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Abstract: The purpose of this study is to propose new similarity
measures namely rough variational coefficient similarity measure 
under the rough neutrosophic environment. The weighted rough 
variational coefficient similarity measure has been also defined. 
The weighted rough variational coefficient similarity measures 
between the rough ideal alternative and each alternative are 
xxxxx

calculated to find the best alternative. The ranking order of all the
alternatives can be determined by using the numerical values of 
similarity measures. Finally, an illustrative example has been 
provided to show the effectiveness and validity of the proposed 
approach. Comparisons of decision results of existing rough 
similarity measures have been provided.  
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1 Introduction 

In 1965, L. A. Zadeh grounded the concept of degree 
of membership and defined fuzzy set [1] to repre-
sent/manipulate data with non-statistical uncertainty. In 
1986, K. T. Atanassov [2] introduced the degree of non-
membership as independent component and proposed intu-
itionistic fuzzy set (IFS). F. Smarandache introduced the 
degree of indeterminacy as independent component and 
defined the neutrosophic set [3, 4, 5]. For purpose of solv-
ing practical problems, Wang et al. [6] restricted the con-
cept of neutrosophic set to single valued neutrosophic set 
(SVNS), since single value is an instance of set value. 
SVNS is a subclass of the neutrosophic set.  SVNS consists 
of the three independent components namely, truth-
membership, indeterminacy-membership and falsity-
membership functions.  

The concept of rough set theory proposed by Z. Pawlak 
[7] is an extension of the crisp set theory for the study of 
intelligent systems characterized by inexact, uncertain or 
insufficient information. The hybridization of rough set 
theory and neutrosophic set theory produces the rough neu-
trosophic set theory [8, 9], which was proposed by Broumi, 
Dhar and Smarandache [8, 9]. Rough neutrosophic set the-
ory is also a powerful mathematical tool to deal with in-
completeness. 

Literature review reflects that similarity measures play 
an important role in the analysis and research of clustering 
analysis, decision making, medical diagnosis, pattern 
recognition, etc. Various similarity measures [10, 11, 12, 
13, 14, 15, 16, 17, 18] of SVNSs and hybrid SVNSs are 

available in the literature. The concept of similarity 
measures in rough neutrosophic environment [19, 20, 21] 
has been    recently proposed. 

Pramanik and Mondal [19] proposed cotangent 
similarity measure of rough neutrosophic sets. In the same 
study [19],Pramanik and Mondal established its basic 
properties and provided its application to medical 
diagnosis. Pramanik and Mondal [20] also proposed cosine 
similarity measure of rough neutrosophic sets and its 
application in medical diagnosis. The same authors [21] 
also  studied Jaccard similarity measure and Dice 
similarity measures in rough neutrosophic environment 
and provided their applications to multi attribute decision 
making. Mondal and Pramanik [22] presented tri-complex 
rough neutrosophic similarity measure and its application 
in multi-attribute decision making. Together with F. 
Smarandache and S. Pramnik, K. Mondal [23] presented 
hypercomplex rough neutrosophic similarity measure and 
its application in multi-attribute decision making.  Mondal,
Pramanik, and Smarandache [24] presented several trigo-
nometric Hamming similarity measures of rough neutro-
sophic sets and their applications in multi attribute decision 
making problems.  

Different methods for multiattribute decision making 
(MADM) and multicriteria decision making (MCDM) 
problems  are available in the literature in different 
environment such as crisp environment [25, 26, 27, 28, 29], 
fuzzy environment [30, 31], intuitionistic fuzzy 
environment [32, 33, 34, 35, 36, 37, 38, 39, 40], 
neutrosophic environment [41, 42, 43, 44, 45, 46, 47, 48, 
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49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], 
interval neutrosophic environment [63, 65, 66, 67, 68], 
neutrosophic soft expert environment [69], neutrosophic 
bipolar environment [70, 71], neutrosophic soft 
environment [72, 73, 74, 75, 76], neutrosophic hesitant 
fuzzy environment [77, 78, 79], rough neutrolsophic
environment [80, 81], etc. In neutrosophic environment 
Biswas, Pramanik and Giri [82] studied hybrid vector 
similarity measure and its application in multi-attribute 
decision making. Getting motivation from the work of 
Biswas, Pramanik and Giri [82], for hybrid vector 
similarity measure in neutrosophic envionment, we extend 
the concept in rough neutrosophic environment.  

In this paper, a new similarity measurement is 
proposed, namely rough variational coefficient similarity
measure under rough neutrosophic environment. A 
numerical example is also provided. 

Rest of the paper is structured as follows. Section 2 
presents neutrosophic and rough neutrosophic preli-
minaries. Section 3 discusses  various similarity measures 
and varional coefficient similarity measure in crisp envi-
ronment. Section 4 presents various similarity measures 
and variational similarity measure for single valued 
neutrosophic sets. Section 5 presents variational coefficient 
similarity measure and weighted variational coefficient 
similarity measure for rough neutrosophic sets and 
establishes their  basic properties.  Section 6   is devoted to 
present multi attribute decision making based on rough 
neutrosophic variational coefficient similarity measure. 
Section 7 demonstrates the application of rough variational 
coefficient similarity measures to investment problem 
Finally, section 8 concludes the paper with stating the 
future scope of research. 

