(k2, k2 − 1) ∈ A (7)

(∃λ1,λ2 ∈ R>0,(k1, k2) ∈ K ∩ (0,1)2
){λ1(k1 − 1, k1),λ2(k2, k2 − 1)} ⊆ A, (8)

and finally, we allow for R(A) to contain non-zero gambles by imposing the following
condition:

(∀A ∈ Q)(∀ f ∈ A) f ∈ RK(A) ⇔ 0 ∈ RK(A − { f }). (9)

The intuition behind this is that the elements of K of the type (k1,0) or (0, k2)
determine gambles—(k1 − 1, k1) and (k2, k2 − 1), respectively—that allow us to
reject 0; the other possibility of rejecting 0 is by means of the combined action of a
gamble in the second quadrant—(k1 − 1, k1) for k1 in (0,1)—and one in the fourth
quadrant—(k2, k2 − 1) for k2 in (0,1).

Alternatively, we can summarise Conditions (6)–(8) as

(∃λ1,λ2 ∈ R>0,(k1, k2) ∈ K){λ1(k1 − 1, k1),λ2(k2, k2 − 1)} ⊆ A ∪{(−1,0),(0,−1)}.
(10)
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Lemma 2 For any K ⊆ [0,1)2 ∖ {0} and any A in Q, at least one of the Condi-
tions (6)–(8) holds if and only if Condition (10) holds.

Now that we know how to associate with a rejection set K a rejection function
RK , let us determine which conditions on K ensure the coherence of RK . We begin
by showing that a number of coherence axioms follow directly from the definition,
irrespective of the choice of the rejection set K ⊆ [0,1)2 ∖ {0}:

Proposition 8 Consider any subset K ⊆ [0,1)2 ∖ {0}. Then the rejection function
RK given by Definition 8 satisfies Axioms R2, R3a, R4a, R4b and Condition (1).

If in addition K satisfies Properties K1–K3, then the rejection function RK given
by Definition 8 satisfies Axioms R3b and R1.

In other words, given any subset K of [0,1)2∖{0} that satisfies Properties K1–K3,
the rejection function RK given by Definition 8 is coherent and satisfies Property (1).

We conclude from the preceding discussion that any coherent rejection function
determines a rejection set via Definition 7, which, in turn, can be used to determine
a rejection function via Definition 8. Our next proposition shows that these two
procedures commute, or, in other words, that a coherent rejection function is uniquely
determined by its associated rejection set, and the other way around. In order to get
there, we first establish the following lemma:

Lemma 3 Consider any coherent rejection function R on {H,T} that satisfies Condi-
tion (1). Consider the option sets { f1, . . . , fm} ⊆ VII and {g1, . . . ,gn} ⊆ VIV, for some
m and n inN. Then the following equivalences hold for any i in arg max{ fk(T)

fk(T)− fk(H) ∶

k ∈ {1, . . . ,m}} and any j in arg max{ vk(H)
vk(H)−vk(T) ∶ k ∈ {1, . . . ,n}}:

(i) 0 ∈ R({0, f1, . . . , fm,g1, . . . ,gn}) ⇔ 0 ∈ R({0, fi,gj});
(ii) 0 ∈ R({0,g1, . . . ,gn}) ⇔ 0 ∈ R({0,gj});
(iii) 0 ∈ R({0, f1, . . . , fm}) ⇔ 0 ∈ R({0, fi}).

Incidentally, Proposition 1 ensures that this lemma applies in particular to coherent
rejection functions that satisfy Axiom R5.

Proposition 9 For any coherent rejection function R on L({H,T}) that satisfies
Condition (1), R = RKR . Conversely, for any rejection setK satisfyingPropertiesK1–
K3, K = KRK .

To conclude our preliminary discussion of the relation between rejection sets
and rejection functions, we characterise the conditions under which the rejection
function RK determined by a rejection set K satisfies the ‘convexity’ Axioms R5.
We begin with a lemma that will simplify the argument.

Lemma 4 Consider (k1, k2) in [0,1)2. Let A B {(k1 − 1, k1),0,(k2, k2 − 1)}, then

posi(A) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

B + L≥0 if k1 + k2 > 1
B if k1 + k2 = 1
B + L≤0 if k1 + k2 < 1,

where B B {λ(k1 − 1, k1) ∶ λ ∈ R≥0} ∪ {λ(k2, k2 − 1) ∶ λ ∈ R≥0}.
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In particular, it follows from this result for A = {(k1 − 1, k1),0,(k2, k2 − 1)} that

posi(A) ∩ L>0 = ∅⇔ k1 + k2 ≤ 1, for all (k1, k2) in [0,1)2. (11)

Proposition 10 Consider any rejection set K ⊆ [0,1)2 ∖ {0} that satisfies Proper-
ties K1–K3, and the corresponding rejection function RK on L({H,T}). Then the
following two statements are equivalent:

(i) RK satisfies Axiom R5,
(ii) K satisfies Property K4.

The results in this section so far can be succinctly summarised as follows:

Theorem 1 Consider a two-dimensional option space V . There is a one-to-one
correspondence between coherent rejection functions on V satisfying Condition (1)
and subsets of [0,1)2 satisfying Properties K1–K3.

Moreover, there is a one-to-one correspondence between coherent rejection func-
tions on V satisfying Axiom R5 and subsets of [0,1)2 satisfying Properties K1–K4.

4.2 Counterexample

Let us call lexicographic rejection set a rejection set corresponding to a lexicographic
choice function. In order to find a rejection set that is no infimum of such lexico-
graphic rejection sets, we first need to find out what these lexicographic rejection
sets look like. Recall from Proposition 5 that all the lexicographic coherent sets of
desirable gambles on a binary possibility space {H,T} are given by

D̄L ∶= {Dρ,DH
ρ ,D

T
ρ ∶ ρ ∈ (0,1)} ∪ {D0,D1} = {Dρ ∶ ρ ∈ (0,1)} ∪ D̂,

and the lexicographic rejection functions on L({H,T}) are R̄L = {RD ∶ D ∈ D̄L}.
We determine the corresponding rejection sets. For any D in D̄L, we let KD be the
rejection set that corresponds to the rejection function RD . For any ρ in (0,1) and
(k1, k2) ∈ [0,1)2, observe that

(k1, k2) ∈ KDρ ⇔ 0 ∈ RDρ({(k1 − 1, k1),0,(k2, k2 − 1)})
⇔ {(k1 − 1, k1),(k2, k2 − 1)} ∩ Dρ ≠ ∅

⇔ (k1 − 1, k1) ∈ Dρ or (k2, k2 − 1) ∈ Dρ

⇔ k1 > ρ or k2 > 1 − ρ, (12)

and similarly,

(k1, k2) ∈ KDH
ρ
⇔ (k1 − 1, k1) ∈ DH

ρ or (k2, k2 − 1) ∈ DH
ρ ⇔ k1 > ρ or k2 ≥ 1 − ρ,

(13)
and
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(k1, k2) ∈ KDT
ρ
⇔ (k1 − 1, k1) ∈ DT

ρ or (k2, k2 − 1) ∈ DT
ρ ⇔ k1 ≥ ρ or k2 > 1 − ρ.

(14)
Finally, also for D0 and D1,

(k1, k2) ∈ KD0 ⇔ (k1 − 1, k1) ∈ D0 or (k2, k2 − 1) ∈ D0 ⇔ k1 > 0 (15)

and
(k1, k2) ∈ KD1 ⇔ (k1 − 1, k1) ∈ D1 or (k2, k2 − 1) ∈ D1 ⇔ k2 > 0. (16)

We are now, finally, ready to provide an example of a rejection set that satisfies
Properties K1–K4—or a coherent rejection function that satisfies Axiom R5—but
is no intersection of lexicographic rejection sets.

Example 2 Consider any `1 and `2 in (0,1) such that `1 + `2 < 1, and the rejection
set K`1 ,`2 ⊆ [0,1)2 depicted in the figure below, and defined by

K`1 ,`2 B {(k1, k2) ∈ [0,1)2
∶ k1 + k2 > 1 or (k1, k2) > (`1, `2)}. (17)

We show that it corresponds to a rejection function that is coherent and satisfies
Property R5. By Theorem 1 it suffices to show that K`1 ,`2 satisfies Properties K1–
K4. That it satisfies Properties K1, K2 and K4 is clear from its definition. We show
that it also satisfies Property K3. Note that (0,a) ∉ K`1 ,`2 and (1−a,0) ∉ K`1 ,`2 for all
a in [0,1], so the Properties K3b and K3c are trivially satisfied for K`1 ,`2 . It therefore
only remains to prove that Property K3a is satisfied for K`1 ,`2 . Consider any a, b and
c in [0,1) such that c < a, a + b < 1, (b,a) ∈ K`1 ,`2 and (1 − a,c) ∈ K`1 ,`2 . We need
to show that then

(x,c) ∈ K`1 ,`2 for all x in (b,1) and (b, y) ∈ K`1 ,`2 for all y in (c,1),

so consider any x in (b,1) and y in (c,1). Since (b,a) ∈ K`1 ,`2 and a + b < 1,
Equation (17) tells us that (b,a) > (`1, `2), so x > b ≥ `1. Similarly, since (1 −
a,c) ∈ K`1 ,`2 and c < a (or equivalently, 1 − a + c < 1), Equation (17) tells us that
(1 − a,c) > (`1, `2), so y > c ≥ `2. Then (x,c) > (`1, `2) and (b, y) > (`1, `2),
whence indeed (x,c) ∈ K`1 ,`2 and (b, y) ∈ K`1 ,`2 . So we see that K`1 ,`2 satisfies
Properties K1–K4. It therefore corresponds to a coherent and ‘convex’ rejection
function.

k1

k2

`1

`2

K`1 ,`2

We show that K`1 ,`2 is no intersection of lexicographic rejection sets. Assume
ex absurdo that it is an intersection ⋂KD′ of some non-empty collection of lex-
icographic rejection sets KD′ B {KD ∶ D ∈ D′}, with D′ ⊆ D̄L. Then, since
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(`1, `2) ∉ K`1 ,`2 , there must be some D in D′ such that (`1, `2) ∉ KD . There are a
number of possibilities: (i) D = Dρ for some ρ in (0,1), (ii) D = DH

ρ for some ρ
in (0,1), or (iii) D = DT

ρ for some ρ in (0,1)—D ∈ {D0,D1} is impossible since
(`1, `2) belong to both KD0 [by Equation (15)] and KD1 [by Equation (16)].

