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Abstract: The purpose of this study is to propose new similarity
measures namely rough variational coefficient similarity measure
under the rough neutrosophic environment. The weighted rough
variational coefficient similarity measure has been also defined.
The weighted rough variational coefficient similarity measures
between the rough ideal alternative and each alternative are

calculated to find the best alternative. The ranking order of all the
alternatives can be determined by using the numerical values of
similarity measures. Finally, an illustrative example has been
provided to show the effectiveness and validity of the proposed
approach. Comparisons of decision results of existing rough
similarity measures have been provided.
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1 Introduction

In 1965, L. A. Zadeh grounded the concept of degree
of membership and defined fuzzy set [1] to repre-
sent/manipulate data with non-statistical uncertainty. In
1986, K. T. Atanassov [2] introduced the degree of non-
membership as independent component and proposed intu-
itionistic fuzzy set (IFS). F. Smarandache introduced the
degree of indeterminacy as independent component and
defined the neutrosophic set [3, 4, 5]. For purpose of solv-
ing practical problems, Wang et al. [6] restricted the con-
cept of neutrosophic set to single valued neutrosophic set
(SVNS), since single value is an instance of set value.
SVNS is a subclass of the neutrosophic set. SVNS consists
of the three independent components namely, truth-
membership, indeterminacy-membership and falsity-
membership functions.

The concept of rough set theory proposed by Z. Pawlak
[7] is an extension of the crisp set theory for the study of
intelligent systems characterized by inexact, uncertain or
insufficient information. The hybridization of rough set
theory and neutrosophic set theory produces the rough neu-
trosophic set theory [8, 9], which was proposed by Broumi,
Dhar and Smarandache [8, 9]. Rough neutrosophic set the-
ory is also a powerful mathematical tool to deal with in-
completeness.

Literature review reflects that similarity measures play
an important role in the analysis and research of clustering
analysis, decision making, medical diagnosis, pattern
recognition, etc. Various similarity measures [10, 11, 12,
13, 14, 15, 16, 17, 18] of SVNSs and hybrid SVNSs are

available in the literature. The concept of similarity
measures in rough neutrosophic environment [19, 20, 21]
has been recently proposed.

Pramanik and Mondal [19] proposed cotangent
similarity measure of rough neutrosophic sets. In the same
study [19],Pramanik and Mondal established its basic
properties and provided its application to medical
diagnosis. Pramanik and Mondal [20] also proposed cosine
similarity measure of rough neutrosophic sets and its
application in medical diagnosis. The same authors [21]
also  studied Jaccard similarity measure and Dice
similarity measures in rough neutrosophic environment
and provided their applications to multi attribute decision
making. Mondal and Pramanik [22] presented tri-complex
rough neutrosophic similarity measure and its application
in multi-attribute decision making. Together with F.
Smarandache and S. Pramnik, K. Mondal [23] presented
hypercomplex rough neutrosophic similarity measure and
its application in multi-attribute decision making. Mondal,
Pramanik, and Smarandache [24] presented several trigo-
nometric Hamming similarity measures of rough neutro-
sophic sets and their applications in multi attribute decision
making problems.

Different methods for multiattribute decision making
(MADM) and multicriteria decision making (MCDM)
problems are available in the literature in different
environment such as crisp environment [25, 26, 27, 28, 29],
fuzzy environment [30, 31], intuitionistic fuzzy
environment [32, 33, 34, 35, 36, 37, 38, 39, 40],
neutrosophic environment [41, 42, 43, 44, 45, 46, 47, 48,
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49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62],
interval neutrosophic environment [63, 65, 66, 67, 68],
neutrosophic soft expert environment [69], neutrosophic
bipolar environment [70, 71], neutrosophic soft
environment [72, 73, 74, 75, 76], neutrosophic hesitant
fuzzy environment [77, 78, 79], rough neutrolsophic
environment [80, 81], etc. In neutrosophic environment
Biswas, Pramanik and Giri [82] studied hybrid vector
similarity measure and its application in multi-attribute
decision making. Getting motivation from the work of
Biswas, Pramanik and Giri [82], for hybrid vector
similarity measure in neutrosophic envionment, we extend
the concept in rough neutrosophic environment.

In this paper, a new similarity measurement is
proposed, namely rough variational coefficient similarity
measure under rough neutrosophic environment. A
numerical example is also provided.

Rest of the paper is structured as follows. Section 2
presents neutrosophic and rough neutrosophic preli-
minaries. Section 3 discusses various similarity measures
and varional coefficient similarity measure in crisp envi-
ronment. Section 4 presents various similarity measures
and variational similarity measure for single valued
neutrosophic sets. Section 5 presents variational coefficient
similarity measure and weighted variational coefficient
similarity measure for rough neutrosophic sets and
establishes their basic properties. Section 6 is devoted to
present multi attribute decision making based on rough
neutrosophic variational coefficient similarity measure.
Section 7 demonstrates the application of rough variational
coefficient similarity measures to investment problem
Finally, section 8 concludes the paper with stating the
future scope of research.

2 Neutrosophic preliminaries

Definition 2.1 [3, 4, 5] Neutrosophic set

Let X be a space of points (objects) with generic
element in X denoted by x. Then a neutrosophic set A in X
is denoted by A={x(T,(x),1,(x),F,(x)): xe X} where,
T,(x) is the truth membership function, 7,(x) is the
indeterminacy membership function and F,(x) is the
falsity membership function. The
functions 7, (x) , I ,(x) and F,(x) are real standard or non-

standard subsets of ] 0, 1" [ . There is no restriction on the

T,(x) , 1, F,(x)

ie. 0T, (x)+1,(x)+F, (x)<3".

Definition 2.2 [6] (Single-valued neutrosophic set).
Let X be a universal space of points (objects), with a

generic element x € X. A single-valued neutrosophic set
(SVNS) Nc Xis denoted by

sum of and

N=| <TN(x),[N(x),FN(x)>/x, vxe X , when X is continuous;

N=>"(Ty(), In(x), Fy(x)/x,¥xeX ,  when Xis discrete.

SVNS is characterized by a true membership
function 7 (x) , a falsity membership function gy (x) and
an indeterminacy function 7y (x) ith7y(x), Fy(x), Iy(x) €
[0, 1] for all xe X. Foreachxex ,ofa SVNS N
0sTy(X)+INn(X)+Fy(x)<3.