2 Neutrosophic preliminaries 
Definition 2.1 [3, 4, 5] Neutrosophic set 

Let X be a space of points (objects) with generic 
element in X denoted by x. Then a neutrosophic set A in X 
is denoted by   XxxFxIxTxA AAA  :)(),(),(  where, 

)(xTA is the truth membership function, )(xI A is the 
indeterminacy membership function and )(xFA is the 
falsity membership function. The 
functions )(xTA , )(xI A and )(xFA  are real standard or non-

standard subsets of ]  1,0 [ . There is no restriction on the 
sum of )(xTA , )(xI A  and )(xFA  

i.e.   3)()()(0 xFxIxT AAA . 
Definition 2.2 [6] (Single-valued neutrosophic set). 

Let X be a universal space of points (objects), with a 
generic element xX. A single-valued neutrosophic set 
(SVNS)  N X is denoted by 

XxxxFxIxTN
x

NNN ∈∀,/∫ )(),(),( , when X is continuous; 

XxxxFxIxTN m
i NNN   ,/)(),(),(1 ,      when X is discrete. 

SVNS is characterized by a true membership 
function )(xT N , a falsity membership function )(xFN  and 
an indeterminacy function )(xI N  ith )(xT N , )(xFN , )(xI N    
[0, 1] for all xX.  For each Xx , of a SVNS N

3≤)()()(≤0 xFxIxT NNN  .        

2.1 Some operational rules and properties of SVNSs 

Let FITN AAAA ,,  and FITN BBBB ,,  be two SVNSs 
in X. Then the following operations are defined as follows: 
I.  Complement: TI-FN AAAcA ,1, Xx . 
II. Addition: FFIITTTTNN BABABABABA ,,

III. Multiplication:
FFFFIIIITTNN BABABABABABA -,-, 

IV. Scalar Multiplication:
FITN AAAA


 ,,)1(1 .0for 

V. 
 )1(1,)1(1,)( FITN AAAA .0for           

Definition 2.3 [6] 
      Complement of a SVNS N is denoted by Nc

 and is 
defined by  

)()( xFxT NcN  ; )(1)( xIxI NcN  ; )()( xTxF NcN 

Definition 2.4 [6]
      A SVNS NA is contained in the other SVNS NB, 
denoted as NN BA , if and only if 

)()( xTxT BNAN  ; )()( xIxI BNAN  ; )()( xFxF BNAN  Xx

Definition 2.5 [6] 
      Two SVNSs NA and NB are equal, i.e. NA= NB, if and 
only if NN BA  and NN BA  
Definition 2.6 [6] 
 Union of two SVNSs NA and NB is a SVNS NC, written 
as NNN BAC  . Its truth membership, indeterminacy-
membership and falsity membership functions are related 
to those of NA and NB by 

 )(),(max)( xTxTxT BNANCN  ;  )(),(min)( xIxIxI BNANCN  ; 
 )(),(min)( xFxFxF BNANCN  for all x in X. 

Definition 2.7 [6] Intersection of two SVNSs NA and NB is 
a SVNS ND, written as NNN BAD  , whose truth 
membership, indeterminacy-membership and falsity 
membership functions are related to those of NA and NB by 

 )(),(min)( xTxTxT BNANCN  ;  )(),(max)( xIxIxI BNANCN  ;
 )(),(max)( xFxFxF BNANCN  for all x in X. 

Definition 2.8 Rough Neutrosophic Sets [8, 9] 

Let Z be a non-null set and R be an equivalence 
relation on Z. Let P be neutrosophic set in Z with the 
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membership function TP indeterminacy function IP and 
non-membership function FP. The lower and the upper 
approximations of P in the approximation (Z, R) denoted 
by )(PN and )(PN   are respectively defined as follows:

,,][/)(),(),(,)( )()()( ZxxzxFxIxTxPN RPNPNPN 

,,][/)(),(),(,)( )()()( ZxxzxFxIxTxPN RPNPNPN 

   Here, ),(][)()( zTxxT PRzPN  ),(][)()( zIxxI PRzPN   
),(][)()( zFxxF PRzPN  ),(][)()( zTxxT PRzPN   

),(][)()( zxx II PRzPN  )(][)()( zFxxF PRzPN 

So, 0 )(sup )( xT PN )(sup )( xI PN )(sup )( xF PN 3

0 )(sup )( xT PN )(sup )( xI PN )(sup )( xF PN 3
Here  and  denote “max” and “min’’ operators 

respectively. TP(z), IP(z) and FP(z) denote  respectively the 
membership, indeterminacy and non-membership function 
of z with respect to P. It is easy to see 
that )(PN and )(PN are two neutrosophic sets in Z. 

