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Abstract: While it is often said that robotics should aspire to reproduc-
ible and measurable results that allow benchmarking, I argue that a fo-
cus on benchmarking can be a hindrance for progress in robotics. The 
reason is what I call the ‘measure-target confusion’, the confusion be-
tween a measure of progress and the target of progress. Progress on a 
benchmark (the measure) is not identical to scientific or technological 
progress (the target). In the past, several academic disciplines have been 
led into pursuing only reproducible and measurable ‘scientific’ results – 
robotics should be careful to follow that line because results that can be 
benchmarked must be specific and context-dependent, but robotics 
targets whole complex systems for a broad variety of contexts. While it 
is extremely valuable to improve benchmarks to reduce the distance be-
tween measure and target, the general problem to measure progress 
towards more intelligent machines (the target) will not be solved by 
benchmarks alone; we need a balanced approach with sophisticated 
benchmarks, plus real-life testing, plus qualitative judgment. 
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1. Motivation: Towards benchmarking in robotics 

There is progress in robotics, so much is clear, but how much progress is there, in 

which direction, and how can we evaluate the contribution that a particular piece of 

research makes to this progress? As in any scientific endeavour, answers to these 

questions require standards for measuring the state of the art, quantifying progress 

and contributions to progress – contributions to progress have to follow ‘scientific 

method’ of the discipline. Evaluations of such contributions, e.g. in peer review, need 

ways to evaluate not only ‘proper method’, but also ‘progress beyond the state of the 

art’. 

In robotics, these issues have drawn significant attention in recent years, particularly 

through the ‘Good Experimental Methodology and Benchmarking’ Special Interest 

Group in EURON (since 2006) and the IEEE technical committee on ‘Performance 

Evaluation & Benchmarking of Robotic and Automation Systems’ (since 2009, see 

http://www.ieee-ras.org/performance-evaluation/activities). Between them, they 

have held not less than 31 workshops at leading robotics conferences since 2006 – for 

a recent summary see (Bonsignorio & Del Pobil, 2015), for a list, see 

http://www.heronrobots.com/EuronGEMSig/gem-sig-events. The issues have be-

come more urgent as robotics has become more complex (Antonelli, 2015, p. 1) and 

continues to move into more complex environments and involve more human-

computer interaction (Aly, Griffiths, & Stramandinoli, 2017). 

Why are these issues of such importance in this particular field? Measuring scientific 

progress is a challenge in any discipline, but robotics faces particular difficulties. In a 

first approximation these are: 

1. Robotics is mainly an engineering science, it aims to ‘make’, so a theory can 

often only be supported by making and testing, rather than by the classic 

scientific system of ‘theory-prediction-measurement’. 

2. The interaction between components (hardware and software), emergent 

properties, environment and whole system performance is extremely 

complicated – and not easily isolated. 

3. The robot hardware and software used in research is often unique, which 

makes it difficult to reproduce and compare results, or to identify the 

contribution the components make to progress on a given task. 

The 3rd constraint can be practically quite limiting, as Lier/Wachsmuth/Wrede point 

out: “Experiment testing, execution and evaluation: Advanced robotics experiments 
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require significant efforts spent on system development, integration testing, execu-

tion, evaluation and preservation of results. This is particular costly if many of these 

tasks are carried out manually. Crucial run time parameters and component configu-

rations are often omitted or not documented properly.” (Lier, Wachsmuth, & Wrede, 

2014, p. 8) This is, of course, not unique in science: many disciplines cannot conduct 

experiments easily, e.g. for practical reasons (in geology) or for ethical ones (in medi-

cine). Many engineers cannot do so either: A civil engineer cannot build the railway 

bridge a few times to test what will happen to it under certain conditions, so they 

have to resolve to modelling and the testing of components. 

I this paper, I will present a clarification of terminology, a diagnosis of the problem 

as an instance of the ‘measure-target confusion’, a comparison to other sciences, and 

then a proposal for a resolution. 

2. Initial terminology 

2.1. Benchmarking in robotics 

The ‘benchmark’ is originally an expression from land surveying for a mark at a 

known altitude on a fixed object such as a building or a rock. A standardised angle 

iron could be fixed at this ‘mark’ as ‘bench’ for measuring other altitudes from that 

point onwards, and measuring ‘back’ to the benchmark could be used for error detec-

tion. 

