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Resumo

A Tese de Suszko é uma posição filosófica acerca da natureza dos múlti-
plos valores-de-verdade. Formulada pelo lógico polonês Roman Suszko, durante a
década de 1970, a tese defende a existência de “apenas dois valores-de-verdade”. Tal
afirmação diz respeito à concepção de multi-valoração perpetrada pelo lógico Jan
Łukasiewicz. Considerado um dos criadores das lógicas multi-valoradas, Łukasiewicz
acrescentou, em adição aos valores fregeanos tradicionais de Verdade e Falsidade,
um terceiro valor: o Indeterminado. Para ele, seu terceiro valor poderia ser visto
como um passo além da dicotomia Aristotélica entre o ser e o não-ser. De acordo
com Suszko, as ideias de Łukasiewicz sobre multi-valoração se baseavam em uma
confusão entre valores algébricos (aquilo que é descrito/denotado por sentenças) e
valores lógicos (verdade e falsidade). Assim, o terceiro valor-de-verdade criado por
Łukasiewicz seria apenas um valor algébrico, isto é, uma possível denotação para
uma sentença, mas não um valor lógico genuíno. A tese de Suszko encontra respaldo
em um resultado formal conhecido hoje como Redução de Suszko, um teorema que
afirma que toda lógica tarskiana pode ser caracterizada por uma semântica biva-
lente. Esta dissertação pretende ser uma investigação da tese de Suszko e de suas
implicações. A primeira parte é dedicada às raízes históricas da multi-valoração e
introduz as principais motivações de Suszko ao formular a distinção entre valores
algébricos e valores lógicos, e assim revelar o caráter duplo dos valores-de-verdade. A
segunda parte explora a Redução de Suszko e apresenta seus principais desenvolvi-
mentos; as propriedades das semânticas bivalentes em comparação às semânticas
multi-valoradas também são exploradas e discutidas. Por fim, a terceira parte in-
vestiga o conceito de valores lógicos dentro do contexto de noções não-tarskianas de
consequência lógica; o significado da tese de Suszko dentro desses ambientes tam-
bém é discutido. Mais ainda, os fundamentos filosóficos das noções de consequências
não-tarskianas são discutidos à luz do debate recente sobre pluralismo lógico.

Palavras-chaves: Lógicas multi-valoradas; tese de Suszko; Bivalência; Consequên-
cia lógica; Pluralismo lógico.





Abstract

Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness.
It was formulated by the Polish logician Roman Suszko during the middle 70s and
states the existence of “only but two truth values”. The thesis is a reaction against
the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the
modern founders of many-valued logics, Łukasiewicz considered a third undeter-
mined value in addition to the traditional Fregean values of Truth and Falsehood.
For Łukasiewicz, his third value could be seen as a step beyond the Aristotelian
dichotomy of Being and non-Being. According to Suszko, Łukasiewicz’s ideas rested
on a confusion between algebraic values (what sentences describe/denote) and log-
ical values (truth and falsity). Thus, Łukasiewicz’s third undetermined value is no
more than an algebraic value, a possible denotation for a sentence, but not a genuine
logical value. Suszko’s Thesis is endorsed by a formal result baptized as Suszko’s
Reduction, a theorem that states every Tarskian logic may be characterized by a
two-valued semantics. The present study is intended as a thorough investigation
of Suszko’s thesis and its implications. The first part is devoted to the historical
roots of many-valuedness and introduce Suszko’s main motivations in formulating
the double character of truth-values by drawing the distinction in between algebraic
and logical values. The second part explores Suszko’s Reduction and presents the
developments achieved from it; the properties of two-valued semantics in comparison
to many-valued semantics are also explored and discussed. Last but not least, the
third part investigates the notion of logical values in the context of non-Tarskian
notions of entailment; the meaning of Suszko’s thesis within such frameworks is
also discussed. Moreover, the philosophical foundations for non-Tarskian notions of
entailment are explored in the light of recent debates concerning logical pluralism.

