
Citation: Molick, S. Inferential

Interpretations of Many-Valued

Logics. Logics 2024, 2, 112–128.

https://doi.org/10.3390/

logics2030005

Academic Editor: Valentin Goranko

Received: 29 May 2024

Revised: 2 September 2024

Accepted: 10 September 2024

Published: 11 September 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Inferential Interpretations of Many-Valued Logics
Sanderson Molick

Division of Humanities, Federal Institute of Pará, Belém 66075-110, Brazil; smolicks@gmail.com

Abstract: Non-Tarskian interpretations of many-valued logics have been widely explored in the logic
literature. The development of non-tarskian conceptions of logical consequence set the theoretical
foundations for rediscovering well-known (Tarskian) many-valued logics. One may find in distinct
authors many novel interpretations of many-valued systems. They are produced through a type
of procedure which consists in altering the semantic structure of Tarskian many-valued logics in
order to output a non-Tarskian interpretation of these logics. Through this type of transformation the
paper explores a uniform way of transforming finitely many-valued Tarskian logics into their non-
Tarskian interpretation. Some general properties of carrying out this type of procedure are studied,
namely the dualities between these logics and the conditions under which negation-explosive and
negation-complete Tarskian logics become non-explosive.
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1. Introduction

Non-Tarskian interpretations of many-valued logics have been widely explored in the
logic literature. The development of non-tarskian conceptions of logical consequence set
the theoretical foundations for rediscovering well-known (Tarskian) many-valued logics.
One may find in authors such as G. Malinowski ([1]), Shramko and Wansing ([2]) and
Cobreros et al. ([3]), many novel interpretations of many-valued systems.

These novel interpretations were created from a revised semantical apparatus first
proposed by G. Malinowski [4] in response to Roman Suszko’s ideas about the concep-
tion of many-valuedness defended by Łukasiewicz. These semantic structures, dubbed
quasi-matrices, allowed the definition of alternative entailment relations that are different
from the usual Tarskian requirements of truth-preservation between premises
and conclusion.

In [2,3], the authors explore non-tarskian consequence relations as interpretations
of a given Tarskian many-valued logic. In short, this transformation process consists
in outputting a non-Tarskian many-valued logic given a Tarskian many-valued logic as
input. It is exhibited that this move affects the underlying notion of entailment over the
same vocabulary and interpretation of the logical constants. Even though non-Tarskian
interpretations of some well-known many-valued logics, like K3, LP, FDE and SIXTEEN,
have been explored and discussed by these authors, there is still little discussion over a
uniform way of carrying out this procedure to other many-valued logics, as well as over
what consequences follow from this type of transformation in many-valued logics. As an
example, it is shown in [1] that Łukasiewicz’s logic Ł3 becomes paraconsistent after its
transformation in Malinowski’s style, but questions such as what other many-valued logics
are made paraconsistent after the same type of process, what is the standard way (if any)
of carrying out such procedure, as well as what are the inferential relation between these
logics, are not touched by the author.

The purpose of the present paper is to explore this gap by proposing a uniform way
of producing non-Tarskian interpretations of propositional finitely many-valued Tarskian
logics endowed with a linearly ordered set of truth-values. By uniform it is meant a pro-
cedure applicable to a class of many-valued logics as a way to explore general properties
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of non-Tarskian logics. As a consequence, it is shown under what conditions a specific
class of propositional Tarskian many-valued logic becomes paraconsistent or paracom-
plete after its transformation, namely, finitely many-valued logics with a linearly ordered
set of truth-values and truth-functional semantics. Thus, the topic of the paper aligns
with the problem of producing paraconsistent logics from a base class of many-valued
systems1. The problem of what are the adequate duals for these entailment relations is
also explored through distinct dualization procedures and some central properties of these
dual logics are exhibited, such as their ability to validate connexive principles relative
to implication.

Overview. The paper is structured as follows. Section 2 introduces all notions of
entailment to be considered, as well as the notion of semantic revision to be explored
throughout the paper. Section 3 introduces the concept of inferentially many-valued
logics and its relation to paraconsistency and paracompleteness. We explore under what
conditions a finitely many-valued Tarskian logic becomes paraconsistent or paracomplete
after its transformation into an inferentially many-valued logic and provide a partial
solution to the case of finitely many-valued propositional logics with a linearly ordered sets
of truth-values, a problem first raised by Malinowski in [1]. Łukasiewicz’s three-valued
logic is explored throughout the paper as a illustrative case but shown to generalize to the
finitely-valued case. Section 4 introduces two different types of dualization procedure for
the semantic structures. These dualization procedures are based on Malinowski ([1]) and
Blasio et al. ([7]). After that, in Section 5, we explore the relation between the dual semantic
structures and their associated entailment relations. In Section 6, the use of unary operators
is introduced as a way of recovering inferences from the Tarskian base logic. The paper
ends with final comments and paths for future exploration.

2. Bidimensional Matrices

Let a logic be any structure of kind L = ⟨Fr, |=⟩, where Fr is a non-empty set of
formulas understood as the carrier of the algebra freely generated by the set of atoms
At over a set of connectives Con, and |= is a SET-FMLA semantic consequence relation
(or entailment relation). Every entailment relation shall be based on a semantic structure.
The semantic structure of Tarskian logics shall be determined by a logical matrix M =
⟨V ,D, { fµ : µ ∈ Con}⟩, where V is the set of truth-values and D is a subset of V called the
designated set of truth-values. To each logical matrix M one may associate a semantics
Val defined as a set of homomorphic assignments v : Fr −→ V 2. We shall assume
every logic considered in the paper comes endowed with a truth-functional semantics,
i.e., v(µ(φ1, . . . , φn)) = fµ((v(φ1), ..., v(φn)) holds for every valuation v and µ ∈ Con.
Accordingly, given a semantics Val and formulas Γ ∪ {φ} ⊆ Fr, a tarskian entailment
relation (hereafter called t-entailment) may be introduced as:

Γ |=t φ iff v(Γ) ⊆ D implies v(φ) ∈ D, for every v ∈ Val. (1)

As usual, the relation of t-entailment is understood as the preservation of designated-
ness from premises to conclusion. Entailment relations that preserve values from premises
to conclusion shall be called forwards-preserving. As proposed by Shramko and Wans-
ing ([2]), dual to a forwards-preserving entailment relation, a notion of preservation of
non-designatedness (hereafter called f-entailment) from conclusion to premises may be
also introduced:

Γ |=f φ iff v(φ) ∈ (V −D) implies v(Γ) ∩ (V −D) ̸= ∅, for every v ∈ Val. (2)

It is easy to see that |=t = |=f in every logical matrix M. This is due the fact that
designatedness and non-designatedness are complementary concepts in logical matrices.