Thus NS mappings ,N N : N(Z)   N(Z) are, 
respectively, referred to as the lower  and  the upper  rough 
NS  approximation  operators,  and the pair ))(),(( PNPN  is 
called the rough neutrosophic set [8, 9] in (Z, R). 

From the above definition, it is seen 
that )(PN and )(PN  have constant membership on the 
equivalence classes of R. if )(PN = )(PN  i.e.

)()( xT PN ,)()( xT PN )()( xI PN )()( xI PN and 
)()( xF PN .),()( ZxxF PN 

P is said to be a definable neutrosophic set in the 
approximation (Z, R). It can be easily proved that zero 
neutrosophic set (0N = (0, 1, 1)) and unit neutrosophic sets 
(1N = (1, 0, 0)) are definable neutrosophic sets. 

Definition 2.9 [8, 9] 
 If ))(),(()( PNPNPN  is a rough neutrosophic set in 

(Z, R) , the rough complement [8, 9] of N(P) is the rough 
neutrosophic set denoted by ))(,)(()(~ cc PNPNPN   
where ,)( cPN cPN )( are  the  complements of neutrosophic 
sets of ),(PN )(PN respectively. 

ZxxTxIxFxPN PNPNPN
c  /)(),(1),(,)( )()()( and 

ZxxTxIxFxPN PNPNPN
c  /)(),(1),(,)( )()()(

Definition 2.10 [8, 9] 
 If N(P1) and N(P2)  are  the two  rough neutrosophic  

sets  of  the  neutrosophic  set P respectively in Z, then the 
following definitions [8, 9] hold: 

)()()()()()( 212121 PNPNPNPNPNPN   
)()()()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN

 )().(),().()(.)( 212121 PNPNPNPNPNPN
If N, M, L are the rough neutrosophic sets in (Z, R), 

then the following proposition are stated from definitions 
[8, 9]. 
Proposition 1 [8, 9] 

NN )(~~.1
NMMNNMMN   ,.2

)()(
,)()(.3

NMLNML
NMLNML









)()()(
,)()()(.4

NLMLNML
NLMLNML









Proposition 2 [8, 9] 
De Morgan‘s Laws are satisfied for rough neutrosophic 

sets . 
))((~))(((~))()((~.1 2121 PNPNPNPN  

))((~)(((~))()((~.2 2121 PNPNPNPN    
Proposition 3 [8, 9]

If P1 and P2 are two neutrosophic sets in U such that 
thenPP 21 )()( 21 PNPN   

)()()(.1 2121 PNPNPPN  

)()()(.2 2121 PNPNPPN  

Proposition 4 [8, 9] 
)(~~)(.1 PNPN 

)(~~)(.2 PNPN 

)()(.3 PNPN 

3 Similarity measures and variational coefficient simi-

larity measure in crisp environment 

      The vector similarity measure is one of the important 
tools for the degree of similarity between objects. However, 
the Jaccard, Dice, and cosine similarity measures are often 
used for this purpose. Jaccard [83] , Dice [84] , and cosine 
[85] similarity measures between two vectors are stated 
below.  
Let X = (x1, x2, …, xn) and Y = (y1, y2, …, yn)  be two n-
dimensional vectors with positive co-ordinates. 

Definition 3.1 [83] 
  Jeccard index of two vectors (measuring the 

“similarity” of these vectors) can be defined as follows:   

J(X, Y) = 
YXYX

YX
.-

.
22

=
  



  



n
i

n
i

n
i iiii

n
i ii

yxyx
yx

1 1 1
22

1

-
  (1) 

where 2X =  
n
i ix1

2  and 2Y =  
n
i iy1

2 are the Euclidean

norm of X and Y, X.Y = 
n
i ii yx1 is the inner product of the 

vector X and Y.  
Proposition 5 [83] 

  Jaccard index satisfies the following properties: 
1. 0 ≤  J(X, Y) ≤ 1
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2. J(X, Y) = J(Y, X)
3. J(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for every
xi ∈  X and yi ∈  Y 
Definition 3.2 [84] 

The Dice similarity measure can be defined as follows: 

E(X, Y) = 22 +
.2
YX
YX

=
 



 



n
i

n
i ii

n
i ii

yx

yx

1 1
22

12 (2)         
 

Proposition 6 [84] 

      The Dice similarity measure satisfies the following 
properties: 
1. 0 ≤  E(X, Y) ≤ 1
2. E(X, Y) = E(Y, X)
3. J(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for every
xi ∈  X and yi ∈  Y . 
Definition 3.3 [85] 

The cosine similarity measure between two vectors 
X and Y  is the inner product of these two vectors divided 

by the product of their lengths and can be defined as 
follows: 

C(X, Y) = 
YX

YX
.
. =









n
i i

n
i i

n
i ii

yx

yx

1
2

1
2

1      (3)                                       

Proposition 7 [85] 