Key-words: Many-valued logics; Suszko’s thesis; Bivalence; Entailment; Logical
Pluralism.
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Introduction
“Logic is like sword - those who
appeal to it shall perish by it.”

— Samuel Butler

The roots of many-valuedness may be traced back to the works of Aristotle and
even to the earlier debate between the Eleatic and Ephesian schools of philosophy. Those
ancient debates were tied to metaphysical queries about the way we conceive and un-
derstand the world, and their influence lasted through the development of Medieval and
Modern history of philosophy. However, it was only after the establishment of modern
symbolic logic that a formal treatment of the notion of many-valuedness became possi-
ble. Thus, from the 1920s, through the works of Jan Łukasiewicz, Dmitri Bochvar and
Emil Post, many-valued logics were developed and studied from a modern perspective.
Łukasiewicz’s motivations were related to Aristotle’s discussions on the law of excluded
middle and the problem of future contingents. In order to evaluate propositions about the
future, he added a third undetermined value to his logical system and set the theoretical
foundations for what is currently recognized as the field of many-valued logics. Later on,
in the middle 70s, the Polish logician Roman Suszko cast doubt on the influential char-
acter of Łukasiewicz’s works and the very nature of his scientific enterprise. According to
Suszko, the many-valued paradigm of logic was nothing but a “humbug” and Łukasiewicz
was the “chief perpetrator of a magnificent conceptual deceit”. For Suszko, truth values
play a double semantic role revealed by a difference between what he calls ‘algebraic val-
ues’ and ‘logical values’. The semantic scheme used to express such a dubiety is based on
Frege’s ideas on sense and reference. The referents of sentences, following Suszko, are situ-
ations denoted by algebraic values. Even though sentences can describe/denote more than
two situations, they are classified by only two logical values: truth and falsehood. This
approach led Suszko to claim that “there are but two logical values”, a statement nowa-
days recognized as Suszko’s Thesis. It finds support in a technical result called Suszko’s
Reduction, a theorem that shows that every Tarskian logic may be characterized by a
bivalent semantics. The present dissertation intends to make a thorough assessment of
the issues and developments arising from Suszko’s ideas. The philosophical concern about
the nature of truth values and the contemporary notions of entailment stand as a pivotal
motivation for our work. Furthermore, despite of being aware that some issues adressed
in this thesis could be explored in different frameworks, like first-order or higher-order
logics, we shall restrict our attention to propositional logics.

The present study is divided into three main parts. Part I – On the role of truth-
values in logical consequence – has the purpose of introducing Suszko’s philosophical
ideas concerning the nature of truth-values. The only chapter of Part I tries to recover
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some important historical elements behind the notion of truth-value since its birth with
Gottlob Frege and the classical paradigm of truth-values, until Łukasiewicz’s creation of
a third non-classical truth-value. By a classical paradigm of truth-values, we mean the
assumption that there are only two truth-values, the True and the False. This thesis is
often called as the Principle of Bivalence. Despite other authors had also been responsible
for considering non-classical truth-values, we focus only on Łukasiewicz’s motivation for
the sake of a better explanation of Suszko’s ideas and its philosophical environment. Thus,
the chapter begins with a brief presentation of Frege’s conception of truth-values and some
central issues that motivated it. After that, the chapter presents Łukasiewicz’s reasons for
considering a logical system with more than two truth-values. At last, Suszko’s criticism
to Łukasiewicz’s conception of many-valuedness is presented. The main motivations for
Suszko’s point of view concerning truth-values are exhibited and discussed.

Part II – Suszko’s Reduction: in the land of bivaluations – brings the technical
results underlying Suszko’s Reduction about the division in between algebraic and logical
values. The main result of the chapter of Part II is Suszko’s Reduction theorem, which has
the purpose of showing that Every Tarskian logic is logically two-valued. Thus revealing
logical two-valuedness at the core of the Tarskian notion of entailment. Suszko’s Reduction
is important for establishing the foundations of bivaluations as an adequate semantic tool
in comparison to the matrix theory approach to semantics. However, the move from a
matrix semantics to a semantics presented in terms of bivaluations will certainly carry
some undesired consequences since some of the structural features inherent to matrices
are lost. The chapter then continues by discussing how this consequence may be avoided
in light of recent contributions given to Suszko’s Reduction.