The need for treating designatedness and non-designatedness as non-complementary
concepts was first explored by G. Malinowski ([4]) as a way of constructing semantical struc-
tures capable of accommodating values that are neither designated nor non-designated.
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Malinowski’s semantical structures, called hereafter bidimensional matrices, are any ma-
trix M = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩, where D+ and D− are distinct proper subsets of V .
The sets D+ and D− are called, respectively, the designated and antidesignated sets of truth-
values. A bidimensional matrix is said to allow inferential gaps whenever V ̸= (D+ ∪D−)
holds, and said to allow inferential gluts whenever D+ ∩D− ̸= ∅ holds. Any bidimensional
matrix that allows inferential gaps shall be called a q-matrix. Analogously, any bidimen-
sional matrix that allows inferential gluts shall be called a p-matrix. It is easy to see that
a bidimensional matrix that disallows inferential gaps and gluts coincides with a logical
matrix (hereafter called a t-matrix).

Given a q-matrix, one may introduce a notion of quasi-entailment (or q-entailment)
in the following way:

Γ |=q φ iff v(Γ) ∩D− = ∅ implies v(φ) ∈ D+, for every v ∈ Val. (3)

The relation of q-entailment is understood as a kind of reasoning by conjectures, where
non-rejected premises lead to accepted conclusions. Analogously, given a q-matrix, one
may also introduce a different notion of entailment, originally proposed by Frankowski [8]
and dubbed p-entailment (for plausible entailment):

Γ |=p φ iff v(Γ) ⊆ D+ implies v(φ) ̸∈ D−, for every v ∈ Val. (4)

In the way just defined, p- and q-entailment are both based on the idea of rejecting
inferential gluts. And whereas q-entailment is understood as a reasoning from non-rejected
premises to accepted conclusions, p-entailment is understood as reasoning from accepted
premises to non-rejected conclusions. As known in the literature on non-Tarskian logics,
while t-entailment validate Reflexivity, Monotonicity and Transitivity (check below), the
q-entailment relation does not validate Reflexivity. Furthermore, in our formulation above,
p-entailment also validate Reflexivity, Monotonicity and Transitivity.

Reflexivity Γ, φ |= φ
Monotonicty If Γ |= φ then Γ ∪ ∆ |= φ
Transitivity If ∆ |= φ and Γ ∪ {φ} |= ψ then Γ ∪ ∆ |= φ

In the following, a formula φ ∈ Fr shall be called an L-validity (written |= φ) in view
of any entailment relation in case v(φ) ∈ D+ for every valuation v ∈ Val. Analogously, it
shall be called an L-falsity (written φ |=) in case there is no v ∈ Val such that v(φ) ∈ D+.

The paper shall exploit the process of transforming the entailment relation of a base
logic L = ⟨Fr, |=⟩ over the set Fr, so as to output a revised logic Lx = ⟨Fr, |=x⟩. The logic
Lx (also called an x-logic), generated from L = ⟨Fr, |=⟩, shall be called an x-interpretation of
the logic L. Throughout the paper, the process of generating x-interpretations of a given
logic shall be carried out by transforming the semantic structure of a base Tarskian logic into
its non-Tarskian counterpart. In sum, given a Tarskian logic L = ⟨Fr, |=⟩ and its associated
logical matrix M = ⟨V ,D, { fµ : µ ∈ Con}⟩, we transform M into its bidimensional form
Mq = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩ by rearranging the set V of truth-values into three
disjoint subsets and keeping the set Con of operations unchanged. The logic Lx = ⟨Fr, |=x⟩,
where x = q or p, shall be based on the matrix Mq. In the case of q- and p- base logics
this shall be done by turning bidimensional matrices into their dual forms, where two
conceptions of duality shall be introduced.

3. Inferentially Many-Valued Logics and Paraconsistency

Historically, q-matrices were proposed in reaction to Suszko’s thesis, the philosophical
claim that every Tarskian logic is (logically) two-valued3, for their semantics are char-
acterized by the two logical values of designatedness and antidesignatedness, a result
known as Suszko’s reduction theorem. In Suszko’s philosophical view, the designated and
antidesignated sets of truth-values were responsible for splitting the universe of situations
into those that “do obtain” and those that “do not obtain”.
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As noted by Malinowski, however, if one takes Łukasiewicz’s idea of undetermined-
ness in connection to Suszko’s reading of the partitions of the set of truth-values, then one
may also consider that true undeterminedness consists not in the addition of a third element
in the set of truth-values, but rather in building many-valued structures that allow for the
existence of inferential gaps, i.e., values that are neither designated nor antidesignated (and
therefore V − (D+ ∪D−) ̸= ∅). Accordingly, these semantical structures would allow the
existence of situations that neither obtain nor fail to obtain, i.e., undetermined situations.

As a result, a natural way of producing three-valued logics able to avoid Suszko’s
criticism is through the revision of Tarskian many-valued logics into logics with inferential
gaps. For this, in the following I shall call a logic inferentially many-valued if its semantic
structure is characterized by more than two distinct proper subsets of V4 Even though
other semantic structures can be explored as inferentially many-valued, in what follows I
shall focus only on inferentially many-valued logics based on bidimensional matrices. By
allowing the type of procedure that outputs an inferentially many-valued interpretation of
a given Tarskian base logic, an important problem is to know what consequences follow
from this move and what are the correct non-trivial ways of carrying it.

In papers like [1,2], the authors exploit this transformation process, but no general
solution is offered as to what causes the gain/lost of certain properties after the output of
an x-interpretation of a Tarskian base logic. Moreover, the authors do not account for the
problem of producing an effective or uniform way of carrying out the procedure. Therefore,
in this section I shall define a uniform way of transforming finitely many-valued Tarskian
logics with a linearly ordered set of truth-values into their inferential interpretations.
Subsequently, I show why some of these logics become paraconsistent after the procedure.

3.1. Uniform Interpretations

The transition from a many-valued (Tarskian) logic to an inferentially many-valued
logic can be carried in several ways. The existence of more than two proper subsets of truth-
values allows one to rearrange the truth-values in many distinct ways. As an example, let
L = ⟨Fr, |=⟩ be a t-logic associated to the logical matrix M = ⟨{0, 1

2 , 1}, {1}⟩. To produce a
q-interpretation of L depends on transforming the logical matrix M into a q-matrix Mq,
for which now, given the existence of three proper subsets of truth-values, there are several
different ways of rearranging the truth-values. Therefore one needs to determine which
criteria to employ in order to rule out the undesirable options, as well as to fix a uniform
manner of carrying this procedure in a non-trivial and well-motivated manner. The notion
of uniform transformation is defined below.

In what follows, let ⪯ be a reflexive, anti-symmetric and transitive order and let V be
a linearly ordered set under ⪯ with more than two elements. Given two distinct sets of
truth-values D1 and D2, I shall write D1 < D2 to denote that D1 is strictly smaller than D2,
i.e., v1 ⪯ v2 for every value v1 ∈ D1 and v2 ∈ D2.