2.1 Some operational rules and properties of SVNSs

Let Ny=(T4.1.4:F4) and Np=(T.15.F5) be two SVNSs

in X. Then the following operations are defined as follows:
L. Complement: N yc=(F 4,1-1,. T ;) VxeX .

II. Addition: N,® Ny =(T4+Ts~TuTs.1415:F1F5)
III. Multiplication:
Na®Np=(TuTp-la+Ip-14l5:Fa+Fp-FaFs)

IV. Scalar Multiplication:

XNA:<1—(1—TA)AJIZ,F7};> for A>0.

V(N = )" 101 )" 1= F )" ) for 2.>0.

Definition 2.3 [6]
Complement of a SVNS N is denoted by N° and is
defined by

Tne(X)=Fn(x); Inc(X)=1=1y(xX) ; Fye(x)=Tn(x)
Definition 2.4 [6]

A SVNS N, is contained in the other SVNS Np,
denoted as y,c N, if and only if
TN, )STng(X) 5 In, ()2 TN (X) 5 Fy ()2 Fy,(x) VxeX
Definition 2.5 [6]

Two SVNSs N, and Njp are equal, i.e. N,= Np, if and
onlyif v ,o N and N, Ny
Definition 2.6 [6]
Union of two SVNSs N, and N3 is a SVNS N, written
as N¢=N,UNjg . Its truth membership, indeterminacy-
membership and falsity membership functions are related
to those of N, and Nj by
T =M T (. Ty (09) Iy (D=1, (1, ()
Fre@=min(Fy , (x),Fy, (x) for all x in X.
Definition 2.7 [6] Intersection of two SVNSs N, and Nj is
a SVNS Np, written as Np=N, Ny , whose truth
membership, indeterminacy-membership and falsity
membership functions are related to those of Ny and N by
Tve ()=min(Ty , (0), Ty (9)) 3 L () =max(1y , (0), 1, () 5

Fne (X)=maX(FNA (X),Fng (x)) for all x in X.

Definition 2.8 Rough Neutrosophic Sets [8, 9]

Let Z be a non-null set and R be an equivalence
relation on Z. Let P be neutrosophic set in Z with the
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membership function 7p indeterminacy function /p, and
non-membership function Fp. The lower and the upper
approximations of P in the approximation (Z, R) denoted

by N(P)and N(P) are respectively defined as follows:
E(P)=<<x, Ty (s Ly (X, Fyy(py(X) >/ 2 €[x]g X € z),
N(P):<<xaTﬁ(P)(x)alﬁ(P)(x)aFF/(P)(x) >/ze[x]z,x€ Z>,
Here, Ty (X)=n, €[x]g Tp(2), Inp)(¥)=A,€[x]g 1p(2),
Fypy ()=, €[xX]g Fp(2), The)(X)=V, €[x]g Tp(2),
Iney () =V elxlg Ip(2), Frpy(x)=v, €[x]g Fp(2)

S0, 0= supT y(p) () + suplyp)(x)+ supFyp (x) <3

0< supTﬁ(P)(x)+ suplﬁ(P)(x)+ supFﬁ(P)(x) <3

Here v and A denote “max” and “min’’ operators
respectively. Tp(z), Ip(z) and Fp(z) denote respectively the
membership, indeterminacy and non-membership function
of z with respect to P. It is easy to see
that N(P) and N(P) are two neutrosophic sets in Z.

Thus NS mappings N, N : N(Z) —» NZ) are,
respectively, referred to as the lower and the upper rough
NS approximation operators, and the pair (N(P),N(P)) is

called the rough neutrosophic set [8, 9] in (Z, R).
From the above definition, it is seen

that N(P) and N(P) have constant membership on the
of R. if N(P) = N(P)
Inp)(x)= Iy (x)

equivalence classes ie.
Tvin(¥)= Tre (),
FE(P)(X): FN(P)(X),VX eZ.

P is said to be a definable neutrosophic set in the
approximation (Z, R). It can be easily proved that zero
neutrosophic set (Oy = (0, 1, 1)) and unit neutrosophic sets
(1y=(1, 0, 0)) are definable neutrosophic sets.

Definition 2.9 [8, 9]

If N(P) :(ﬂ(P),N(P)) is a rough neutrosophic set in
(Z, R) , the rough complement [8, 9] of N(P) is the rough
neutrosophic set denoted by ~ N(P)=(N(P)’,N(P)°)

and

where N(P)°, N(P)‘are the complements of neutrosophic
sets of N(P), N(P) respectively.

N(P)* :<< X, Fxery (0 1= Ly(py (X), Ty (X) >/ x € Z> and
N(P) =(<x, Fy(p) (). 1= () (X). Ty () >/ x € Z)

Definition 2.10 [8, 9]

If N(P,) and N(P,) are the two rough neutrosophic
sets of the neutrosophic set P respectively in Z, then the
following definitions [8, 9] hold:

N(P)=N(P,)< N(P))=N(P,) AN(P,) = N(P,)
N(P)SN(P,y)< N(P,) < N(P,) AN(P) < N(P)
N(POUN(P,)=< N(P)UN(P,).N(P)UN(P,)>
N(PYNN(Py)=< N(P)NN(P,).N(P)N(P,)>

N(P)+N(Py)=<N(P)+N(P,),N(P))+N(P,)>
N(P)).N(Py)=<N(P)).N(P,),N(P)).N(P,) >
If N, M, L are the rough neutrosophic sets in (Z, R),
then the following proposition are stated from definitions
8,9].
I[Dro;}osition 11[8,9]
1. ~(~N)=N
2. NUM=MUN,NNM=MNN
3. (LUM)UN=LUMUN),
(LNAMYNN=LN(MNN)
4. (LUMYNN=LUM)NLUN),
LNMUN=LNMULNN)
Proposition 2 [8, 9]
De Morgan‘s Laws are satisfied for rough neutrosophic
sets .
L ~(N(PPU N(Py)) =(~(N(P)N(~ N(P,))
2. ~(N(P)N N(Py)) =(~ (N(P)U(~ N(P,))
Proposition 3 [8, 9]
If P, and P, are two neutrosophic sets in U such that
P\ C P, then N(Pl) S N(Py)
L. N(PlﬂPz) c N(P)NN(Py)
2. N(PIUPz) o N(PYUN(Py)
Proposition 4 [8, 9]
1. N(P)=~N(~P)
2. N(P)=~N(~P)

3. N(P) SN(P)

3 Similarity measures and variational coefficient simi-
larity measure in crisp environment

The vector similarity measure is one of the important
tools for the degree of similarity between objects. However,
the Jaccard, Dice, and cosine similarity measures are often
used for this purpose. Jaccard [83], Dice [84] , and cosine
[85] similarity measures between two vectors are stated
below.