The cosine similarity measure satisfies the following 
properties 

1. 0 ≤  C(X, Y) ≤ 1
2. C(X, Y) = C(Y, X)
3. C(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for

every xi ∈  X and yi ∈  Y . 
These three formulas are similar in the sense that they 

take values in the interval [0, 1]. Jaccard and Dice 
similarity measures are undefined when xi = 0, and yi = 0 
for i = 1, 2, …, n  and cosine similarity measure is 
undefined when xi = 0 or yi = 0 for i = 1, 2, …, n. 
Definition 3.4 [86]  
      Variational co-efficient similarity measure can be 
defined as follows:  

V(X, Y) = 22 +
.2

λ
YX
YX +  

YX
YX
.
.)-1(                                              

 
 




 



n
i

n
i ii

n
i ii

yx

yx

1 1
22

12 +









n
i i

n
i i

n
i ii

yx

yx

1
2

1
2

1)1(      (4)                                                               

Proposition 8 [86] 

Variational co-efficient similarity measure satisfies 
the following properties: 
1. 0 ≤  V(X, Y) ≤ 1
2. V(X, Y) = V(Y, X)
3. V(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for
every xi ∈  X and yi ∈  Y . 

4. Various similarity measures for single valued
neutrosophic sets. 

Assume FITN AAAA ,,  and FITN BBBB ,, be two 
SVNSs in a universe of discourse X = (x1, x2,…, xn). 

]1,0[,, FIT AAA  for any Xxi  in NA or ]1,0[,, FIT BBB  for 
any Xxi in NB can be considered as a vector 
representation with three elements. Let ]1,0[iw  be the 
weight of each element xi for i = 1, 2, …, n such 
that 11  

n
i iw  , then Jaccard, Dice and cosine similarity 

measures can be presented as follows:   
Definition 4.1[10] Jaccard similarity measure between 

FITN AAAA ,,  and FITN BBBB ,, can be defined as 
follows: 
Jac(NA, NB) = 

      
      
















n
i

iBiA

iBiAiBiA

iBiBiB

iAiAiA

iBiA

iBiAiBiA

xFxF
xIxIxTxT
xFxIxT

xFxIxT
xFxF

xIxIxTxT

n 1

222

222

)}()(
)()()()({
)()()(

)()()(
))()(

)()()()((
1

   (5)         

   Proposition 9 [10] 

Jaccard similarity measure satiefies the following 
properites: 

;1),(0.1  NNJac BA

;),(),(.2 NNJacNNJac ABBA 

;1),(.3 NNJac BA  if NA=NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Definition 4.1.1 [10]  Weighted Jaccard similarity measure 
between FITN AAAA ,,  and FITN BBBB ,, can be 
defined as follows: 

Jacw(NA, NB)= 

  
      
      

 













n
i

iBiA

iBiAiBiA

iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxF
xIxIxTxT
xFxIxT

xFxIxT
xFxF

xIxIxTxT

w1

222

222

)}()(
)()()()({
)()()(

)()()(
))()(

)()()()((

 (6)

   Proposition 10 [10] 

Weighted Jaccard similarity measure satisfies the 
following properties: 

;1),(0.1  NN BAwJac

;),(),(.2 NNJacNNJac ABwBAw 

;1),(.3 NNJac BAw  if NA = NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.
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Definition 4.2 [11] 
Dice similarity measure between FITN AAAA ,,

and FITN BBBB ,, is defined as: 
Dic(NA, NB) = 

      
      





















n
i

iBiBiB

iAiAiA

iBiA

iBiAiBiA

xFxIxT

xFxIxT

xFxF
xIxIxTxT

n 1

222

222

)()()(

)()()(

)()(
)()()()(

2
1

       (7)         

   Proposition 11 [11] 

Dice similarity measure satisfies the following 
properties: 

;1),(0.1  NNDic BA  
),(.2 NNDic BA ;),( NNDic AB

;1),(.3 NNDic BA  if NA=NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Definition 4.2.1  [11] 
  Weighted Dice similarity measure between 

FITN AAAA ,, and FITN BBBB ,, can be defined as 
follows: 
Dicw(NA, NB) = 

      
      





















n
i

iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxIxT

xFxIxT

xFxF
xIxIxTxT

w1

222

222

)()()(

)()()(

)()(
)()()()(

2

 (8)           

Proposition 12 [11] 

  Weighted Dice similarity measure 

;1),(0.1  NNDic BAw

;),(),(.2 NNDicNNDic ABwBAw 

;1),(.3 NNDic BAw  if NA = NB i.e., ),()( xTxT iBiA   
),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 

n) in X.

