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Abstract

This essay gives an account of epistemic deference for agents with
imprecise credences. I look at the two main imprecise deference principles
in the literature, known as Identity Re�ection and Pointwise Re�ection
(Moss, 2021). I show that Pointwise Re�ection is strictly weaker than
Identity Re�ection, and argue that, if you are certain you will update
by conditionalisation, you should defer to your future self according to
Identity Re�ection. Then I give a more general justi�cation for Pointwise
and Identity Re�ection from the assumption that you defer to someone
whenever you consider their doxastic state to be better than yours, in the
sense of leading to better decision-making.

1 Overview

Deference plays a central role in our epistemic life. As members of an epis-
temic community we acquire many of our beliefs through the testimony
of trusted informers and experts. And even as individuals, our beliefs
are constrained by deference relations: we ought to defer to the objective
chances, or to the opinions best supported by our total evidence. Any
epistemological theory is incomplete without an account of deference.

Orthodox Bayesian epistemology has been very successful in provid-
ing formal characterisations of deference relations, called deference prin-
ciples, which have been used to articulate and defend various epistemic
norms (Van Fraassen, 1984; Lewis, 1980; Elga, 2013). But the orthodox
Bayesian approach assumes that a rational agent's credences are precise,
i.e. that they can be adequately captured by a precise probability func-
tion. Imprecise Bayesians deny this assumption. They seek to develop an
epistemological theory that allows (and for some, even demands) rational
agents to have imprecise credences.1

Can Imprecise Bayesians give a convincing treatment of deference?
Some have argued that they cannot (White, 2010; Topey, 2012). These
arguments show that once we allow imprecise credences, we must give
up some very plausible intuitions about deference to our future selves.
Responses have tended to deny some of the arguments' premises, but

1Early versions of this view have been articulated by Keynes (1921), Smith (1961), Levi
(1974), and Williams (1976). See Bradley (2019) and Mahtani (2019) for recent overviews of
imprecise credences in epistemology.
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they have not provided a systematic treatment of deference analogous to
the orthodox Bayesian one. That will be the aim of this essay: to lay the
foundations of an account of epistemic deference that allows for imprecise
credences.

Here is the essay plan. I start (Section 2) by giving an overview of the
various contexts where deference principles have been fruitfully applied in
Orthodox Bayesian epistemology. In particular, a popular principle called
Global Re�ection has been applied in all those contexts. Section 3 looks
at the existing literature on deference principles for imprecise probabili-
ties. Here I outline the argument that Imprecise Bayesians cannot give a
convincing account of deference to one's future self, and look at two def-
erence principles that have been introduced in response to this argument,
called Identity Re�ection and Pointwise Re�ection. I also propose a small
tweak of Pointwise Re�ection. In Section 4 I highlight an important as-
sumption that is needed to justify all deference principles discussed in this
essay, both precise and imprecise. It is often called �Immodesty� in the
literature, but I will call it �Clarity� here. While there are criticisms of
Clarity, I will assume it throughout this essay. Section 5 explores whether
Identity and Pointwise Re�ection vindicate our intuitions about deference
to one's future self, and how they are related to one another. Here I show
that Pointwise Re�ection is equivalent to one part of Identity Re�ection
for a certain class of imprecise credences. I argue that we should think of
it as a local consequence of the latter principle, rather than as an alterna-
tive to it. In Section 6 I argue that Identity and Pointwise Re�ection can
characterise deference more generally than just in cases where you defer
to your future self. This argument is based on the assumption that you
defer to someone when you consider their doxastic state to be better than
yours, in the sense of leading to better decision-making. Section 7 sums
up the main conclusions.

2 The Role of Deference

At the most general level, a deference principle is a relationship between
two doxastic states.2 Deference principles can be used to characterise the
relationship between two doxastic states when one considers the other to
be worthy of deference, in the sense of being a trusted source of opinions
and judgements. I will refer to an agent/state that is considered worthy
of deference by some other agent/state as an epistemic superior, where
the term is intended to be inclusive of epistemic peers.

Within precise Bayesian epistemology, there are a number of di�erent
contexts where some notion of deference is relevant:

1. (Deference to future self). If you are certain that you'll remain
rational between now and tomorrow, you should regard your future
self as epistemically superior to you, since they have access to at
least as much evidence as you do, and possibly more. Deference

2I will use the terms �doxastic state� and �credences� very loosely here to refer to anything
that encodes probabilities, estimates, comparative likelihood judgements, and the like. In
particular, a doxastic state need not depend on some agent's mental state.
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principles have been used to detail how a rational agent's credences
at some time t relate to that agent's credences at some future time
t′ (Van Fraassen, 1984; Briggs, 2009).

2. (Characterise genuine learning). Intuitively, genuine learning is some-
thing that leads you to have epistemically superior opinions to the
ones you had before. So deference principles have been used to pro-
vide necessary conditions for a credal update to be considered a
genuine learning experience (Huttegger, 2014; Skyrms, 1990).

3. (Characterise external expertise). There are many agents beyond
ourselves that we regard as experts, relying on their opinions to
form our own. Deference principles have been used to detail the
relationship that holds between your credences and those of someone
you regard as an expert (Pettigrew and Titelbaum, 2014; Dorst et al.,
2021).

4. (Rationality principles). Deference principles have been used to ex-
press the requirement that you regard the objective chances as an
epistemic superior (Lewis, 1980; Hall, 1994). Many epistemologists
also think that, given some facts about you (e.g. your total evi-
dence, your epistemic values, etc.) there is a set of opinions you are
rationally required to have. Intuitively, you are rationally required
to regard these opinions as worthy of deference. Deference princi-
ples have thus been used to specify the rationality requirement that
you should defer to the opinions that are rationally required of you
(Elga, 2013; Dorst, 2020).

Although we could use a di�erent deference principle (i.e. a di�erent
notion of deference) in each of these contexts, it is an interesting result
of precise Bayesian epistemology that certain deference principles can be
fruitfully applied to play all of these roles. Perhaps the most famous such
principle is known as the (Global) Re�ection principle. Before we can
de�ne it, it's useful to introduce some notation.

Denote by W a �nite set of worlds, and FW the set of propositions
induced by W (i.e. the set of all subsets of W). We represent a doxastic
state with a credence function: a function π : FW → [0, 1] which assigns
to each proposition a real value, interpreted as the agent's degree of belief
in that proposition. In particular, I will focus on coherent doxastic states,
whose corresponding credence functions are probability functions. Denote
by PW the set of all probability functions over W. When X :W → R is a
random variable, I will write π(X) as shorthand for the expectation of X
under π, i.e.

∑
wi∈W π({wi})X(wi), and I will write π(wi) as shorthand

for π({wi}).
A de�nite description of a credence function is a function p :W → PW

that assigns a credence function to each possible world. If p is a de�nite
description of a credence function and wi is a world, I write pi as shorthand
for the credence function p(wi). For any de�nite description of a credence
function p and any property φ of a credence function, I write [φ(p)] for
the proposition that p has property φ (more precisely: that the credence
function denoted by p has property φ). This proposition corresponds to
the set of worlds {wi : φ(pi) is true}. For example, for any proposition
a and s ∈ R, [p(a) = s] is the proposition {wi : pi(a) = s}. To help
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distinguish between de�nite descriptions of credence functions and rigidly
designated credence functions, I will use latin letters (p, q) to denote the
former, and greek letters (π, γ) to denote the latter.

We are now ready to give a de�nition of the Global Re�ection principle:

� Global Re�ection:

p(·|[q = γ]) = γ (1)

for every credence function γ such that the above conditional cre-
dence function is de�ned.

The letters p and q are de�nite descriptions of credence functions, whereas
γ is a rigid designator of a credence function, i.e. it denotes the same
credence function at every possible world. [q = γ] is the proposition
that q denotes the function γ. This is just the set of all worlds wi such
that qi = γ. The principle says that the credence function denoted by p,
conditional on the proposition that q = γ, is equal to γ. So the principle
is respected at a world wi i� pi(·|[q = γ]) = γ for every γ such that
π([q = γ]) > 0. When the principle is respected at every possible world,
we say that p Global Re�ects q. We will normally assume that p is constant
across the possible worlds, in which case the principle becomes:

π(·|[q = γ]) = γ (2)

where π is a rigid designator of the deferring credence function.
Throughout the essay I will assume that π is regular : for every w ∈ W,

π(w) > 0. I think of this as a technical assumption that considerably sim-
pli�es many of the proofs in this chapter. In particular, regularity is help-
ful when comparing the relative strength of di�erent deference principles,
since it ensures that all conditional credences involved in these principles
are de�ned whenever the conditioning proposition is not empty.

Global Re�ection has been used to characterise the relevant notion of
deference in all four contexts listed above. Let π denote your credence
function at present time. For context (1), let q denote your credences at
some future time, about which you are currently uncertain. If q is obtained
by conditioning your current credence function on the true element of a
partition, then π Global Re�ects q (Briggs, 2009; Weisberg, 2007).

For context (2), let q denote the credences you would have after un-
dergoing some update whose outcome you are currently uncertain about.
Under an assumption which I call Clarity, and which I discuss at greater
length in Section 4, Huttegger (2014) has shown that you expect this
update to be pragmatically valuable, in the sense of leading to better
decision-making, if and only if π Global Re�ects q. Huttegger argues that
this sort of pragmatic value is necessary for an update to count as genuine
learning, and thus that Global Re�ection is necessary for genuine learning.

For (3), let q denote the credence function of some other agent whose
opinions you are uncertain about. The fact that conditional on this agent
having a certain set of opinions, you would adopt the same opinions, is a
natural way to formalise the fact that you treat this agent as an epistemic
expert (although as we shall see, this view has been subject to some
criticism (Hall, 1994; Pettigrew and Titelbaum, 2014; Dorst et al., 2021)).
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For (4), let q denote the credence function which is rational for you to
adopt in light of your total evidence. Then we can use Global Re�ection
to express a rationality requirement: conditional on your total evidence
warranting some credence function γ, your credence function should be
γ. This constraint has interesting consequences for how your credences
towards any (��rst-order�) proposition a should relate to your credences
towards �higher order� propositions about the rationality of your credences
(Elga, 2013; Titelbaum, 2015; Dorst, 2019).

By applying the same principle in all four roles we can make interesting
connections between the relevant notions of deference in each context.
Because (3) Global Re�ection is a natural way to cash out the idea that
you treat some agent as an expert, (2) shows that your update is valuable
in terms of decision-making if and only if you should treat your updated
self as you would treat an external expert, and (1) shows that conditioning
on the true element of a partition is valuable this way. And the claim (4)
that you should Global Re�ect the credence function warranted by your
total evidence is similarly motivated by the idea that you should treat
your evidence as an epistemic expert.

3 Deference and Imprecise Credences

A number of theorists have argued that credence functions are inadequate
as representations of a (rational) agent's doxastic state. In particular,
they argue that sometimes rational agents have imprecise credences, which
cannot be satisfactorily represented by a single probability function.3 For
this reason, they introduce a class of more complex mathematical objects
to do the job. Examples include, but are not limited to: lower previsions
(Walley, 1991), sets of probability functions (Levi, 1980; Joyce, 2010), sets
of random variables (Quaeghebeur, 2014), and sets of sets of probability
functions (Moss, 2018; Campbell-Moore, 2021). I refer to these theorists
as Imprecise Bayesians.

In this essay I will focus on sets of credence functions as representations
of imprecise doxastic states. Following (Levi, 1980) I call these credal sets
(although note that, unlike Levi and other authors, I do not assume that
credal sets are convex). So a credal set on W is just a set Π probability
functions on W. If Π is a credal set and a ⊆ W is a proposition, I write
Π(a) for the value set that Π assigns to a, de�ned by Π(a) = {π(a) : π ∈
Π}. Just like for credence functions, we can de�ne de�nite descriptions of
credal sets as functions P :W → 2PW mapping worlds to credal sets. As
in the precise case, I write Pi as shorthand for the credal set P (wi), and
denote by [φ(P )] the proposition {wi ∈ W : φ(Pi) is true}.