Part III – Beyond Suszko’s Reduction – discusses generalizations of Suszko’s Thesis
by presenting alternative notions of entailment constructed from considering additional
logical values beyond truth and falsity. The first chapter begins by introducing Grzegorz
Malinowski’s ideas about the so-called 𝑞-consequence operations. Malinowski is respon-
sible for creating what was baptized by him as inferential many-valuedness. Inferential
many-valuedness is the kind of many-valuedness obtained by exploring more than two log-
ical values. The addition of a non-classical logical value leaves room for the construction
of non-Tarskian notions of entailment. After showing how Suszko’s Reduction could be
generalized to the case of 𝑞-logics, the chapter continues with an exposition of Shramko
& Wansing’s conception of logical values and how it affects the usual understanding of
Suszko’s Reduction. Shramko & Wansing’s construction redefines the usual notion of logic
as characterized by a single consequence relation and propose 𝑘-dimensional logics with
𝑘 consequence relations associated to it.

The last chapter of Part III is a brief commentary upon the issues adressed in
the previous chapter. The first section raises the question of what properties should be
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expected from a logical system and whether or not should logic be recognized as encom-
passing more than a single consequence relation. The last one asks about the dangers of
evading Tarski’s world by abandoning logical consequence as truth-preservation. In par-
ticular, Jc Beall & Greg Restall’s pluralism on logical consequence is discussed in light of
some results of the chapter.



Part I

On the role of truth values in logical
consequence
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1 Truth-values and many-valuedness

Since the development of modern logic and the consolidation of Tarski’s approach
to the notion of logical consequence, truth values played a major role in systems of logic. In
fact, the way truth values are defined and interpreted according to a given logic is central to
define its underlying notion of logical consequence. According to [Shramko and Wansing, 2011],
“truth values induced a radical rethinking of some central issues in the philosophy of logic
and have been put to quite different uses in philosophy and logic”. They have been char-
acterized as:

∙ Primitive abstract objects denoted by sentences in natural and formal languages,

∙ Abstract entities hypostatized as the equivalence classes of sentences,

∙ What is aimed at in judgements,

∙ Values indicating the degree of truth of sentences,

∙ Entities that can be used to explain the vagueness of concepts,

∙ Values that are preserved in valid inferences,

∙ Values that convey information concerning a given proposition.

Roy Cook [Cook, 2009] highlights that truh-values can be understood as proxies
for the various relations that can hold between language and the world. The present
chapter intends to give an overview on the birth of non-classical truth values from the
works of Jan Łukasiewicz. After that, we will discuss the work of some detractors of many-
valued logics, paying special attention to the works of Roman Suszko, the Polish logician
whose work has inspired a research programme about the meaning and significance of
many-valuedness.

In the first section we present Gottlob Frege’s conception of truth-values and how
it was related to a neo-Kantian perspective on the role of logic as a tool to discover
the ‘laws of being true’. The second section covers the birth of many-valuedness focusing
on Jan Łukasiewicz and the philosophical environment and motivations that led him
to the consideration of a third truth-value beyond the dicothomy between truth and
falsity. In the following, the third and fourth section aims at exposing Roman Suszko’s
conception of truth-values and why his ideas cast doubt on the influential character of
Łukasiewicz’s ideas. The last section intends to be a comparison of Suszko’s ideas and
other authors who also criticized many-valued logics such as Michael Dumett and Dana



20 Chapter 1. Truth-values and many-valuedness

Scott. Three conception of truth-values underlies the whole development of the chapter,
Frege’s conception of truth-values as abstract entities denoted by sentences, Łukasiewicz’s
conception of them as degrees of truth, and Suszko’s conception of truth-values as values
preserved in valid inferences, as well as the admissible referents of sentences.