Definition 4.3 [12] 
  Cosine similarity measure between FITN AAAA ,,

and FITN BBBB ,, can be defined as follows: 

Cos(NA, NB) = 
     

     












n
i

iBiBiB

iAiAiA

iBiA

iBiAiBiA

xFxIxT

xFxIxT

xFxF
xIxIxTxT

n 1

222

222

)()()(

)()()(

))()(
)()()()((

1
  (9)                                 

Proposition 13 [12] 

  Cosine similarity measure satisfies the following 
properties:

 ;1≤ ),(≤ 0.1 NNCos BAw

),(),(.2 NNCosNNCos ABwBAw 

;1),(.3 NNCos BAw  if NA = NB i.e., ),()( xTxT iBiA          
),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 

n) in X.
Definition 4.3.1 [12] 

Weighted cosine similarity measure between 
FITN AAAA ,,  and FITN BBBB ,, can be defined as 

follows: 
Cosw(NA, NB)= 

     

     












n
i

iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxIxT

xFxIxT

xFxF
xIxIxTxT

w1

222

222

)()()(

)()()(

))()(
)()()()((

  (10)

Proposition 14 [12] 

 Weighted cosine similarity measure satisfies the 
following properties:

;1≤ ),(≤ 0.1 NNCos BAw

),(),(.2 NNCosNNCos ABwBAw 

;1),(.3 NNCos BAw  if NA = NB i.e.,  ),()( xTxT iBiA   
),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 

n) in X.
Jaccard and Dice similarity measures between two 

neutrosophic sets FITN AAAA ,, and FITN BBBB ,,

are undefined when 0)()()(  xFxIxT iAiAiA  and 
0)()()(  xFxIxT iBiBiB for all i = 1, 2, …, n. Similarly 

the cosine formula for two neutrosophic sets 
FITN AAAA ,,  and FITN BBBB ,, is undefined when 

0)()()(  xFxIxT iAiAiA or 0)()()(  xFxIxT iBiBiB for 
all i = 1, 2, …, n.  

5 Variational similarity measures for rough    neu-
trosophic sets 

The notion of rough neutrosophic set (RNS) is used as 
vector representations in 3D-vector space. Assume that X = 
(x1, x2,…, xn) and Y = (y1, y2, …, yn)  be two n-dimensional 
vectors with positive co-ordinates. Jaccard, Dice, cosine 
and cotangent similarity measures between two vectors are 
stated as follows. 
Definition 5.1 [21] Jaccard similarity measure under rough 
neutrosophic environment 

Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = (x1, 

x2,…, xn) be any two rough neutrosophic sets.  Jacard simi-
larity measure [21] between rough neutrosophic sets A and 
B can be defined as follows: 

JacRNS(A, B) = 

7
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      
      
















n
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xIxIxTxT

n 1

222

222

)]()(
)()()()([

)()()(

)()()(
))()(

)()()()((
1

 (11)                  
     

Proposition 15 [21] 

Jaccard similarity measure [21] between A and B 
satisfies the following properties: 

;1),(0.1  BAJacRNS  
;),(),(.2 ABJacBAJac RNSRNS   

;1),(.3 BAJacRNS  iff A = B 
4. If C is a RNS in Y and CBA  then,
JacRNS (A, C)  JacRNS(A, B), and JacRNS (A, C)  JacRNS(B, C) 
Definition 5.1.1 [21] 
      If we consider the weights of each element xi, weighted 
rough Jaccard similarity measure [21] between rough 
neutrosophic sets A and B can be defined as follows: 
JacWRNS(A, B) =   

      
      
















n
i

iBiA

iBiAiBiA

iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxF
xIxIxTxT

xFxIxT

xFxIxT
xFxF

xIxIxTxT

w1

222

222

)]()(
)()()()([

)()()(

)()()(
))()(

)()()()((













(12)            
                                                        

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 , 

i = 1, 2,…, n, then JacWRNS(A, B) = JacRNS(A,B) 
Proposition 16 [21] 

The weighted rough Jaccard similarity [21] measure 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BAJacWRNS  
;),(),(.2 ABJacBAJac WRNSWRNS   

;1),(.3 BAJacWRNS  iff A = B 
4. If C is a WRNS in Y and CBA  then, JacWRNS(A, C)
 JacWRNS(A, B) , and JacWRNS(A, C)  JacWRNS(B, C) 
Definition 5.2 [21] Dice similarity measure under rough 

neutrosophic environment 

 In this section, Dice similarity measure and the 
weighted Dice similarity measure for rough neutrosophic 
sets have been stated due to Pramanik and Mondal [21]. 

Suppose that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   be any 

two rough neutrosophic sets in X = (x1, x2,…, xn). Dice 
similarity measure between rough neutrosophic sets A and 
B can be defined as follows: 

DICRNS(A, B)= 
      

      
      










n
i

iBiBiB

iAiAiA

iBiBiB

xFxIxT

xFxIxT
xFxIxT

n 1

222

222

222

)()()(

)()()(
)()()(21

   (13)

Proposition 17 [21] 

Dice similarity measure [21]  satisfies the following 
properties. 