I will interpret credal set supervaluationally. For example, if a and
b are propositions, you judge a to be more probable than b i� for every
credence function π in your credal set, π(a) > π(b). More generally, we can
think of any probabilistic judgement as a set of probability functions. For
example, the judgement that a is between 50% and 80% likely corresponds
to the set {π ∈ PW : .5 ≤ π(a) ≤ .8}, and the judgement that a is just as

3See Bradley (2019) and Mahtani (2019) for recent overviews of these arguments.
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likely as b correponds to the set {π ∈ PW : π(a) = π(b)}. Then an agent
with credal set Π makes a probabilistic judgement i� Π is contained in the
corresponding set of probability functions. That is, i� every probability
function in Π makes that judgement.

Despite the fact that epistemic deference is as relevant for precise
Bayesians as for their Imprecise counterparts, deference principles have
received fairly limited attention in the Imprecise Bayesian literature. The
only exception I am aware of involves two deference principles that have
been introduced in response to an argument by Roger White (2010), who
criticises imprecise credences on the grounds that they violate some plau-
sible intuitions about (1) deference to one's future self.

This section will brie�y outline White's argument and de�ne the two
imprecise deference principles introduced in response to it: Identity Re-
�ection and Pointwise Re�ection. I will also argue for a slight modi�cation
of Pointwise Re�ection. The rest of the essay will clarify the relationship
between these two principles, and show whether they can characterise the
relevant notion of epistemic superiority in contexts (1-4).

3.1 Identity and Pointwise Re�ection

Here is a quick overview of White's (2010) argument against imprecise
credences.4 Denote your credal set at present time t by Π, and denote
your credal set at some future time t′ by Q. Intuitively, if you knew that
you will rationally come to have attitude φ towards some proposition at
some future time t′, after you learn some more (non-misleading) evidence,
then you should have attitude φ towards that proposition now. In the
precise case, this is captured by the following local version of Re�ection:

� Local Re�ection:

π(a|[q(a) = r]) = r (3)

for every proposition a and real number r ∈ R such that the above
conditional credence is de�ned.

Briggs (2009) has shown that if you are currently certain that your future
credence q is obtained by conditionalising your current credence π on the
true element of a partition, then you Local Re�ect q. In fact, we shall
see that you also Global Re�ect q. This shows that precise credences
satisfy our starting intuition: conditional on your more-informed future
self having credence r in a, you now should have credence r in a.

White argues that a popular way of updating imprecise credences,
known as pointwise conditionalisation, violates this intuition about how
your current and future attitudes ought to be related.5 In particular,
suppose that Q is obtained by (pointwise) conditionalising your initial
credence Π on the true element of a partition. It may be the case that

4Note that this just one of many arguments against imprecise credences given by White
(2010).

5Pointwise conditionalisation is at least the standard update rule for closed and convex
credal sets, which su�ces to run White's argument. See Walley (1991) for a defense of
pointwise conditionalisation for closed and convex credal sets, and Bradley and Steele (2014)
for a discussion of alternative update rules.
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for some proposition a, you are initially certain that your future credal
set will assign the set of probability values S to a, and yet you currently
assign a di�erent set of probability values to a. That is:

Π(a|[Q(a) = S]) 6= S (4)

White takes this to show that imprecise credences violate our starting
intuition. Sometimes, you can know your future self will rationally come
to have an imprecise attitude towards a and yet fail to have the same
attitude towards a.

It has been pointed out that White's argument goes wrong by assum-
ing that the set of probability values assigned by your credal set to a
proposition is a good representation of your attitude towards that propo-
sition (Joyce, 2010; Bradley, 2019). Learning that Q(a) equals S does not
by itself tell you what your attitude towards a will be, since this depends
on other features of your future credal set beyond the set of probability
values assigned to S.

While this su�ces to defuse White's argument, I think the argument
still raises a challenge for Imprecise Bayesians. White's starting intuition
remains appealing: there should be at least some sense in which, con-
ditional on your better-informed attitudes being so-and-so, your current
attitudes should be so-and-so. And more generally, insofar as they are
interested in characterising deference relations in various contexts (1-4),
Imprecise Bayesians should be interested in what kind of principle, if any,
can do so within their theory.

To address these questions, two imprecise deference principles have
been proposed. They are usually discussed with a focus on cases like
those described by White (2010), where Q is your future credal set. The
�rst principle is brie�y mentioned by Topey (2012) and Schoen�eld (2012),
and it mirrors the Global Re�ection principle given earlier. The name and
formulation given here are due to Moss (2021).

� Identity Re�ection

Π(·|[Q = Γ]) = Γ (5)

for every credal set Γ such that the above conditional credence is
de�ned.

Here Π and Γ are rigid designators of credal sets, and Q is a de�nite
description of a credal set. When Π respects this condition with regards
to Q, we say that Π Identity Re�ects Q. Intuitively Π Identity Re�ects
Q when, conditional on the entire credal set Q being so-and-so, Π is so-
and-so. As in the precise case I will assume throughout that Π is regular,
in the sense that every π ∈ Π is regular.

To get a better grasp of what Identity Re�ection involves, it helps to
think of it as the conjunction of two independently interesting deference
principles:

� Subset Re�ection

Π(·|[Q = Γ]) ⊆ Γ (6)
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for every credal set Γ such that the above conditional credence is
de�ned.

� Superset Re�ection

Π(·|[Q = Γ]) ⊇ Γ (7)

for every credal set Γ such that the above conditional credence is
de�ned.

These two principles have a natural supervaluational reading. Subset
Re�ection says that, conditional on Q being the credal set Γ, you make
every judgement that Γ makes (and possibly more). Superset Re�ection
says that, conditional on Q being the credal set Γ, you make no more
(and possibly less) judgements than those Γ makes. Note that, in the
precise case, both principles above are equivalent to Global Re�ection.
In the imprecise case, Identity Re�ection is clearly equivalent to their
conjunction.

In Section 5 I will prove a result analogous to the one in Briggs (2009):
when Q is the credal set obtained by (pointwise) conditioning your current
credal set on the true element of a partition, you Identity Re�ect Q. This
shows that there is at least some sense in which, conditional on your
better-informed attitudes being so-and-so, your current attitudes should
be so-and-so.

But let's turn now to the second deference principle discussed in the
Imprecise Bayesian literature. Moss (2021) has raised the complaint that
Identity Re�ection is hard to operationalise. This is because it con-
strains your opinions conditional on extremely �ne-grained propositions
�propositions which fully specify your entire future credal set Q. Moss
makes it clear that her worry is not that Identity Re�ection only con-
strains you conditional on such propositions. As she points out, by con-
straining your conditional credences even on very strong conditions, the
principle constrains your unconditional credences too. So even if you are
quite unsure about your future credal set, Identity Re�ection can still im-
pose substantive constraints on your current one. As I understand it, her
worry is more about the guidance value of Identity Re�ection: because we
normally lack, or �nd it di�cult to access, opinions conditional on such
detailed propositions, we might �nd it di�cult to use Identity Re�ection
when evaluating our own rationality or the rationality of others.

For this reason, Moss (2021) proposes the following alternative impre-
cise deference principle:

� Pointwise Re�ection

Π(a|[Q(a) = S]) ⊆ S (8)

for every proposition a and real number set S ⊆ R such that the
above conditional credal set is de�ned.

When Π respects this condition with regards to Q, we say that Π Point-
wise Re�ects Q. As we shall see in Section 5, Moss (2021) has proven
a Briggs-style for Pointwise Re�ection: if Q is obtained by (pointwise)
conditioning Π on the true element of a partition, and Π is convex, then

8
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Π Pointwise Re�ects Q.6 So once again, we can show imprecise credences
satisfy White's motivating intuition, at least for convex credal sets: con-
ditional on your future imprecise doxastic state having a certain feature,
your current imprecise doxastic state should have that feature. But this
time, unlike with Identity Re�ection, the feature in question is localised
to a single proposition, making the principle easier to operationalise.

Now that we have two imprecise deference principles on the table, the
question is whether they characterise the various notions of deference that
Global Re�ection characterises within precise Bayesian epistemology. I
will tackle this question in the next two sections. Before doing so, however,
I want to slightly amend Pointwise Re�ection in a way that makes it a
stronger and, I think, more plausible deference principle. The discussion
gets a bit techical: those less interested in the formal details can skip to
Section 4 by just noting that Pointwise Re�ection will be de�ned as in
(22) on all random variables, rather than being restricted to propositions
as in (8).

3.2 Amending Pointwise Re�ection

My problem with the above version of Pointwise Re�ection is that it treats
propositions and random variables di�erently. But it's hard to think of
a good reason for doing so. To see the problem consider the following
example, adapted from Walley (1991)[pp.82-83].

Example 3.1. Let W = {w1, w2, w3} and de�ne three probability func-
tions as follows:

p1 = (2/3, 1/3, 0) (10)

p2 = (1/3, 0, 2/3) (11)

p3 = (2/3, 0, 1/3) (12)

we can use these probabilities to de�ne two credal sets:

Γ = ch({p1, p2}) (13)

Γ′ = ch({p1, p2, p3}) (14)

where ch(P) denotes the convex hull of the set P .7

We can show that for every proposition a, Γ(a) = Γ′(a). This can be
proven formally, but the easiest way to see it is by looking at a barycentric
plot of the two credal sets (Figure 2).

6A credal set Γ is convex i� for every λ ∈ (0, 1), and every γ1, γ2 ∈ Γ, the credence function
γλ is also a member of Γ, where:

γλ(a) = λγ1(a) + (1− λ)γ2(a) for every a ∈ FW (9)

7If P is a credal set then its convex hull is the set of all convex combinations of elements
in P . That is:

ch(P ) = {
n∑
i=1

λipi : pi ∈ P, λi > 0, and
n∑
i=1

λi = 1} (15)

9
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w1

w2

w3
p3

p1

p2

Figure 1: Barycentric plot of the credal sets in Example 3.1. Γ corresponds to

the blue line between p1 and p2, whereas Γ′ corresponds to the red highlighted

triangle with vertices p1, p2, and p3.

In a barycentric plot of this kind, each world is represented by a vertex
of an equilateral triangle with height 1 unit. Each point p within the
triangle corresponds to a probability function: the probability assigned to
world wi is determined by the distance between p and the edge opposite
wi. For example, p1 is 2/3 units away from the edge w2w3, 1/3 units away
from the edge w1w3, and 0 units away from the edge w1w2.

A credal set P is represented by a set of points in the plot. In this case,
Γ is represented by the blue line between p1 and p2, and Γ′ is represented
by the red shaded area with vertices p1, p2, and p3. Given a credal set P
and a world {wi}, the value set P (wi) is just the set of distances between
points in P and the vertex opposite to wi.

We can now easily show that Γ(a) = Γ′(a) for every proposition a.
First, it's easy to check from the �gure that Γ({wi}) = Γ′({wi}) for every
wi. Furthermore, note that:

Γ′({w1, w2}) = {π({w1, w2}) : π ∈ Π} (16)

= {1− π({w3}) : π ∈ Π} (17)

= {(1− r) : r ∈ Π({w3})} (18)

= {(1− r) : r ∈ Γ({w3})} (19)

= Γ({w1, w2}) (20)

and the same holds for every 2-world proposition. Finally, we have Γ(W) =
{1} = Γ′(W).

Despite this, we can �nd a random variableX such that Γ′(X) 6= Γ(X).

10
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To see this, consider the random variable X de�ned by:

X =


1 if w1

−1 if w2

0 if w3

(21)

A random variable divides the unit triangle into two (possibly empty) half-
spaces: one corresponds to the set of all probability functions with non-
negative expectation for the random variable, the other to the set of all
probability functions with negative expectation for the random variable.
So we can represent X in our �gure by a dashed line, with an arrow
indicating which side of the triangle contains the probability functions that
assign positive expectation to X. The points on the dashed line assign
expectation 0 to X. Among the points assigning positive expectation

w1

w2

w3
p3

p1

p2

X

Figure 2: Barycentric plot of the credal sets in Example 3.1, with dashed line

representing random variable X = (1,−1, 0).

to X, those further from the dashed line assign larger expectation to
X. So we can tell from the �gure that Γ(X) 6= Γ′(X). In particular,
Γ(X) = {p1(X)} = {1/3}, whereas Γ′(X) = [p1(X), p3(X)] = [1/3, 2/3].

This example shows that two credal sets can assign the exact same set
of probablity values to every proposition, while representing importantly
di�erent doxastic states, with di�erent sets of expectation values for some
random variables. It would be odd if our deference principle made it
impossible to defer to either credal set without also deferring to the other.