So, ‘benchmarking’ involves measuring and comparison, as well as usually a quantifi-

cation of results. To achieve a benchmark, the environment has to be controlled (like 

the fixed object at a known altitude) and the system for measuring has to be stand-

ardised (like the ‘bench’ of the surveyor). A condition that can be controlled and 

standardised (to some degree) then be replicated – so benchmarking is a form of the 

standard scientific experiment, where results are achieved in a controlled, standardised 

condition, and can then be replicated. 

In robotics, ‘benchmarking’ is often used in a wider sense for testing conditions that 

cannot be very precisely replicated, but where performance can be measured, so we 

will continue this use. In any case, the control and replication of conditions is a mat-

ter of degree. 

Performance on a benchmark is performance on the benchmark only – it does not 

allow induction to performance on a different benchmark or context. So if an indus-

trial robot can set x welding points per minute in a controlled environment of a par-
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ticular factory, then it can do this in the next factory, too, since the conditions can be 

specified by the manufacturer, and reproduced. But, if a particular autonomous car 

can drive at a particular speed on a closed racing track under particular conditions, 

this says nothing about its performance on a different track or under different condi-

tions, e.g. with traffic on the racing track. 

To put this in more general terms: Performance on a benchmark is not transferable, it 

says nothing about a TRL (technological readiness level), it will often not be on a 

systems level and – crucially as we shall see – it involves no flexibility.  

As far as I can tell, there is a lack of technical benchmarks in robotics – and in other 

fields, these have been extremely useful, e.g. in face recognition or speech-to-text. An 

experiment in science requires that a particular procedure and the measurement of 

results is described with sufficient accuracy such that the whole ‘experiment’ can be 

replicated at another time or another place. This makes it possible, in principle, for 

the result to be checked for their accuracy – we don’t have to take the word of the 

researchers. In other words, the ability to replicate (or reproduce) a result is a hall-

mark of science. What we need to see now is how important benchmarks (experi-

ments) can be in robotics. 

2.2. Competitions in robotics 

While there is a shortage of benchmarks, there are many competitions in robotics, 

particularly since the success of RoboCup football – for some links, see (Dias, 

Althoefer , & Lima, 2016) and https://en.wikipedia.org/wiki/Robot_competition 

(though this page needs updating as of June 2016). Competitions are typically of 

whole systems and performed at the same location around the same time – rather like 

competition events in sports like a world championship. They serve various social 

functions apart from furthering scientific progress itself, in particular they are useful 

for public relations. 

There are two fundamentally different types of competitions, namely where systems 

compete a) against other systems or b) on tasks. Furthermore, competitions differ 

significantly in the degree to which the conditions of the conditions are specified and 

controlled. Classic RoboCup football is highly specified (with its detailed rulebooks), 

and thus very narrow – a good performance in the competition says very little about 

performance under slightly varied conditions (e.g. different lightning or different 

surface). On the other hand, performance can be compared between different compe-
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titions. RoboCup Rescue, on the other hand, deliberately has rather different condi-

tions each time. 

The hybrid idea of a ‘benchmarking competition’ is pursued in the RoCK-

In@home and @work competitions (Amigoni et al., 2016): The competitions are suf-

ficiently specified to serve as benchmarks. But if a competition is to be a benchmark 

it cannot involve competing against another system (that would introduce a non-

controlled factor) but only against a task. In that case, the competitions are really 

benchmarks that are carried out at the same time in the same place. To use an analogy 

with sports, they are not like a football match but rather like javelin throwing at the 

athletics championships – which is a competition all right, but the contestants can 

also compete against each other without meeting at the same place; and they do, for 

example on who holds the world record. In football, where one competes against an 

opponent, there is no competition at a distance and there are no ‘world records’.  

So, there are the two types of competition, against others or against tasks, and 

the competitions can have more or less controlled conditions. Both types of competi-

tions results in a partial ordering of momentary performance – so they are not 

benchmarks, unless the conditions of a competition against a task are sufficiently 

controlled to allow reproduction at another time or in another location. Current 

competitions are not ‘real life’ scenarios, but controlled to some extent. 

Replication is a feature of a technical benchmark but, unlike in an experiment, one 

would not expect a complex system like a robot to perform identically each time – 

just as one would not expect a human to run the same distance in the ‘Cooper test’ at 

each attempt (distance run in 12 minutes on a tartan track). 

3. ‘The secure path of a science’ through replicable experiment? 