In case (i), since (`1, `2) ∉ KDρ , we infer from Equation (12) that `1 ≤ ρ and
`2 ≤ 1 − ρ, or in other words, that ρ ∈ [`1,1 − `2]. From `1 + `2 < 1, we infer that
`1 < ρ or `2 < 1 − ρ. We consider the case that `1 < ρ; if `2 < 1 − ρ, a symmetrical
argument leads to a similar result. From Equation (12) we infer, using `2 ≤ 1− ρ, that
on the one hand (ρ,`2) ∉ KDρ . On the other hand, we infer from (ρ,`2) > (`1, `2)
that (ρ,`2) ∈ K`1 ,`2 , by Equation (17). This leads us to conclude that K`1 ,`2 ≠ KDρ .

In case (ii), then, since (`1, `2) ∉ KDH
ρ
, we infer from Equation (13) that `1 ≤ ρ and

`2 < 1−ρ, or in other words, that ρ ∈ [`1,1−`2). This implies that `2 <
1−ρ+`2

2 < 1−ρ:
indeed, 1−ρ+`2

2 is a convex mixture of `2 and 1 − ρ. From Equation (13), we infer,
using 1−ρ+`2

2 < 1 − ρ, that on the one hand (`1,
1−ρ+`2

2 ) ∉ KDH
ρ
. On the other hand,

we infer from (`1,
1−ρ+`2

2 ) > (`1, `2) that (`1,
1−ρ+`2

2 ) ∈ K`1 ,`2 , by Equation (17). This
leads us to conclude that K`1 ,`2 ≠ KDH

ρ
.

In case (iii), a completely symmetrical argument leads to the conclusion that
K`1 ,`2 ≠ KDH

ρ
.

This tells us that none of the remaining possibilities can hold, a contradiction. ◊

Thus, the rejection function that corresponds to K`1 ,`2 is coherent and satisfies
Property R5 by Theorem 1, but it is no infimum of lexicographic rejection functions.
This answers the initial question in this section—is R = inf{R′ ∈ R̄L ∶ R ⊑ R′} for
every coherent rejection function R that satisfies Property R5?—in the negative: in
the restrictive case of two possible outcomes, we have found a counterexample.

5 Weak Archimedeanity

In order to find an additional requirement that guarantees representation, at least in
the binary case, let us further analyse the properties of rejection sets.

Definition 9 Consider any K ⊆ [0,1)2 satisfying Properties K1–K4 We define the
following two maps π1∶ [0,1) → [0,1] and π2∶ [0,1) → [0,1]:

π1(z) B inf{a ∈ R ∶ (z,a) ∈ K} and π2(z) B inf{a ∈ R ∶ (a, z) ∈ K}

for all z in [0,1). Here, we let inf∅ B 1, so that π1(z) = 1 if (z, `) ∉ K for all ` in
[0,1), and π2(z) = 1 if (`, z) ∉ K for all ` in [0,1).

Note that π1(z) ∈ [0,1 − z] and π2(z) ∈ [0,1 − z] for every z in [0,1), because
{(k1, k2) ∈ [0,1)2 ∶ k1 + k2 > 1} ⊆ K . Since K is assumed to be increasing,

(∀z ∈ [0,1))((∀y ∈ (π1(z),1))(z, y) ∈ K) and ((∀x ∈ (π2(1−z),1))(x,1−z) ∈ K).
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Proposition 11 π1 and π2 are non-increasing. Moreover, for any z in [0,1):

• If π1(z) < 1 − z then π1(z) = π1(t) for all t in (z,1 − π1(z));
• If π2(z) < 1 − z then π2(z) = π2(t) for all t in (z,1 − π2(z)).

Next we introduce the notion of weak Archimedeanity that, as we shall show, shall
be instrumental in characterising those coherent choice functions that are the infima
of a family of lexicographic choice functions.1 We begin by giving the definition in
terms of rejection sets:

Definition 10 A rejection set K is called weakly Archimedean when it satisfies

(∀(k1, k2) ∈ (0,1)2,∀k′1 ∈ (k1,1),∀k′2 ∈ (k2,1))
(k1 + k2 < 1,(k′1, k2) ∈ K,(k1, k′2) ∈ K ⇒ (k1, k2) ∈ K).

Weak Archimedeanity rules out the rejection functions that have the rejection set
K`1 ,`2 from the left figure in its basis.

k1

k2

`1

`2

K`1 ,`2

k1

k2

`1

`2

Indeed, observe that `1 + `2 < 1, (k′1, `2) ∈ K and (`1, k′2) ∈ K for every k′1 in (`1,1)
and k′2 in (`2,1), but (`1, `2) ∉ K . Weak Archimedeanity implies that (`1, `2) ∈ K ,
as depicted on the right figure. In terms of choice functions, the notion of weak
Archimedeaniticy becomes the following:

Definition 11 A rejection function R on a binary possibility space is called weakly
Archimedean when it satisfies

(∀u ∈ VII,∀v ∈ VIV)

(posi({u,v}) ∩ V⪰0 = ∅,(∀ε ∈ R>0)(0 ∈ R({u + ε,0,v}) and 0 ∈ R({u,0,v + ε}))

⇒ 0 ∈ R({u,0,v})). (18)

Proposition 12 Consider some two-dimensional vector space V with basis {H,T}.
Consider a coherent rejection function R on V satisfying Condition (1) and its
associated rejection set KR . Then KR is weakly Archimedean if and only if R is
weakly Archimedean.

1Wewant to caution the reader that there are other non-equivalent definitions ofweakArchimedean-
ity: for instance, the one given in [28, Defintion 19] for binary comparison of the options, differs
from ours, even when we restrict our definition to binary option sets.
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Weak Archimedeanity is closed under infima.

Proposition 13 Consider some two-dimensional vector space V with basis {H,T}.
Consider an arbitrary collectionR′ of coherent rejection functions on V that satisfy
Condition (1). If every rejection function in R′ is weakly Archimedean, then so is
infR′. Similarly, given an arbitrary collection of rejection sets {Ki ∶ i ∈ I} satisfying
Properties K1–K3, if every Ki is weakly Archimedean, then so is inf{Ki ∶ i ∈ I}.

From this it follows that weak Archimedeanity is necessary for a coherent choice
function to be the infimum of lexicographic ones:

Corollary 2 Consider some two-dimensional vector space V with basis {H,T}. Any
infimum of lexicographic rejection functions on V is weakly Archimedean.

Next, we are going to establish that weak Archimedeanity is not only necessary,
but also sufficient, for a coherent choice function to be the infimum of a family
of lexicographic ones. We begin with an auxiliary result. It basically tells us that
whenever k1 + k2 < 1 and (k1, k2) ∉ K then there is some (z,1 − z) dominating
(k1, k2) such that (z − ε,1 − z − ε) ∉ K for all ε in R>0.

Proposition 14 Consider any rejection set K that satisfies Properties K1–K3 and
that is weakly Archimedean, and consider any (k1, k2) in [0,1)2 such that k1+ k2 < 1
and (k1, k2) ∉ K . Then π1(z) = 1 − z or π2(1 − z) = z for some z in [k1,1 − k2].

Definition 12 Given a rejection set K that satisfies Properties K1–K4, we define
D′ ⊆ D̄L as D′ B ⋃{Dx ∶ x ∈ [0,1)}, where, for all x in (0,1):

Dx B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Dx} if (x,1 − x) ∉ K
{DH

x } if (x,1 − x) ∈ K,(∀ε ∈ R>0)(x,1 − x − ε) ∉ K
and (∀ε ∈ R>0)(x − ε,1 − x) ∈ K

{DT
x } if (x,1 − x) ∈ K,(∀ε ∈ R>0)(x,1 − x − ε) ∈ K

and (∀ε ∈ R>0)(x − ε,1 − x) ∉ K
{DH

x ,D
T
x } if (x,1 − x) ∈ K,(∀ε ∈ R>0)(x,1 − x − ε) ∉ K

and (∀ε ∈ R>0)(x − ε,1 − x) ∉ K

and

D0 B

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{DH
0 } if (∀ε ∈ R>0)(0,1 − ε) ∉ K and (∃ε ∈ R>0)(1 − ε,0) ∈ K

{DT
1 } if (∀ε ∈ R>0)(1 − ε,0) ∉ K and (∃ε ∈ R>0)(0,1 − ε) ∈ K

{DH
0 ,D

T
1 } if (∀ε ∈ R>0)(0,1 − ε) ∉ K and (1 − ε,0) ∉ K

∅ if (∃ε ∈ R>0)(0,1 − ε) ∈ K and (1 − ε,0) ∈ K .

Using this collection of sets of desirable options, we define a coherent rejection
function inf{RD ∶ D ∈ D′}, whose rejection set we call K ′:

K ′ B ⋂
D∈D′

KRD = {(k1, k2) ∈ [0,1)2
∶ 0 ∈ ⋂

D∈D′
RD({(k1 − 1, k1),0,(k2, k2 − 1)})}.
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Our next theorem shows that every rejection set that is weakly Archimedean,
and therefore every rejection function on a binary possibility space that is weakly
Archimedean, is an infimum of lexicographic choice functions.