A simple way to avoid this is to extend the Pointwise Re�ection con-
straint to all random variables:

� Pointwise Re�ection*
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Π(A|[Q(X) = S]) ⊆ S (22)

for every random variable X and real number set S ⊆ R such that
the above conditional credal set is de�ned.

From now on, I will use the term Pointwise Re�ection to refer to this
amended version of the principle.

4 Clarity and Deference

After introducing a few deference principles for imprecise credences, the
remainder of this essay will look at whether and how we can argue that
these principles characterise the notions of deference relevant to contexts
(1-4), which are characterised by Global Re�ection in the precise case.
My arguments here will rely on a seemingly innocuous, yet surprisingly
consequential assumption, which I call Clarity (borrowing the term from
Dorst (2023)). So I want to start by stating this assumption and brie�y
outlining its current status within contemporary (precise) Bayesian epis-
temology.

Here is a de�nition of Clarity:

� Clarity: The de�nite description Q of a doxastic state is Clear at
world w i� the state Qw it refers to at world w is certain that Q
refers to Qw. That is, Q is Clear at w i� Qw([Q = Qw]) = {1}. I
say that Q is Clear when it is Clear at every possible world.8

Albeit under di�erent names, and sometimes in slightly di�erent shapes,
Clarity has been widely discussed in the precise Bayesian literature. This
is because it is deeply tied to Global Re�ection, which I introduced in
Section 2 as one of the most popular precise deference principles. In fact
if a regular credence function π Global Re�ects a de�nite description q,
then q is Clear. The proof is very simple:

Proposition 1 (Global Re�ection ⇒ Clarity). Let π be a credence func-
tion and q a de�nite description of a credence function, both de�ned on
the same domain W. Then π Global Re�ects q only if q is Clear at wi.

Proof. Assume by way of contradiction that π Global Re�ects q, and
yet q is not Clear at some wi ∈ W. The conditional credence function
π(·|[q = qi]) is well-de�ned by regularity. So we can write:

π([q = qi]|[q = qi]) = qi([q = qi]) by Global Re�ection (23)

< 1 because q not Clear at wi (24)

But since π is a probability function, π([q = qi]|[q = qi]) = 1, contradic-
tion.

8This is commonly known as �Immodesty�, particularly in the literature about deference
to external experts. While the term works well in that context (being certain that you are the
expert sounds quite �immodest�) it is a bit strange if we apply it e.g. to your current/future
credal set. Your current/future credal set knowing it is your current/future credal set does
not intuitively make it �immodest�.
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The relationship between Local Re�ection and Clarity is somewhat
more complicated. Gaifman (1988) has shown that Local Re�ection does
not entail Clarity, by providing examples where a regular credence func-
tion π Local Re�ects q even though q is not Clear. However, a recent pa-
per by Gallow (2023) has shown that examples of this sort are exceedingly
rare, only occurring when q has a very speci�c cyclic structure. Gallow
convincingly argues that, even though logically distinct, Local Re�ection
and Global Re�ection are philosophically equivalent. So Local Re�ection
commits us to Clarity in the same way as Global Re�ection does.

Clarity often appears in the precise Bayesian literature as a (more or
less explicit) assumption used to motivate Global and Local Re�ection.
But it has also been criticised by several authors as excessively restric-
tive for many of the contexts we are interested in (Hall, 1994; Elga, 2013;
Pettigrew and Titelbaum, 2014; Dorst, 2020). While I �nd many of these
criticisms convincing, I will assume Clarity throughout the rest of this
essay, either directly or as a consequence of other assumptions. This is for
three reasons. First, it's usually easier to study deference principles when
the expert is assumed to be Clear, so it makes sense to start our treat-
ment of imprecise deference principles by focusing on these simpler cases.
Secondly, Clarity still has its philosophical supporters in some contexts
(Titelbaum, 2015). And �nally, some authors have argued that once we
give up Clarity, we have no more reason to introduce imprecise doxastic
states. For example, Carr (2020) argues that if we allow that the rational
credence function in light of your evidence may not be Clear (i.e. if we
allow rational uncertainty about the requirements of rationality) precise
credences can do all the work that imprecise credences have been intro-
duced to do. If she is right, it might be pointless to worry about deference
principles for imprecise credences without the Clarity assumption. Be-
fore abandoning Clarity, we need to argue that it still makes sense to
care about imprecise credences once we do so, and that goes beyond the
scope of this essay. So I will leave it for future work to determine whether
and how imprecise deference principles can be adapted to accommodate
epistemic superiors that are not Clear.

Let's take stock. We have outlined a number of contexts (1-4) where
the epistemic deference relation plays an important role, and presented
two imprecise deference principles, called Identity Re�ection and Point-
wise Re�ection. These have been introduced in response to White's ob-
jection that imprecise credences are inconsistent with our intuitions about
(1) deference to one's future self. The next section will show how these
two principles are related to one another, and prove that under assump-
tions suitable for context (1), rational agents defer to their future selves
according to both principles. Although Clarity is not assumed explicitly,
we will see that it follows from the other assumptions. Then Section 6 will
look at a more general way to motivate Identity and Pointwise Re�ection
for the other contexts we are interested in.
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5 Certain Conditionalisation and Defer-

ence to Future Self

I have mentioned in Section 3 that we can show, under some conditions,
that a rational agent should defer to their future doxastic state under
both Identity and Pointwise Re�ection. Now it's time to look at these
arguments in some detail.

Let me start by outlining the general idea of the argument. Intuitively,
we tend to think of our future selves as being in a privileged epistemic
position with respect to us. This is attested by a number of sayings and
expressions (�Hindsight is 20/20�, �Wise after the event�, �Monday morn-
ing quarterback�...), all capturing the idea that future-you is generally
more informed than current-you. So we would expect a rational agent
to defer to their future attitudes: conditional on your future self having
attitude φ, surely you should have attitude φ right now. This is the same
sort of intuition appealed to by White's (2010) argument, discussed in
Section 3.

This intuition needs a bit of sharpening before it becomes philosophi-
cally viable. It's easy to think about cases where you de�nitely should not
defer to your future self: sometimes we are misled, we become delusional,
we forget things, or our opinions change in strange ways due to forces out-
side our control (e.g. drugs, brainwashing). Even if you are rational now,
and rational in the future, things like this could happen to you between
now and then, making current-you suspicious of the epistemic worth of
future-you's opinions.

To save our starting intuition we must assume away all of these cases.
More precisely, we must assume that the only way your doxastic state
can be di�erent between now and the future time is that future-you has
updated their beliefs rationally on some non-misleading evidence. And
for many Bayesians, the most uncontroversial case of rational updating
on non-misleading evidence involves conditioning on the true element of
some partition. At least when you are sure that your future doxastic
state is obtained in this way, you should re�ect your future attitudes.
Brigg's (2009) result starts by assuming precisely this. Here is one way
to formulate this assumption in the imprecise case:

� Certain Conditionalisation:9 Let Π be the agent's credal set at
some initial time t0, and Q the de�nite description of the agent's
credal set at some future time t1. There is a �nite partition E =

9Moss (2021)[Claim 4] makes an analogous assumption, although in a di�erent form. Ex-
pressed in my notation, for some partition E = {e1, ..., em} she requires that the following
three conditions hold for every a ⊆ W, ej ∈ E, S ⊆ R:

i Π([Π(a|ej) = Q(a|ej)]|ej) = {1}.
ii Π(ej ⇔ [Q(ej) = {1}]) = {1}.
iii Π(Π(a|ej) = S) i� Π(a|ej) = S.

Note that (iii) is unnecessary in my treatment, since I'm assuming that Π denotes the same
credence function at every possible world. See Remark 1 in the Appendix for a proof that,
once we extend them to all random variables, (i) and (ii) are equivalent to Certain Condition-
alisation.
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{e1, ..., em} such that for every ej ∈ E :

Π([Q = Π(·|ej)]|ej) = {1} (25)

whenever this conditional credal set is de�ned. Informally: Π is
certain, conditional on ej being true, that Q = Π(·|ej).

Since we are assuming that Π is regular, Certain Conditionalisation entails
Clarity. To see this it helps to prove the following technical lemma:

Lemma 1. Let Π be a regular credal set, Q a de�nite description of a
credal set, and E = {e1, ..., em} a �nite partition. Assume Π respects
Certain Conditionalisation w.r.t. Q and E. Then for every ej ∈ E:

[Q = Π(·|ej)] = ej (26)

Proof. See Appendix.

Using this lemma we can see that, for every wi, letting ej be the
element of E such that wi ∈ ej , we have:

Qi([Q = Qi]) = Π([Q = Π(·|ej)]|ej) = Π(ej |ej) = {1} (27)

So even though we won't be assuming Clarity explicitly, the arguments in
this section will rely on an assumption which entails Clarity.

We can now show that Certain Conditionalisation entails Identity Re-
�ection.

Proposition 2 (Certain Conditionalisation ⇒ Identity Re�ection). Let
Π be a regular credal set, Q a de�nite description of a credal set, and
E = {e1, ..., em} a �nite partition. If Π respects Certain Conditionalisation
w.r.t. Q and E, then Π Identity Re�ects Q.

Proof. See Appendix

This shows that, when you are certain that your future doxastic state
is obtained by conditionalising your current doxastic state on the true
element of a partition, you should Identity Re�ect your future self. In turn
this means that conditional on your future self having a certain doxastic
state, you should adopt that doxastic state right now. As a special case
of this result, when all credence functions are precise and the agent obeys
Certain Conditionalisation, the agent should Global Re�ect their future
self.

Taking a step back: how does this result �t into the broader de-
bate around deference principles for imprecise credences? Recall White's
(2010) starting intuition, that conditional on your future self having a
certain attitude (as a result of rationally updating on factive evidence),
you should have that attitude. By taking your attitude towards a propo-
sition to be encoded by the set of probability values you assign to that
proposition, White was able to show that agents with imprecise credences
violate this intuitive requirement.

We have seen that a good response to his argument is the (indepen-
dently motivated) point that the set of probability values you assign to a
proposition does not su�ce to encode your attitude towards that propo-
sition. So conditional on your future self assigning a certain value set to
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some proposition, you need not assign that proposition the same value set
now. However this response leaves open what, if anything, does encode
your future attitudes in a way that, supposing you had such attitudes
in the future, you should adopt the same attitudes now. A natural sug-
gestion is that this is the entirety of your future credal set. After all, if
anything encodes your future attitudes, surely your entire credal set does.
Proposition 2 shows that this is in fact the case. If you know you'll up-
date by conditioning on the true element of a partition, then conditional
on your future credal set being so-and-so, your current credal set should
be so-and-so.

As mentioned earlier, even though Identity Re�ection is expressed in
terms of extremely strong conditioning propositions, it can constrain your
attitudes conditional on weaker propositions, and even your unconditional
attitudes. Having said that, it would be interesting, if only for pragmatic
reasons, to �nd out whether there are any more localised attitudes of your
future self which you ought to re�ect.

We can �nd such localised constraints in the precise case. Here, Cer-
tain Conditionalisation entails that you should Local Re�ect your future
self. Indeed, this is the form of the result that was originally proven
by Briggs (2009). We can show that this follows from the relationship
between Local and Global Re�ection under Clarity:

Lemma 3. Let π be a regular credence function and q a de�nite descrip-
tion of a credence function. Assume q is Clear. Then π Local Re�ects q
i� π Global Re�ects q.

Proof. See Appendix.

Since Certain Conditionalisation entails Clarity (Proposition 2), Lemma
3 shows that Certain Conditionalisation entails Local Re�ection in the
precise case.

What about localised constraints in the imprecise case? White's (2010)
argument shows that the most natural imprecise analogue of Local Re�ec-
tion is not entailed by Certain Conditionalisation (recall Equation (4)).
For this reason, Moss (2021) has proposed Pointwise Re�ection as an alter-
native local principle. But does Pointwise Re�ection follow from Certain
Conditionalisation? And what is the relationship between this principle
and Identity Re�ection?

I will now answer both questions. First I will show that Pointwise Re-
�ection does not follow from Certain Conditionalisation in general. How-
ever, Pointwise Re�ection follows from Certain Conditionalisation when
Q is a convex credal set. Then I will show that, under this assumption,
Pointwise Re�ection is equivalent to Subset Re�ection, and strictly weaker
than Identity Re�ection.