3.1. ‘Good Experimental Methodology and Benchmarking in Robotics’ 
(GEMSig) 

The special interest group (SIG) on “Good Experimental Methodology and Bench-

marking in Robotics” in the European Robotics Research Network (EURON) – 

especially Fabio P. Bonsignorio, Angel P. Del Pobil and John Hallam - has urged for 

some time now that things need to change: “… the current practice of publishing 

research results in robotics made it extremely difficult not only to compare results of 

different approaches, but also to assess the quality of the research presented by the 

authors. […]” (EURON, 2008) 
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They urge that things need to change in order to allow for better scientific progress: 

Yet in robotics, artificial intelligence, and automation, the reproduction of result 

from conference and journal papers, as they are today, is quite often very diffi-

cult, if not impossible. This situation is bad for science, as it becomes difficult to 

objectively evaluate the state of the art in a given field, and also it becomes prob-

lematic to build on other people’s work, thus undermining one of the basic 

foundations of scientific progress. (Bonsignorio & Del Pobil, 2015, p. 32; cf. 

Madhavan, del Pobil, & Messina, 2010) 

The proposal is quite clear: Benchmarks and experiments are the way to resolve this 

problem: “EURON has played an important role by fostering systematic bench-

marking and good experimental practice in robotics research.” (EURON, 2008) 

“The main road to follow the scientific method is to allow the replicability of the 

experiments.” (Antonelli, 2015, p. 3) with his characteristic title “Robotic research: 

Are we applying the scientific method?”. It is characteristic that a recent survey of 

activities at IROS 2015 “Robot competitions: What did we learn?” (Dias et al., 2016) 

only mentions positive effects: “The aim is to stimulate innovation more effectively, 

to meet a defined challenge, and to provide solutions to the problems that matter to 

roboticists and society“ and does not differentiate technical benchmarks from testing 

or competitions. There are now proposed metrics for many fields, including multi-

agent systems (Iantovics, Rotar, & Nechita, 2016). 

Scientific method seems a laudable aim, and a task well worth fighting for. However, 

I wonder whether this is really what we want. There are some examples of academic 

fields that have tried to take the ‘secure path of a science’ and ended up making things 

worse. Perhaps it is useful to look at them. Let me start with my own, though this is 

clearly far removed from robotics. 

3.2. Kant’s revolution … for robotics? 

Immanuel Kant was planning a revolution for philosophy, a ‘Copernican revolution’ 

and this project earned him a position as possibly the most important philosopher of 

modern times, but also put philosophy on a bad track that stymied its progress for at 

least a century. (The next attempt at ‘scientific philosophy’ was waiting, in Vienna 

Circle positivism and ‘analytic philosophy’.)   
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In order to illustrate this interesting parallel between robotics and philosophy, allow 

me to quote from his classic Critique of Pure Reason (Kant, 1791), in particular the 

Preface to the 2nd edition (1787), known as ‘B’: 

Metaphysics …  though it is older than all other sciences … has not yet had the 

good fortune to enter upon the secure path [find the secure step] of a science. (B 

15) … and is indeed a merely random groping (B 7) 

– this is roughly what the GEMSig say about the current state of robotics. And now 

Kant compares his discipline to others: 

That logic has already … proceeded upon this sure path is evidenced by the fact 

that since Aristotle it has not required to retrace a single step. … That logic 

should have been thus successful is an advantage which it owes entirely to its 

limitations. (B 8) 

… mathematics, among that wonderful people, the Greeks, had already entered 

upon the sure path of science (B 9) 

Natural science was very much longer in entering upon the highway of science. 

(B 13) 

Kant then proposes a method for scientific metaphysics, through replicable experi-

ment - and narrowing of scope: “This method, modeled on that of the student of na-

ture, consists in looking for the elements of pure reason in what admits of confirma-

tion or refutation by experiment.” (fn. 4). 