Definition 1. Given a many-valued t-logic L = ⟨Fr, |=M⟩ and its associated logical matrix
M = ⟨V ,D, { fµ : µ ∈ Con}⟩, where (V −D) < D, the transformation of M to a bidimensional
matrix Mq = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩ shall be called uniform iff the following hold:

(i) D = D+,
(ii) D− < V − (D+ ∪D−) < D+, and
(iii) D−, V − (D+ ∪D−), D+ are non-empty sets.

The x-logic Lx = ⟨Fr, |=x⟩ based on the bidimensional matrix Mq = ⟨V ,D+,D−, { fµ : µ ∈
Con}⟩ shall be called a uniform x-interpretation of L.

Throughout the paper we shall assume that all transformations into a bidimensional
matrix preserve the underlying original algebra of the logical matrix and, therefore, its set
of valuations. As a result, the paper shall focus only on how the above procedure affects
the underlying relation of entailment.
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The above type of procedure shall be called uniform due the preservation of Łukasiewicz’s
intuition over the role of multiple values as undetermined truth-values together with Mali-
nowski’s motivations for having a neither designated nor antidesignated set of truth-values.
This is achieved by keeping all intermediate truth-values within the set V − (D+ ∪D−),
a move that gives a new meaning to these values by turning them into inferential gaps
(i.e., truth-values able to avoid Suszko’s criticism)5.

It is also worth to note that the uniform transformation of a matrix M to a bidimen-
sional matrix Mq does not alter the order of the elements, only its partition set. This allows
us to obtain the following:

Fact 1. Let M be a logical matrix and Mq be its uniform bidimensional matrix. Given two values
v1 and v2 ∈ V such that v1 ⪯ v2, then v1 ⪯ v2 in Mq.

Proof. Straight from Definition 1.

The relation between the original many-valued structures and their bidimensional
form can be explored through Humberstone’s [10] conception of matrix homomorphisms.
The purpose is to extend the concept of homomorphism from algebras to matrices
as follows:

Definition 2 (Matrix homomorphism). Let V1 = ⟨V1, { fµ : µ ∈ Con}⟩ and V2 = ⟨V2, { fµ :
µ ∈ Con}⟩ be two algebras of same similarity type as the algebra of formulas.
Let M1 = ⟨V1,D+

1 ,D−
1 ⟩ and M2 = ⟨V2,D+

2 ,D−
2 ⟩ be two bidimensional matrices.

Let f : V1 −→ V2 be a homomorphism from V1 to V2.

We say that f is a designation-preserving matrix homomorphism from M1 to M2 if a ∈ D+
1

then f (a) ∈ D+
2 holds, for every a ∈ V1.

We say that f is a undesignation-preserving matrix homomorphism from M1 to M2 if a /∈ D+
1

then f (a) /∈ D+
2 holds, for every a ∈ V1.

We say that f is a strong matrix homomorphism from M1 to M2 if it is both a designation-
preserving and an undesignation-preserving matrix homomorphism fom M1 to M2.

Note that, by definition of uniform transformation, the identity mapping from V1 into
V2 is a strong matrix homomorphism from a logical matrix M = ⟨V1,D, { fµ : µ ∈ Con}⟩
into its uniform transformation Mq = ⟨V2,D+,D−, { fµ : µ ∈ Con}⟩ given that V1 = V2.
Furthermore, for matter of clarity and convenience I shall keep writing homomorphisms
between logical matrices. The reader may note that any logical matrix M = ⟨V ,D⟩ can be
transformed into its bidimensional equivalent form by setting a matrix M = ⟨V ,D+,D−⟩,
where D+ = D and D− = (V −D). The following also holds:

Proposition 1. Let M be a many-valued matrix and Mq its uniform q-transformation. If there
is a designation-preserving homomorphism from M to Mq, then |=t φ implies |=q φ, for every
φ ∈ Fr.

Proof. Let |=t φ for an arbitrary φ ∈ Fr and assume f is a designation-preserving ho-
momorphism from M to Mq. By definition of t-entailment, we know that v(φ) ∈ D for
every v ∈ Val. By definition of designation-preserving homomorphism, it follows that
f (v(φ)) ∈ D+ for every v ∈ Valq. Therefore, |=q φ holds.

Corollary 1. If M = ⟨V ,D, { fµ : µ ∈ Con}⟩ and Mq = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩ with
D = D+, then |=t φ implies |=q φ.

Proof. Set f (v) = v for every v ∈ D+. By Proposition 1, our desired result follows.
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Proposition 2. Let M be a many-valued matrix and Mq its uniform q-transformation. If there is
an undesignation-preserving homomorphism from M to Mq, then φ |=t implies φ |=p, for every
φ ∈ Fr.

Proof. Set f (v) = v for every v ̸∈ D+.

Corollary 2. If M = ⟨V ,D, { fµ : µ ∈ Con}⟩ and Mq = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩ with
(V −D) ⊆ D−, then φ |=t implies φ |=p.

Proof. By Proposition 2.

In the following, we show that the pair of designation-preserving and undesignation-
preserving homomorphisms establish a Galois connection between a logical matrix and its
q-transformation6.

Definition 3 ([11]). Let P = ⟨P,⪯⟩ and Q = ⟨Q,⊑⟩ be posets. Suppose f1 : P → Q and
f2 : Q → P are a pair of functions between their carrier sets. Then ⟨ f1, f2⟩ is a Galois connection if
and only if

(i) f1, f2 are both monotone, and
(ii) for all p ∈ P, q ∈ Q p ⪯ f1( f2(p)) and q ⊑ f1( f2(q)).

Theorem 1. Let Mt = ⟨V1,⪯⟩ and Mq = ⟨V2,⊑⟩ be posets. Let also f1 : V1 → V2 and
f2 : V2 → V1 be, respectively, a designation-preserving and an undesignation-preserving homomor-
phism. Therefore, the pair ⟨ f1, f2⟩ is a Galois connection.

Proof. It is necessary to show that (i) f1 and f2 are both monotone; and
(ii) for all vi ∈ V1, vj ∈ V2, vi ⪯ f1( f2(vi)) and vj ⊑ f1( f2(vj)).
In view of Fact 1, f1 and f2 are both monotone. For (ii), assume vj ⪯ f2(vj). Given the
monotonicity of the functions and the definition of designation-preserving homomorphism,
the following holds: if v1 ⪯ v2 then f1(v1) ⊑ f1(v2) for every v1, v2 ∈ V1. Hence by the
transitivity of the orders and our assumption, we obtain the following vj ⪯ f1( f2(vj)). The
proof of vi ⊑ f1( f2(vi)) follows by analogous reasoning.

Propositions 1 and 2 show that whereas the uniform transformation of a many-valued
t-logic to a q-logic preserves all t-validities, the transformation to a p-logic preserves all
t-falsities. In the following, I explore Łukasiewicz’s three-valued logic and its respective
uniform transformation as a way of illustrating some general properties of uniform q-
interpretations of Tarskian logics.