To see that Certain Conditionalisation does not generally entail Point-
wise Re�ection, consider the following variant of the Coin Toss example
in White (2010):

Example 5.1 (Coin Game). Jack has a coin which you know is fair,
and you also know that he knows whether some proposition a is true.
Jack paints over the two sides of the coin so you can't tell which one is
heads and which one is tails. Then depending on the truth of a, he writes
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something on each side: if a is true, he writes 'a' on the heads side, and
'¬a'on the tails side; and if a is false, he writes '¬a' on the heads side and
a on the tails side.

Assume your starting credal set Π contains just two probability func-
tions, π1 and π2, such that π1(a) = .4 and π2(a) = .6 (for example, you
might know that the objective chance of a is either .4 or .6). Letting h
be the proposition that the coin lands with the heads face up, you have
π1(h) = π2(h) = 1/2 since you know the coin is fair. Furthermore, you
judge the coin toss to be independent of a, in the sense that:

πk(h|a) = πk(h) = 0.5 (28)

for k = 1, 2. Denote by ea the proposition that the coin lands with the
'a' face up. We can identify each possible world in this example with the
propositions that are true at that world. For example the possible world
where a is true, ea is false, and h is false will be denoted by aēah̄. Then
we can write the two probability functions in your credal set as follows:

ahea ah̄ēa āh̄ea āhēa
π1 .2 .2 .3 .3
π2 .3 .3 .2 .2

Consider what would happen if you observed ea. Credence function π1

will take this as providing some evidence that ¬h is the case, since π1

is more than 50 percent con�dent in ¬a: the claim that ea and ¬h are
equivalent. Similarly, π2 will take this as providing some evidence that h
is the case. Indeed, after conditioning on ea, your credal set would look
like this:

ahea ah̄ēa āh̄ea āhēa
π1 .4 0 .6 0
π2 .6 0 .4 0

But what would happen if you observed ¬ea is exactly symmetrical. Cre-
dence function π1 will take it as evidence for h, and credence function π2

will take it as evidence against h. So you would end up with the following
credal set:

ahea ah̄ēa āh̄ea āhēa
π1 0 .4 0 .6
π2 0 .6 0 .4

In either case, you end up with Π(h|ea) = Π(h|¬ea) = {.4, .6}. And yet
by assumption, Π(h) = {.5}. So if we let Q be the your credal set after
observing the coin toss, and let Q be the credal set obtained by condition-
alising on the true element of the partition {ea,¬ea}, this example shows
a violation of Pointwise Re�ection under Certain Conditionalisation, be-
cause:

Π(h|[Q(h) = {.4, .6}]) = Π(h) = {.5} * {.4, .6} (29)

Note that in this example, Pointwise Re�ection fails because your up-
dated credal set assigns two �disconnected� probability values to h. And
in turn, this is because your starting credal set assigns two �disconnected�
probability values to h. If we were to take as your starting credal set Π
the convex hull of {π1, π2}, there would be no problem with this example,
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since then your updated credal set will have Π(h|ea) = Π(h|¬ea) = (.4, .6),
and:

Π(h|[Q(h) = (.4, .6)]) = Π(h) = {.5} ∈ (.4, .6) (30)

This suggests two ways of saving the principle. First, we could weaken
Pointwise Re�ection, and only require that your current probability value
set for a, conditional on your future one being S, is a subset of the convex
hull of S. Alternatively, we could restrict the intended domain of Point-
wise Re�ection, so that it only applies when the credal set Q is convex.
Since Q is obtained by conditionalisation from Π, and conditionalisation
preserves convexity, a natural way to ensure this is to assume that Π is
convex.

I will take the second route here, both because the �rst one loses some
of the intuitive motivation Moss gives for Pointwise Re�ection, and be-
cause a number of Imprecise Bayesians already restrict their attention to
convex credal sets for a variety of independent reasons (Levi, 1980). In
fact, a number of popular frameworks for representing imprecise credences,
such as lower probabilities and lower previsions, turn out to be equivalent
to (closed and) convex credal sets.10 But whichever route we take, Point-
wise Re�ection will follow from Certain Conditionalisation. The proof is
the one given in (Moss, 2021)[pp.637-638] so I will not repeat it here.11 In-
stead, I want to end this subsection by clarifying the relationship between
Pointwise Re�ection and Identity Re�ection. First I will show that when
we �x Pointwise Re�ection either by weakening it, or by restricting it to
convex credal sets, Subset Re�ection will entail it. This is the content of
the following proposition:

Proposition 3 (Sub-Re�ection (Convex) ⇒ Pointwise Re�ection). Let
Π be a regular credal set and Q the de�nite description of a convex and
Clear credal set. If Π Sub-Re�ects Q, then Π Pointwise-Re�ects Q.

Proof. See Appendix.

Proposition 3 shows that if we �x Pointwise Re�ection in such a way
that it is entailed by Certain Conditionalisation, then Pointwise Re�ection
is no stronger than Subset Re�ection, in the sense of imposing no more
constraints than it. In fact we can show that under Clarity, and assuming
Q is convex, Pointwise Re�ection is also no weaker than Subset Re�ection.

Proposition 4 (Pointwise Re�ection (Convex) ⇒ Sub-Re�ection). Let
Π be a regular credal set and Q the de�nite description of a convex and
Clear credal set. If Π Pointwise-Re�ects Q, then Π Sub-Re�ects Q.

Proof. See Appendix

Together, Propositions 3 and 4 show that Subset and Pointwise Re-
�ection impose the exact same constraints on convex credal sets, despite
one being formulated in global terms and the other being formulated in
local terms.

10See Wheeler (2022) for an overview of imprecise frameworks that are/are not equivalent
to closed and convex credal sets.

11This also follows from Proposition 3 together with the fact that Certain Conditionalisation
entails Identity Re�ection (Proposition 2)

18



D
ra
ft

-
A
p
ril

1
9
,
2
0
2
4

Having shown Pointwise Re�ection and Subset Re�ection are equiva-
lent on convex credal sets, it is natural to wonder whether they are strictly
weaker than Identity Re�ection on convex credal set, i.e. whether they
impose strictly weaker constraints. The next proposition shows this is in
fact the case. I show this by giving an example of a convex credal set Π
and a de�nite description of a convex credal set Q such that Π Pointwise
Re�ects Q, and yet Π does not Identity Re�ect Q.12

Example 5.2. LetW = {w1, w2}. Let Π = {π : π(w1) = 1/2} a singleton
credal set. Let Q the (constant) de�nite description of a credal set such
that:

Q1 = Q2 = ch{q, q′}, where q({w1}) = 0 and q′({w1}) = 1 (31)

Note that Q is convex at every possible world by construction, and is also
trivially Clear. First I show that Π Pointwise Re�ects Q. To see this,
note that for every X :W → R:

[Q(X) = S] 6= ∅ ⇐⇒ S = Q1(X) = Q2(X) (32)

⇐⇒ S = (min{q(X), q′(X)},max{q(X), q′(X)}) (33)

Now assume without loss of generality that q(X) ≤ q′(X), and let S =
(q(X), q′(X)). Letting π be the only credence function in Π, we have:

π(X|[Q(X) = S]) = π(X) (34)

= .5X(w1) + .5X(w2) (35)

= .5(X(w1) +X(w2)) + .5(X(w1) +X(w2)) (36)

= .5q(X) + .5q′(X) ∈ S = [0, 1] (37)

so Π(X|[Q(X) = S]) ⊆ S whenever this conditional credal set is de�ned,
proving that Π Pointwise Re�ects Q.

It's now easy to show that Π does not Identity Re�ect Q, since [Q =
Γ] 6= ∅ i� Γ = Q1 = Q2, in which case [Q = Γ] =W. So we have:

Π(·|[Q = Q1]) = Π 6= Q1 (38)

which shows Identity Re�ection is violated.

Proposition 5 (Pointwise Re�ection (Convex) ; Identity Re�ection).
There is a credal set Π and a de�nite description of a convex credal set Q
such that Π Pointwise Re�ects Q, and yet Π does not Identity Re�ect Q.

Proof. Example 5.2.

The above results show that Pointwise Re�ection is generally weaker
than Identity Re�ection. What should we make of this? I think the answer
depends on what context (1-4) we are interested in. If we are considering
deference to one's future self, and we are assuming Certain Conditionali-
sation, then we should not think of Pointwise Re�ection as an alternative
principle to Identity Re�ection, but rather as a local consequence of it. In
particular, Pointwise Re�ection speci�es a class of local constraints which

12Note that, in light of Proposition 2, Certain Conditionalisation must also fail in this
example.
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are easier to check, and which are exactly those imposed by Subset Re-
�ection. Identity Re�ection imposes all the same constraints, plus all the
constraints imposed by Superset Re�ection.

But while Certain Conditionalisation might be a reasonable assump-
tion if we're interested in capturing the intuition that you should defer
to your future self, it is clearly not always warranted. For example, if we
are interested in giving some necessary conditions for an update to count
as a genuine learning experience (2), then assuming that the update hap-
pens by conditionalising on a true proposition gives up the whole game.
And similarly, only a very restrictive notion of epistemic expertise (3)
would require that the expert credences be obtained by conditionalising
your own on the elements of some partition. Finally, it's not clear why
we should think that (4) there is some partition such that the rational
credence function at every world is obtained by conditioning the same
rigidly designated prior on whichever element of the partition is true at
that world. So you might think that, in contexts where we don't want
to assume Certain Conditionalisation, Pointwise Re�ection rather than
Identity Re�ection might characterise the relevant notion of deference.

No matter which context (1-4) we are interested in, I am doubtful
that Subset/Pointwise Re�ection can tell the whole story about deference.
Consider again Example 5.2. Recall that you Sub-Re�ect Q whenever,
conditional on Q being Γ, you make all the judgements that Γ makes. In
this example you know that Q = Γ, and you Sub-Re�ect Q because Γ
makes no judgements beyond the trivial ones. For example, unless X is
positive in every possible world, Q does not �nd X desirable, so Subset
Re�ection does not impose any non-trivial constraints on what gambles
you should consider desirable. Indeed, any credal set Π will Sub-Re�ect
Q in this example!

Subset/Pointwise Re�ection may well capture an important notion of
deference: upon learning your superior's doxastic state, you would make
all the judgements they make. But often the kind of deference we are
interested in seems to require something more. To see this, it helps to
look at a slightly more realistic case than Example 5.2.

Example 5.3. Let d be the proposition that the Democrats will win
the next election, and let Q denote the credal set of your friend Lucy.
Lucy is a staunch democrat, and only informs herself by reading highly
biased pro-Democrat newspapers. You know that if the polls and other
indicators strongly suggest the Democrats are going to win the election,
Lucy will have learned about it from the newspapers, but if the polls and
other indicators are undecisive, or if they suggest the Republicans will
win, then the newspapers Lucy reads will not have reported about it.

We can model this scenario by looking at four possible worlds W =
{w1, w2, w3, w4}. Let d = {w1, w2}, and let r = {w1, w3} be the propo-
sition that the newspapers reported the polls. You know that, if the
newspapers reported the polls, the Democrats are likely to win, and Lucy
will be (rationally) con�dent in d. But if the newspapers did not report
the polls, Lucy will have little to no evidence about whether d. We can
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formalise this by de�ning Lucy's credal set Q as follows:

Q1 = Q3 = {γ ∈ PW : γ(w1) = .9, γ(w3) = .1, γ(w2) = γ(w4) = 0)} (39)

Q2 = Q4 = {γ ∈ PW : γ(w1) = γ(w3) = 0, γ(w2) ≥ .01, γ(w4) ≥ .01}
(40)

At the worlds where the newspapers report the polls, i.e. when wi ∈ r,
Lucy has Qi(d) = .9. So she is very con�dent in d at those worlds. At the
worlds where the newspaper does not report the polls, i.e. when wi /∈ r,
Lucy has Qi(d) = [.01, .99]. So she almost completely suspends judgement
about whether d at those worlds, since she has almost no evidence one
way or another. Note that Q is Clear, since Q([Q = Qi]) = {1} for every
wi ∈ W.