 … such a gift is not to be valued lightly. For not only will reason be enabled to 

follow the secure path of a science, instead of, as hitherto, groping at random, 

without circumspection or self-criticism; our enquiring youth will also be in a 

position to spend their time more profitably than in the ordinary dogmatism by 

which they are so early and so greatly encouraged to indulge in easy speculation 

about things of which they understand nothing, and into which neither they nor 

anyone else will ever have any insight. (B 19) 

… and thus philosophy was saved and has hitherto walked happily the secure path of 

a science – Not really! The overall experimental method turned out unsuitable. The 

walk was tried in ‘German Idealism’ in the 19th Century, failed badly, and then we 

had a backlash into several directions, with new ‘scientific’ methods or less scientific 

ones.  
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And this is not an isolated incident either: Psychology was captured by the ‘scientific’ 

behaviourism (it’s slogan was “only observable data!”) and had to free itself many 

decades later. History tried just to say ‘what actually happened’ (L. v. Ranke), but 

then found that this is an impossible aim and does not allow it to do its job. Etc. etc.  

Perhaps there is a lesson to be learned here? I want to suggest that each of these de-

velopments are marked by a confusion between reaching a target and reaching a 

quantifiable measure on the path towards that target. This is what I call the ‘measure-

target confusion’. 

4. The measure-target confusion: Benchmarking scientists and people 

4.1. Useful and useless benchmarks 

Allow me some anecdotal evidence in a first explanation of the phenomenon that I 

see looming here: In 2011, I discussed with a senior person in robotics funding about 

the need to measure and demonstrate progress, and I suggested that this is also in the 

interest of funding agencies. Despite general agreement, the initial comment was “We 

have benchmarks and demos coming out of our ears”, and then they explained that 

they knew full well that systems that work beautifully in the demonstrations (at pro-

ject reviews) might not do very much afterwards. – Their suspicion was that ‘bench-

marks’ are just a way to show success but that they actually did not signify that suc-

cess has taken place … clearly a call for high quality benchmarking. 

A second piece of anecdotal evidence: At a workshop in 2012, I asked a senior person 

in speech recognition what they saw as an advantage of their field, in comparison to 

cognitive systems, and they replied that the existence of benchmarks that everybody 

knows and everybody tests their systems against has proven an extremely useful tool 

for their field – but they added that at the same time these benchmarks had stifled 

progress because people only focus on them, their systems and papers are ‘designed 

to the test’ and aspects that may be relevant to the field but are not in the test will be 

ignored – for example information in video data, such as gestures or facial expression. 

4.2. The measure-target confusion 

The problem we see here is a common one. We observe a certain social development 

(here: scientific progress) and then try to see how this can be measured (here: bench-

marking). So far, so good. But then we turn the measure into a social target: We ask 

for research that improves on benchmarks! This is known to be dangerous because 

targeting the measure will change the social practice itself; the practice that we in-
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tended to monitor. This is sometimes called “Campbell’s law”. In his own formula-

tion: “The more any quantitative social indicator is used for social decision-making, 

the more subject it will be to corruption pressures and the more apt it will be to dis-

tort and corrupt the social processes it is intended to monitor.”(Campbell, 1979, p. 

80) A more intuitive formulation is “when a measure becomes a target, it ceases to be 

a good measure.” I will call this the ‘measure-target confusion’. 

4.3. Example: Progress of individual scientists 

One example of the measure-target confusion that will be familiar to readers of aca-

demic papers is the benchmarking of success for individual scientists (and then de-

partments and universities). The arguments in favour of such benchmarking are quite 

the same as the ones we have seen above: It is difficult to tell whether some contribu-

tion to science contributes real progress; it is hard to compare the performance of 

scientists, but we need such comparisons, we need an ‘objective evaluation’ for scien-

tific success (e.g. for promotion and hiring decisions). So we get quantifiable 

measures like number of publications, teaching evaluation numbers, funding amount 

acquired, journal impact factors, overall citation count, h-index, etc. The use of these 

measures presumably really is preferable over entirely intuitive judgments, but if re-

searchers target the measures (‘improve my h-index’) instead of the original target 

(scientific quality and progress) then we have a target with much less value than we 

started off with and our judgments on quality and progress will become worse. Of 

course, this problem is well known and leads to efforts to improve on the quantita-

tive methods (the benchmarks), but such improvements on measures will never be a 

solution to the measure-target confusion. However, even if we recognize that the 

measure is not the target, there is still a very useful discussion to be had on whether a 

particular measure gets closer to the target than another measure. 

For research metrics, this problem has been recognised in “The Leiden Manifesto for 

research metrics” (Hick, Wouters, Waltman, de Rijcke, & Rafois, 2015), where the 

very first of its ten principles, says: “1. Quantitative evaluation should support quali-

tative, expert assessment”. Quite so … but who will listen to the experts if the per-

formance of a researcher can be boiled down to a single number? Which prospective 

student will listen to the head of department if the student sees a “ranking” (or UK 

REF result) that shows them “how good” a university really is?  