Let X = (x, X2, ..., Xy) and Y = (y1, y2, ..., Yn) be two n-
dimensional vectors with positive co-ordinates.

Definition 3.1 [83]

Jeccard index of two vectors (measuring the
“similarity” of these vectors) can be defined as follows:
1Y) = o i, (M

PP P-xy S+ Syl Sy,
where | X|* = ¥, and |V|*= xu,)7 are the Euclidean

norm of X and Y, X.Y =3, x, , is the inner product of the
vector X and Y.
Proposition 5 [83]
Jaccard index satisfies the following properties:
1.0 JX,Y) =1
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2.J(X, V) = )(Y, X)
3.J X, V)=1,for X=Yie x;=y;(i=1, 2, ..., n) for every
X; € Xandy; € Y
Definition 3.2 [84]
The Dice similarity measure can be defined as follows:
2XY 25Xy, 2)

EX, V)= oo = ot
R S AT

Proposition 6 [84]

The Dice similarity measure satisfies the following
properties:
1.0 E(X, Y) <1
2.E(X, Y) = E(Y, X)
3J X, )=1,for X=Yie x;=y;(i=1, 2, ..., n) for every
X;€ Xandy; € Y.
Definition 3.3 [85]

The cosine similarity measure between two vectors
X and Y is the inner product of these two vectors divided
by the product of their lengths and can be defined as
follows:

XY Z?:l XiY;

P s e 52
Proposition 7 [85]

The cosine similarity measure satisfies the following
properties

1.0s C(X,Y) =1

2.C(X, V) =C(Y, X)

3.CX, V)=1,forX=Yie,x;=y;(i=1,2, ..., n) for
everyx; € Xandy, € Y.

These three formulas are similar in the sense that they
take values in the interval [0, 1]. Jaccard and Dice
similarity measures are undefined when x; = 0, and y; = 0
for i =1, 2, ..., n and cosine similarity measure is
undefined when x;=0ory,=0fori=1,2, ..., n.
Definition 3.4 [86]

Variational co-efficient similarity measure can be
defined as follows:

CX, V)= )

2XY XY
VX, V)= hi——— + (1-1)
XD = M I
22?:1 XiY; 27:1 XiV;
=2 L_+(1-2) . “4)
S+ yiz V2 X7 Vi y,-z

Proposition 8 [86]

Variational co-efficient similarity measure satisfies

the following properties:

1.0s VX, Y) =1

2.V(X, )= V(¥, X)

3.V, )=1,for X=Yie, x; =y;(i=1,2, ..., n) for
everyx; € Xandy, € Y.

4. Various similarity measures for single valued
neutrosophic sets.

Assume N ,=(T4,14,F4) and Ny=(Tj,15,F5) be two
SVNSs in a universe of discourse X = (x1, Xp,..., Xp).
Ta-14F4€[0,1] forany x,e X in Ny or 75,1,,Fze[0,1] for
any x,eX in Nz can be considered as a vector
representation with three elements. Let w, €[0,1] be the
weight of each element x; for i = 1, 2, ..., n such
that >7,w, =1 , then Jaccard, Dice and cosine similarity

measures can be presented as follows:
Definition 4.1[10] Jaccard similarity measure between

Na=(T4:14,F4) and Np=(Tp.I5.Fp) can be defined as
follows:
Jac(Ny, Np) =
(T 4T p(x)+1 4(x; )1 g(x;)
+F ,(x; ) F 5(x;))
[(TA(XI))2+(1A(XI))2+(FA(XI‘))2J
+ [(TB(X,.))2 (I 5(x )P +(F p(x)) ]
AT 4 (x )T () +1 4(x; )1 g(x;)
+F 4 (x; ) F p(x;)}
Proposition 9 [10]
Jaccard similarity measure
properites:
1. 0<Jac(N 4, Np)<1;
2. Jac(N 4> Np)=Jac(Ng, N 1);
3. Jac(N 4, Np)=1; if Ny=Npi.e., T4(x)=T5(x),
Li(x)=15(x), and F (x) = Fp(x),forevery x;(i=1,2, ...,
n)in X.

1 n

=1

®)

satiefies the following

Definition 4.1.1 [10] Weighted Jaccard similarity measure
between N, =(T4.74,F4) and Np=(Tj.I5.Fp) can be
defined as follows:

Jac,(Ny, Ng)=

(T [(x )T p(x,) +1 (x; ) 5(x;)

HF () Fp(x,))
(7 e+ ()P +(F ) |
# (TP (1) P (F o) F ]
AT [(x )T p(x) +1 (x,) 1 p(x;)
+F (x;)F p(x,)}

Proposition 10 [10]

Weighted Jaccard similarity measure satisfies the

following properties:
1. 0<Jac, (N 4> Np)<1;
2. Jacw(NAsNB): Jacw(NB:NA);
3. Jac,(N 4, Np)=1; if Ny= Npie., T4(x)=Ts(x),
T4(x) = I5(x), and F(x;) = F(x), forevery x;(i= 1,2, ...,
n)in X.

n
i=1 Wi

Q)
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Definition 4.2 [11]

Dice similarity measure between N,=(T 4. 74.F4)
and NB:<TB:IB’FB > is defined as:
DiC(NA, NB) =

|:TA(xi )T p(x;) +1 4(x; )IB(x[):|
1 s +F (x;) F p(x;)
— =1
" <[(TA(xl.))2+(]A(xl.))2+(FA(xl-))2J]>
+ [(TB(xi))z+(IB(xi))2+(FB(xi))2
Proposition 11 [11]

Dice similarity measure
properties:
1.0<Dic(N 4, Np)<1;

2. Dic(NA,NB) = Dic(NBsNA);
3. Dic(N 4, Np)=1; if Ny=Ngie., T,(x)=Tpx),

IA(xi) = [B(xi)’ and FA(xi) = FB(xi)’for cvery xi(i = 1: 2; LERY}
n)in X.