Example 1. Łukasiewicz’s 3-valued propositional logic Ł3 = ⟨Fr, |=t⟩ is defined by the matrix
M3 = ⟨{0, 1

2 , 1}, {1}, { fµ : µ ∈ {¬,∧,∨,→}}⟩, where each truth-function fµ is described by
the corresponding table7, in what follows:

f∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

f¬
0 1
1
2

1
2

1 0

f→ 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2
0 1 1 1

f∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

Example 2. The uniform q-interpretation of Ł3 is defined by the q-matrix Mq
3 = ⟨{0, 1

2 , 1}, {1}, {0},
{ fµ : µ ∈ {¬,∧,∨,→}}⟩, where each truth-function fµ is described as in M3.

Where M2 = ⟨{0, 1}, {1}⟩ is the classical two-valued matrix, any identity mapping
works as a strong matrix homomorphism from M2 to Mq

3 . Hence, in accordance with
Propositions 1 and 2, the logics Łq

3 = ⟨Fr, |=q⟩ and Łp
3 = ⟨Fr, |=p⟩ based on Mq

3 preserve,
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respectively, all Ł3-validities and Ł3-falsities. The Table below compares Ł3 to each respec-
tive entailment relation in terms of some important properties that display the behavior of
the logical constants:

The transformation from Łt
3 to Łq

3 deeply affects the behavior of the logical constants
(Table 1) . Whereas Łt

3 is characterized by an explosive negation (line 1), an adjunctive
conjunction (line 3), and a detachable conditional (line 4), all these features are lost when
moving to its q-interpretation. The transformation to its p-formulation, however, is more
gentle and keeps many of these features intact8. Moreover, while Łt

3 is paracomplete (line
2) but not paraconsistent, Łq

3 is both paracomplete and paraconsistent. In spite of only
Łq

3 be paraconsistent, all logics validate the paradox of the conditional (line 7). In what
follows, we investigate the sufficient conditions for the transformation of Tarskian logic in
its q-interpretation to output a paraconsistent or a paracomplete logic.

Table 1. Uniform logics.

Properties |=t |=q |=p

1. φ,¬φ |= ψ ✓ × ✓

2. ψ |= φ ∨ ¬φ × × ✓

3. φ, ψ |= φ ∧ ψ ✓ × ✓

4. φ → ψ, φ |= ψ ✓ × ✓

5. φ → ψ, ψ → γ |= φ → γ ✓ × ✓

6. φ → ψ |= ¬ψ → ¬φ ✓ × ✓

7. |= ¬φ → (φ → ψ) ✓ ✓ ✓

3.2. Inferential Paraconsistency

In [4], the transformation from Łt
3 to Łq

3 is motivated as an alternative way of producing
a paraconsistent interpretation of Ł3

9. The process of transforming a many-valued t-logic in
its paraconsistent q-interpretation is called inferential paraconsistency. However, the author
does not explore under what conditions a many-valued t-logic becomes paraconsistent
after its transformation to a q-logic. For this, I introduce the following characterization of
the notion of inferential paraconsistency:

Definition 4. A logic will be called ¬-explosive iff for every formula φ, ψ ∈ Fr, φ,¬φ |= ψ holds.

Definition 5. Given a logic L = ⟨Fr, |=M⟩, its associated logical matrix M = ⟨V ,D, { fµ : µ ∈
{¬}}⟩ and semantics Val, we shall say that L is inferentially paraconsistent in case there is a
set I ⊊ V of truth-values and a valuation v ∈ Val such that: v(φ) ∈ I iff v(¬φ) ∈ I .

In the context of bi-dimensional matrices, one may fix different choices for the set I .
For each choice, different classes of paraconsistent logics arise:

Choice Class of Logics

I = D+ Paraconsistent t-logics

I = V − (D+ ∪D−) Paraconsistent q-logics

I = (D+ ∩D−) Paraconsistent p-logics

I = D− Paraconsistent f-logics

Definition 6. Given a logic L = ⟨Fr, |=M⟩, its associated logical matrix M = ⟨V ,D, { fµ : µ ∈
µ ∈ {¬}}⟩ and semantics Val, we shall say that L is ¬-redundant in case there are values a ∈ D
and b ∈ V −D such that v(φ) = a implies v(¬φ) = b for some valuation v ∈ Val.
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For the following we shall assume that the logics considered are not ¬-redundant,
i.e., that for every truth-value a ∈ D, v(φ) = a implies v(¬φ) ∈ V −D. It is easy to see that
every non ¬-redundant t-logic is not paraconsistent. Paraconsistent t-logics depend on the
existence of truth-value gluts, i.e. values such that v(φ) ∈ D and v(¬φ) ∈ D. We shall also
assume that the logics in consideration are finitely many-valued with a linearly ordered set
of truth-values and endowed with connectives ¬, ∧ and ∨ defined as in Example 1. The
following lemma guarantees that a non ¬-redundant t-logic remains non ¬-redundant after
its uniform transformation.

Lemma 1. Where L is a non ¬-redundant n-valued t-logic, its uniform q-interpretation Lq is also
not ¬-redundant.

Proof. Let L be a many-valued non ¬-redundant t-logic and assume for a contradiction
that Lq is ¬-redundant. Then there is at least one value a ∈ D such that (i) v(φ) = a and
(ii) v(¬φ) ∈ D. Now, given that Lq is a uniform q-logic, we know there is a strong matrix
homomophism f : M −→ Mq. From our assumption, we also know that v(φ) ∈ D implies
v(¬φ) ∈ V −D, for every valuation v ∈ Val. Therefore, it also follows that f (v(φ)) ∈ D
implies f (v(¬φ)) ∈ V −D, for every v ∈ Valq, what contradicts (i) and (ii).

Proposition 3. Where L is a ¬-explosive and non ¬-redundant n-valued t-logic, its uniform
q-interpretation Lq is inferential paraconsistent iff Lq is not ¬-explosive.

Proof. Let L be a ¬-explosive many-valued logic and Lq its associated uniform q-interpretation.
By contraposition, assume Lq is not ¬-explosive. Therefore there are formulas φ, ψ ∈

Fr such that φ,¬φ ̸|=q ψ. Hence there is a valuation v such that v({φ,¬φ}) ∩D− = ∅ and
v(ψ) ̸∈ D+. By Lemma 1, we know Lq is not ¬-redundant, from what follows that either
(i) v(φ) ∈ D+ and v(¬φ) ∈ V − (D+ ∪D−) or (ii) v(¬φ) ∈ D+ and v(φ) ∈ V − (D+ ∪D−).
For both cases, there is at least one value x ∈ V − (D+ ∪ D−) such that v(φ) = x but
v(¬φ) ̸∈ V − (D+ ∪D−). Hence Lq is not inferential paraconsistent.