Another example that will be familiar is formalised project management: Projects are 

expected to set SMART project milestones, i.e. milestones that are ‘specific, measura-

ble, achievable, realistic, time-bound’. (People who have been involved in formal re-
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search project evaluation will know this phenomenon.) This measure is useful and 

surely much better than mere intuitive judgment, but, again, the danger looms that 

reaching the milestone itself becomes a target, and is ‘ticked off’ without much care 

for whether the project is actually moving along well – the measure is confused with 

the target.  

5. Progress towards intelligent systems 

For our subject here, a crucial type of measure is that of intelligence of humans to 

one number, which is reduced to a single number, the IQ. Again, the problem is ob-

vious: Is it a measure of the intended phenomenon, namely human intelligence? Is 

there a such a property, perhaps ‘g’ (for ‘general intelligence factor’) that humans 

have and that can be measured in one dimension, on a scale that was developed to 

reflect intellectual development in childhood? This illustrates one central problem: It 

is crucial how close the measure is to the actual target, how much progress on the 

measure reflects progress towards the target. With a good measure, progress on 

measure implies at least some progress towards the target. 

Though IQ is supposed to be not something a human can improve, this measure can 

become a ‘target’ for artificial intelligence – and indeed, in discussions about progress 

in artificial intelligence (AI), it is often assumed that progress of AI moves on a one-

dimensional axis, and is quantifiable to an extent that one can say a system is twice as 

intelligent or ‘far more’ intelligent (Bostrom, 2014; Kurzweil, 2005) – all of this with-

out spending any time on the pesky question what ‘intelligence’ might be. Some re-

searchers on the progress of AI have avoided this and set a single point of ‘measure’ 

namely “Define a ‘high–level machine intelligence’  (HLMI) as one that can carry out 

most human professions at least as well as a typical human.” (Müller & Bostrom, 

2016, p. 556). Note how this is not a benchmark. Another classical measure, the Tu-

ring-Test is equally neither a benchmark nor an intuitive measure that is clearly relat-

ed to the overall target of intelligence (Müller & Ayesh, 2012). 

Then there is the tradition of ‘cognitive systems’, i.e. those to think that artificial sys-

tems should, and perhaps must, learn from the intelligent abilities of natural systems 

– and thus the research on artificial systems can help understanding natural systems. 

In this tradition, cognitive science and artificial intelligence are still two sides of the 

same coin, even though they do not expect that cognitive science will find algorithms 

that can just be implemented on different hardware because the body and environ-

ment of the system play central roles (this runs under the label of ‘embodiment’). 

How should one formulate ‘benchmarks’ for such a system? 
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Gomila and Müller have summarized the situation, following work in the EUCog 

network, where they define “We submit that a cognitive system is one that learns 

from individual experience and uses this knowledge in a flexible manner to achieve its 

goals.” (Gomila & Müller, 2012, p. 456) and thus conclude that “Better systems are 

those able to deal with increasing degrees of world uncertainty – while allowing for 

increasing environmental variability (in lighting conditions, distances, sizes, time 

constraints, …)” (Gomila & Müller, 2012, p. 459). On this basis, they specify 30 

measures of progress, none of which are benchmarks – but for all of which bench-

marks could be specified. How difficult this can be is quite easy to see if one consid-

ers a single relevant dimension, namely ‘autonomy’ of the agent (cf. Müller, 2012). 

Contrast this with benchmarking for the robotics ‘multi-annual roadmap; MAR 

(SPARC, 2015). Here, every “Ability” section has “Ability levels” and every “Tech-

nology” section has a component “Benchmarks and Metrics” – only that these sec-

tions (5.2.4 ff.) specify no benchmarks, instead they are typically a wish-list with 

more or less detail on desirable features or performance dimensions, some of which 

allow for a metrics. In some cases, reference to extant benchmarks in related disci-

plines is made. 

6. Benchmarks are measures, not targets 

I conclude that we need to specify an overall target as well as a number of specific 

targets (both on a systems and on a components level). Then set technical bench-

marks and measure progress, but be always aware what the targets were and that 

benchmarks are measures, not targets. In this way, we can avoid false dichotomies 

and robotics will be, in Kant’s words, neither ‘merely random groping’, nor on ‘the 

secure path of a science’. Various degrees of precision and reproducibility are possi-

ble and useful, provided we avoid the ‘measure-target confusion’. There is no way to 

precisely specify progress or to measure it, but there are ways to improve our work. 