A number of credal sets Subset Re�ect Lucy in this example, but some
do so in a way that seems importantly stronger. To see this, consider two
agents, Martha and Stewart, with (regular) credal sets ΠM ,ΠS de�ned as
follows:

ΠM = {π ∈ PW : π(w1) = 9/20, π(w2) ≥ 1/200, π(w3) = 1/20, π(w4) ≥ 1/200}
(41)

ΠS = {π ∈ PW : π(w1) = 9/20, π(w2) = π(w4) = 1/4, π(w3) = 1/20}
(42)

Some simple calculation show that both ΠM and ΠS Subset Re�ect Q.
Indeed, conditional on r = [Q = Q1], both are identical to Q1 (equiva-
lently for Q3). So upon learning that Lucy is con�dent in a Democrat
victory, both Martha and Stewart are con�dent in a Democrat victory.
But the two credal sets di�er in their conditional credences, conditional
on ¬r. In particular, we have that:

ΠM (d|¬r) = ΠM (d|[Q = Q2]) = [.01, .99] = Q2(d) (43)

ΠS(d)|¬r) = ΠS(d|[Q = Q2]) = {1/2} ∈ Q2(d) (44)

Again, as far as Subset/Pointwise Re�ection are concerned, both agents
defer to Lucy here. But Martha seems to defer to Lucy in a stronger way
than Stewart, because upon learning that Lucy suspends judgement about
whether d, Martha also suspends judgement about whether d. Stewart, on
the other hand, makes many judgements about the comparative likelihood
of d and other propositions, and about the desirability of gambles on
d, even upon learning that the Lucy does not make such judgements.
Intuitively, we would like to say that he defers to Lucy in a weaker sense
than Martha does. If this is right, there must be a stronger notion of
deference at play than the one captured by Subset Re�ection.

I want to end this section by saying a bit more about what Pointwise
Re�ection is failing to capture in the climate scientist example. While I
cannot give a de�nitive answer here, I want to at least sketch one way
to read the example which I �nd insightful. By learning that Lucy as-
signs Q(d) = [.01, .99] both Martha and Stewart are plausibly learning,
among other things, that Lucy has no evidence for or against d. Martha's
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response to learning that Lucy has no evidence about whether d is to sus-
pend judgement about whether d, just like Lucy does. This makes sense
if Martha has no further evidence than Lucy does, and if she responds to
this lack of evidence in the same way Lucy does. Borrowing the termi-
nology of Konek (2019), we would say that Martha, like Lucy, is being
epistemically conservative by suspending her judgement about d in the
face of scarce evidence. Stewart's response to Lucy's lack of evidence is
di�erent: he adopts a credal set which makes lots of judgements about d.
He either has more evidence than Lucy, or he is responding to the lack
of evidence in an epistemically liberal way, by making many probabilis-
tic judgements in the face of scarce evidence, despite the fact that Lucy
is epistemically conservative. Under this reading, Martha defers more
strongly to the expert because, unlike Stewart, both her evidence and her
epistemic attitudes are aligned with those of the expert. Subset Re�ec-
tion allows one to defer to an expert even when one's total evidence or
epistemic attitudes are not aligned with hers, and thus cannot distinguish
the stronger kind of deference Martha is displaying from the weaker one
displayed by Stewart.

In the next section I look at two ways to motivate deference principles
without assuming Certain Conditionalisation (but still assuming Clarity).
Both strategies rely on the same assumption: that you regard someone as
epistemically superior when you consider their opinions to be at least as
valuable than yours. But they di�er in the kind of value they consider. I
will give a brief overview of how this assumption has been used to defend
precise deference principles. Then I will show that the same assumption
motivates Subset/Pointwise Re�ection in the imprecise case, and propose
a way to adapt this argument strategy so that it motivates the stronger
principle of Identity Re�ection.

6 Arguments from Epistemic and Prag-

matic Value

A natural way to characterise a notion of deference in contexts (1-4) is
to say that you regard the epistemically superior doxastic states to be in
some way better, or more valuable:

� Value Superiority: you defer to a doxastic state i� you regard it
to be at least as valuable as yours.

Value Superiority gives us a way to derive a deference principle from a
characterisation of the value of a doxastic state. The kind of value involved
in this characterisation may be either epistemic or practical. Within the
precise Bayesian literature, the epistemic value of a credence function is
usually captured by a strictly proper measure of inaccuracy, which mea-
sures how closely a given credence function approaches the truth (Joyce,
1998; Pettigrew, 2016). Whereas the practical value of a credence func-
tion is a measure of how well that credence function performs in guiding
an agent's decisions (Good, 1967).13

13See Myrvold (2012) and Levinstein (2017) for a discussion of how these two kinds of value
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Both kinds of value have been used to motivate various deference prin-
ciples in the precise case (Skyrms, 1990; Huttegger, 2014; Dorst et al.,
2021). I give a quick overview of these results in the next subsection.
Then, in Subsection 6.2, I look at what deference principles can be de-
rived from the Value Superiority characterisation in the imprecise case.
Since at present there is not analogue of strictly proper measures of in-
accuracy for imprecise credences, I will focus my attention on practical
value.14 I will also assume Clarity holds throughout. See Dorst et al.
(2021) for a discussion of value-based characterisations of deference in the
precise case when the Clarity assumption is dropped.

6.1 The Precise Case

One way that pragmatic value has been characterised in the precise Bayesian
literature is in terms of how good a credence function is at guiding your
decisions. This characterisation goes back to the work of I.J. Good 1967.15

Here is the idea: suppose that you are facing a decision problem, i.e. you
must choose from a set of options X = {X1, ..., Xn}. Each option Xj is
a random vairiable mapping worlds to real values, representing a gamble
that pays in linear utility. So if you choose option Xj and wi is the ac-
tual world, you receive Xj(wi) units of utility (this is a loss of utility if
Xj(wi) < 0). Now consider the higher-order decision problem consisting
of the following two options: either you choose an option from X yourself,
or you let q choose from X for you. We say π Pragmatic Values q on X
i� π expects letting q choose to be at least as good as choosing for itself.
And π Pragmatic Values q i� π expects letting q choose to be at least as
good as choosing for itself, on every decision problem X .

To make this more precise it helps to introduce some more notation.
Let L(W) be the set of all gambles on W. If X ,Y are sets of gambles and
e is a proposition, I write −X for the set {−X : X ∈ X} , X + Y for the
set {X + Y : X ∈ X , Y ∈ Y} (and X − Y for X + (−Y)), and eX for the
set {eX : X ∈ X}. To each credence function π we can associate a choice
function Cπ : 2L(W) → 2L(W) de�ned by:

Cπ(X ) = {X ∈ X : X maximises π(X) in X} (45)

Intuitively, if Cπ(X ) is the set of options which π considers choiceworthy
among those in X .16

are related.
14Seidenfeld et al. (2012) show that there are no continuous, real-valued, strictly proper

scoring rules, of the kind used to measure accuracy in the precise case, for imprecise doxastic
states. See also Schoen�eld (2017); Mayo-Wilson and Wheeler (2016) for similar impossibility
theorems, and Konek (2023) for a recent approach to measuring the accuracy of imprecise
credences in light of these impossibility results.

15Although similar ideas had already been discussed by Savage (1954)
16Choice functions are commonly used to model the preferences of agents with imprecise

credences, particularly those represented by sets of probability and utility functions. See
Seidenfeld et al. (2010) for a treatment of choice functions associated to sets of probability-
utility pairs, and Van Camp (2018) for choice functions not necessarily associated to such sets.
Note that in this essay I am implicitly assuming that all gamble payo�s are expressed in the
same linear utility scale.
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Let π be a credence function and q be the de�nite description of a
credence function which can take values {γ1, ..., γm}. Let X be a set of
gambles. What is the expected value of choosing for yourself? If w ∈
W is the case, choosing for yourself will pay o� X(w), where X is a
choiceworthy gamble for you (i.e. X ∈ Cπ(X )). Note that the set Cπ(X )
may contain multiple gambles, whose values at each world can be di�erent.
So �choosing for yourself� does not uniquely de�ne a payo� for every
possible world, as the payo�s depend on which choiceworthy gamble you
actually pick. However, since every gamble in Cπ(X ) must have the same
expectation (as it must maximise π's expectation on X ), we may take this
to be the expectation of choosing for yourself.

What is the expected value letting q choose for you? If w ∈ [q = γj ],
you will receive utility X(w) for some X ∈ Cγj (X ). But note that, just
like π, γj can also have multiple maximal options in X . So the payo�s
resulting from letting Q choose for you can vary depending on which of
its maximal options γj will pick. The payo� of letting Q choose for you
might correspond to the payo� of any gamble in the following set:

m∑
j=1

[q = γj ]Cγj (X ) (46)

This is the set of gambles which, if w ∈ [q = γh], pay o� X(w) for some
X ∈ Cγj (X ).

The requirement that you expect letting q choose from X to be at
least as good choosing yourself is therefore ambiguous between at least
two possible readings. It could either mean that (i) for every way of
adjudicating between maximal options for q, you expect q's choice to be
at least as good as yours, or (ii) for some way of adjudicating between
maximal options for q, you expect q's choice to be at least as good as yours.
This ambiguity will be of central importance once we move to imprecise
credences. But luckily, in the precise case, the two readings turn out to
be equivalent (Dorst et al., 2021)[Lemma B.13]. So the requirement is
not ambiguous after all, and we can formally de�ne it as follows (using
reading (ii)):

� Pragmatic Value:
For every X = {X1, ..., Xk} and every Xs ∈ X , there is some
Y ∈

∑m
j=1[q = γj ]Cγj (X ) such that:

π(Xs) ≤ π(Y ) (47)

when this constraint holds, we say that π Pragmatic Values q.
With this de�nition in place, we can prove the following result.

Proposition 6. Let π be a credence function and q the de�nite description
of a Clear credence function. Then π Global Re�ects q i� π Pragmatic
Values q.

Proof. The earliest proof I could �nd for this result is due to (Huttegger,
2014). Dorst et al. (2021)[Theorem 2.2] proves a more general theorem
with notation similar to the one used in this essay.
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Proposition 6 shows that under Clarity, if we plug a pragmatic no-
tion of value into Value Superiority, the resulting notion of deference is
equivalent to the one characterised by Global Re�ection.

6.2 The Imprecise Case

It's not at all straightforward to give a good analogue of the Pragmatic
Value constraint for imprecise credences. The idea behind the Pragmatic
Value requirement is that you �nd Q to be at least as valuable as your
doxastic state when you expect letting Q choose for you to be at least as
good as choosing for yourself on any decision problem. And as before, we
can use choice functions to make this sort of requirement more precise. To
any credal set Π we can associate a choice function CΠ : 2L(W) → 2L(W)

de�ned by:

CΠ(X ) = {X ∈ X : X maximises π(X) in X for some π ∈ Π} (48)

Intuitively, if CΠ(X ) is the set of options such that at least one π ∈ Π
considers them choiceworthy among those in X . This is known as the
set of E-Admissible options for Π among X (Levi, 1980; Seidenfeld et al.,
2010).

As in the precise case, we can start by asking: what is the value of
choosing for yourself? The set of choiceworthy gambles CΠ(X ) will gen-
erally contain multiple gambles, each taking di�erent values at di�erent
possible worlds. So �choosing for yourself� does not determine a unique
payo� at every possible world. But unlike the precise case, the various
credence functions in your credal set will generally disagree about the ex-
pected value of the various gambles X ∈ CΠ(X ), both in the sense that
each credence function may assign di�erent expected value to di�erent
gambles in this set, and in the sense that di�erent credence functions may
assign di�erent expected value to the same gamble in this set. So when
formulating our constraint, it's not clear that we can assign an expected
value or range of expected values to the option �choosing for yourself�.

And what is the value of letting Q choose for you? As in the precise
case, this also does not uniquely de�ne a payo� at every possible world.
If w ∈ [Q = Γj ], by letting Q choose for you you will receive value X(w)
for some gamble X ∈ CΓj (X ). But Γj can have multiple choiceworthy
options in X , and each of them could have di�erent values at the worlds in
[Q = Γj ]. SoQ's choice could have the value of any gamble in the following
set, depending on how we adjudicate between choiceworthy options for the
various Γj 's:

m∑
j=1

[Q = Γj ]CΓj (X ) (49)

So both �choosing for yourself� and �letting Q choose for you� cor-
respond to sets of gambles. Furthermore, each credence function in your
credal set may assign di�erent expected values to di�erent gambles within
each set, and di�erent credence functions in your credal set may assign
di�erent expected values to the same gamble in either set.