()

satisfies the following

Definition 4.2.1 [11]
Weighted Dice  similarity measure between

Na=(T4:14.F4) and Np=(Tp.15.F5) can be defined as

follows:
DZVCW(NA, NB) =
Z{TA(xi VT p(x,)+1 ,(x; )IB(xl.)}

s +F ,(x; ) F 5(x;)

i=1 Wi

: <l(TA(xl.))2 (1 )P+ (F L (x) J]> (®)
) Py, >> +(F 4

Proposition 12 [11]

Weighted Dice similarity measure
1.0< Dic (N4, Nz)<1;

2.Dic (N 4, Ng)= Dic,(Ng,N 1);
3.Dic (N4, Np)=1; if Ny= Npie., T,(x)=Ts(x),

I.(a)=15(x,), and F,(x) = Fp(x). forevery x;(i=1,2, ...,
n)in X.

Definition 4.3 [12]
Cosine similarity measure between N, =(T,.14.F4)

and Ny=(T'3.15,F5 ) can be defined as follows:
(T (x )T p(x) +1 4(x; )1 p(x;)
" +F (x;) F p(x;))
VT i) P+ (i) P+ (F ) f
V) P+ (1,000 P+ (F )

Cos(N,, Np)= ~

(€))

Proposition 13 [12]
Cosine similarity measure satisfies the following
properties:
1.0= Cos (N4, Np)< 1;

2. Cos (N 4, Np)=Cos ,(Ng,N )

3' COSw(NAaNB):l; 1f]vA = NB i-e-a TA(xi) :TB(xi)a
14(x)=15(x), and F4(x;) = F(x),forevery x;(i=1, 2

n) in X.
Definition 4.3.1 [12]
Weighted cosine similarity measure between

Na=(T4:14.F4) and Np=(Tp.I5,Fp) can be defined as
follows:
Cos,(N4, Np)=
(T ((x )T p(x) +1 [(x;) 1 p(x;)
" +F 4 (x;) F p(x;))
\/(TA(xi))2+(IA(xi))2+(FA(xi))2

V@ 0 P+ (1 )P+ (F )

(10)

Proposition 14 [12]

Weighted cosine
following properties:
1.0 Cos (N4, Np) S 1;
2.Cos (N4, Nz)=Cos (Ns,N.)
3.Cos (N4> Np)=1; if Ny=Npie., T4(x)=Tp(x),
T4(x) = I5(x), and F,(x;) = Fp(x;),forevery x;(i=1, 2
n)in X.

Jaccard and Dice similarity measures between two

neutrosophic sets NA:<TA,[A,FA> and Nz = <TB,]B,FB>
are undefined when 7, (x;) = 1 4(x;) = F4(x;) =0 and
Tp(x)=1p(x)=Fp(x)=0foralli=1,2
the cosine formula for two neutrosophic sets
Na=(T4:14,F4) and Np=(Tp.,15.F3 ) is undefined when
Ta(x)=14(x)=F4(x) =001 Tp(x;)=15(x;)=Fp(x)=0for
alli=1,2,...,n

similarity measure satisfies the

., n. Similarly

5 Variational similarity measures for rough neu-

trosophic sets

The notion of rough neutrosophic set (RNS) is used as
vector representations in 3D-vector space. Assume that X =
(x1, X2,..., x,) and Y= (y1, »a, ..., ¥,) be two n-dimensional
vectors with positive co-ordinates. Jaccard, Dice, cosine
and cotangent similarity measures between two vectors are
stated as follows.

Definition 5.1 [21] Jaccard similarity measure under rough
neutrosophic environment

Assume that

A=((T4C) L G- E )M T4 (). T 40 F () and
B=((T () Ly (o) En o)) (T 5 (6 T 5. F(x))) in X = (3,

Xa,..., Xy) be any two rough neutrosophic sets. Jacard simi-
larity measure [21] between rough neutrosophic sets 4 and
B can be defined as follows:

Jacgys(4, B) =
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(8T (x; ) 8T p(x;) +81 4(x; ) B p(x;) DICrys(4, B)=
Lo HBF ) 4(0) 1o 26Ty P61 ) PO ) F
n [(STA(XI))2+(81A(XI))2+(8FA(X1'))2J (11 n=" <[(5TA(X,))2+(51A(X[))2+(5FA(xi))2J ‘> (13)
+ [(STB(xi))Z +(37 5(x,) P+ (8F y(x, ))2] + [(STB(x,-))er(S]B(xi))z +(8F (x))

—[8T 4(x; )3T g(x;) +08I ,(x;) g(x;)
+OF 4(x; ) OF p(x;)]
Proposition 15 [21]

Jaccard similarity measure [21] between 4 and B

satisfies the following properties:

1. 0< Jac gys(4,B) <1;

2. Jac pys(A, B)= Jac prs (B, A);

3. Jacgps(4,B)=1; iff A =B

4. If CisaRNS in Yand 4c BcC then,

Jacgys (4, C) < Jacgys(4, B), and Jacgys (4, C) < Jacgys(B, C)
Definition 5.1.1 [21]

If we consider the weights of each element x;, weighted
rough Jaccard similarity measure [21] between rough
neutrosophic sets A and B can be defined as follows:
Jacyrys(4, B) =

(T (x;) OT p(x;) + 6l 4(x; ) Ol y(x;)
+OF 4(x;) OF g(x,))
67 (e P+ (61 e P+ (6 (x|
o7 s P (0 s ) P+ (07 55
—[OT (x; ) OT p(x;) + 0l ,(x;) Ol p(x;)
+OF 4(x; ) OF p(x;)]

(12)

n
i=l Wi

wielo,],i=1,2,..,nand Y w, =1.1f we takewi:l,
n

= 1, 2,. R (N then JaCWRNs(A, B) = JacRNS(A,B)
Proposition 16 [21]

The weighted rough Jaccard similarity [21] measure
between two rough neutrosophic sets 4 and B also satisfies
the following properties:

1. 0<Jacypns(4,B)<1;

2. Jacypas(A, B)= Jacypps(B, A);

3. Jacypys(4,B)=1; iff A =B

4. If Cis a WRNS in Y and 4 < B < C then, Jacypys(4, C)
< Jacwrys(A, B) , and Jacyrys(4, C) < Jacyrys(B, C)
Definition 5.2 [21] Dice similarity measure under rough
neutrosophic environment

In this section, Dice similarity measure and the
weighted Dice similarity measure for rough neutrosophic
sets have been stated due to Pramanik and Mondal [21].