For the converse, by contraposition again, assume Lq is not inferential paraconsistent.
Then there is a valuation v and a truth-value x ∈ V − (D+ ∪D−) such that v(φ) = x but
v(¬φ) ̸∈ V − (D+ ∪D−) or v(¬φ) = x but v(φ) ̸∈ V − (D+ ∪D−). From that we obtain
one of the following options:

(i) v(φ) ∈ V − (D+ ∪D−) and v(¬φ) ∈ D+;
(ii) v(φ) ∈ V − (D+ ∪D−) and v(¬φ) ∈ D−;
(iii) v(¬φ) ∈ V − (D+ ∪D−) and v(φ) ∈ D−;
(iv) v(¬φ) ∈ V − (D+ ∪D−) and v(φ) ∈ D+.

By definition of q-entailment, for cases (ii) and (iii) Lq is not ¬-explosive. For cases (i)
and (iv) it suffices to set v(ψ) ̸∈ D+.

Proposition 3 shows that uniform q-interpretations preserve the non-explosiveness of
the Tarskian logics as long as both the Tarskian logic and its q-interpretation are endowed
with a non-redundant negation operator.

Example 3. Examples of many-valued logics that are inferential paraconsistent after their uniform
q-transformation are Kleene’s K3, Bochvar’s system B3 and all finitely-valued Łukasiewicz’s logics.
(See [12]).10

Example 4. An example of a logic not inferential paraconsistent after its uniform q-transformation
is Gödel’s logic G3 = ⟨{0, 1

2 , 1}, {1}, { fµ : µ ∈ {¬,∧,∨,→}}⟩, where negation is defined by the
following truth-table:
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f¬
0 1
1
2 0
1 0

It is easy to see that the uniform transformation to Gq
3 will not alter the explosive character of

negation. The bidimensional q-matrix is not inferential paraconsistent. In fact, all uniform q-
interpretations of Gödel’s logics Gk are not ¬-explosive for {k ∈ N | k ≥ 2}11.

Similar results hold for the paracomplete character of negation in q-logics obtained
from a Tarskian a base logic.

Definition 7. A logic will be called ¬-complete iff for every φ, ψ ∈ Fr for which ψ |= φ∨¬φ holds.

Definition 8. Given a logic L = ⟨Fr, |=M⟩, its associated logical matrix M = ⟨V ,D, { fµ : µ ∈
{¬}}⟩ and semantics Val, we shall say that L is inferentially paracomplete in case there is a set
I ⊊ V of truth-values and a valuation v such that: v(φ) ̸∈ I iff v(¬φ) ̸∈ I .

Once again, in the context of bi-dimensional matrices, one may fix different choices
for the set I . This gives rise to distinct classes of paracomplete logics:

Choice Class of Logics

I = D+ Paracomplete t-logics

I = V − (D+ ∪D−) Paracomplete q-logics

I = (D+ ∩D−) Paracomplete p-logics

I = D− Paracomplete f-logics

Proposition 4. Where L is a ¬-complete many-valued t-logic, its uniform q-interpretation Lq is
inferential paracomplete iff Lq is not ¬-complete.

Proof. (From l.h.s. to r.h.s.) Assume Lq is inferential paracomplete. Therefore there is a
formula ϕ and a valuation v such that v(φ) ̸∈ V − (D+ ∪D−) iff v(¬φ) ̸∈ V − (D+ ∪D−).
Moreover, since v is a total function, we obtain the following options: (i) {v(φ), v(¬φ)} ⊆
D+, (ii) {v(φ), v(¬φ)} ⊆ D−, and (iii) v(φ) ∈ D+ and v(¬φ) ∈ D− (or vice-versa) Now,
given that Lq is not ¬-redundant, cases (i) and (ii) are excluded. For case (iii), the fact that
f∨ = max(v(φ), v(¬φ)) together with our definition of uniform logics, we may conclude
that Lq is not ¬-complete.
The other direction follows by analogous reasoning.

Example 5. Examples of many-valued logics that are inferential paracomplete after their uniform
q-transformation are also Kleene’s K3 and all finitely-valued Łukasiewicz’s logics.

3.3. Non-Uniform Interpretations

Other types of interpretations of many-valued logics may be constructed if one is
willing to abandon the motivations for uniform interpretations. Non-uniform interpreta-
tions of many-valued Tarskian logics were also explored in the logic literature, e.g., the
q-interpretation of the nonmonotonic logic LPm is proposed in [13] due to interest on its
connexive principles.

Another non-trivial way of manufacturing paraconsistent q-logics based on many-
valued t-logics may be achieved by moving all intermediate values to the designated set.
It is easy to see that under this setting p- and q-consequence coincide. In fact, the logic
Ł3 with matrix M3 = ⟨{0, 1

2 , 1}, {1, 1
2}, {0}⟩ was explored by da Costa and Alves ([5])

and shown to preserve the positive fragment of classical logic under specific linguistic
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extensions. In [1] the author suggests that two modes of paraconsistency may be considered
for q-interpretations of Tarskian logics. According to Malinowski, a logic shall be called
paraconsistent in case φ,¬φ |= (φ ≡ ¬φ) and φ,¬φ ̸|= ¬(φ ≡ ¬φ) holds, and parainconsis-
tent in case φ,¬φ ̸|= (φ ≡ ¬φ) and φ,¬φ |= ¬(φ ≡ ¬φ) holds. The truth-function f≡ for
Ł3 is defined by the following truth-table:

f≡ 1 1
2 0

1 1 1
2 0

1
2

1
2 1 1

2
0 0 1

2 1

To explore non-uniform interpretations, one may also consider the following variants of Ł3:

the logic Ł1 = ⟨Fr, |=t⟩ with the matrix M3 = ⟨{0, 1
2 , 1}, {1, 1

2}⟩,
the logic Ł2 = ⟨Fr, |=q⟩ with the matrix M3 = ⟨{0, 1

2 , 1}, { 1
2}⟩, and

the logic Ł4 = ⟨Fr, |=q⟩ with the matrix Mq
3 = ⟨{0, 1

2 , 1}, { 1
2}, {0}⟩.

Based on each respective matrix and entailment relation, one obtains the following:
The logics Łq

3 and Ł1 (Table 2) are both paraconsistent in the sense of Malinowski. By
further abandoning the idea of having the designated value as the maximal element of
the set of truth-values, it is possible to define two parainconsistent logics, Ł2 and Ł4, by
setting 1

2 as a designated value. The examples above show that there are paraconsistent and
parainconsistent logics available not only for q-interpretations of Ł3, but also for different
Tarskian interpretations. It is easy to see that |=Łq

3
=|=Ł1 . Furthermore, all logics Ł1, Ł2 and

Ł4 enjoy a non-explosive negation. In the next section, we explore other relations between
the logics presented so far and their respective duals.

Table 2. Paraconsistent logics.