In light of this, given a problem X , there are quite a few ways to
express that you expect letting Q choose for you from X to be at least as
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good as choosing from X yourself, which all collapse to Pragmatic Value
if both Π and Q are precise. For example:

� For every X ∈ CΠ(X ) and for every Y ∈
∑m
j=1[Q = Γj ]CΓj (X ) and

for every π ∈ Π, π(X) ≤ π(Y ).

� For every X ∈ CΠ(X ) and for every Y ∈
∑m
j=1[Q = Γj ]CΓj (X ),

there is some π ∈ Π such that π(X) ≤ π(Y ).

� For every X ∈ CΠ(X ) there is some Y ∈
∑m
j=1[Q = Γj ]CΓj (X ) such

that for every π ∈ Π, π(X) ≤ π(Y ).

� For every X ∈ CΠ(X ) there is some Y ∈
∑m
j=1[Q = Γj ]CΓj (X ) and

there is some π ∈ Π such that π(X) ≤ π(Y ).

all collapse to Pragmatic Value when Π and Q are precise.17 See (Sei-
denfeld, 2004; Kadane et al., 2008; Bradley and Steele, 2016, 2014) for
a discussion of possible characterisations of Pragmatic Value for agents
with imprecise credences in the context of sequential decision-making.

A number of possible characterisations of Pragmatic Value turn out
to be equivalent to our imprecise deference principles when Q denotes a
closed credal set.18 As mentioned earlier, many popular frameworks in the
Imprecise Bayesian literature end up being equivalent to closed and convex
credal sets (Wheeler, 2022), but not much attention has been devoted
to the closure property for non-convex credal sets. Yet this property
seems essential for the formal proofs given in this essay; while it would be
desirable to relax it, I will leave it for future work to establish whether
this can be done.

As an illustrative example of the characterisation of deference in terms
of Pragmatic Value, I will focus on the following (comparatively weak)
imprecise version of Value:

� Weak Pragmatic Value

For every X = {X1, ..., Xk}, every X ∈ X , and every π ∈ Π, there
is some Y ∈

∑m
j=1[Q = Γj ]CΓj (X ) such that:

π(X) ≤ π(Y ) (50)

This requires that for every X ∈ X , and every credence function in Π,
there is some way of adjudicating between the choiceworthy options of
each Γj such that �letting Q choose for you� is no worse than choosing X
according to π. In other words, no matter what option you would pick
from X , each credence function in your credal set thinks that Q could
(by adjudicating between choiceworthy options in a certain way) make at
least as good of a choice. I consider this to be a plausible generalisation
of Pragmatic Value for agents whose doxastic state is represented by a

17Note that these are not all the logical possibilities, but only �extreme ones�. Instead of
existentially/universally quanti�ying on a set, we could existentially/universally quantify on
some appropriately chosen subset to derive a stronger/weaker principle, respectively.

18We can think of a probability function π on W = {w1, ..., wn} as the vector
(π(w1), ...π(wn)) in Rn, and similarly think of a credal set as a subset of Rn. A credal
set Γ is closed i� the corresponding subset of Rn is closed with regards to the Euclidean
topology. In turn this means that if π /∈ Γ, there is some ε > 0 such that for every γ ∈ Γ, the
Euclidean distance between γ and π is greater than ε.
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credal set. When all credal sets are singletons, it clearly coincides with
Pragmatic Value.

The main formal result of this section shows that if Q is Clear and
closed, Weak Pragmatic Value is equivalent to Subset Re�ection.

Proposition 7. Let Π be a regular credal set, and let Q the de�nite
description of a Clear and closed credal set. Then Π Weak Pragmatic
Values Q i� Π Sub-Re�ects Q.

Proof. See Appendix.

This gives us a way to motivate Subset Re�ection in contexts beyond
those where (1) Q is your future doxastic state. The assumption that
you defer to someone when you consider their credences to be at least as
valuable as yours is a natural one in contexts (2-4). If value is de�ned as
in Weak Pragmatic Value, then you defer to someone in those contexts i�
you Subset Re�ect them.

At the end of the previous section, I pointed out that there is intu-
itively a stronger notion of deference than the one characterised by Subset
Re�ection, since the latter allows one to defer to extremely uninforma-
tive experts while having extremely informative opinions. So it's natural
to wonder whether there is a version of Pragmatic Value which yields a
stronger deference principle than Subset Re�ection.

We can approach this question by ranking the experts you Weak Prag-
matic Value in terms of their informativeness, where an expert is more
informative than another when they make strictly more judgements at
every possible world. You defer to all the experts you Weak Pragmatic
Value, in the weak sense that upon learning their doxastic state, you
would make all the judgements they make. But you defer to the most
informative ones in a stronger sense: upon learning their doxastic state,
you would make no more judgements than they do. In other words, if
they were any more informative, you would not Weak Pragmatic Value
them anymore.

Looking at comparative informativeness allows us to capture a stronger
sense of deference than the one captured by Pointwise/Subset Re�ection.
To get an intuitive idea of how this works, consider Example 5.3 again.
Your friend Lucy's credal set is denoted byQ. Now let T denote the convex
credal set of Tom, whose opinions are more informative than Lucy's at
every possible world. In particular:

T1 = T3 = {γ ∈ PW : γ(w1) = .9, γ(w3) = .1, γ(w2) = γ(w4) = 0)} (51)

T2 = T4 = {γ ∈ PW : γ(w1) = γ(w3) = 0, γ(w2) = γ(w4) = 1/2} (52)

At the worlds wi /∈ r where the nespapers don't report the polls, Lucy has
Qi(d) = [.01, .99] whereas Tom has Ti(d) = {1/2}. This can happen, for
example, if Tom reads the same newspapers as Lucy, but is less epistemi-
cally conservative than her, and so is disposed to make more judgements
when facing scarce evidence. Recall that Martha was an agent who, upon
learning that Q(d) = [.01, .99], assigned probability interval [.01, .99] to
d. Martha Subset Re�ects Lucy, and thus Weak Pragmatic Values her.
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However, Martha does not Weak Pragmatic Value Tom, since:

ΠM (d|[T = T2]) = ΠM (d|¬r]) = ΠM (d|[Q = Q2]) = [.01, .99] * [.4, .6]
(53)

Indeed, Martha does not Weak Pragmatic Value any de�nite description
which is more informative than Q. Intuitively this is because her epistemic
values and total evidence are aligned with those of Lucy, so she would not
endorse the further judgements made by Tom or any other more informa-
tive expert in the worlds where Lucy has no evidence about whether d.
Stewart on the other hand Weak Pragmatic Values Tom, as well as many
other more informative credal sets. This suggests that, when you defer to
someone in the stronger sense in which Martha defers to Lucy, they are
maximally informative amongst the experts you Weak Pragmatic Value.

The most informative experts among those you Weak Pragmatic Value
turn out to be exactly those which you Identity Re�ect. To show this,
we �rst need to make precise our intuitive notion of informativeness of a
de�nite description.

De�nition 6.1 (Informativeness of a de�nite description). Let Q,Q′ be
de�nite descriptions of credal sets de�ned on the same domainW. Q is at
least as informative as Q′, written Q ⊆ Q′, i� for every wi ∈ W, Qi ⊆ Q′i.

Now let Q be a set of de�nite descriptions. We say Q is maximally
informative in Q i� there is noQ′ ∈ Q such thatQ′ ⊆ Q andQ * Q′. Now
we can show that the maximally informative de�nite descriptions among
those that Π Weak Pragmatic Values are exactly the de�nite descriptions
that Π Identity Re�ects.

Proposition 8. Let Π be a regular credal set, and let Q be the set of Clear
and Closed de�nite descriptions that Π Weak Pragmatic Values. Then Q
is maximally informative in Q i� Π Identity Re�ects Q.

Proof. This follows from Proposition 7 together with Theorem 5.8 in
Grunwald and Halpern (2007). A proof using the present notation is
given in the Appendix.

We can now motivate Identity Re�ection from the following extension
of Value Superiority, which distinguishes between a weak and a strong
notion of deference:

� Value-Information Superiority:

1. You weakly defer to a doxastic state i� you regard it to be at
least as valuable as your doxastic state.

2. You strongly defer to a doxastic state i� it is maximally infor-
mative among those you defer to.

By plugging a de�nition of value and (comparative) informativeness of a
doxastic state into Value-Information Superiority, we can derive two no-
tions of epistemic deference for imprecise credences. If value is de�ned by
Weak Pragmatic Value and Informativeness is de�ned as in De�nition 6.1,
then you defer to someone in the weaker sense i� you Subset Re�ect them
(Proposition 7), and you defer to someone in the stronger sense i� you
Identity Re�ect them (Proposition 8). In Example 5.3, Martha defers to
Lucy in the stronger sense captured by Identity Re�ection, whereas Stew-
art only defers to Lucy in the weaker sense captured by Subset Re�ection.
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7 Conclusion

This essay makes some progress towards a systematic treatment of epis-
temic deference for agents with imprecise credences. After outlining four
di�erent contexts where deference has been relevant for precise Bayesian
epistemology, I set out to defend some deference principles for imprecise
probabilities using assumptions appropriate to each context.

I have shown how two imprecise deference principles, Identity and
Pointwise Re�ection, are related: the latter is equivalent, for convex credal
sets, to Subset Re�ection, which in turn is strictly weaker than Identity
Re�ection. Then I have shown that when you are certain that you will up-
date by conditionalisation, you should defer to your future self according
to Identity Re�ection.

When the expert is someone other than your future self, we can derive
a deference principle from the assumption that you defer to someone if
and only if you consider their doxastic state to be at least as valuable
as your own. I have shown that, if value is appropriately cashed out
in pragmatic terms, this assumption yields Subset/Pointwise Re�ection.
I have also argued that we may be interested in a stronger notion of
deference than the one characterised by Subset Re�ection. This can be
defended by supplementing the value assumption with an ordering of the
doxastic states in terms of their informativeness. I have shown that the
doxastic states you Identity Re�ect are the most informative ones among
the doxastic states which you consider at least as valuable as your own.
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Appendices

A Proof of the Results

Remark 1. Let Π be a regular credal set, let Q be the de�nite descrip-
tion of a Clear credal set, and let E = {e1, ..., em} be a partition. Π
respects Certain Conditionalisation with regards to Q and E i� it obeys
the following two conditions:

i Π([Π(X|ej) = Q(X|ej)]|ej) = {1}.
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ii Π(ej ⇔ [Q(ej) = {1}]) = {1}.

Proof. For the right-to-left direction, assume Π obeys (i) and (ii). Note
that Π([Π(X|ej) = Q(X|ej)]|ej) is equal to Π(Π(X|ej) = Q(X)), since
Π([Q(ej) = {1}]|ej) = {1} by (ii), and thus Π([Q(X) = Q(X|ej)|ej ]) =
{1}. So for every X, we have:

Π([Π(X|ej) = Q(X)]|ej) = Π([Π(X|ej) = Q(X|ej)]|ej) = {1} (54)

This can be true only if Π([Π(·|ej) = Q]|ej) = {1}, thus proving Certain
Conditionalisation.

For the left-to-right direction, assume Π obeys Certain Conditionali-
sation. We can show that (i) holds as follows:

Π([Π(X|ej) = Q(X|ej)]|ej) = {1} (55)

⇐⇒ Π([Π(X|ej) = Π(X|ej)]|ej) = 1 by Certain Conditionalisation
(56)

where the last equality holds by coherence. We can show that (ii) holds
as follows whenever ej 6=W:

Π(ej ⇔ [Q(ej) = {1}]) = {1} (57)

⇐⇒ π(ej ⇔ [Q(ej) = {1}]) = 1 for all π ∈ Π (58)

⇐⇒ π(ej ∧ [Q(ej) = {1}]) + π(¬ej ∧ [Q(ej) 6= {1}]) = 1 (59)

⇐⇒ π([Q(ej) = {1}]|ej)π(ej) +
∑
ek 6=ej

π([Q(ej) 6= {1}]|ek)π(ek) = 1

(60)

⇐⇒ π([Π(ej |ej) = {1}]|ej)π(ej) +
∑
ek 6=ej

π([Π(ej |ek) 6= {1}]|ek)π(ek) = 1

(61)

⇐⇒ π(ej) +
∑
ek 6=ej

π(ek) = 1 (62)

where the last equality holds by coherence. The proof is trivial when
ej =W.