Suppose that

A=((L4 () LuG) Ey M T 40 T4 F 4 () and

B=((T(0).Ls (). 5 )M T (). T 5 (). F ()} be any

two rough neutrosophic sets in X = (xi, xp,..., X,). Dice
similarity measure between rough neutrosophic sets 4 and
B can be defined as follows:

Proposition 17 [21]

Dice similarity measure [21]
properties.
1. 0<DIC y5(4, B)<I;
2. DIC gys(A, B)=DIC y5(B, A);
3. DIC zy5(4,B)=1; iff A = B
4. If CisaRNS in Yand 4c BcC then,

DICRNS(A: C) < D[CRNS(Ar B) N and DICRNs(A, C) <

DICgys(B, C),

For proofs of the above mentioned four properties, see
[21].
Definition 5.2.1

If we consider the weights of each element x; a
weighted rough Dice similarity measure between rough
neutrosophic sets 4 and B can be defined as follows:
DICyrys(4, B) =

z{én(xi)éTB<xi)+f>1A<x,~)é73(xi)}
0 +OF 4(x;)OF p(x;)

= <[(5TA(xi))2+(51A(xi))2+(5FA(xi))2J ]> (14)
(6T ) P+ (67 500+ (6F o))

wiel0,1],i=1,2,...,nand Y, w, =1.If we take Wi:l,
n

satisfies the following

i= l, 2,..., n, then D[CWRNS(A: B) = D[CRNS(A,B)

Proposition 18 [21]

The weighted rough Dice similarity [21] measure
between two rough neutrosophic sets 4 and B also satisfies
the following properties:

1. 0<DICypus(4, B)<1;

2. DICypns(A4, B)= DIC pns(B, A);

3. DIC,ypns(A, B)=1; iff A =B

4. If CisaRNS in Yand 4c BcC then,
DICygrys(4, C) £ DICyrys(4, B), and
DICygys(4, C) < DICyys(B, C).

For proofs of the above mentioned four properties, see
[21].

Definition 5.3 [20]

Cosine similarity measure can be defined as the inner
product of two vectors divided by the product of their
lengths. It is the cosine of the angle between the vector
representations of two rough neutrosophic sets. The cosine
similarity measure is a fundamental measure used in
information technology. Pramanik and Mondal [20]
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defined cosine similarity measure between rough
neutrosophic sets in 3-D vector space.

Assume that
A=((4 ) L) E s M) Ty Fax)) and

B=((T5() Ly (o). E s )T 5 (e T 5 2. Fy(x))) in X = (3,

X2,..., X,) be any rough neutrosophic sets. Pramanik and
Mondal [20] defined cosine similarity measure between
rough neutrosophic sets 4 and B as follows:

Cras(A, B) =
ST ,(x, ST 5(x,)+ 1 ((x, )81 5(x,)
lz;_q_ +0F /(x;)8F p(x;) (15)

i=1
" \/[(BTA(’G‘))Z +(6IA(xi))2 +(8FA(xi))2J
[(STB(xl.))z+(613(xl.))2+(6FB(xi))2]
T,G)+T ,(x) Tp()+T 5(x)
2 2 ’
Lp(x)+ 5(x;)
2
Fy(x;) Jr}?13 (x;)
2

Here, 67 ,(x;)= , 0T p(x;) =

L)+ 4(x)
2

F () +F 4(x)
2

Proposition 19 [20]

Let 4 and B be rough neutrosophic sets. Cosine similarity

measure [20] between A and B satisfies the following

properties.

1. 0<C p5(4, B)<1;

2. Cras(A,B)=C grs(B, A);

3. Cpps(4,B)=1; iff 4 =B

4. If Cis a RNS in Y and 4 BcCthen, Crys(4, C) <

Crns(4, B) , and Crys(4, C) < Cpys(B, C).

Definition 5.3.1 [20]

If we consider the weights of each element x; a
weighted rough cosine similarity measure between rough
neutrosophic sets 4 and B can be defined as follows:

ST 4(x;)OT g(x;)+ 3l [(x;)dl p(x;)

+0F 4(x;) OF p(x;) (
\/[(ém(x,))z+(61A(x,-))2+(6FA(x,->)2J

(67 ) F 81 50 P +(F ) F |
1, 2,...

O (x;)= , Ol p(x;)=

s

OF 4(x;)= , OF p(x;)=

Crwrns(A4,B) =X iwi 16)

wiel0,1], i = , n and YL w =1 . If we

take y, =, i =1, 2,..., 0, then Cyans(4, B) = Cans(4, B)
n

Proposition 20 [20]

The weighted rough cosine similarity measure [20]
between two rough neutrosophic sets 4 and B also satisfies
the following properties:

1. 0<Cypprs(4,B)<I;

2. Cypus(A4, B)=Cyypys(B, A);

3. Cypus(AB)=1; iff 4 =B

4. If Cisa WRNS in Y and 4 < B < C then, Cygys(4, C) <
Cwrns(4, B) , and Cyrys(4, C) < Cyrys(B, C).

For proofs of the above mentioned four properties, see
[20].
Definition 5.4 [19] Cotangent similarity measures of
rough neutrosophic sets

Assume that

A=((T1 ) L o) Ea GOMT 1 (6.4 ). F 4 (xp)) and
B=((T 5 ()L o). Ep )L (T (e T 5 (). F 5 (e ) i X = (1,

X2,..., Xy) be any two rough neutrosophic sets. Pramanik
and Mondal [19] defined cotangent similarity measure
between rough neutrosophic sets A and B as follows:
COTpns(4, B) =

34374 (x) = 8T5(x,)|
Lo (cotl Z| +574(x)~815(x)
n 12

+874(x) —815(x)

an

Tp(x:) +TB (x;)

T, G)+T ,(x;)
2 2

Here, 87 ,(x;)= , 0T g(x;)=
L) *1a) gy (o Lol + ()
2 2

EA(Xi)"'FA(xi)’ SFB(xi):EB(Xi)+FB(Xi)
2 2

Proposition 21 [19]

Cotangent similarity measure satisfies the following
properties:
1. 0<SCOT prs( A, B)<1;
2. COT prs(A, B)= COT gps(B, A);
3. COT grs(4,B)=1; iff A = B
4. If CisaRNS in Yand 4 BcCthen, COTyys(4, C) <
COTRNs(A, B) 5 and COTRNs(A, C) < COTRNs(B, C)
Definition 5.4.1

If we consider the weights of each element x; a
weighted rough cotangent similarity measure [19] between

rough neutrosophic sets 4 and B can be defined as follows:
COTwrns(4, B) =

3+|5TA(xi)_5TB(Xi)|

& ((x;) =

’