Theorem 2 Given a rejection set K that satisfies Properties K1–K4 and that is
weakly Archimedean, we let D′ be the collection of lexicographic coherent set of
desirable options as in Definition 12 and K ′ the rejection set that corresponds to the
rejection function inf{RD ∶ D ∈ D′}. Then K ′ = K , and hence K is an infimum of
lexicographic rejection sets.

We see then that it is weak Archimedeanity, and not the stronger condition R5,
that allows us to characterise those coherent choice functions that are the infimum
of lexicographic ones.

6 Discussion

There are several open problems deriving from this work. First and foremost, we
should extend our characterisation of the infimum of lexicographic choice functions
to higher-dimensional option spaces. One difficulty here is that a representation akin
to the one we have given in terms of rejection sets seems hard, because we will not
be able to reduce the choices to option sets of either two or three gambles, as we have
done here: it can be checked that, even in the case of a space of three elements, there
is no upper bound on the cardinality of the option sets characterising our choices
[9]. Another matter is that for general possibility spaces coherent sets of desirable
options may have much more complex structures than the ones in the binary case.
In particular, lexicographic sets of gambles will no longer be either maximal or
strictly desirable; while this provides us with some additional expressive power, it
also complicates the technical developments.

On the other hand, we would also like to combine our results with those in [20,
22, 23], by investigating the notion of indifference and the process of conditioning
with lexicographic choice functions. In particular, this should allow us to link our
work with that on conditioning lexicographic probabilities in [3].

Finally, we should compare our work with the recent axiomatisation proposed in
[4] that, by including one extra rationality axiom, leads to a subfamily of coherent
choice functions that forms a strong belief structure. This approach excludes (renders
incoherent) choice functions such as those in [19, Example 16]. In the binary case,
we can deduce from our results in this paper that the addional rationality axiom in [4]
can be derived from our notion of weak Archimedeanity; the study for more general
spaces remains at the moment an open problem.
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098623-B-I00 and GRUPIN/IDI/2018/000176.
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Appendix: Proofs

Proof (of Proposition 1) It suffices to prove the direct implication. Let A B
{0,u1, . . . ,un} and µ∗ ∶= max{µ1, . . . , µn} ∈ R>0, and assume that 0 ∈ R(A).
Then Axiom R4a implies that also 0 ∈ R(µ∗A). Axiom R3a yields that 0 ∈

R(µ∗A∪{µ1u1, . . . , µnun}). Moreover, for every k in {1, . . . ,n}, we find that µkuk ∈
CH({0, µ∗uk}) ⊆ CH(µ∗A), so Axiom R5 guarantees that indeed 0 ∈ R(µ∗A). ◻

Proof (of Proposition 2) That (i) implies (ii), follows from Axiom R3b.
To prove that (ii) implies (i) under Axiom R3a, consider any A, A1 and A2 in

Q and assume that A ⊆ A1 ⊆ R(A2). Then in particular u ∈ R(A2), and therefore,
using (ii), u ∈ R({u}∪ A2 ∖R(A2)), for every u in A1 ∖ A. Applying Axiom R3a, we
infer that u ∈ R(A2 ∖ A) for every u in A1 ∖ A, whence indeed A1 ∖ A ⊆ R(A2 ∖ A).

The last statement is now immediate. ◻

Proof (of Corollary 1) That the first statement implies the second is immediate.
To establish the converse, we will prove the contraposition. Assume that R does not
satisfyAxiomR1. Therefore, we have that A = R(A) for some A inQ. Consider any u
in A, then by Proposition 2(ii) we find that u ∈ R({u}∪A∖R(A)) = R({u}∪A∖A) =

R({u}). By Axiom R4b therefore indeed 0 ∈ R({0}). ◻

Proof (of Lemma 1) If a = 0 then (0,a) = (0,0) ∉ K by Property K2. Analogously,
if a = 1 then (1− a,0) = (0,0) ∉ K by Property K2. Assume therefore that a ∈ (0,1),
and assume ex absurdo that both (0,a) and (1 − a,0) are elements of K . Use
Property K3b to infer that (0,0) ∈ K , which contradicts Property K2. ◻

Proof (of Proposition 7) We first prove that KR satisfies Property K1. Consider any
(k1, k2) in KR , and any (k′1, k

′
2) in [0,1)2 such that k′1 ≥ k1 and k′2 ≥ k2. Then

(k1, k2) ∈ KR simply means that 0 ∈ R({(k1 − 1, k1),0,(k2, k2 − 1)}), and k′1 ≥ k1
and k′2 ≥ k2 implies that (k′1−1, k′1) ≥ (k1−1, k1) and (k′2−1, k′2) ≥ (k2−1, k2). [21,
Proposition 2] tells us that then 0 ∈ R({(k′1 − 1, k′1),0,(k′2, k

′
2 − 1)}), whence indeed

(k′1, k
′
2) ∈ KR .

To prove that KR satisfies Property K2, assume ex absurdo that 0 ∈ KR ,
or equivalently, that 0 ∈ R({(−1,0),0,(0,−1)}). Since (−1,0) < 0, we infer
from Axiom R2 that (−1,0) ∈ R({(−1,0),0}), and therefore also that (−1,0) ∈

R({(−1,0),0,(0,−1)}), by Axiom R3a. A similar argument leads from (0,−1) <

0 to (0,−1) ∈ R({(−1,0),0,(0,−1)}). This implies that {(−1,0),0,(0,−1)} =

R({(−1,0),0,(0,−1)}), which contradicts Axiom R1.
Next, assume that R satisfies Condition (1). To prove that KR then satisfies

Property K3, we first prove that it satisfies Property K3a. Consider any a, b and c in
[0,1) and assume that c < a, a+b < 1, and that (b,a) and (1−a,c) belong to KR . We
are going to prove that (b, y) ∈ KR for every y in (c,1); the proof that also (x,c) ∈ KR

for every x in (b,1) is similar. Consider any λ in R>0, then Condition (1) guarantees
that 0 ∈ R({(b − 1,b),0,λ(a,a − 1)}) and 0 ∈ R({λ(−a,1 − a),0,(c,c − 1)}). By
AxiomR4b,we then find that−λ(a,a−1) ∈ R({(b−λa−1,b−λa+λ),−λ(a,a−1),0})
and λ(a,a−1) ∈ R({0,λ(a,a−1),(c+λa,c+λa−λ−1)}), and applying Axiom R3a
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then leads to {−λ(a,a − 1),λ(a,a − 1)} ⊆ R({(b − λa − 1,b − λa + λ),−λ(a,a −
1),0,λ(a,a − 1),(c + λa,c + λa − λ − 1)}). This, together with Axiom R3a, implies
that {−λ(a,a−1),0,λ(a,a−1)} ⊆ R({(b−λa−1,b−λa+λ),−λ(a,a−1),0,(c,c−
1),λ(a,a−1),(c+λa,c+λa−λ−1)}). ApplyingAxiomR3b implies that−λ(a,a−1)
is included in R({(b−λa−1,b−λa+λ),−λ(a,a−1),(c,c−1),(c+λa,c+λa−λ−1)})
and by Axiom R4b this implies that 0 ∈ R({(b − 1,b),0,(c + λa,c + λa − λ −
1),(c + 2λa,c + 2λa − 2λ − 1)}). Let us call u B (c + λa,c + λa − λ − 1) and
v B (c + 2λa,c + 2λa − 2λ − 1), and µ1 B

1
c+λa and µ2 B

1
c+2λa ; these real

numbers are both positive since 0 ≤ c < a and λ > 0. Then 0 ∈ R({(b−1,b),0,u,v}),
and 0 ∈ R({(b − 1,b),0, µ1u, µ2v}) by Condition (1). But µ1u < µ2v since µ1u =

(1, c+λa−λ−1
c+λa ) and µ2v = (1, c+2λa−2λ−1

c+2λa ), and c+λa−λ−1
c+λa < c+2λa−2λ−1

c+2λa using the
assumptions. Then µ1u ∈ R({µ1u, µ2v}) by Axiom R2, whence {0, µ1u} ⊆ R({(b−
1,b),0, µ1u, µ2v}) by Axiom R3a. Then 0 ∈ R({(b − 1,b),0, µ2v}) by Axiom R3b,
and 0 ∈ R({(b − 1,b),0, µ3v}) by Condition (1) with µ3 = 1

2λ+1 > 0, whence
(b, c+2λa

1+2λ ) ∈ KR . Now, by varying λ in R>0 the number c+2λa
1+2λ can take any value

in the interval (c,a). We conclude that (b, y) ∈ KR for every y ∈ (c,1), after also
recalling that we have already proved that KR satisfies Property K1.

To prove thatKR satisfies PropertyK3b, assume that 0 ≤ c < a < 1, (0,a) ∈ KR and
(1−a,c) ∈ KR . Because KR already satisfies Property K3a [with in particular b B 0],
we know that (x,c) ∈ KR for every x in (0,1) and (0, y) ∈ KR for every y in (c,1). We
have to show that (0,c) ∈ KR . To this end, consider the gambles u B ( 1−c

2 − 1, 1−c
2 )

and v B (c,c−1). Because in particular (x,c) ∈ KR for x = 1−c
2 ∈ (0,1), we have that

0 ∈ R({u,0,v}). Similarly, because in particular (0, y) ∈ KR for y = 1+c
2 ∈ (c,1), we

have that 0 ∈ R({(−1,0),0,−u}). Since also (−1,0) ∈ R({(−1,0),0})—and therefore
(−1,0) ∈ R({(−1,0),0,−u}) byAxiomR3a—because (−1,0) < 0 and byAxiomR2,
this leads us to conclude that {(−1,0),0} ⊆ R({(−1,0),0,−u}), and therefore also
0 ∈ R({0,−u}) by Axiom R3b. Hence, u ∈ R({u,0}), by Axiom R4b, and therefore
u ∈ R({u,0,v}), by Axiom R3a. Hence {0,u} ⊆ R({u,0,v}), so Axiom R3b leads to
0 ∈ R({0,v}). Now Axiom R3a implies that indeed (0,c) ∈ KR , so Property K3b is
satisfied. Property K3c can be shown to hold in a similar way.