;1),(0.1  BADICRNS  
;),(),(.2 ABDICBADIC RNSRNS   

;1),(.3 BADICRNS  iff A = B 
4. If C is a RNS in Y and CBA  then,

DICRNS(A, C)   DICRNS(A, B) , and DICRNS(A, C) DICRNS(B, C), 
For proofs of the above mentioned four properties, see 

[21]. 
Definition 5.2.1 

If we consider the weights of each element xi, a 
weighted rough Dice similarity measure between rough 
neutrosophic sets A and B can be defined as follows: 
DICWRNS(A, B) = 

      
      





















n
i

iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxIxT

xFxIxT

xFxF
xIxIxTxT

w1

222

222

)()()(

)()()(

)()(
)()()()(

2









     (14)

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 , 

i = 1, 2,…, n, then DICWRNS(A, B) = DICRNS(A,B) 

Proposition 18 [21] 

The weighted rough Dice similarity [21] measure 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BADICWRNS  
;),(),(.2 ABDICBADIC WRNSWRNS 

;1),(.3 BADICWRNS  iff A = B 
4. If C is a RNS in Y and CBA  then,
DICWRNS(A, C)   DICWRNS(A, B), and 
DICWRNS(A, C)   DICWRNS(B, C). 

For proofs of the above mentioned four properties, see 
[21]. 

Definition 5.3 [20] 
      Cosine similarity measure can be defined as the inner 
product of two vectors divided by the product of their 
lengths. It is the cosine of the angle between the vector 
representations of two rough neutrosophic sets. The cosine 
similarity measure is a fundamental measure used in 
information technology. Pramanik and Mondal [20] 

8
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defined cosine similarity measure between rough 
neutrosophic sets in 3-D vector space. 

  Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = (x1, 

x2,…, xn) be any rough neutrosophic sets.  Pramanik and 
Mondal [20] defined cosine similarity measure between 
rough neutrosophic sets A and B as follows: 
CRNS(A, B) =  

      
      












n
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iBiBiB
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iBiA
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xFxIxT

xFxIxT

xFxF
xIxIxTxT

n 1
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222

)()()(

)()()(

)()(
)()()()(

1      (15) 

Here, ,
2

)()()( iAiA
iA

xTxTxT 
 ,

2
)()()( iBiB

iB
xTxTxT 



,
2

)()()( iAiA
iA

xIxIxI 
 ,

2
)()()( iBiB

iB
xIxIxI 



,
2

)()()( iAiA
iA

xFxFxF 


2
)()()( iBiB

iB
xFxFxF 



Proposition 19 [20]         
Let A and B be rough neutrosophic sets. Cosine similarity 
measure [20] between A and B satisfies the following 
properties. 

;1),(0.1  BAC RNS  
;),(),(.2 ABCBAC RNSRNS   

;1),(.3 BAC RNS  iff A = B 
4. If C is a RNS in Y and CBA  then, CRNS(A, C) 
CRNS(A, B) , and CRNS(A, C)   CRNS(B, C).
Definition 5.3.1 [20]  

If we consider the weights of each element xi, a 
weighted rough cosine similarity measure between rough 
neutrosophic sets A and B can be defined as follows: 

CWRNS(A,B) =
      
      












n
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







 (16)    

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we 

take
nwi
1

 , i = 1, 2,…, n, then CWRNS(A, B) = CRNS(A, B) 

Proposition 20 [20] 

The weighted rough cosine similarity measure [20] 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BACWRNS  
;),(),(.2 ABCBAC WRNSWRNS   

;1),(.3 BACWRNS  iff A = B 
4. If C is a WRNS in Y and CBA  then, CWRNS(A, C) 
CWRNS(A, B) , and CWRNS(A, C)   CWRNS(B, C). 

For proofs of the above mentioned four properties, see 
[20]. 
Definition 5.4 [19] Cotangent similarity measures of 

rough neutrosophic sets 

Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  in X = (x1, 

x2,…, xn) be any two rough neutrosophic sets. Pramanik 
and Mondal [19] defined cotangent similarity measure 
between rough neutrosophic sets A and B as follows: 
COTRNS(A, B) = 


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


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iB
xFxFxF 



Proposition 21 [19] 
 Cotangent similarity measure satisfies the following 

properties: 
;1),(0.1  BACOT RNS  

;),(),(.2 ABCOTBACOT RNSRNS   
;1),(.3 BACOT RNS  iff A = B 

4. If C is a RNS in Y and CBA  then, COTRNS(A, C) 
COTRNS(A, B) , and COTRNS(A, C)   COTRNS(B, C). 
Definition 5.4.1  

If we consider the weights of each element xi, a 
weighted rough cotangent similarity measure [19] between 
rough neutrosophic sets A and B can be defined as follows:
COTWRNS(A, B) = 

 


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



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


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




     (18) 

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 , i 

= 1, 2,…, n, then COTWRNS(A, B) = COTRNS(A, B) 
Proposition 22 [19] 

The weighted rough cosine similarity measure between 
two rough neutrosophic sets A and B also satisfies the 
following properties: 

;1),(0.1  BACOT WRNS

;),(),(.2 ABCOTBACOT WRNSWRNS   
;1),(.3 BACOT WRNS  iff A = B 

4. If C is a WRNS in Y and CBA  then, COTWRNS(A, C)
  COTWRNS(A, B) , and COTWRNS(A, C)   COTWRNS(B, C) 
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Definition 5.5 (Variational co-efficient similarity 

measure between rough neutrosophic sets) 
Let    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA 

and    )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  be 

two rough neutrosophic sets. Variational co-efficient 
similarity measure between rough neutrosophic sets can be 
presented as follows: 
VarRNS(A, B) = 