OF 4(x;) =

Shawi{ ot < 4]0 74(e) =0 () (18)
+|51A(xi)—513(x1')|
wiel0,1],i=1,2,...,nand Y, w =1.If we takewi=l, i
n

= 1, 2,..., n, then COTWRNS'(A, B) = COTRNS(A, B)
Proposition 22 [19]

The weighted rough cosine similarity measure between
two rough neutrosophic sets 4 and B also satisfies the
following properties:

1. 0<COT ;yprs( A, B)<1;

2. COT (A, B)= COT 1y pr B, A);

3. COT yuns( A, B)=1; iff A = B

4.1f Cisa WRNS in Y and 4 < B C then, COTyrys(A4, C)
< COTWRNs(A, B) , and COTWRNs(A, Q < COTWRNs(B, Q
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Definition 5.5 (Variational co-efficient similarity
measure between rough neutrosophic sets)

Let A :<(ZA x)sL 4 (x)o F 4 (Xi))’ (?A (xi)jA (xi)BFA (x;))>
and  B=((L,(x).Ly (). E 5 (LT 5 ()T (). Fy(x)) e

two rough neutrosophic sets. Variational co-efficient
similarity measure between rough neutrosophic sets can be
presented as follows:
Va_l"RNs(A, B) =
2 BT 4(x; )T (x;)+31 4(x;)81 p(x;)
AS +8F (x;)3F p(x;)
- {|,(8TA(xi))2+(8[A(xi))2+(8FA(xi))2J ]}

1 +[(STB(xi))2+(6]B(xi))2+(8F8(xi))2 (19)

ST 4(x, )3T y(x,) +81 ,(x,)31 (x,)

+8F ((x;)8F y(x;)
‘/l(STA(x»)%(SIA(x,-))Z+(6FA<x,->)2J

(67 52+ (67 5 P+ 67 5x))] |
Tp(x) +TB (x;)

—

N

+(1=MXL

D) +TA (x;)

Here, 87 ,(x;)= > , 0T g(x;)= > ,
SIA(x,.):M, SIB(xi)le(xi);"IB(xi)’
5FA(xi):M’ SFB(xl_):EB(xi);FB(xi)

Proposition 23
The variational co-efficient similarity measure Vargys(4,
B) between two rough neutrosophic sets A and B,
satisfies the following properties:
1. 0<Var (A, B)<1;
2. Var gns(A,B)=Var pps(B, A);
3. Vargys(4,B)=1; if A = B1i.e.,
8T 4(x) =8T5(x)), 8 4(x1)=581p(x;), and
8 F 4(x;) =3F5(xy), for every x; (i = 1, 2,
Proof.

(1.) It is obvious that Var p(A4,B)= 0. Thus it is
required to prove thatVar (4, B)<1 .

From rough neutrosophic dice similarity measure it can
be witten that

5 BT 4(x;)8T p(x;)+8I 4(x;)8I y(x;)

o< Lon _LFBFC)OF y(x))

< _Zizl 2 2 2
n <[(8TA(xi)) +(87 () P+ (6F 4(x)] |>

., n)in X.

<1 (20)

+ [(STB(xi))2+(513(xi))2 +(8F 4(x)P

and from rough neutrosophic cosine similarity measure it
can be written that

=

ST 4(x; )BT p(x;)+ 81 (x; )81 p(x;)

<l n +OF 4(x;)OF g(x;) <

n \/l(STA(x,-))z+(61A<x,->)2+(6FA(x,-))2J
(57 e )P +(61 ) P+ )]
Combining Eq.(20) and Eq.(21) , we obtain
Vargys(4, B) =
o, {STA<x,~ )BT y(x)+ 81 (x; )513(3(,,)}
+8F ,(x;)3F p(x;)
AZia 2 2 2
67 ,Ge) )2+ (61 e P+ (6F 4x)]
+ [(STB(X,.))2 +(81 5(x,) 2+ (8F y(x,))?
BT 4(x;)8T p(x;) +8I 4(x; )8 p(x;)
+0F 4(x; )OF p(x;)
\/l(STAx»)Q+(81A(xl-))2+(6FA(xi>)2J
167 5 P+ (61 50 P + (57 5] |
<A+(1-2)=1
Thus, 0<Vargg(4,B)<1;
(2._) Vargns(4, B) =
{STA(X[ )OT p(x;)+01 4(x; )SIB(xi)}

—_

ey

(22)

N

+(1=MZL

» +8F (x;)3F p(x;)
{l(au(xi))ﬂ(su(x,-))z+(8FA<x,-))2 | ‘}
6T ) 2 (57 ) )2+ (B () P
8T (6, )8T () +81 (%, )81 4(x,)
LOF (x,)8F 5(x,)
\/[(STA(x,.)) +(81 ,(x) P+
[(STB(x,.)) +(81 4(x) P+

=

N

+(1=MXL

+oF ()]
+(6F 4] |
{&“B(x,-)éTA(x,-)wIB(xi)&A(x,-)} |
n +OF p(x,)0F 4(x;)
{l(a*fg(x,o)Q+(673<x,->)2+(6F3<x,-))2J ]}
(OT 4(x) P +(8 ((x) P +(0F ,(x,))
= OT () OT () +T (x, )T 4(x,)
+8F 5(x,)OF ,(x,)
‘/l(éTB(xi))z ( 5% ) 2
[(éTA(xi)) (51A(x )+ 2

Ju—

s |

+1-DHZL
OF y(x; ) ZJ

OF 4(x; ) 2]

=Var pps(B, 4)
(3)IfA=Bi.e.,
8T 4(x) = 8T 5(x),

3F 4(x;)=8F5(x;), forevery x;(i=1, 2,
Vargns(4, 4) =

ol 4 (Xi) =08[3 (x,-), and

L,n)inX,
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2{5TA(X,- )OT 4(x;) +81 4(x, )SIA(xi)}
AT +OF 4(x;)OF 4(x;)
{[(STA(x,-))2+(81A(x,-))2+(8FA(xi>)2J ]}
8T e P+ 61 e + 6 )

BT 4(x; )T ,(x;)+3I 4(x; )8 4(x;)
+8F 4(x,;)0F 4(x;)

67 e+ (87 x4+ (6F 4(x)))]
\/[(STA(x,.))2+(61A(x ) +(8F ,(x,)) 2]

=Ll na-n))=1
n

Ju—

N

+(1=MZL

These results show the completion of the proofs of
the three properties.
Definition 5.6 (Weighted wvariational co-efficient
similarity measure between rough neutrosophic sets)