To conclude, assume that R satisfies Axiom R5. Since this implies that Con-
dition (1) holds by Proposition 1, we already know that Property K3 is sat-
isfied, so it only remains to prove that KR satisfies Property K4. Consider
any (k1, k2) in [0,1)2 such that k1 + k2 > 1. Then (

k1+k2−1
2 , k1+k2−1

2 ) > 0,
whence 0 ∈ R({0,( k1+k2−1

2 , k1+k2−1
2 )}) by Axiom R2. By Axiom R3a, we get

0 ∈ R({(k1 − 1, k1),0,(k2, k2 − 1),( k1+k2−1
2 , k1+k2−1

2 )}). Since (
k1+k2−1

2 , k1+k2−1
2 ) ∈

CH({(k1 − 1, k1),(k2, k2 − 1)}), Axiom R5 leads us to conclude that 0 ∈ R({(k1 −
1, k1),0,(k2, k2 − 1)}), so indeed (k1, k2) ∈ KR . ◻

Proof (of Lemma 2) If Condition (6) holds, then {λ1(k1 − 1, k1),(0,−1)} ⊆ A ∪

{(−1,0),(0,−1)}, so Condition (10) holds with λ2 B 1 and k2 B 0. Similarly, if
Condition (7) holds, then {(−1,0),λ2(k2, k2−1)} ⊆ A∪{(−1,0),(0,−1)}, so Condi-
tion (10) holds with λ1 B 1 and k1 B 0. If Condition (8) holds, then Condition (10)
holds trivially.
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Conversely, assume that Condition (10) holds. If both k1 ≠ 0 and k2 ≠ 0, then
Condition (8) holds trivially, so assume that either k1 = 0 or k2 = 0—they cannot
both be zero, because 0 ∉ K . So assume that k1 = 0 and k2 > 0, then we infer from
the assumption that {λ1(−1,0),λ2(k2, k2−1)} ⊆ A∪{(−1,0),(0,−1)}. Since k2 > 0
implies that λ2(k2, k2 − 1) ≠ (−1,0) and λ2(k2, k2 − 1) ≠ (0,−1) for any choice of
λ2 > 0, it must be that λ2(k2, k2 − 1) ∈ A, so Condition (7) holds. The case k2 = 0
and k1 > 0 is similar. ◻

Proof (of Proposition 8) For Axiom R2, consider any f and g in L such that f < g.
Then 0 < g − f , so we infer from Condition (5) that 0 ∈ RK({0,g − f }), and then
from Condition (9) that indeed f ∈ RK({ f ,g}).

For Axiom R3a, assume that A1 ⊆ RK(A2) and A2 ⊆ A. Then we need to prove
that A1 ⊆ RK(A). Consider any f ∈ A1, then also f ∈ A2 and f ∈ A, so we can let
A′2 B A2 −{ f } and A′ B A−{ f }, where A′2 ⊆ A′. We then infer from Condition (9)
that 0 ∈ RK(A′2), which means that at least one of the Conditions (5)–(8) holds. But
any of these conditions implies that also 0 ∈ RK(A′). Condition (9) then guarantees
that f ∈ RK(A) and therefore that, indeed, A1 ⊆ RK(A).

That Axioms R4a and R4b are satisfied follows from Conditions (5)–(9).
For Condition (1), consider any option set A = { f1, . . . , fn} ∈ Q, where n is

a natural number, and any positive real numbers µ1, . . . , µn. Assume that 0 ∈

RK({0} ∪ A). First of all, if fi ∈ L>0 for some i in {1, . . . ,n}, then also µi fi ∈ L>0
since µi > 0, whence indeed 0 ∈ RK({0, µ1 f1, . . . , µn fn}), by Condition (5). So
assume that fi ∉ L>0 for all i in {1, . . . ,n}. There are now only three possibilities.
The first is that there are λ1 in R>0 and (k1,0) in K such that λ1(k1 − 1, k1) =

fi for some i in {1, . . . ,n}. Then (λ1µi)(k1 − 1, k1) = µi fi ∈ {µ1 f1, . . . , µn fn},
and Condition (6) guarantees that indeed 0 ∈ RK({0, µ1 f1, . . . , µn fn}). The second
possibility is that there are λ2 in R>0 and (0, k2) in K such that λ2(k2, k2 − 1) = fj
for some j in {1, . . . ,n}. Then (λ2µj)(k2, k2 − 1) = µj fj ∈ {µ1 f1, . . . , µn fn}, and
Condition (7) guarantees that indeed 0 ∈ RK({0, µ1 f1, . . . , µn fn}). And the final
possibility is that there are λ1 and λ2 in R>0 and (k1, k2) in K ∩ (0,1)2 such that
λ1(k1 − 1, k1) = fi and λ2(k2, k2 − 1) = fj for some i and j in {1, . . . ,n}. Then
(λ1µi)(k1−1, k1) = µi fi and (λ2µj)(k2, k2−1) = µj fj , and Condition (8) guarantees
that indeed 0 ∈ RK({0, µ1 f1, . . . , µn fn}).

Assume now that K satisfies in addition Properties K1–K3. We begin by proving
that RK satisfies Axiom R3b. Assume ex absurdo that it does not, then Proposition 2
guarantees that there are A in Q and g in A ∖ {0} such that {0,g} ⊆ RK(A) and
0 ∉ RK(A ∖ {g}).

Because 0 ∈ RK(A), we infer from Definition 8 and Lemma 2 that there are
two possibilities: (i) A ∩ L>0 ≠ ∅, or (ii) {λ1(k1 − 1, k1),λ2(k2, k2 − 1)} ⊆ A ∪

{(−1,0),(0,−1)} for some λ1 and λ2 in R>0 and some (k1, k2) in K .
We first deal with case (i). Here we can assume without loss of generality that

A∩L>0 = {g} because, otherwise A∖{g}∩L>0 ≠ ∅ andwe could applyCondition (5)
to conclude that 0 ∈ RK(A ∖ {g}), a contradiction. We will use the notation g =

(x, y) > 0. Because also g ∈ RK(A), Condition (9) guarantees that 0 ∈ RK(A−{g}),
and a similar argument as before shows that there are now two possibilities: (i.a)
(A − {g}) ∩ L>0 ≠ ∅; and (i.b) {λ3(k3 − 1, k3),λ4(k4, k4 − 1)} ⊆ (A − {g}) ∪
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{(−1,0),(0,−1)} for some λ3 and λ4 in R>0 and some (k3, k4) in K . But in fact (i.a)
is impossible, because it would contradict our earlier conclusion that A∩L>0 = {g}.
So we can restrict our attention to case (i.b) with (A − {g}) ∩ L>0 = ∅. There
are now 3 possibilities: (i.b.1) k3 ≠ 0 ≠ k4 corresponding to Condition (8), (i.b.2)
k3 = 0 ≠ k4 corresponding to Condition (7), and (i.b.3) k3 ≠ 0 = k4 corresponding to
Condition (6)—k3 = 0 = k4 is impossible because 0 ∉ K . It is possible to show that
each of these three cases leads eventually to 0 ∈ RK(A ∖ {g}), a contradiction.

We now turn to case (ii), where we assume that A ∩ L>0 = ∅ and that there
are λ1 and λ2 in R>0 and (k1, k2) in K such that {λ1(k1 − 1, k1),λ2(k2, k2 − 1)} ⊆

A ∪ {(−1,0),(0,−1)}. Here we distinguish between three possibilities: (ii.a) g ∉

{λ1(k1 −1, k1),λ2(k2, k2 −1)}, (ii.b) g = λ1(k1 −1, k1), and (ii.c) g = λ2(k2, k2 −1).
But we see at once that case (ii.a) is impossible, because it implies by Condi-

tion (10) that 0 ∈ RK(A ∖ {g}), a contradiction. So we now concentrate on the
cases (ii.b) and (ii.c), where it is by the way obvious that indeed A ∩ L>0 = ∅.

We begin with the discussion of case (ii.b). We first of all claim that now k1 > 0.
Indeed, if k1 = 0 then (k1, k2) = (0, k2) ∈ K , and Property K2 implies that k2 > 0.
Since we know that in this case λ2(k2, k2 − 1) ∈ A ∖ {g} [since g = λ1(k1 − 1, k1) ≠
λ2(k2, k2 − 1)], Condition (7) guarantees that 0 ∈ RK(A ∖ {g}), a contradiction.

So we may assume that k1 > 0, and the assumption that g ∈ RK(A), or in other
words, that 0 ∈ RK(A−{g}), leaves us with two possibilities: that (ii.b.1) (A−{g})∩
L>0 ≠ ∅, or that (ii.b.2) {λ3(k3−1, k3),λ4(k4, k4−1)} ⊆ (A−{g})∪{(−1,0),(0,−1)}
for some λ3 and λ4 in R>0 and (k3, k4) in K .

For case (ii.b.1), there is some h B (x′, y′) > 0 such that f B g + h ∈ A. Since
the second component λ1k1 + y′ of f is positive and f ∉ L>0, we find that f must lie
in the second quadrant, and therefore its first component λ1k1 − λ1 + x′ is negative:
λ1k1 < λ1− x′ and therefore λ∗3 B λ1− x′+ y′ > 0. If we now let k∗3 B

λ1k1+y′
λ1−x′+y′ , then

f = λ∗3 (k∗3 −1, k∗3 ). Moreover, k∗3 < 1 because this is equivalent to λ1k1−λ1+ x′ < 0,
which we have already found to be true. Similarly, k∗3 ≥ k1 because this is equivalent
to x′k1 + y′(1− k1) ≥ 0. Then (k∗3 , k2) ∈ K because (k1, k2) ∈ K and K is increasing
[Property K1]. Since we now know that {λ∗3 (k∗3 − 1, k∗3 ),λ2(k2, k2 − 1)} ⊆ A ∖ {g},
Condition (8) guarantees that 0 ∈ RK(A ∖ {g}), a contradiction.