      
      
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Proposition 23 

 The variational co-efficient similarity measure VarRNS(A, 
B) between two rough neutrosophic sets A and B,
satisfies the following properties: 

;1),(0.1  BAVarRNS

;),(),(.2 ABVarBAVar RNSRNS   
;1),(.3 BAVarRNS  if A = B i.e.,

),()( xTxT iBiA  ),()( xIxI iBiA  and 
),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X.                                                                     

Proof.  
(1.) It is obvious that .0≥),( BAVar RNS Thus it is 

required to prove that 1),( BAVar RNS . 
From rough neutrosophic dice similarity measure it can 

be witten that  
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and from rough neutrosophic cosine similarity measure it 
can be written that  
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Combining Eq.(20) and Eq.(21) , we obtain 
VarRNS(A, B) =  
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1)1(   
Thus, ;1),(0  BAVarRNS
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(3.) If A = B i.e.,
),()( xTxT iBiA  ),()( xIxI iBiA  and 

),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X , 
VarRNS(A, A) = 
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These results show the completion of the proofs of 

the three properties. 
Definition 5.6 (Weighted variational co-efficient 

similarity measure between rough neutrosophic sets) 

Let    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  be any 

two rough neutrosophic sets. Rough variational co-efficient 
similarity measure between rough neutrosophic setsA and 
B in 3-D vector space can be presented as follows:  
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T1...,,1,1 , then Eq.(23) is reduced to Eq.(19). 

Proposition 24 

The weighted variational co-efficient similarity measure 
also satisfies the following properties: 

;1),(0.1  BAVarWRNS  
;),(),(.2 ABVarBAVar WRNSWRNS   

3. VarWRNS(A, B) = 1; if A = B i.e.,
),()( xTxT iBiA  ),()( xIxI iBiA  and ),()( xFxF iBiA 

for every xi (i = 1, 2, …, n) in X. 
Proof:     

 (1.) It is obvious that .0),( BAVarW RNS  Thus it is 
required to prove that 1),( BAVarWRNS . 

From rough neutrosophic weighted dice similarity 
measure, it can be written that  
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and from rough neutrosophic weighted cosine 
similarity measure it can be written that   
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Combining Eq.(24) and Eq.(25), we obtain 
VarWRNS(A, B) =  
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Thus, ;1),(0  BAVarWRNS

(2.) VarWRNS(A, B) = 
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(3.) If A = B i.e.,
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),()( xTxT iBiA  ),()( xIxI iBiA  and 
),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X,                                                                            
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These results show the completion of the proofs of the 
three proiperties. 

6. Multi attribute decision making based on rough
neutrosophic variational coefficient similarity 
measure  

In this section, a rough variational co-efficient 
similarity measure is employed to multi-attribute decision 
making in rough neutrosophic environment. Assume that 
A = {A1, A2,..., Am} be the set of alternatives and C = {C1, 
C2,..., Cn} be the set of attributes in a multi-attribute 
decision making problem. Assune that wj be the weight of 
the attribute Cj provided by the decision maker such that 
each ]1,0[wi  and 11  

n
j jw  However, in real situation 

decision maker may often face difficulty to evaluate 
alternatives over the attributes due to vague or incomplete 
information about alternatives in a decision making 
situation. Rough neutrosophic set can be used in MADM 
to deal with incomplete information of the alternatives. In 
this paper, the assessment values of all the alternatives 
with respect to attributes are considered as the rough 
neutrosophic values (see  Table 1).  

Table1: Rough neutrosophic decision matrix
nmijijRNS ddD  , = 

mnmnmmmmm

nn

nn

n

ddddddA

ddddddA

ddddddA
CCC

,...,,
.............
.............
,...,,

,...,,
.

2211

22222221212

11121211111

21

         (27)              

Here ijij dd , is the rough neutrosophic number for the 

i-th alternative and the j-th attribute. 

Definition 6.1: Transforming operator for SVNSs [80] 
The rough neutrosophic decision matrix (27) can be 

transformed to single valued neutrosophic decision matrix 
whose ij-th element ij  can be presented as follows: 

nm
ijij

ij 2
dd




 , for i = 1, 2, 3,..., m; 

j = 1, 2, 3, ..., n.                                         .                     (28) 
Step1. Determine the neutrosophic relative positive 

ideal solution 

In multi-criteria decision-making environment, the 
concept of ideal point has been used to help identify the 
best alternative in the decision set.  
Definition 6.2 [51]. 