Properties Łt
3 Łq

3 Łp
3 Ł1 Ł2 Ł4

Paraconsistent × ✓ × ✓ × ×

Parainconsistent × × × × ✓ ✓

4. Routes for Dualization

In this paper, the question of how to transform the semantical structure of q- and
p-logics shall be explored also in connection to their associated duals. For this we shall
fix two specific notions of duality for many-valued structures introduced by Malinowski
in ([1]) and Blasio et al ([7]). Each of these authors proposed distinct requirements for
duality relative to entailment relations. In the context of Tarskian logics, where entailment
is defined as truth-preservation from the premises to the conclusion, the natural dual notion
of entailment is that of falsity-preservation from conclusion to the premises. However,
this complementarity between truth (designatedness) and non-truth (non-designatedness)
is achieved only in the context of logical matrices. When considering bidimensional
matrices such as q-matrices, truth and non-truth are not complementary concepts, so that
an important problem is to know what should be taken as the adequate dual notion of q-
and p-entailment.

Two different strategies for dualization of entailment relations are discussed here. The
first follows Malinowski’s ([1]) proposal according to which the dual of a consequence
relation requires the dualization of the very semantic structure upon which the entailment
relation is defined. The latter, proposed by Blasio et al ([7]), is also based on dualizing the
semantic structure, but follows a different strategy than the one proposed by Malinowski.
We introduce both duality styles in the following.
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4.1. Malinowski’s Duality

Differently from other approaches that consider duality of entailment through the
balance between forward and backward preservation (such as [14]), duality in the sense
of [1] is not based on the balance between the designated and the antidesignated sets of
truth-values. Malinowski’s dualization style may be described as follows:

Definition 9. Given a bidimensional matrix M = ⟨V ,D+ = {a1, . . . , am},D− = {b1, . . . , bn},
{ fµ : µ ∈ Con}⟩, where m and n are finite, and its associated entailment relation |=+, the dual entail-
ment relation |=− is obtained by producing the dual logical matrix Md = ⟨V ,
D+ = {b1, . . . , bn},D− = {a1, . . . , am}, { fµ : µ ∈ Con}⟩ through mutual exchange of the sets
of truth-values.

Malinowski’s dualization procedure may be described as follows:

1. Given a bidimensional matrix M = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩ and a forwards-preserving
entailment relation |=+,

2. Produce the dual matrix Md by the mutual exchange of the sets of truth-values,
3. And define a dual entailment relation |=− based on Md in the same way as |=+.
4. The entailment relation |=− is called the dual of |=+.

By following Malinowski’s procedure, one may note that in the context of the 2-valued
CL matrix, where |=+ is t-entailment and |=− is f-entailment12, |=+ and |=− do not coincide.
Whereas |=+ is defined as Γ |=+ φ iff v(Γ) ⊆ {1} implies v(φ) = 1, |=− is defined as Γ |=− φ
iff v(Γ) ⊆ {0} implies v(α) = 0. It is easy to see that α ∨ ¬α is a validity in view of |=+,
but an antilogy in view of |=−. Therefore, f-entailment (see Section 2) is not the dual of
t-entailment in Malinowski’s dualization procedure13.

The following shows that Malinowski’s procedure outputs a non-equivalent dual
entailment relation in the case of q- and p-entailment.

Proposition 5. Let M = ⟨{a, b, c}, {a}, {b}⟩ be a q-matrix, then |=q ̸= |=q
d and |=p ̸= |=p

d .

Proof. Note the dual matrix Md = ⟨{a, b, c}, {b}, {a}⟩. Now let φ be a validity in view of
|=q. By definition of q-entailment, we know that v(φ) = a, for every v ∈ Val. Therefore,
̸|=q

d φ. The case for p-entailment follows by analogous reasoning.

4.2. Blasio’s Duality

The second notion of dualization that we shall explore was proposed in [7]. For
these authors, the duals of q- and p-entailment should be explored neither in terms of
the balance between forwards and backwards preservation, nor in terms of the mutual
exchange of the truth-values. Rather, the dual between q- and p- matrices is defined in
terms of the balance between inferential gaps and gluts. If q-matrices are characterized by
allowing inferential gaps, then their respective duals, p-matrices, ought to be characterized
by allowing inferential gluts.

Definition 10. Given a q-matrix Mq = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩, where V − (D+ ∪
D−) ̸= ∅, its respective dual is the p-matrix Mp = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩, where
D+ ∩D− ̸= ∅.

As a result of the above characterization, duality is understood in terms of the relation
between the matrices and their entailment relations. The resulting dualization procedure is
then described as:

1. Given a q-matrix M and its associated entailment relations |=q and |=p,
2. Define the dual matrix Md as the p-matrix based on M.
3. The q-entailment relation based on Md is called the dual p-entailment.
4. The p-entailment relation based on Md is called the dual q-entailment.
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Blasio’s style of duality aims to preserve the duality between p- and q-entailment.
Therefore, the dualization of the matrix is meant to preserve the balance between the two
forms of entailment. If p- and q-entailment are forms of entailment based on matrices that
allow inferential gaps, then their respective duals are based on dual matrices that allow
inferential gluts. In the following, we explore the relationship between these dual-logics
and the ones we introduced before.

5. Uniform Dual Logics and Connexivity

In [13], the authors explored q-interpretations of Tarskian logics due to their ability
to alter the behavior of implication and output properties of a connexive implication. The
strategy followed by them is based on constructing a q-interpretation over the nonmono-
tonic logic LPm. In the following, we show that the logics constructed via Malinowski’s or
Blasio’s style of duality also output logics with a connexive implication when applied to
uniform logics endowed with a Łukasiewicz negation and implication.

5.1. Malinowski’s Dual Logics

By following Malinowski’s dualization procedure described in Section 4.1 to the logic
Łq

3 , one obtains the following dual logics:

Definition 11. The dual logics Łq
d and Łp

d are defined by the dual q-matrix Mq
d = ⟨{0, 1

2 , 1}, {0},
{1}, { fµ : µ ∈ {¬,∧,∨,→}⟩, where each truth-function fµ is described as in M3.

Proposition 6. There is a strong matrix homomorphism f from Mq
3 to Mq

d .

Proof. Let f (0) = 1 and f (1) = 0.

Proposition 7. Given a uniform n-valued q-matrix Mq = ⟨V ,D+,D−, { fµ : µ ∈ Con}⟩ (with
|D+| = |D−|) and its Malinowski dual Md = ⟨Vd,D+

d ,D−
d , { fµ : µ ∈ Con}⟩, there is a strong

matrix homomorphism from Mq to Md.

Proof. Let Mq = ⟨V ,D+ = {a1, . . . , ak},D− = {b1, . . . , bj}, { fµ : µ ∈ Con}}⟩ be a n-
valued matrix, where k = j and j ≤ n. Let also Md = ⟨Vd,D+

d = {b1, . . . , bj},D− =
{a1, . . . , ak}, { fµ : µ ∈ Con}⟩ be its Malinowski-dual.
Let f1 : V → Vd be a designation-preserving homomorphism defined as follows: if al ∈ D+,
then f (al) = bl , where 1 ≤ l ≤ k. Let also f2 : V → Vd be an undesignation-preserving
homomorphism defined as follows: if cl ∈ V −D+, then f (cl) = cl , where 1 ≤ l ≤ j.
Given that k = j, it follows that f1 and f2 are bijective. Finally, by Definition 2, it follows
that f1 ◦ f2 is a strong matrix homomorphism.