To prove Lemma 1 it helps to �rst prove the following lemma:

Lemma 0. Let Π be a regular credal set, Q a de�nite description of a
credal set, and E = {e1, ..., em} a �nite partition. Assume Π respects
Certain Conditionalisation w.r.t. Q and E. Then for every wj , wk ∈ W,
Qi = Qk i� wi, wk belong to the same ej ∈ E.

Proof. Let wi, wk ∈ W. For the right-to-left direction, assume by con-
tradiction that wi, wk ∈ ej and yet Qi 6= Qk. By regularity, Π(·|ej) is
well-de�ned. So either Π(·|ej) 6= Qi, or Π(·|ej) 6= Qk (or both). Assume
without loss of generality that Π(·|ej) 6= Qi. By Certain Conditionalisa-
tion we have:

Π([Q = Π(·|ej)]|ej) = {1} (63)
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Now pick any π ∈ Π. From the above equality we have:

π([Q = Π(·|ej)]|ej) = 1 (64)

⇐⇒ π([Q = Π(·|ej)] ∧ ej) = π(ej) (65)

⇐⇒ π(ej)− π([Q 6= Π(·|ej)] ∧ ej) = π(ej) (66)

but note that wi ∈ [Q 6= Π(·|ej)] ∧ ej , because wi ∈ ej and Qi 6= Π(·|ej).
Therefore π([Q 6= Π(·|ej)] ∧ ej) > 0. So the last equation above is a
contradiction.

The proof of the other direction is similar. Assume by contradiction
that wi ∈ ei and wk ∈ ek with ei 6= ek, and yet Qi = Qk. Then either
Qi 6= Π(·|ei) or Qk 6= Π(·|ek) (or both). Assume without loss of generality
that Qi 6= Π(·|ei). Pick some π ∈ Π. As above, we have from Certain
Conditionalisation that:

π([Q = Π(·|ei)]|ei) = 1 (67)

⇐⇒ π([Q = Π(·|ei)] ∧ ei) = π(ei) (68)

⇐⇒ π(ei)− π([Q 6= Π(·|ei)] ∧ ei) = π(ei) (69)

But we know wi ∈ ei and wi ∈ [Q 6= Π(·|ei)], so π([Q 6= Π(·|ei)]∧ ei) > 0,
contradiction.

We can now prove Lemma 1:

Lemma 1. Let Π be a regular credal set, Q a de�nite description of a
credal set, and E = {e1, ..., em} a �nite partition. Assume Π respects
Certain Conditionalisation w.r.t. Q and E. Then for every ej ∈ E:

[Q = Π(·|ej)] = ej (70)

Proof. Let wi ∈ [Q = Π(·|ej)], and assume by way of contradiction that
wi /∈ ej . Then wi ∈ ek 6= ej , since E is a partition. By Lemma 0,
ek ⊆ [Q = Qi] = [Q = Π(·|ej)]. But since Π(·|ej) 6= Π(·|ek), this means
that Π([Q = Π(·|ek)]|ek) = {0}, violating Certain Conditionalisation.

Now let wi ∈ ej and assume by way of contradiction that wi /∈ [Q =
Π(·|ej)]. Then by Lemma 0, ej ⊆ [Q = Qi] ⊆ [Q 6= Π(·|ej)]. But then
Π([Q 6= Π(·|ej)|ej ]) = {1}, violating Certain Conditionalisation.

Proposition 2 (Certain Conditionalisation ⇒ Identity Re�ection). Let
Π be a regular credal set, Q a de�nite description of a credal set, and
E = {e1, ..., em} a �nite partition. If Π respects Certain Conditionalisation
w.r.t. Q and E, then Π Identity Re�ects Q.

Proof. Assume by way of contradiction that Π(·|[Q = Qi]) 6= Qi for some
wi such that this conditional credal set is de�ned. Let π ∈ Π and ej ∈ E .
From Lemma 1 we know that [Q = Qi] = ej . By Certain Conditionalisa-
tion, we then have:

π([Q = Π(·|ej)]|ej) = 1 (71)

⇐⇒ π([Q = Π(·|[Q = Qi])] ∧ ej) = π(ej) (72)

⇐⇒ π(ej)− π([Q 6= Π(·|[Q = Qi])] ∧ ej) = π(ej) (73)
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but note that for every wk ∈ ej we have wk ∈ [Q 6= Π(·|[Q = Qi])], since
Qi = Qk by Lemma 0 and Π(·|[Q = Qi]) 6= Qi by assumption. Therefore
ej = [Q 6= Π(·|[Q = Qi])] ∧ ej , and because π(ej) > 0 by regularity, the
last equation above is a contradiction.

Proposition 3 (Sub-Re�ection (Convex) ⇒ Pointwise Re�ection). Let
Π be a regular credal set and Q the de�nite description of a Clear and
convex credal set. If Π Sub-Re�ects Q, then Π Pointwise-Re�ects Q.

Proof. Assume Π Sub-Re�ects Q, where Q is the de�nite description of a
convex credal set. Let {Γ1, ...,Γm} be the set of all possible values of Q.
Let X :W → R and S ⊆ R be such that 0 /∈ Π([Q(X) = S]). Since every
Γj is convex, this means that S must be convex, otherwise [Q(X) = S]
would be empty. Then for every π ∈ Π we have:

π(X|[Q(X) = S]) =
π(X[Q(X) = S])

π([Q(X) = S])
(74)

=
π(X

⋃
j:Γj(X)=S [Q = Γj ])

π(
⋃
j:Γj(X)=S [Q = Γj ])

(75)

=

∑
j:Γj(X)=S π(X[Q = Γj ])∑
j:Γj(X)=S π([Q = Γj ])

(76)

=
∑

j:π([Q=Γj ]) 6=0,Γj(X)=S

π(X|[Q = Γj ])
π([Q = Γj ])∑

k:Γk(X)=S π([Q = Γk])

(77)

Let J be the set of indices {j : Γj(X) = S, π([Q = Γj ]) 6= 0}. The
equalities above show that, for every π ∈ Π, the value π(X|[Q(X) = S])
is a convex combination of the set of values {π(X|[Q = Γj ]) : j ∈ J}.
But since Π Sub-Re�ects Q, we know that Π(·|[Q = Γj ]) ⊆ Γj , and
consequently π(X|[Q = Γj ]) ∈ Γj(X) = S for every π ∈ Π and j ∈ J .
Therefore, because π(X|[Q(X) = S]) is a convex combination of values
in the convex set S, it must also belong to the set S, completing the
proof.

To prove Proposition 4 I �rst prove the following lemma:

Lemma 2. Let Π be a regular credal set, and Q the de�nite description of
a convex and Clear credal set. For any set of real values S, I write S > 0
as shorthand for �s > 0 for every s ∈ S�. Then Π Pointwise-Re�ects Q
only if:

Π(X[Q(X) > 0]) > 0 (78)

whenever this credal set is de�ned.19

Proof. Assume Π Pointwise Re�ects Q. Let X be a random variable such
that Π(·|[Q(X) > 0]) is de�ned. So π([Q(X) > 0]) > 0 for every π ∈ Π.
De�ne the set of sets of real values S(X) as follows:

S(X) = {Qi(X) : wi ∈ W} (79)

19This condition was proposed by Molinari (2023) as a deference principle for imprecise
credences in cases where Q is not Clear. It is an imprecise analogue of the Total Trust
principle introduced by Dorst et al. (2021).
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Since W is �nite we can write S as {S1, ..., SM} for some M ∈ N, and
M ≥ 1. For every π ∈ Π we have:

π(X[Q(X) > 0]) > 0 (80)

⇐⇒ π(X
⋃

k:Sk>0

[Q(X) = Sk]) > 0 (81)

⇐⇒
∑

k:Sk>0

π(X[Q(X) = Sk]) > 0 because the [Q(X) = Sk] are disjoint

(82)

⇐⇒
∑

k:Sk>0,π([Q(X)=Sk]) 6=0

π(X[Q(X) = Sk]) > 0

(83)

We can show this sum is strictly positive by showing that it has at least one
addend, and that every addend is strictly positive. Since π([Q(X) > 0]) >
0, there is at least some k such that π([Q(X) = Sk]) 6= 0 and Sk > 0. So
the sum has at least one addend. For every such k, by Pointwise Re�ection
we have π(X[Q(X) = Sk]) > 0 if and only if π(X|[Q = Sk]) > 0, which is
true by Pointwise Re�ection, as π(X|[Q = Sk]) ∈ Sk. This completes the
proof.

With this lemma in place, we can now prove Proposition 4:

Proposition 4 (Pointwise Re�ection (Convex) ⇒ Sub-Re�ection). Let
Π be a regular credal set and Q the de�nite description of a convex and
Clear credal set. If Π Pointwise-Re�ects Q, then Π Sub-Re�ects Q.

Proof. For any set of real values S, I write S > 0 as shorthand for �s > 0
for every s ∈ S�. Assume Π Pointwise Re�ects Q. Let Γj be a possible
value of Q, and let X an arbitrary random variable such that Γj(X) > 0.
From Clarity we also have Γj(X[Q = Γj ]) > 0, since γ(X[Q = Γj ]) =
γ(X) for every γ ∈ Γj . Then we have the following equality between
random variables:

X[Q = Γj ] = X[Q = Γj ][Q(X[Q = Γj ]) > 0] (84)

But from Lemma 2, we have:

Π(X[Q = Γj ][Q(X[Q = Γj ]) > 0]) > 0 (85)

and hence Π(X[Q = Γj ]) > 0. For every π ∈ Π we have π([Q = Γj ]) > 0
by regularity, and so this entails that π(X|[Q = Γj ]) > 0 for every π ∈ Π.
This shows that Π(X|[Q = Γj ]) > 0 for any random variable X such that
Γj(X) > 0. Now assume by way of contradiction that Π(·|[Q = Γj ]) * Γj .
Then we can �nd π ∈ Π such that π(·|[Q = Γj ]) /∈ Γj . Since Γj is convex,
using the hyperplane separation theorem we can �nd a hyperplane (i.e.
a random variable) X such that π(X|[Q = Γj ]) ≤ 0 and Γj(X) > 0,
contradiction. Since Γj was an arbitrary possible value for Q, this proves
that Π Sub-Re�ects Q.

Lemma 3. Let π be a regular credence function and q a de�nite descrip-
tion of a credence function. Assume π respects Certain Conditionalisation
with regards to q. Then π Local Re�ects q i� π Global Re�ects q.
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Proof. This follows from Propositions 3 and 4 by noting that, when all
credal sets involved are singletons, Subset Re�ection collapses to Global
Re�ection and Pointwise Re�ection collapses to Local Re�ection.

The proof of Proposition 7 will rely on the following theorem by Sei-
denfeld et al. (2010).20

Theorem 1 (Seidenfeld et al. (2010), Theorem 2). Let π be a credence
function and Γ a credal set. There is a �nite set of gambles X∗ such that:

(a) CΓ(X∗) = X∗ i� π ∈ Γ, and

(b) π(X) is constant for all X ∈ X∗.

Proof. Here is how to constructX∗. Let kπ = min{π(wi) : wi ∈ W, π(wi) > 0}.
Let X∗ be the gamble that pays kπ at every possible world. For every wi,
de�ne the gamble Xi as follows:

Xi(wj) =


1 if i = j, π(wj) = 0

kπ if i 6= j, π(wj) = 0
kπ

π(wj)
if i = j, π(wj) > 0

0 if i 6= j, π(wj) > 0

(86)

Then let X∗ = {X∗, X1, ..., Xn}.
Prove (b) �rst. Clearly π(X∗) = kπ. And for every Xi, if π(wi) = 0

then:
π(Xi) = π(wi)1 + (1− π(wi))kπ = kπ (87)

whereas if π(wi) 6= 0:

π(Xi) = π(wi)
kπ

π(wi)
+ (1− π(wi))0 = kπ (88)

which proves (b).
To prove (a), �rst prove the right-to-left direction. Assume π ∈ Γ. By

(b), every element of X∗ maximises π, and so CΓ(X∗) = X∗. To prove the
left-to-right direction, we need to show that CΓ(X∗) 6= X∗ unless π ∈ Γ.
Let γ 6= π be a probability function. Then we proceed by cases on whether
πk = 1.
Case 1: kπ 6= 1. There is some wi such that γ(wi) > π(wi), and we have:

γ(Xi) =

{
γ(wi)

kπ
π(wi)

if π(wi) > 0

γ(w1) + (1− γ(wi))kπ if π(wi) = 0
(89)

and both are strictly greater than γ(X∗) = kπ under the assumption that
kπ < 1. This shows that X∗ /∈ CΓ(X∗) unless π ∈ Γ.
Case 2: kπ = 1. Then π(wi) = 1 for some wi and X∗ = {X∗, Xi}, since
X∗ is the gamble that pays 1 at every possible world. So γ(wi) < 1 and
hence γ(Xi) < 1 = γ(X∗). This shows that Xi /∈ CΓ(X∗) unless π ∈ Γ,
completing the proof.