Let 4=((T, (LG Ea L (Ta().Tue).F 4 () and
B=((T5(0).Ly (). F ()L T (e 15 (). Fy(x)) be  any

two rough neutrosophic sets. Rough variational co-efficient
similarity measure between rough neutrosophic setsA and
B in 3-D vector space can be presented as follows:
Varwyrns(4, B) =

5 OT (x;)OT p(x;)+ 61 4(x;)l p(x;)
+OF (x;)0 F g(x;)

A5
" {l(éu(xi))z+(67A<x,->)2+(éFA<xi>)2J ]}
[T e P (67 ) P+ (0 )}

ST ,(x;)OT y(x,)+ 61 ,(x;) 3 y(x,) (23)
+(1 ﬂ')zz Wi +§FA(xi)&:B(x)
\/l(wx»)z 0T )+ 5FA<x ]
Yo7 e+ 61 e ) (07 s )P
7
Ifw _F 1 ...,1} , then Eq.(23) is reduced to Eq.(19).
n n n

Proposition 24
The weighted variational co-efficient similarity measure
also satisfies the following properties:
1. 0<Vary pys(4, B)<1;
2. Varypys(4, B)=Varyzys(B, A);
3. Varygys(4, B) = 1, if 4 = B ie,
8T.4(x)) =8T5(x1)> 814(x)=8I5(x), and SF 4(x,) = 8F5(x),
forevery x;(i=1,2,...,n)in X.
Proof:

(1.) It is obvious that Var,(A4,B8)=0. Thus it is
required to prove that Vary, (4, B)<1 .

From rough neutrosophic weighted dice similarity
measure, it can be written that

) ST 4(x; ) 8T p(x;)+dI 4(x; )dI (x;)
1 +8F 4(x;)6F p(x;)
<—=XiLwi <1
n <[(6T D47 4+ (6F 46 ‘>
+ [(6T ()2 + (81 g(x)) )+ (5F p(x,))?
and from rough neutrosophic weighted cosine
similarity measure it can be written that
OT 4(x; )BT p(x;)+ 81 4(x; )81 p(x;)
Slzr:lwz +8FA(X1)8FB(XI) <1 (25)
" \/l(smx,o)z +{81 ) +(6F 4(x))) |
[(STB(X[))Z +1 5(x)) +(5FB(X1'))2]
Combining Eq.(24) and Eq.(25), we obtain
Varwgys(A, B) =

24

5 O 4(x;)OT p(x;)+ 1 4(x;) 6l p(x;)
+OF 4(x; )0 F p(x;)

AL wi
e {[(éTA(xi))z+(51A(xi))2+(5FA(xi))2J ‘}

(O 500+ 6T ) P (6F 5

OT 4(x;)OT p(x;)+0l 4(x;)Ol p(x;)

+8F ,(x;)OF 4(x,)

\/[ )+ &A(x)z (oF (x|
67 5t P 6 e P+ (67 x|

A+(1-2)=1

Thus, 0<Var, (A, B)<1;
(2.) Varwgns(A, B) =
[ ) {é‘fA(xi)Wg(xi)+61A(xf)513(xi)}
A5 +0F J(x;)0 F g(x;)
- '{l(b‘h(x,-))%(éu(xi))z+(5FA(xi>)2J ]}
(6 )P (8 ) P (6F o)
OT 4(x;)OT p(x;)+0l 4(x;) 0l p(x;)
+8F ,(x,)OF y(x;)
\/l(éu(xi)) (01 )P +(0F )]
6T 4 P+ ) P+ (6 ) P |
5 {éTB(xi)éTA(xi)+513(x,.)51A(x,)}
A5 +0F g(x;)0F ,(x;)
" '{l(éTB(x,»)%(&IB(xi))z+(éFB(xi>)2J ]}
67 ) P+ (61 eV + (6 )
OT () OT () +1 y(x,) T ,(x;)
R P B i CAL N C)
‘/[(Ws(xi)y*'(éyz;(xi))z+(6F3(xi))2J

[(WA(xi))z+(éYA(xi))2+(5FA(xi))2] ]

(26)

+(1=D2Lwi

+ (1 j’)Zl =1 Wi

=Varypns(B, A)
(3)If4=Bie.,
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8I14(x)=8l5(x;), and

., n)inX,

8T 4(x1) =8T5(x)s
3F 4(x;) = 8F 5 (x;), for every x; (i =1, 2
I{ar wrns(4, A) =
2 OT ((x;)OT ((x;)+61 4(x;) 0l ((x;)
3" TOF 4(x;)0F ((x;)
i=l Wi
1 {l(é'm(x,->)2+(éu<x,->)2+(6FA(x,->)2J&
o s P+ P (o ) F
OT ((x;)OT 4(x;)+6l ((x;)0l (x;)
+0F 4(x;)OF 4(x;)
67 e P+ 0T ) P+ (6F x|
T ) P01 ) +(0F ((x)F

= [/‘LZ;’:] w;t+ (1 - /1)2?:1 Wi] =1
These results show the completion of the proofs of the
three proiperties.

+A-DZLwi

6. Multi attribute decision making based on rough
neutrosophic variational coefficient similarity
measure

In this section, a rough variational co-efficient
similarity measure is employed to multi-attribute decision
making in rough neutrosophic environment. Assume that
A = {A4,, As,..., An} be the set of alternatives and C = {C|,
C,,..., C,} be the set of attributes in a multi-attribute
decision making problem. Assune that w; be the weight of
the attribute C; provided by the decision maker such that

each y, €[0,1] and 3, w; =1 However, in real situation

decision maker may often face difficulty to evaluate
alternatives over the attributes due to vague or incomplete
information about alternatives in a decision making
situation. Rough neutrosophic set can be used in MADM
to deal with incomplete information of the alternatives. In
this paper, the assessment values of all the alternatives
with respect to attributes are considered as the rough
neutrosophic values (see Table 1).

Tablel: Rough neutrosophic decision matrix
Drns= <d d >m><11

A <111,311> <112,E|2> <Q’ln’gln>
A> <4219321> <i22’522> <d2n332n> 7)
| () (@) oo {dood)
Here <d ,j,d >1s the rough neutrosophic number for the

i-th alternative and the j-th attribute.

Definition 6.1: Transforming operator for SVNSs [80]
The rough neutrosophic decision matrix (27) can be

transformed to single valued neutrosophic decision matrix

whose ij-th element o; can be presented as follows:

d..+a..