Corollary 3. The pair ⟨ f1, f2⟩ is a Galois connection between Mq and Md.

The dual entailment relations |=q
d and |=p

d are based on the duality between desig-
natedness and antidesignatedness. As required by Definition 1, the entailment relation
|=q

d is still understood as a reasoning from non-rejected premises to accepted conclusion.
However, due to the exchange of the sets of truth-values in the matrix |=q

d , this amounts to
the following:

Γ |=q
d φ iff v(Γ) ⊆ {0,

1
2
} implies v(φ) = 0, for every v ∈ Val. (5)

Analogously, the entailment relation |=p
d may be defined as a form of reasoning from

accepted premises to non-rejected conclusions, i.e.,

Γ |=p
d φ iff v(Γ) ⊆ {0} implies v(φ) ̸= 1, for every v ∈ Val. (6)
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The effects of revising Łq
3 to its respective duals are exhibited in the table below:

As exhibited in Table 3 both logics agree with respect to implication in lines
4 and 6. However, whereas the logic Łq

d is both paraconsistent and paracomplete, the
logic Łp

d is not paraconsistent. It is also possible to show that the logic Łp
d has a connexive

implication.

Table 3. Malinowski’s dual logics.

Properties Łp
d Łq

d

1. φ,¬φ |= ψ ✓ ×

2. ψ |= φ ∨ ¬φ × ×

3. φ, ψ |= φ ∧ ψ ✓ ×

4. φ → ψ, φ |= ψ ✓ ✓

5. φ → ψ, ψ → γ |= φ → γ ✓ ✓

6. φ → ψ |= ¬ψ → ¬φ × ×

7. |= ¬φ → (φ → ψ) × ×

Definition 12 ([15]). A unary connective shall be called a proper negation iff there are formulas
φ, ψ ∈ Fr such that φ ̸|= ¬φ and ¬ψ ̸|= ψ14.

Definition 13 ([15]). A binary connective → is called a proper implication iff for every φ, ψ ∈ Fr
and ∆ ⊆ Fr the following holds: ∆, φ |= ψ iff ∆ |= φ → ψ.

Definition 14 ([15]). A connective →, in a language with a proper negation, is called a connexive
implication iff the folowing holds for every φ, ψ ∈ Fr: ¬(φ → ψ) |= (φ → ¬ψ) and (φ →
¬ψ) |= ¬(φ → ψ).

Remark 1. The logic Łp
d has a connexive implication.

Proof. To see that the logic has a proper negation, let a valuation v such that v(φ) = 0.
Therefore v(¬φ) = 1 and φ ̸|=p

d ¬φ. The case for ¬ψ ̸|= ψ follows by analogous reasoning.
As for the connexive implication, assume for a contradiction there is a valuation v such
that (i) v(¬(φ → ψ)) = 0 and (ii) v(φ → ¬ψ) = 1. From (i), f¬ and f→, we may
obtain v(φ) = v(ψ) = 1. From (ii) and f→, we may have v(φ) = v(¬ψ) = 1, what is a
contradiction. The case for (φ → ¬ψ) |= ¬(φ → ψ) follows by analogous reasoning.

The reader may note that the logic Łp
d , however, does not satisfy either Aristotle’s theses:

|= ¬(φ → ¬φ) and |= ¬(¬φ → φ). This failure of Aristotle’s theses is caused by the failure
of |= φ → φ. On the other hand, the logic Łp

d enjoys a proper implication in accordance
with Definition 13 and satisfy Boethius’s theses in the form φ → ¬ψ |= ¬(φ → ψ) and
(φ → ψ) |= ¬(φ → ¬ψ). All this seems to suggest that connexivity occurs at the level of
the consequence relation rather than a connexive interpretation of negation and implication.
In the next section, we explore the consequences of following Blasio’s dualization style.

5.2. Blasio’s Dual Logics

By following Blasio’s dualization style to the logic Łq
3 , one obtains the following dual

logics:

Definition 15. The dual logics Łq
d and Łp

d are defined by a bidimensional matrix with inferential
gluts, i.e., the p-matrix Mp = ⟨{0, 1

2 , 1}, {1 1
2}, { 1

2 , 0}, { fµ : µ ∈ {¬,∧,∨,→}⟩, where each
truth-function fµ is described as in M3.
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As required by Definition 10, the dual of p-entailment amounts to a collection of
q-statements defined over the matrix Mp. As a result, the entailment relation |=p

d may be
defined as follows:

Γ |=p
d φ iff v(Γ) ∩D− = ∅ implies v(φ) ∈ D+, for every v ∈ Val. (7)

Analogously, the dual of q-entailment is defined by a collection of p-statements over
the matrix Mp.

Γ |=q
d φ iff v(Γ) ⊆ D+ implies v(φ) ̸∈ D−, for every v ∈ Val. (8)

As exhibited in Table 4 below, the negation in the logic Łp
d is a proper negation that

is neither explosive nor complete. Although both logics Łp
d and Łq

d seem diametrically
different, they still agree in line 8. Moreover, one can show that the logic Łp

d enjoys
a connexive implication, but invalidates both Aristotle’s theses. In the following, we
demonstrate the relation between the dual logics constructed in this section and their
respective notions of entailment.

Table 4. Blasio’s dual logics.

Properties Łp
d Łq

d

1. φ,¬φ |= ψ ✓ ×

2. ψ |= φ ∨ ¬φ ✓ ×

3. φ, ψ |= φ ∧ ψ ✓ ×

4. φ → ψ, φ |= ψ ✓ ×

5. φ → ψ, ψ → γ |= φ → γ ✓ ×

6. φ → ψ |= ¬ψ → ¬φ ✓ ×

7. |= ¬φ → (φ → ψ) ✓ ✓

6. Entailment Relations and Their Duals

In what follows, given a matrix M = ⟨V ,D⟩, let Mq = ⟨V ,D+,D−⟩ be the canonical
bidimensional based on M. Let also M1 = ⟨V ,D−,D+⟩ be the Malinowski-dual built over
Mq, and M2 = ⟨V ,V −D+,V −D−⟩ be the BMW-dual built over Mq. For the following
result, we shall write |=Mx

q and |=Mx
p to denote the respective q- and p-entailment based

on the generalized matrix Mx. By combining distinct entailment relations with distinct
semantic structures, one can prove the following result.