We must let many flowers bloom! 

  



Measuring progress in robotics: Benchmarking and the ‘measure-target confusion’ 12/13 

 

References 

Aly, A., Griffiths, S., & Stramandinoli, F. (2017). Metrics and Benchmarks in 
Human-Robot Interaction: Recent Advances in Cognitive Robotics. 
Cognitive Systems Research, 43, 313-323. 
doi:http://dx.doi.org/10.1016/j.cogsys.2016.06.002 

Amigoni, F., Bastianelli, E., Bonarini, A., Fontana, G., Hochgeschwender, N., Iocchi, 
L., . . . Schiaffonati, V. (2016). Competitions for benchmarking. IEEE 
Robotics and Automation Magazine, 22(3), 53-61.  

Antonelli, G. (2015). Robotic research: Are we applying the scientific method? 
Frontiers in Robotics and AI, 2, 1-4. doi:10.3389/frobt.2015.00013 

Bonsignorio, F., & Del Pobil, A. P. (2015). Toward replicable and measurable 
robotics research. IEEE Robotics and Automation Magazine, 22(3), 32-35.  

Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford 
University Press. 

Campbell, D. T. (1979). Assessing the impact of planned social change. Evaluation 
and Program Planning, 2(1), 67-90. doi:http://dx.doi.org/10.1016/0149-
7189(79)90048-X 

Dias, J., Althoefer , K., & Lima, P. U. (2016). Robot competitions: What did we 
learn? IEEE Robotics and Automation Magazine(1, March), 16-18.  

EURON. (2008). Survey and inventory of current efforts in comparative robotics 
research. European Robotics Research Network. Retrieved from 
http://www.robot.uji.es/EURON/en/index.htm 

Gomila, A., & Müller, V. C. (2012). Challenges for artificial cognitive systems. 
Journal of Cognitive Science, 13(4), 453-469. doi:10.17791/jcs.2012.13.4.453 

Hick, D., Wouters, P., Waltman, L., de Rijcke, S., & Rafois, I. (2015). Bibliometrics: 
The Leiden Manifesto for research metrics. Nature, 520, 429-431. 
doi:10.1038/520429a 

Iantovics, L. B., Rotar, C., & Nechita, E. (2016). A Novel Robust Metric for 
Comparing the Intelligence of Two Cooperative Multiagent Systems 
Procedia Computer Science, 96, 637–644. 
doi:http://dx.doi.org/10.1016/j.procs.2016.08.245 

Kant, I. (1791). Critique of pure reason (N. K. Smith, Trans.). London: Palgrave 
Macmillan 1929. 

Kurzweil, R. (2005). The singularity is near: When humans transcend biology. 
London: Viking. 

Lier, F., Wachsmuth, S., & Wrede, S. (2014). Modeling Software Systems in 
Experimental Robotics for Improved Reproducibility: A Case Study with 



Measuring progress in robotics: Benchmarking and the ‘measure-target confusion’ 13/13 

 

the iCub Humanoid Robot. Humanoids, (18-20.11.2014). Retrieved from 
http://pub.uni-
bielefeld.de/luur/download?func=downloadFile&recordOId=2705677&file
OId=2705709 

Madhavan, R., del Pobil, A. P., & Messina, E. (2010). Performance Evaluation and 
Benchmarking of Robotic and Automation Systems.  

Müller, V. C. (2012). Autonomous cognitive systems in real-world environments: 
Less control, more flexibility and better interaction. Cognitive 
Computation, 4(3), 212-215. doi:10.1007/s12559-012-9129-4 

Müller, V. C., & Ayesh, A. (Eds.). (2012). Revisiting Turing and his test: 
Comprehensiveness, qualia, and the real world (Vol. 7/2012). Hove: AISB. 

Müller, V. C., & Bostrom, N. (2016). Future progress in artificial intelligence: A 
survey of expert opinion. In V. C. Müller (Ed.), Fundamental issues of 
artificial intelligence (pp. 553-570). Berlin: Springer. 

SPARC. (2015). Robotics 2020: Multi-Annual Roadmap for Robotics in Europe. 
Release B 03/12/2015.  Retrieved from http://www.eu-robotics.net/  

 