=1,2,3,.
Stepl Determme the neutrosophic relatlve positive
ideal solution

In multi-criteria decision-making environment, the
concept of ideal point has been used to help identify the
best alternative in the decision set.
Definition 6.2 [51].

Let H be the collection of two types of attributes,
namely, benefit type attribute (P) and cost type attribute
(L) in the MADM problems. The relative positive ideal

neutrosophic solution (RPINS) 0%=[3,¢.8,¢....8,] is the

>m><n ,fori=1,2,3,....,m

(28)

solution of the decision matrix ps=(57;.51.5F ), Where,
every component of 03 has the following form:

for benefit type attribute, every component of Qg has the
following form:
qs= <5T1 817 6F1>

29)
:<m;ax{6T,:/~},m_in{8[l-j},mjn{6FU} >forje P
and for cost type attribute, every component of Q; has

the following form
s=(377.817.5F7)

(30)
:<rm'n (67}, max {81}, max {5F , } >forje L

Step 2. Determine the weighted variational co-efficient
similarity measure between ideal alternative and each
alternative.

The variational co-efficient similarity measure between

ideal alternative Oy and each alternative 4; fori =1, 2, ...,
m can be determined by the following equation as follows:
VarWRNS(QE’DS):

[ 2T ST 81551+ S F |

. 74 o )2J+}
[(5Tij)z+ 5Fu)z]
s, +51+51 AOFSF )
o P ]
\/(5TU)Z+(51U)2+(5FU)Z

Step3. Rank the alternatives.

According to the values obtained from Eq.(31), the
ranking order of all the alternatives can be easily
determined. Highest value indicates the best alternative.

31

+A-D)XLw
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Step 4. End.

7 Numerical example

In this section, rough neutrosophic MADM regarding
investment problem is considered to demonstrate the
applicability and the effectiveness of the proposed
approach. However, investment problem is not easy to

solve. It not only requires oodles of patience and discipline,

but also a great deal of research and a sound understanding
of the market, mathematical tools, among others. Suppose
an investment company wants to invest a sum of money in
the best option. Assume that there are four possible
alternatives to invest the money: (1) 4; is a computer
company; (2) A4, is a garment company; (3) A4; is a

telecommunication company; and (4) 4, is a food company.

The investment company must take a decision based on the
following three criteria: (1) C, is the growth factor; (2) C,
is the environmental impact; and (3) C; is the risk factor.
The four possible alternatives are to be evaluated under the
attribute by the rough neutrosophic assessments provided
by the decision maker. These assessment values are given
in the rough neutrosophic decision matrix (see the table 2).
Table2. Rough neutrosophic decision matrix

D=(N,(P),N ;(P)) s =

(0.1,02,02),\ /(0.6,0.4,03)\ /(0.3,02,03),

A <(o30202)> <(080203)> <(050201)>
(0.2,0.4,0.3),\ /(0.6,0.3,0.3),\ /(0.1,0.4,0.3),

A2 <(o4ozo3)> <(080101)> <(o30203)> (32)
(0.3,02,0.3),\ /(0.5,02,0.3),\ /(0.0,0.2,0.4),

4 <(050201)> <(o.7,o.2,o 1)> <(020202)>
(0.0,0.4,0.4),\ /(0.5,0.4,0.4),\ /(0.2,03,0.3),

As <(0.2,0.2,0.2)> <(0.7,0.2,0.2)> <(o.4,0.1,0.1)>

The known weight information is given as follows:
W =[wy, wy, ws]" =[0.3,0.3,0.4] and 3, w, =1.
Stepl. Determine the types of criteria.

First two types i.e. C; and C, of the given criteria are

benefit type criteria and the last one criterion i.e. C; is the

cost type criteria.
Step2. Determine the relative neutrosophic positive
ideal solution

Using Eq. (29), Eq.(30), the relative positive ideal
neutrosophic solution for the given matrix defined in
Eq.(32) can be obtained as:

04:=[(0.4,0.2,0.2),(0.7,0.2,0.2),(0.1,0.3,0.3)]
Step3. Determine the weighted variational similarity
measure

The weighted variational co-efficient similarity
measure is determined by using Eq.(28), Eq.(31) and
Eq.(32). The results obtained for different values of
have been shown in the Table-3.

Table-3. Results of rough variational similarity measure for different values of , 0<A<1
Similarity measure method | Values of s Measure values Ranking order
0.10 0.8769; 0.9741; 0.9917; 0.8107 A;>A,> A;> Ay
Varyrys(Q%, D) 0.25 0.8740, 0.9739 0.9905 0.8078 A;>A,> A;> Ay
0.50 0.8692; 0.9735; 0.9887; 0.8028 A;>A,> A;> Ay
0.75 0.8643; 0.9730; 0.9868; 0.7979 A;>Ay> A;> Ay
0.90 0.8614; 0.9728; 0.9857; 0.7949 A;>Ay>A;> Ay

Step 4. Rank the alternatives.
According to the different values of , the results
obtained in Table-3 reflects that 45 is the best alternative.

8. Comparisons of different rough similarity
measure with rough variation similarity measure

In this section, four existing rough similarity measures
- namely: rough cosine similarity measure, rough dice
similarity measure, rough cotangent similarity measure and
rough Jaccard similarity measure - have been compared
with proposed rough variational co-efficient similarity
measure for different values of A. The comparison results
are listed in the Table 3 and Table 4.
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Table-4. Results of existing rough neutrosophic similarity measure methods.
Rough similarity Values of s Measure values Ranking order
measure methods
JACyms(Qs-Ds) [21] 0.7870, 0.9471; 0.9739; 0.6832 | A;> A,>A;> Ay
DICypys(Qs-Ds) [21] 0.8595; 0.9726; 0.9873; 0.7929 | A;> A,> A;> A,
Cyrns(Qs, D) [20] 0.8788; 0.9738; 0.9920; 0.9132 | A;> A,> A> A
COTyyrys(0%, D) [19] 0.8472;0.9358; 0.9643; 0.8103 | A3;> A,> A;> A,y
Conclusion gence and Medicine, (2014), doi:

In this paper, we have proposed rough variational coef-
ficient similarity measures. We also proved some of their
basic properties. We have presented an application of
rough neutrosophic variational coefficient similarity meas-
ure for a decision making problem on investment. The
concept presented in the paper can be applied to deal with
other multi attribute decision making problems in rough
neutrosophic environment.
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