Proposition 8. The following equivalences hold:

(i) Γ |=Mq
q ψ iff Γ |=M2

p ψ

(ii) Γ |=M2
q ψ iff Γ |=Mq

p ψ

(iii) Γ |=Mq
t ψ iff Γ |=M2

f ψ

(iv) Γ |=Mq
t ψ iff Γ |=M1

f ψ

Proof. (i) Assume Γ |=Mq
q ψ. Therefore, v(Γ) ∩D− = ∅ implies v(ψ) ∈ D+. We have to

show that v(Γ) ⊆ D+ implies v(ψ) /∈ D−. Note that V − D− in Mq is the same as D+

in M2 and D+ in Mq is the same as V − D− in M2. Therefore, our desired conclusion
Γ |=M2

p ψ follows.
The other direction and the other equivalences follow in an analogous manner. For

case (iii), let Γ |=M2

f ψ iff v(φ) ∈ (V −D−) implies v(Γ)∩ (V −D−) ̸= ∅. Case (iv) follows
by similar reasoning.
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Recovery Operators

The use of unary operators for recovering inferences lost by the move to a weaker
logic is found in authors such as Bochvar [12] and da Costa [17]15. In [5], the authors
employ linguistic extensions of the logic Ł3 as a way of recovering classical inferences. In
the following, we show that the use of recovery operators can be employed as a way of
recovering Tarskian inferences that were lost after moving to a q-interpretation.

Definition 16 (Conservative extension). Given two logics L1 = ⟨Fr1, |=1⟩ and L2 =
⟨Fr2, |=2⟩, where L1 and L2 are their respective languages such that L1 ⊆ L2, we shall
call L2 a conservative extension of L1 in case the following holds for every Γ ∪ {φ} ⊆ L1:
Γ |=1 φ iff Γ |=2 φ.

For the following, let f⊗ : V → V be a truth-function that define the unary proposi-
tional operator ‘⊗’ and respects the following truth-conditions:

v(φ) f⊗(v(φ))

D+ D+

V −D+ D−

Proposition 9. Where L1 = ⟨Fr1, |=1⟩ and L2 = ⟨Fr2, |=2⟩ are q-logics based on the matrix
Mq = ⟨V ,D+,D−⟩ and languages L1 = {¬,∧,→} and L2 = L1 ∪ {⊗}. The logic L2 is a
conservative extension of L1.

Proof. From l.h.s. to r.h.s. Recall that monotonicity holds for q-logics. Therefore, it suffices
to show that |=1 φ iff |=2 φ. The definition of f⊗ and of q-entailment guarantee that valid
formulas are kept valid according to L1.

From r.h.s. to l.h.s. By contraposition, assume that Γ ̸|=1 φ. Hence there is a valuation
v ∈ Val such that v(Γ) ∩ D− = ∅ and φ ̸∈ D+. Moreover, given that L1 ⊆ L2 and both
logics are based on Mq = ⟨V ,D+,D−⟩, it follows that Γ ̸|=2 φ.

In the context of multiple-valued systems, recovery operators have been used as
primitive operators in logics such as Bochvar’s B3 or Blaus’s three-valued system16. A kind
of recovery operator that respects the truth-table for ⊗ is Bochvar’s assertion operator J1
employed in the three-valued system B3. The truth-conditions for f J1 are given by:

f J1(v(φ)) =

{
1 if v(φ) = 1
0 otherwise

It easy to see that classical negation may be defined as ∼ φ = ¬⊗ φ. This shows that
Tarskian inferences involving the ¬,∧,→ may be recovered within its q-interpretation. For
the following, let ⊗Γ = {⊗Γ|Γ ∈ Γ}.

Proposition 10. The following equivalences hold:

(i) Γ |=Mq
t ψ iff Γ |=M2

q ⊗(ψ) iff Γ |=Mq
p ⊗(ψ)

(ii) Γ |=Mq
t ψ iff ⊗Γ |=M2

p ψ iff Γ |=Mq
q ⊗(ψ)

(iii) Γ |=Mq
q ψ iff Γ |=M1

t ⊗(ψ)

Proof. Similar to Proposition 8.
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7. Final Remarks

The present paper explored a uniform way of transforming Tarskian many-valued
logics into their non-Tarskian interpretations. The type of transformation investigated
consisted in altering the underlying semantical structure of Tarskian many-valued logics in
order to output non-Tarskian interpretations thereof. Some of the effects of carrying out
this type of procedure were exhibited, e.g., the conditions under which a finitely many-
valued Tarskian logic becomes paraconsistent or paracomplete after its transformation to
a q-interpretation were exhibited. Two types of dualization procedure were explored as
candidates for the respective dualization of these entailment relations and their associated
semantical structures. Connexive features regarding the consequence relation generated by
the dual logics are explored and discussed, a feature not available to their base counterparts.
Furthermore, the paper paved the way to the study of recovery operators between Tarskian
logics and their associated non-Tarskian interpretations. The development of recovery
operators for all consequence relations defined within these generalized settings (such as
bi-dimensional entailment [7]) remains to be further explored. Furthermore, the effects of
these dual structures on other well-known many-valued logics, as well as the philosophical
applications of these logics, are also worth investigating.
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Notes
1 A first account on the problem of how to produce paraconsistent systems from many-valued logics was proposed by Newton

da Costa and Elias Alves [5] and in the context of non-Tarskian logics by Malinowski in [4]. In [6], the authors develop a more
general approach via maximal consistent sets of formulas. In this paper, we follow a different approach by altering the semantic
structure of the underlying logic

2 To avoid ambiguity, whenever necessary the set Val shall be written with a superscript.
3 This philosophical thesis is employed by Suszko to defend that logical many-valuedness was a conceptual deceipt. For more on

Suszko’s thesis, see, e.g., [2].
4 The concept of inferential many-valuedness was first introduced by Malinowski ([9]).
5 Other kinds of transformations could be explored by allowing different partitions of the set of truth-values. However, the purpose

of this paper is to explore the one established by Definition 1 due to its connection with Malinowski’s motivation for keeping the
set V − (D+ ∪D−) non-empty.

6 The reader may check [11] for an introduction to Galois connections in logic.
7 Truth-tables for ¬,∧,∨,→ in Łukasiewicz logic are defined as f¬(v(φ)) = 1 − v(φ), f∨(v(φ), v(ψ)) = max(v(φ), v(ψ)),

f∧(v(φ), v(ψ)) = min(v(φ), v(ψ)) and f→(v(φ), v(ψ)) = min(1, 1 − v(φ) + v(ψ)).
8 Other properties could be obtained by working on FMLA-SET or SET-SET.
9 Other forms of producing paraconsistent logics based on Łukasiewicz’s logics are explored in [5].

10 For all finitely-valued Łukasiewicz’s logics, note that Definition 1 guarantee all intermediate values inside V − (D+ ∪D−).
11 The truth-function for ¬ in Gödel’s logic may be defined as f¬(v) = 1, if v = 0 and f¬(v) = 0, if v > 0 for v ∈ V .
12 See page 3 for the definition of t- and f-entailment.
13 In [14], the logics for which |=+ and |=− do not coincide and their semantics is determined by a n-valued bidimensional q-matrix

are called refined n-valued logics.
14 The reader may check [16] for a similar account of negation.
15 For a more thorough account of the theory of recovery operators, see [18].
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16 Blau’s three-valued system is defined by Łukasiewicz’s negation (¬) and conjunction (∧) along with an additional negation (≈).
See [12].
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