Let H be the collection of two types of attributes, 
namely, benefit type attribute (P) and cost type attribute 
(L) in the MADM problems. The relative positive ideal 
neutrosophic solution (RPINS) ]...,,,[ q Sq Sq SSQ 

  is the
solution of the decision matrix nmijijijS FITD  ,, where, 

every component of QS
  has the following form:

for benefit type attribute, every component of QS
 has the 

following form: 

PjforFIT ij
i

ij
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and for cost type attribute, every component of  QS
 has 

the following form 
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Step 2. Determine the weighted variational co-efficient 

similarity measure between ideal alternative and each 

alternative. 
The variational co-efficient similarity measure between 

ideal alternative QS
 and each alternative Ai for i = 1, 2, …, 

m can be determined by the following equation as follows: 
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  (31) 

Step3. Rank the alternatives. 

According to the values obtained from Eq.(31), the 
ranking order of all the alternatives can be easily 

12

determined. Highest value indicates the best alternative.
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Step 4. End. 

7 Numerical example 
In this section, rough neutrosophic MADM regarding 

investment problem is considered to demonstrate the 
applicability and the effectiveness of the proposed 
approach. However, investment problem is not easy to 
solve. It not only requires oodles of patience and discipline, 
but also a great deal of research and a sound understanding 
of the market, mathematical tools, among others. Suppose 
an investment company wants to invest a sum of money in 
the best option. Assume that there are four possible 
alternatives to invest the money: (1) A1 is a computer 
company; (2) A2 is a garment company; (3) A3 is a 
telecommunication company; and (4) A4 is a food company. 
The investment company must take a decision based on the 
following three criteria: (1) C1 is the growth factor; (2) C2 
is the environmental impact; and (3) C3 is the risk factor. 
The four possible alternatives are to be evaluated under the 
attribute by the rough neutrosophic assessments provided 
by the decision maker. These assessment values are given 
in the rough neutrosophic decision matrix (see the table 2).  

Table2. Rough neutrosophic decision matrix 
 34)(),( PNPND ijij

)1.0,1.0,4.0(
),3.0,3.0,2.0(
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    (32) 

The known weight information is given as follows: 
W = [w1, w2, w3]T = [0.3, 0.3, 0.4] and 13

1  i iw . 

Step1. Determine the types of criteria. 

First two types i.e. 1C  and 2C  of the given criteria are 
benefit type criteria and the last one criterion i.e. 3C  is the 
cost type criteria. 
Step2. Determine the relative neutrosophic positive 

ideal solution 

Using Eq. (29), Eq.(30), the relative positive ideal 
neutrosophic solution for the given matrix defined in 
Eq.(32) can be obtained as: 

)]3.0,3.0,1.0(),2.0,2.0,7.0(),2.0,2.0,4.0[(
QS  

Step3. Determine the weighted variational similarity 

measure 

The weighted variational co-efficient similarity 
measure is determined by using Eq.(28), Eq.(31) and 
Eq.(32). The results obtained for different values of 
have been  shown in the Table-3. 

Table-3. Results of rough variational similarity measure for different values of , 10 

Similarity measure method Values of s Measure values Ranking order 

),( SSWRNS DQVar   
0.10 0.8769; 0.9741; 0.9917; 0.8107 A3 > A2 > A1 > A4
0.25 0.8740, 0.9739 0.9905 0.8078 A3 > A2 > A1 > A4

0.50 0.8692; 0.9735; 0.9887; 0.8028 A3 > A2 > A1 > A4

0.75 0.8643; 0.9730; 0.9868; 0.7979 A3 > A2 > A1 > A4

0.90 0.8614; 0.9728; 0.9857; 0.7949 A3 > A2 > A1 > A4

Step 4. Rank the alternatives. 

According to the different values of , the results 
obtained in Table-3 reflects that A3 is the best alternative. 

8. Comparisons of different rough similarity
measure with rough variation similarity measure 

In this section, four existing rough similarity measures
- namely: rough cosine similarity measure, rough dice
similarity measure, rough cotangent similarity measure and 
rough Jaccard similarity measure - have been  compared
with proposed rough variational co-efficient similarity 
measure for different values of  . The comparison results 
are  listed in the Table 3 and Table 4. 
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Table-4. Results of existing rough neutrosophic similarity measure methods. 

Rough similarity 
measure methods 

Values of s Measure values Ranking order 

),( SSWRNS DQJAC   [21] ... 0.7870, 0.9471; 0.9739; 0.6832 A3 > A2 > A1 > A4

),( SSWRNS DQDIC   [21] ... 0.8595; 0.9726; 0.9873; 0.7929 A3 > A2 > A1 > A4

),( SSWRNS DQC  [20] ... 0.8788; 0.9738; 0.9920; 0.9132 A3 > A2 > A4> A1

),( SSWRNS DQCOT   [19] ... 0.8472; 0.9358; 0.9643; 0.8103 A3 > A2 > A1 > A4

Conclusion 

      In this paper, we have proposed rough variational coef-
ficient similarity measures. We also proved some of their 
basic properties. We have presented an application of 
rough neutrosophic variational coefficient similarity meas-
ure for a decision making problem on investment. The 
concept presented in the paper can be applied to deal with 
other multi attribute decision making problems in rough 
neutrosophic environment.  
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