20The original theorem is given for choice functions de�ned over horse lotteries. The state-
ment and proof given here are straightforward analogues for choice functions de�ned over sets
of gambles.
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Before proving Proposition 7 it also helps to prove the following tech-
nical lemma about closed credal sets.

Lemma 4. Let π a credence function and Γ a closed credal set de�ned
on W = {w1, ..., wn}. If π /∈ Γ then:

d(Γ, π) := inf{max{γ(wi)− π(wi) : wi ∈ W}γ ∈ Γ} > 0 (90)

Proof. Assume by way of contradiction that d(Γ, π) ≤ 0. Note that for
every γ ∈ Γ, max{γ(wi) − π(wi) : wi ∈ W} is non-negative, since both
γ and π are probability functions. So d(Γ, π) = 0. This means that for
every ε > 0, there is some γ ∈ Γ such that:

max{γ(wi)− π(wi) : wi ∈ W} < ε (91)

Because γ and π are probability functions, this entails that:

max{|γ(wi)− π(wi)| : wi ∈ W} < (n− 1)ε (92)

This shows that:

inf{max{|γ(wi)− π(wi)| : wi ∈ W}γ ∈ Γ} = 0 (93)

and thus π is a limit point of Γ. But Γ is closed, so π ∈ Γ, contradiction.

Proposition 7. Let Π be a regular credal set, and let Q the de�nite
description of a closed and Clear credal set. Then Π Weak Pragmatic
Values Q i� Π Sub-Re�ects Q.

Proof. Let {Γ1, ...,Γm} the possible values of Q.
(⇒): for the left-to-right direction, assume that Π does not Sub-Re�ect

Q. So there is some closed credal set Γt such that Π(·|[Q = Γt]) * Γt. In
particular, there is some π∗ ∈ Π such that π∗(·|[Q = Γt]) /∈ Γt. Note that
π∗(wi|[Q = Γj ]) must be smaller than 1 for every wi, because otherwise
[Q = Γj ] = {wi}, in which case Γ will be equal to {π∗(·|[Q = Γj ])} by
Clarity.

Now construct the set of gambles X∗ = {X∗, X1, ..., Xn} as in the
proof of Theorem 1, so that:

(a) CΠ(X∗) = X∗ i� π∗(·|[Q = Γt]) ∈ Π, and

(b) π∗(X|[Q = Γt]) is constant for all X ∈ X∗.
and X∗ is the gamble paying some positive constant kπ at every possible
world.

Start by showing that there is some ε > 0 such that, for every γt ∈ Γt,
there is some Xi ∈ X∗ such that γt(Xi) > γt(X

∗) + ε. Lemma 4 shows
that for some δ > 0, every γt ∈ Γt is such that:

max{γ(wi)− π(wi|[Q = Γt]) : wi ∈ W} ≥ δ (94)

Now for �xed γt ∈ Γt, let wi ∈ W one of the worlds at which this maximum
is achieved. Note that wi must be in [Q = Γt], for otherwise γt(wi) = 0 =
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π(wi|[Q = Γt]). Let Xi the corresponding gamble in X∗, de�ned by (86).
We have:

γt(Xi) = γt(wi)
kπ

π(wi|[Q = Γt])
(95)

≥ (δ + π(wi|[Q = Γt]))
kπ

π(wi|[Q = Γt])
(96)

= kπ +
δkπ

π(wi|[Q = Γt])
(97)

≥ kπ +
δkπ

max{π(w|[Q = Γt]) : w ∈ W} (98)

where the �nal expression is strictly greater than γt(X
∗) = kπ, and inde-

pendent of the choice of γt ∈ Γt. So there is some ε > 0, such that for
every γt ∈ Γt, there is some Xi ∈ X∗ for which γt(Xi) > γt(X

∗) + ε.
Now construct the decision problem X ′∗ such that: for every X ∈ X∗,

if X 6= X∗ then X[Q = Γt] is an element of X ′∗; X∗[Q = Γt] + ε is an
element of X ′∗; and no other gamble is an element of X ′∗. We can now
prove the following two claims:

� Claim 1: CΓj (X ′∗) = {X∗[Q = Γt] + ε} whenever Γj 6= Γt.

To see that Claim 1 is true, let Γj 6= Γt. Then by Clarity, every γj ∈ Γj
has γj([Q = Γt]) = 0. So γj(X

∗[Q = Γt] + ε) = ε > 0. If X ′ ∈ X ′∗ but
X ′ 6= X∗[Q = Γt] + ε, then X ′ = X[Q = Γt] for some X ∈ X∗, and hence
γj(X

′) = 0. Therefore the only gamble in CΓj (X ′∗) is X∗[Q = Γt] + ε.

� Claim 2: X∗[Q = Γt] + ε /∈ CΓt(X ′∗).
Claim 2 is true because we picked ε > 0 small enough that, whenever
γt ∈ Γt, there is some Xt ∈ X∗ such that γt(Xt) > γt(X

∗)+ ε. By Clarity,
γt(X) = γt(X[Q = Γt]). Therefore:

γt(Xt[Q = Γt]) > γt(X
∗[Q = Γt]) + ε (99)

= γt(X
∗[Q = Γt] + ε) (100)

Since for every such Xt the gamble Xt[Q = Γt] is an element of X ′∗, we
have that X∗[Q = Γt] + ε is not an element of CΓt(X ′∗).

With this in place, we can show Weak Pragmatic Value is violated
on X ′∗. From Claims 1 and 2 we have that �letting Q choose� on X ′∗
corresponds to the set of gambles:

m∑
j=1

[Q = Γj ]CΓj (X
′
∗) (101)

= {
∑
j 6=t

[Q = Γj ]([Q = Γt]X
∗ + ε) + [Q = Γt]Xt : Xt ∈ CΓt(X

′
∗)} (102)

= {
∑
j 6=t

[Q = Γj ]ε+ [Q = Γt]Xt : Xt ∈ CΓt(X
′
∗)} (103)
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So for any Y ∈
∑m
j=1[Q = Γj ]CΓj (X ′∗) we have:

π∗(X∗[Q = Γt] + ε− Y ) (104)

= π∗(X∗[Q = Γt] + ε−
∑
j 6=t

[Q = Γj ]ε+ [Q = Γt]Xt) (105)

= π∗((X∗ + ε−Xt)[Q = Γt]) (106)

for some Xt[Q = Γt] ∈ CΓt(X ′∗). This last expression must be strictly
positive. This is because π∗([Q = Γt]) > 0 from regularity, and from (b)
we know that π(X∗−Xt|[Q = Γt]) = 0 for every Xt, so π((X∗−Xt)[Q =
Γt]) = 0. This shows that there is a member of X ′∗ − δ which π∗ strictly
prefers to any member of

∑m
j=1[Q = Γj ]CΓj (X ′∗). So Weak Pragmatic

Value is violated.
(⇐): For the right-to-left direction, assume Π Sub-Re�ects Q and let

X be an arbitrary �nite set of gambles. Let π ∈ Π, and let X ∈ X be
a gamble that maximises π over X . Now for each Γj , we can show that
there is some Y j ∈ [Q = Γj ]CΓj (X ) such that π(X[Q = Γj ]) ≤ π(Y j). To
see this, proceed by cases.
Case 1: X ∈ CΓj (X ). Then let Y j = X[Q = Γj ].
Case 2: X /∈ CΓj (X ). This means that for any γ ∈ Γj , there is some
X ′ ∈ CΓj (X ) such that γ(X ′) > γ(X). By Subset Re�ection, we have
that Π(·|[Q = Γj ]) ⊆ Γj , and hence π(·|[Q = Γj ]) ∈ Γj . Therefore for
some X ′ ∈ CΓj (X ), π(X ′|[Q = Γj ]) > π(X|[Q = Γj ]), This in turn means
π(X ′[Q = Γj ]) > π(X[Q = Γj ]), since from regularity π([Q = Γj ]) > 0.
So let Y j = X ′[Q = Γj ].

Then we can construct the following gamble:

m∑
j=1

Y j ∈
m∑
j=1

[Q = Γj ]CΓj (X ) (107)

and we have that:

π(X) =

m∑
j=1

π(X[Q = Γj ]) ≤
m∑
j=1

π(Y j) = π(

m∑
j=1

Y j) (108)

So there is some gamble in
∑m
j=1[Q = Γj ]CΓj (X ) which π expects to be

at least as good as X. And since X was maximal for π on X , and π was
an arbitrary member of Π, this shows Π Weak Pragmatic Values Q.

Proposition 8. Let Π be a regular credal set, and let Q be the set of Clear
and closed de�nite descriptions that Π Weak Pragmatic Values. Then Q
is maximally informative in Q i� Π Identity Re�ects Q.

Proof. For the left to right direction, assume Q is maximally informative
in Q. Since Q ∈ Q, we know Π Weak Pragmatic Values Q, and hence Π
Sub-Re�ects Q by Proposition 7. Let {Γ1, ...,Γm} be the possible values
of Q. Assume by way of contradiction that Π does not Identity Re�ect
Q. Then there must be some Γt such that:

Π(·|[Q = Γt]) ( Γt (109)
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Now de�ne the de�nite description Q′ as follows:

Q′w = π(·|[Q = Γj ]) whenever w ∈ [Q = Γj ] (110)

Note that Q′ is well-de�ned because {[Q = Γj ] : j = 1, ...,m} is a parti-
tion. To see that Q′ is at least as informative as Q, note that for every
w ∈ W, w ∈ [Q = Γj ] for some j, and:

Q′w = Π(·|[Q = Γj ]) ⊆ Γj = Qw (111)

where the subset relation holds because Π Sub-Re�ects Q. On the other
hand, Q is not at least as informative as Q′. To show this, let w ∈ [Q =
Γt]. Then:

Q′w = Π(·|[Q = Γt]) ( Γt = Qw (112)

so Q′ is strictly more informative than Q. All we need to show now is that
Q′ ∈ Q, contradicting the assumption that Q is maximally informative
in Q. To show this we must show that Π Sub-Re�ects Q′. But this is
true because Q′ is obtained by conditioning Π on the true element of a
partition, so Π Identity Re�ects Q′, and therefore Sub-Re�ects Q′ as well.

For the right-to-left direction, assume Π Identity Re�ects Q. Let
{Γ1, ...,Γm} be the possible values of Q. Since Identity Re�ection en-
tails Sub-Re�ection, Q is an element of Q. Let Q′ ∈ Q be such that
Q′ ⊆ Q. We need to show that Q′ ⊆ Q. Let {Σ1, ...,Σk} be the possible
values of Q′. Now for every w ∈ W let Γj and Σs such that w ∈ [Q = Γj ]
and w ∈ [Q′ = Σs], and let A = [Q = Γj ]∩ [Q′ = Σs]. Note that the proof
is complete if we can show the following claim:

� Claim 1: [Q = Γj ] = [Q′ = Σs]

Using this claim, we can write:

Qw = Γj = Π(·|[Q = Γj ]) = Π(·|[Q′ = Σs]) ⊆ Σs = Q′w (113)

and since w was an arbitrary world, this proves Q ⊆ Q′.
To prove Claim 1, note that if [Q = Γj ] 6= [Q′ = Σs], then either

(i) [Q = Γj ] ∼ A 6= ∅, or (ii) [Q′ = Σk] ∼ A 6= ∅, or both. If (i) is
the case, we can �nd some w′ ∈ [Q′ = Σk] ∼ A. From Clarity, we have
Γj({w′}) = {0}, and since Q′ ⊆ Q, also Σk({w′}) = 0. But because Π
Sub-Re�ects Q′, this entails that Π({w′}|[Q′ = Σk]) = {0}. Since Π is
regular, this can only occur if w′ /∈ [Q′ = Σk], contradiction. The proof is
analogous when (ii) is the case.
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