For case (ii.b.2), {g + λ3(k3 − 1, k3),g + λ4(k4, k4 − 1)} ⊆ A ∪ {g + (−1,0),g +
(0,−1)}, or in other words, {(λ1k1 + λ3k3 − λ1 − λ3,λ1k1 + λ3k3),(λ1k1 + λ4k4 −
λ1,λ1k1 + λ4k4 − λ4)} ⊆ A ∪ {g + (−1,0),g + (0,−1)} We claim that here k3 < k1.
To prove this, assume ex absurdo that k3 ≥ k1, then also k∗3 B

λ1k1+λ3k3
λ1+λ3

≥ k1 > 0.
Moreover, k∗3 < 1 because it is a convex combination of k1 < 1 and k3 < 1, and
therefore (k∗3 , k2) ∈ [0,1)2 ∖ {0} and (k∗3 , k2) ≥ (k1, k2). Then (k∗3 , k2) ∈ K because
(k1, k2) ∈ K and K is increasing [Property K1]. Moreover, if we also let λ∗3 B
λ1 + λ3 > 0, then λ∗3 (k∗3 − 1, k∗3 ) = g + λ3(k3 − 1, k3) ∈ A ∪ {g + (−1,0),g + (0,−1)},
and since we know that λ3(k3 − 1, k3) ∉ {(−1,0),0,(0,−1)} [because λ3 > 0 and
k3 ≥ k1 > 0], this leads us to conclude that {λ∗3 (k∗3 −1, k∗3 ),λ2(k2, k2−1)} ⊆ A∖{g},
so Condition (8) together with (k∗3 , k2) ∈ K guarantees that 0 ∈ RK(A ∖ {g}), a
contradiction.
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Since k3 < k1 rules out the possibility that k1 = 0, we find that k1 > 0 as an
intermediate result. In the remainder of this case (ii.b), note that nothing depends on
whether k2 = 0 or k2 > 0.We can now distinguish between three distinct possibilities:
(ii.b.2.1) k3 > 0 and k4 > 0, (ii.b.2.2) k3 = 0 and k4 > 0, and (ii.b.2.3) k3 > 0 and
k4 = 0, which correspond to Conditions (8), (7) and (6), respectively—k3 = 0 = k4
is impossible because 0 ∉ K .

In case (ii.b.2.1) we see that {λ3(k3−1, k3),λ4(k4, k4−1)}∩{(−1,0),0,(0,−1)} =
∅, and therefore {(λ1k1+λ3k3−λ1−λ3,λ1k1+λ3k3),(λ1k1+λ4k4−λ1,λ1k1+λ4k4−
λ4)} ⊆ A ∖ {g}. We distinguish between two possibilities, which will determine in
what quadrants these points lie: λ4 ≤ λ1 and λ4 > λ1.

If λ4 ≤ λ1, then we establish, reasoning ex absurdo, that k4 ≤ 1 − k1. Once we
have this, because K is increasing [Property K1], we infer from (k3, k4) ∈ K that
(k3,1 − k1) ∈ K . We distinguish between two further possibilities: k1 + k2 < 1 and
k1 + k2 ≥ 1.

If k1 + k2 < 1 then we can use Property K3a with a = 1 − k1, b = k3 and c = k2.
Observe that a + b = 1 − k1 + k3 < 1 because k3 < k1, that c = k2 < 1 − k1 = a
by assumption, that (b,a) = (k3,1 − k1) ∈ K has been proved above, and that
(1 − a,c) = (k1, k2) ∈ K also by assumption, whence (∀k′3 ∈ (k3,1))(k′3, k2) ∈ K .
In particular, let k′3 B

λ1k1+λ3k3
λ1+λ3

. Then k′3 > min{k1, k3} = k3 > 0, where the
first inequality follows from λ1 > 0 and λ3 > 0, and the equality from k3 < k1.
Moreover, k′3 < 1 because it is a convex combination of k1 < 1 and k3 < 1. Hence
k′3 ∈ (k3,1) and therefore (k′3, k2) ∈ K . If we now let λ′3 B λ1 + λ3 > 0, then we see
that λ′3(k′3 − 1, k′3) = (λ1k1 + λ3k3 − λ1 − λ3,λ1k1 + λ3k3) ∈ A ∖ {g}, whence also
{λ′3(k′3 − 1, k′3),λ2(k2, k2 − 1)} ⊆ A ∖ {g}, and Condition (8) now guarantees that
0 ∈ RK(A ∖ {g}), a contradiction.

If k1 + k2 ≥ 1 then we have that k2 ≥ 1 − k1 ≥ k4. Also k∗3 B
λ1k1+λ3k3
λ1+λ3

>

min{k1, k3} = k3 > 0, where the first inequality follows from λ1 > 0 and λ3 > 0,
and the equality from k1 > k3. Moreover, k∗3 < 1 because it is a convex combination
of k1 < 1 and k3 < 1. This tells us that (k∗3 , k2) ∈ [0,1)2 ∖ {0} and (k∗3 , k2) >

(k3,1 − k1). We then find that (k∗3 , k2) ∈ K because (k3,1 − k1) ∈ K and K is
increasing [Property K1]. If we now let λ∗3 B λ1 + λ3 > 0 then we find that λ∗3 (k∗3 −
1, k∗3 ) = (λ1k1 + λ3k3 − λ1 − λ3,λ1k1 + λ3k3) ∈ A ∖{0}, and therefore also {λ∗3 (k∗3 −
1, k∗3 ),λ2(k2, k2 −1)} ⊆ A ∖{g}, and Condition (8) now guarantees that 0 ∈ RK(A ∖
{g}), a contradiction.

If λ4 > λ1, then we establish, again reasoning ex absurdo, that k4 ≤ 1−k1. Once we
have this, using that K is increasing, we infer from (k3, k4) ∈ K that (k3,1− k1) ∈ K .
We now have the same two possibilities k1 + k2 < 1 and k1 + k2 ≥ 1 as before, and
for each of them, we can construct a contradiction in exactly the same way as for the
case when λ4 ≤ λ1.

This shows that we always arrive at a contradiction in case (ii.b.2.1).
In case (ii.b.2.2) we see that λ4(k4, k4 − 1) ∉ {(−1,0),0,(0,−1)}, and therefore

(λ1k1 + λ4k4 − λ1,λ1k1 + λ4k4 − λ4) ∈ A ∖ {g}. We distinguish between two possi-
bilities, which will determine in what quadrant this point lies: λ4 ≤ λ1 or λ4 > λ1.

If λ4 ≤ λ1, then we claim that k4 ≤ 1 − k1. To prove this, assume ex absurdo that
k4 > 1− k1, so k1 + k4 −1 > 0. If λ1 = λ4, then (λ1k1 +λ4k4 −λ1,λ1k1 +λ4k4 −λ4) =
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λ1(k1+k4−1, k1+k4−1) > 0, a contradiction, sowemay assume that λ4 < λ1.We now
wonder in what quadrant the vector (λ1k1 +λ4k4 −λ1,λ1k1 +λ4k4 −λ4) ≠ 0 lies. We
infer from k1 > 0, λ1 > λ4 > 0 and k1+k4 > 1 that λ1k1+λ4k4−λ4 > λ4(k1+k4)−λ4 >
0. Since A ∩ L>0 = ∅, we find that (λ1k1 + λ4k4 − λ1,λ1k1 + λ4k4 − λ4) must lie
in the second quadrant, and therefore its first component λ1k1 + λ4k4 − λ1 must be
negative: λ1k1 + λ4k4 < λ1. This tells us that k∗4 B

λ1k1+λ4k4−λ4
λ1−λ4

< 1. Moreover,
k∗4 > k1 because this is equivalent to k4 > 1 − k1. Hence (k∗4 , k2) ∈ [0,1)2 ∖ 0
and (k∗4 , k2) > (k1, k2). This tells us that (k∗4 , k2) ∈ K because (k1, k2) ∈ K and
K is increasing [Property K1]. If we now let λ∗4 B λ1 − λ4 > 0, then we see
that λ∗4 (k∗4 − 1, k∗4 ) = (λ1k1 + λ4k4 − λ1,λ1k1 + λ4k4 − λ4) ∈ A ∖ {g}. Hence also
{λ∗4 (k∗4 − 1, k∗4 ),λ2(k2, k2 − 1)} ⊆ A ∖ {g}, and Condition (8) now guarantees that
0 ∈ RK(A ∖ {g}), a contradiction.

So we see that 0 < k4 ≤ 1 − k1 < 1, so (0,1 − k1) ∈ [0,1)2 ∖ {0} and (0,1 −
k1) ≥ (0, k4) and hence, because K is increasing [Property K1], we infer from
(0, k4) = (k3, k4) ∈ K that also (0,1 − k1) ∈ K . We distinguish between two further
possibilities: k1 + k2 < 1 and k1 + k2 ≥ 1.

If k1 + k2 < 1 then we can use Property K3b with a = 1 − k1 and c = k2. Observe
that c = k2 < 1 − k1 = a by assumption, that (0,a) = (0,1 − k1) ∈ K was derived
above, and that (1 − a,c) = (k1, k2) ∈ K also by assumption, and therefore we find
that (0, k2) ∈ K . Since λ2(k2, k2 − 1) ∈ A ∖ {g}, Condition (7) now guarantees that
0 ∈ RK(A ∖ {g}), a contradiction.

If k1 + k2 ≥ 1 then we have that k2 ≥ 1 − k1 ≥ k4. Then (0, k2) ∈ K because
(0, k4) ∈ K and K is increasing [Property K1]. Since λ2(k2, k2 − 1) ∈ A ∖ {g},
Condition (7) now guarantees that 0 ∈ RK(A ∖ {g}), a contradiction.

If λ4 > λ1, then we claim that, here too, k4 ≤ 1 − k1. To prove this, assume
ex absurdo that k4 > 1 − k1. We wonder in what quadrant the vector (λ1k1 +
λ4k4 − λ1,λ1k1 + λ4k4 − λ4) lies. Infer from 0 < 1 − k1 < k4 and 0 < λ1 < λ4 that
λ1k1 + λ4k4 − λ1 > λ1(k1 + k4) − λ1 > 0. Since A ∩ L>0 = ∅, we find that the vector
(λ1k1 +λ4k4 −λ1,λ1k1 +λ4k4 −λ4)must lie in the fourth quadrant, and therefore its
second component λ1k1 + λ4k4 − λ4 must be negative: λ1k1 + λ4k4 < λ4. This tells
us that k∗4 B

λ1k1+λ4k4−λ1
λ4−λ1

< 1. Moreover, k∗4 > k4 because this is equivalent to k4 >

1−k1. Hence (0, k∗4 ) ∈ [0,1)2∖{0} and (0, k∗4 ) > (0, k4). This tells us that (0, k∗4 ) ∈ K
because (0, k4) ∈ K andK is increasing [PropertyK1]. If we now let λ∗4 B λ4−λ1 > 0,
then we see that λ∗4 (k∗4 , k

∗
4 − 1) = (λ1k1 + λ4k4 − λ1,λ1k1 + λ4k4 − λ4) ∈ A ∖ {g},

and Condition (7) now guarantees that 0 ∈ RK(A ∖ {g}), a contradiction.
So we see that 0 < k4 ≤ 1 − k1 < 0, and hence, because K is increasing, we infer

from (k3, k4) ∈ K that (k3,1 − k1) ∈ K . We now have the same two possibilities
k1 + k2 < 1 and k1 + k2 ≥ 1 as before, and for each of them, we can construct a
contradiction in exactly the same way as for the case when λ4 ≤ λ1.

We conclude that case (ii.b.2.2) always leads to a contradiction.
In case (ii.b.2.3) we see that λ3(k3 − 1, k3) ∉ {(−1,0),0,(0,−1)}, and therefore

(λ1k1 + λ3k3 − λ1 − λ3,λ1k1 + λ3k3) ∈ A ∖ {g}, or if we let λ∗3 B λ1 + λ3 > 0 and
k∗3 B

λ1k1+λ3k3
λ1+λ3

> 0, λ∗3 (k∗3 − 1, k∗3 ) ∈ A ∖{g}. Observe that also k∗3 < 1 because it is
a convex combination of k1 < 1 and k3 < 1. This tells us that (k∗3 ,0) ∈ [0,1)2 ∖ {0}.
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Moreover, we have that k∗3 > min{k1, k3} = k3 > 0 [the strict inequality holds because
λ1 > 0 and λ3 > 0, and the equality holds because k1 > k3. Hence (k∗3 ,0) > (k3,0)
and therefore (k∗3 ,0) ∈ K , because also (k3,0) ∈ K and K is increasing [Property K1].
Since λ∗3 (k∗3 −1, k∗3 ) ∈ A∖{g}, Condition (6) now guarantees that 0 ∈ RK(A∖{g}),
a contradiction.

We have now found a contradiction in cases (ii.b.2.1)–(ii.b.2.3), which tells us
that case (ii.b.2) always leads to a contradiction. Since case (ii.b.1) also led to a
contradiction, we may conclude that case (ii.b) always leads to a contradiction.

The discussion of the last remaining case (ii.c) is completely similar to that of
case (ii.b): we can distinguish between similar cases, and in each of them we can
construct a contradiction in the same manner, by exchanging the roles of k1 and k2,
and of k3 and k4.

Since we have now arrived at a contradiction in all possible cases, we conclude
that RK indeed satisfies Axiom R3b.

We finish the proof by establishing that RK also satisfies Axiom R1. Since we
have already shown that RK satisfies Axiom R4b [see Proposition 8] and Axiom R3b
[see the argumentation above], by Corollary 1 it suffices to show that 0 ∉ RK({0}).
By Condition (4), this is indeed the case. ◻

Proof (of Lemma 3) We only prove the first equivalence; the proofs for the second
and the third equivalences are analogous. It suffices to establish the direct implication,
since the converse follows from Axiom R3a.

Call λk B fk(T) − fk(H) > 0 and `k B fk(T)
fk(T)− fk(H) ∈ [0,1) for every k in

{1, . . . ,m}, and λ′k B gk(H)−gk(T) > 0 and `′k B
gk(H)

gk(H)−gk(T) ∈ [0,1) for every k in
{1, . . . ,n}. Then 0 ∈ R({0, f1, . . . , fm,g1, . . . ,gn}) ⇔ 0 ∈ R({0,(`1−1, `1), . . . ,(`m−
1, `m),(`′1, `

′
1 − 1), . . . ,(`′n, `′n − 1)}), using Condition (1). Let I B {k ∈ {1, . . . ,m} ∶

`k = `i} and J B {k ∈ {1, . . . ,n} ∶ `′k = `
′
j}. Then (`k − 1, `k) = R({(`i − 1, `i),(`k −

1, `k)}) by Axiom R2, and then also (`k − 1, `k) ∈ R({0,(`1 − 1, `1), . . . ,(`m −

1, `m),(`′1, `
′
1 − 1), . . . ,(`′n, `′n − 1)}) by Axiom R3a, for all k in {1, . . . ,m} ∖ I. In a

similar way, we find that {0}∪{(`k −1, `k) ∶ k ∈ {1, . . . ,m}∖I}∪{(`′k′, `
′
k′ −1) ∶ k′ ∈

{1, . . . ,n} ∖ J } ⊆ R({0,(`1 − 1, `1), . . . ,(`m − 1, `m),(`′1, `
′
1 − 1), . . . ,(`′n, `′n − 1)}).

Then Axiom R3b implies that 0 ∈ R({0} ∪ {(`k − 1, `k) ∶ k ∈ I} ∪ {(`′k′, `
′
k′ − 1) ∶

k′ ∈ J }) = R({0,(`i − 1, `i),(`′j, `′j − 1)}), whence indeed 0 ∈ R({0, fi,gj}), by
Condition (1). ◻

Proof (of Proposition 9) For the first statement, assume that R is coherent and sat-
isfies Condition (1). Then we infer from Proposition 7 that KR satisfies Proper-
ties K1–K3, and therefore Proposition 8 guarantees that RKR is coherent and satisfies
Condition (1) as well. To prove that R = RKR , we consider any A in Q and f in A,
and show that f ∈ R(A) ⇔ f ∈ RKR (A). Since both R and RKR satisfy Axiom R4b
[Proposition 8], we can assume without loss of generality that f = 0.

For the direct implication, assume that 0 ∈ R(A). If A∩L>0 ≠ ∅ then 0 ∈ RKR (A)

by Condition (5). If A∩L>0 = ∅ then 0 ∈ R(A) implies that g(H) > 0 or g(T) > 0 for
some g in A. If we use the notation VII∩ A = {g1, . . . ,gm} and VIV∩ A = {g′1, . . . ,g

′
n}

with m and n in Z≥0, this tells us that max{n,m} > 0. Also, we may assume without
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loss of generality that A ∩ L<0 = ∅. By Lemma 3 we infer that there are three
possibilities:

(i) 0 ∈ R({0, g̃, g̃′}), and hence 0 ∈ R({0,h,h′});
(ii) 0 ∈ R({0, g̃}), and hence 0 ∈ R({0,h});
(iii) 0 ∈ R({0, g̃′}), and hence 0 ∈ R({0,h′});
where we let, to ease the notation, h B 1

g̃(T)−g̃(H) g̃ and h′ B 1
g̃′(H)−g̃′(T) g̃

′. For each
of these possible cases, we find respectively:

(i) (h(T),h′(H)) ∈ KR , which tells us that 0 ∈ RKR ({0, g̃, g̃′});
(ii) (h(T),0) ∈ KR , from which we infer that 0 ∈ RKR ({0, g̃}) by Condition (7);
(iii) (0,h′(H)) ∈ KR , from which we infer that 0 ∈ RKR ({0, g̃′}) by Condition (6).

In all three cases we can now conclude that, indeed, 0 ∈ RKR (A), by Axiom R3a.
For the converse implication, assume that 0 ∈ RKR (A). If A ∩ L>0 ≠ ∅, then

0 ∈ R(A) by Axioms R2 and R3a, so assume that A ∩ L>0 = ∅. If Condition (6)
holds, then there is some k1 in (0,1) and some λ1 in R>0 such that (k1,0) ∈ KR and
λ1(k1 − 1, k1) ∈ A. The first statement means that 0 ∈ R({(k1 − 1, k1),0,(0,−1)}),
whence, after applying a familiar combination of Axioms R2, R3a and R3b, also 0 ∈

R({(k1 − 1, k1),0}). Applying Condition (1), the second statement, and Axiom R3a
now leads us to deduce that indeed 0 ∈ R(A).

The remaining possibility is that either Condition (7) or Condition (8) holds. The
proof in this case is similar. This concludes the proof of the first statement.

For the second statement, assume that K satisfies Properties K1–K3, then we infer
from Proposition 8 that RK is coherent and satisfies Condition (1). Proposition 7
then guarantees that KRK satisfies Properties K1–K3 as well. To show that K = KRK ,
consider any (`1, `2) in [0,1)2 ∖ {0}. First assume that (`1, `2) ∈ KRK , meaning
that 0 ∈ RK({(`1 − 1, `1),0,(`2, `2 − 1)}), by the definition of a rejection set of a
rejection function. We have to prove that this implies that (`1, `2) ∈ K . The definition
of RK [Definition 8] now tells us that Condition (5), Condition (6), Condition (7),
or Condition (8) must obtain, with A B {(`1 − 1, `1),(`2, `2 − 1)}. Since (`1, `2) ∈
[0,1)2 ∖ {0}, we infer that Condition (5) cannot be fulfilled, and we therefore have
three remaining: (a) Condition (6), (b) Condition (7), or (c) Condition (8) is satisfied.

In case (a) there are λ1 in R>0 and (k1,0) in K such that λ1(k1 − 1, k1) ∈ A.
But, because A = {(`1 − 1, `1),(`2, `2 − 1)} with (`1, `2) ∈ [0,1)2 ∖ {0}, this implies
that λ1 = 1 and k1 = `1. This guarantees that (`1,0) ∈ K and, since K is increasing
[Property K1], indeed also that (`1, `2) ∈ K . The proof in cases (b) and (c) is similar.

Conversely, assume that (`1, `2) ∈ K , then Condition (10) guarantees that in
particular 0 ∈ RK({(`1 − 1, `1),0,(`2, `2 − 1)}), which implies that (`1, `2) ∈ KRK .◻
Proof (of Lemma 4) Visual proof: see the three possible situations depicted below.
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1
k1

k2

k1 + k2 > 1
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T
1

1
k1
k2
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T
1

1k1k2

k1 + k2 < 1
◻
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Proof (of Proposition 10) We first prove that (i)⇒(ii). Assume that RK satisfies
Axiom R5, and consider any (k1, k2) in [0,1)2 ∖ {0} such that k1 + k2 > 1. It
then follows that (k1, k2) ∈ (0,1)2, and also that (

k1+k2−1
2 , k1+k2−1

2 ) > 0, whence
0 ∈ RK({0,( k1+k2−1

2 , k1+k2−1
2 )}) by Condition (5). By Proposition 8, RK satisfies

Axiom R3a, whence 0 ∈ RK({(k1 − 1, k1),0,(k2, k2 − 1),( k1+k2−1
2 , k1+k2−1

2 )}). Also,
(
k1+k2−1

2 , k1+k2−1
2 ) ∈ CH({(k1 − 1, k1),(k2, k2 − 1)}). But then Axiom R5 implies

that 0 ∈ RK({(k1 − 1, k1),0,(k2, k2 − 1)}), whence indeed (k1, k2) ∈ K .
Next, we prove that (ii)⇒(i). Consider arbitrary A and A1 in Q such that A ⊆

A1 ⊆ CH(A), and let us show that RK(A1) ∩ A ⊆ RK(A). Let A B { f1, . . . , fn} and
A1 B A∪{ fn+1, . . . , fn+k} for some n and k inN. Assume that fi ∈ RK(A1) for some
i in {1, . . . ,n}. We then have to prove that fi ∈ RK(A). We can assume without loss
of generality that fi = 0, because also A−{ fi} ⊆ A1−{ fi} ⊆ CH(A)−{ fi} = CH(A−
{ fi}). To ease the notation along, let `k B fk(T)

fk(T)− fk(H) and λk B fk(T) − fk(H)

for every k such that fk ∈ VII [there might be no such k] and verify that λk > 0
and fk = λk(`k − 1, `k) for every gamble fk in A ∩ VII. Similarly, for every k in
{1, . . . ,n} such that fk ∈ VIV [there might be no such k], let `k B fk(H)

fk(H)− fk(T) and
λk B fk(H) − fk(T); then λk > 0 and fk = λk(`k, `k − 1) for every gamble fk in
A ∩ VIV.

First of all, we see that A ∩ L>0 ≠ ∅ implies that indeed 0 ∈ RK(A), by Condi-
tion (5). We may therefore in the remainder of this proof assume that A ∩ L>0 = ∅.
Next, we observe that CH(A) ∩ L>0 ≠ ∅ also implies that 0 ∈ RK(A). This can be
proven ex absurdo by observing that it implies that A ∩VII ≠ ∅ and A ∩VIV ≠ ∅ and
applying suitably condition (ii).

Now, since we have assumed that fi = 0 ∈ RK(A1), Definition 8 tells us that there
are four possibilities: one of the four Conditions (5)–(8) must hold for A1.

Condition (5) for A1 amounts to A1 ∩L>0 ≠ ∅, contradicting our assumption that
CH(A) ∩ L>0 = ∅, because A1 ⊆ CH(A).

If Condition (8) holds for A1, then {λ∗1 (k∗1 − 1, k∗1 ),λ
∗
2 (k∗2 , k

∗
2 − 1)} ⊆ A1 for

some λ∗1 and λ∗2 in R>0 and (k∗1 , k
∗
2 ) in K ∩ (0,1)2. Let h1 B λ∗1 (k∗1 − 1, k∗1 ) and

h2 B λ∗2 (k∗2 , k
∗
2 − 1). Then A ∩ VII ≠ ∅ and A ∩ VIV ≠ ∅ , so we may assume

again without loss of generality that f1 is a gamble in arg max{ h(T)
h(T)−h(H) ∶ h ∈

A ∩ VII} and that f2 is a gamble in arg max{ h(H)
h(H)−h(T) ∶ h ∈ A ∩ VIV}. Since we

have assumed that CH(A) ∩ L>0 = ∅, we see that CH({h1,0,h2}) ∩ L>0 = ∅—and
therefore also posi({h1,0,h2}) ∩ L>0 = ∅—whence, by Equation (11), k∗1 + k∗2 ≤ 1.
If (k∗1 , k

∗
2 ) = (`k, `m) for some k and m in {1, . . . ,n} such that fk ∈ VII and fm ∈ VIV,

then 0 ∈ RK(A) by Condition (8). If this is not the case, then we distinguish between
three possibilities: (i) k∗1 ≠ `k for all k in {1, . . . ,n} such that fk ∈ VII and k∗2 = `m for
some m in {1, . . . ,n} such that fm ∈ VIV, (ii) k∗1 = `k for some k in {1, . . . ,n} such
that fk ∈ VII and k∗2 ≠ `m for all m in {1, . . . ,n} such that fm ∈ VIV, and (iii) k∗1 ≠ `k
for all k in {1, . . . ,n} such that fk ∈ VII and k∗2 ≠ `m for all m in {1, . . . ,n} such that
fm ∈ VIV.

In case (i), we already find that λ(k∗2 , k
∗
2 − 1) ∈ A for some λ in R>0. If k∗1 ≤ `1,

then (k∗1 , k
∗
2 ) ∈ K implies that (`1, k∗2 ) ∈ K because K is increasing. Since we know
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that f1 = λ1(`1 − 1, `1) ∈ A, this guarantees that 0 ∈ RK(A), by Condition (8). If
k∗1 > `1, then we claim that necessarily also `1 + `2 > 1, and therefore (`1, `2) ∈ K by
Property K4, so indeed 0 ∈ RK(A) by Condition (8). To see that `1 + `2 > 1, assume
ex absurdo that (a) `1 + `2 < 1 or (b) `1 + `2 = 1; it is not difficult to show that both
these cases lead to a contradiction.

In case (ii), a completely similar argument leads us to conclude that 0 ∈ RK(A)

here as well.
In case (iii) there are, again, three possibilities: (α) k∗1 < `1 and k∗2 < `2, so

(`1, `2) ∈ K because K is increasing, and therefore 0 ∈ RK(A) by Condition (8);
(β) k∗1 > `1 and k∗2 < `2, and its symmetric counterpart k∗1 < `1 and k∗2 > `2; and
(γ) k∗1 > `1 and k∗2 > `2, and therefore `1 + `2 < k∗1 + k∗2 ≤ 1, so `1 + `2 < 1 and
Lemma 4 guarantees that h1 ∉ posi({ f1,0, f2}) = posi(A), and therefore a fortiori
h1 ∉ CH(A), a contradiction. It therefore suffices to consider case (β), and show
that k∗1 > `1 and k∗2 < `2 implies that 0 ∈ RK(A), since the case that k∗1 < `1 and
k∗2 > `2 can be covered by a completely symmetrical argument. So assume that
k∗1 > `1 and k∗2 < `2. Since h1 ∈ CH(A) ⊆ posi(A), Lemma 4 and k∗1 > `1 guarantee
that necessarily `1 + `2 > 1, so (`1, `2) ∈ K by Property K4, and therefore once again
0 ∈ RK(A), by Condition (8).

The proof when Conditions (7) or (6) hold is similar to that for Condition (8). ◻

Proof (of Proposition 11) We will prove that π1 is non-increasing; the proof that π2
is non-increasing is completely analogous. Assume ex absurdo that π1(z′) > π1(z)
for some z and z′ in [0,1) such that z′ > z. Then, by the definition of π1, we have (∀y ∈
(π1(z),1))(z, y) ∈ K . Because K is increasing, we find (∀y ∈ (π1(z),1))(z′, y) ∈ K ,
and hence in particular (∀y ∈ (π1(z), π1(z′)))(z′, y) ∈ K , a contradiction.

Consider now z ∈ (0,1). Let us prove the first statement; the proof of the second
one is completely analogous. Recall that (z, y) ∈ K for all y in (π1(z),1), by the
definition of π1. Call δ B 1 − z − π1(z) > 0. Since K is increasing, we infer that for
all ε in (0, δ), (z,1− z − ε) ∈ K . On the other hand, by definition of π1 it follows that
(z + ε, y′) ∈ K for all ε in (0, δ) and y′ in (π1(z + ε),1). We call b = z, a = 1 − z − ε
and c = y′. Note that a + b = 1 − z − ε + z < 1 and c = y′ < 1 − z − ε = a for any y′ in
(π1(z + ε),1 − z − ε) ⊆ (π1(z + ε),1). To see that π1(z + ε) < 1 − z − ε , assume ex
absurdo that π1(z+ ε) ≥ 1− z− ε , then π1(z) ≥ 1− z− ε by the first statement, indeed
a contradiction with the fact that ε < δ. We use Property K3 to infer that (z, y′) ∈ K
for all y in (π1(z + ε),1) and ε in (0, δ). Infer that π1(z) ≤ π1(z + ε), and since π1
is non-increasing by the first part, we conclude that π1(z) = π1(z + ε), for all ε in
(0, δ). Therefore, π1(z) = π1(t) for all t in (z,1 − π1(z)). ◻

Proof (of Proposition 12) We first prove necessity. Assume that R is such that KR is
weakly Archimedean, and consider any u in VII and v in VIV such that posi({u,v})∩
V⪰0 = ∅, and 0 ∈ R({u + ε,0,v}) and 0 ∈ R({u,0,v + ε}) for all ε in R>0. Then,
due to Proposition 1, we find that ∀ε ∈ R>0,0 ∈ R({(k1 − 1, k1) + ε,0,(k2, k2 −

1)}) and 0 ∈ R({(k1 − 1, k1),0,(k2, k2 − 1) + ε}) for k1 ∶=
u(T)−u(H)

u(T) ∈ (0,1) and

k2 ∶=
v(H)−v(T)

v(H) ∈ (0,1). In particular, we find that ∀k′1 ∈ (k1,1), k′2 ∈ (k2,1),
0 ∈ R({(k′1−1, k′1),0,(k2, k2−1)} and 0 ∈ R({(k1−1, k1),0,(k′2, k

′
2−1)})), whence
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(k′1, k2) ∈ KR and (k1, k′2) ∈ KR for all k′1 in (k1,1) and k′2 in (k2,1), by Definition 7.
Also, it can be checked that k1 + k2 < 1. The weak Archimedeanity of KR implies
that (k1, k2) ∈ KR by Definition 10, whence 0 ∈ R({(k1 − 1, k1),0,(k2, k2 − 1)}). In
turn, that implies by Proposition 1 that 0 ∈ R({u,0,v}).

We now turn to sufficiency. Assume that R satisfies Equation (18) and consider
any (k1, k2) in (0,1)2 such that k1 + k2 < 1 and (k′1, k2) ∈ KR and (k1, k′2) ∈ KR

for all k′1 in (k1,1) and k′2 in (k2,1). Then ∀k′1 ∈ (k1,1), k′2 ∈ (k2,1), 0 ∈ R({(k′1 −
1, k′1),0,(k2, k2 − 1)}) and 0 ∈ R({(k1 − 1, k1),0,(k′2, k

′
2 − 1)}), whence ∀ε ∈ R>0,

0 ∈ R({(k1 − 1, k1) + ε,0,(k2, k2 − 1)}) and 0 ∈ R({(k1 − 1, k1),0,(k2, k2 − 1) + ε})
by [21, Proposition 2]. Clearly, (k1 − 1, k1) ∈ VII and (k2, k2 − 1) ∈ VIV. Due to
Equation (11), posi({(k1−1, k1),(k2, k2−1)})∩V⪰0 = ∅. Then, using Equation (18),
wefind that 0 ∈ R({(k1−1, k1),0,(k2, k2−1)}), or in otherwords, that (k1, k2) ∈ KR .◻

Proof (of Proposition 13) From the correspondence between weak Archimedeanity
for rejection functions and rejection sets (Proposition 12) as well as Proposition 9, it
suffices to establish the result for rejection sets. Recalling that in that case the infima
of the rejection sets corresponds to their intersection, we deduce from the definition
that if Ki is weakly Archimedean for every i in I, also inf{Ki ∶ i ∈ I} is weakly
Archimedean. ◻

Proof (of Corollary 2) Taking into account Proposition 13, it suffices to show that
any lexicographic rejection function is weakly Archimedean. Assume ex absurdo
that this is not the case for some rejection function R on V . By Proposition 12,
this means that its associated rejection set KR is not weakly Archimedean. Thus,
there are u in VII and v in VIV such that posi({u,v}) ∩ V⪰0 = ∅ and ∀ε ∈ R>0, (0 ∈

R({u+ε,0,v})∩R({u,0,v+ε}))while 0 ∉ R({u,0,v}). Let DR be the lexicographic
set of desirable options associated with R. It follows that u ∉ DR and v ∉ DR , and as
a consequence that u + ε ∈ DR and v + ε ∈ DR for every ε in R>0. If we denote by
PDR the linear prevision induced by DR , given by PDR ( f ) B sup{µ ∶ f − µ ∈ DR},
it follows that PDR (u) = PDR (v) = 0. Since by assumption u ∈ VII and v ∈ VIV, it
follows that there must be some α in (0,1) such that αu+(1−α)v = 0, a contradiction
with the assumption posi({u,v}) ∩ V⪰0 = ∅. ◻

Proof (of Proposition 14) Assume ex absurdo that π1(z) ≠ 1− z and π2(1− z) ≠ z,
and hence π1(z) < 1 − z and π2(1 − z) < z, for all z in [k1,1 − k2]. Then we use
Proposition 11 to infer that in particular π1(k1) = π1(t) for all t in (k1,1 − π1(k1)).
There are two possibilities: (i) π1(k1) > k2 or (ii) π1(k1) ≤ k2.

If (i) π1(k1) > k2 we look at π1(1 − π1(k1)). By the definition of π1,
we find (1 − π1(k1), y) ∈ K for all y in (π1(1 − π1(k1)),1). Moreover, since
π1(k1) ∈ [0,1 − k1] by the definition of π1, we find that π1(k1) ∈ (k2,1 − k1]
and hence 1− π1(k1) ∈ [k1,1− k2). By the assumption that π1(z) < 1− z for all z in
[k1,1−k2], we find that π1(1−π1(k1)) < π1(k1). We also look at π2(π1(k1)). By the
definition of π2, we find (x, π1(k1)) ∈ K for all x in (π2(π1(k1),1)). By the assump-
tion that π2(1− z) < z for all z in [k1,1− k2], we find that π2(π1(k1)) < 1− π1(k1).
Call a = π1(k1), b = x and c = y for x in (π2(π1(k1)),1) and y in (π1(1−π1(k1)),1).
Use Property K3 to infer that (x, y′) ∈ K and (x′, y) ∈ K for all x greater than but
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close enough to π2(π1(k1)), y greater than but close enough to π1(1 − π1(k1)),
x′ in (x,1) and y′ in (y,1). Hence by weak Archimedeanity (x, y) ∈ K for all x
in (π2(π1(k1)),1) and y in (π1(1 − π1(k1)),1). Now, take x =

π2(π1(k1))+1−π1(k1)
2

and y =
π1(1−π1(k1))+π1(k1)

2 to infer that ( π2(π1(k1))+1−π1(k1)
2 ,

π1(1−π1(k1))+π1(k1)
2 ) ∈

K , and take any t in (
π2(π1(k1))+1−π1(k1)

2 ,1 − π1(k1)) and infer that π1(t) ≤

π1(
π2(π1(k1))+1−π1(k1)

2 ) < π1(k1). That is a contradiction with the assumption that
π1(t) = π1(k1) for all t in (k1,1 − π1(k1)).

So we may assume that (ii) π1(k1) ≤ k2 is the case. Infer that then (k1, y) ∈ K
for all y in (k2,1) by the definition of π1. Using a similar argument, we can infer
that (x, k2) ∈ K for all x in (k1,1). We use now the assumption that K is weakly
Archimedean (Definition 10) to infer that (k1, k2) ∈ K , a contradiction. ◻

Proof (of Theorem 2) We first show that K ⊆ K ′. Consider any (k1, k2) in [0,1)2

such that (k1, k2) ∉ K ′. Then there must be some D′ in D′ such that 0 ∉ RD′({(k1 −
1, k1),0,(k2, k2 − 1)}). There are a number of possibilities:
- If D′ = Dx for some x in (0,1), then (x,1 − x) ∉ K , k1 ≤ x and k2 ≤ 1 − x by
Equation (12), whence also (k1, k2) ∉ K , taking into account that K is increasing.

- If D′ = DH
x for some x in (0,1), then (x,1 − x) ∈ K by Equation (13), (∀ε ∈

R>0)(x,1 − x − ε) ∉ K , k1 ≤ x and k2 < 1 − x. This means that there is some x
in [k1,1 − k2) such that (x,1 − x) ∈ K and (∀ε ∈ R>0)(x,1 − x − ε) ∉ K , whence
((∃x ∈ [k1,1 − k2))((x,1 − x − 1−k2−x

2 ) = (x, 1−x+k2
2 ) ∉ K)) ⇒ (k1, k2) ∉ K .

- If D′ = DT
x , we follow a similar reasoning to conclude that (k1, k2) ∉ K .

- If D′ = DH
0 , then k1 = 0, and (∀ε ∈ R>0)(0,1 − ε) ∉ K , and therefore (k1, k2) =

(0, k2) ∉ K .
- Finaly, if D′ = DT

1 , we follow a reasoning similar to that in the previous point and
derive that (k1, k2) = (k1,0) ∉ K .
We now turn to showing K ′ ⊆ K . Consider any (k1, k2) in [0,1)2 such that

(k1, k2) ∉ K . By Proposition 7, k1 + k2 ≤ 1. There are two possibilities: either (i)
k1 + k2 = 1 or (ii) k1 + k2 < 1. If (i) k1 + k2 = 1 then k1 in (0,1) and hence Dk1 ∈ D

′
because (k1,1−k1) = (k1, k2) ∉ K . Then infer 0 ∉ RDk1

({(k1−1, k1),0,(k2, k2−1)})
by Equation (12), whence 0 ∉ ⋂D∈D′ RD({(k1 − 1, k1),0,(k2, k2 − 1)}) and hence
(k1, k2) ∉ K ′. So we may assume that (ii) k1 + k2 < 1. We now use Proposition 14
to infer that π1(z) = 1 − z or π2(1 − z) = z for some z in [k1,1 − k2]. There are four
possible cases: (a) π1(k1) = 1− k1; (b) π2(k2) = 1− k2; (c) π1(z) = 1− z for some z
in (k1,1 − k2); and (d) π2(1 − z) = z for some z in (k1,1 − k2). In any of them it is
not difficult to prove that (k1, k2) ∉ K ′. ◻
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