1.1 Gottlob Frege, truth-values as reference

Truth-values were called into play by G. Frege [Frege, 1892] as objects denoted
by sentences. According to Frege, truth values were mere referential objects denoted as
values of arguments to which a concept expression apply. [Frege, 1892] became seminal
to the development of contemporary philosophy of language. In it, Frege investigated and
developed some concepts not thorougly explained in his first masterpiece, the Begriffschrift
- responsible for launching his famous logicist program. The concepts developed by Frege
in those papers were important for formulating his Theory of Meaning for the fragment
of language he was concerned since the Begriffschrift.

In the course of investigating the process of grasping the meaning of identity
statements, at the core os his account was the distinction between the sense (Sinn) and
reference (Bedeutung) of an expresion1. According to him, whereas the names ‘Lewis
Carroll’ and ‘Charles Dodgson’ may differ in sense, i.e, regarding the cognitive content
associated to the expressions, they stand both for the same reference, the actual person
corresponding to Charles Dodgson and Lewis Carroll. The sense of an expression is treated
as the mode of presentation of its referent, in virtue of which the reference of an expression
is denoted.

In Frege’s theory of meaning, while the reference of a proper name is the object
denoted by it, the reference of a complex saturated expression (sentence) is a truth-
value, the True or the False. Thus sentences are just names that refer to truth-values.
Complex expressions are built using proper names as arguments of functional expressions
(concepts). Concept expressions appear in the analysis of predicate expressions such as
‘is a city’, ‘is bigger than’, ‘is a property of’ etc. For Frege, all predicates are unsaturated
expressions in which the proper names serve as arguments to complete the meaning of
the expression. Then, if we have an unsaturated expression like ‘is a city’, proper names
like ‘Natal’, ‘David’ and ‘Seattle’ serve as arguments making the expression saturated and
able to denote a truth-value.

According to [Dummett, 1978], Frege’s conception of sense and reference lies in
the idea that to understand a complete sentence one must think of its truth-value. In
1 Frege’s distinction between sense and reference is the product of other concepts explored by him

such as the distinction between the sense, tone and colour of an expression. However, it is not our
purpose to make a full presentation of the development of Frege’s theory of meaning. For more, see
[Dummett, 1981].
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this way, the sense of the sentence is a way/procedure to grasp its truth-value. Since the
sense of a proper name is a criterion for identifying its referent, the sense of a concept-
expression is a way of determining whether or not something satisfies it. Thus, working
these two procedures together, we shall have a procedure for determining the truth-value
of a sentence. Moreover, since sense is a mode of presentation of the reference, this implies
that truth-values could be understood in a myriad of ways. Frege’s way out to avoid falling
into subjectivism is by placing senses in an objective stance. According to some authors,
Frege’s solution is in accordance with some Neo-Kantian philosophical thesis; we shall
explain this in the following.

Some later philosophers, for instance, Strawson [Strawson, 1950] and Davidson
[Davidson, 1969] have advocated the strangeness of the idea of treating truth-values as
the reference of sentences. However, Frege’s reasons are connected to the philosophical en-
vironment of his age, specially his conception of logic as the ‘science of most general laws
of being true’. For Frege, logic is concerned with truth itself, not truth as a mere property
of sentences. According to [Gabriel, 1984] and [Gabriel, 2001], Frege’s philosophical posi-
tions were influenced by the Southwest german school of Neo-Kantianism, that emerged
under the influence of Hermann Lötze. Moreover, the very use of the word truth-value is
connected to the pioneers of that tradition, as highlighted by [Gabriel, 2001], “Wilhelm
Windelband, the founder and the principal representative of the Southwest school of Neo-
kantianism, was actually the first who employed the term ‘truth value’ (‘Warheitswert’)
in his essay “What is philosophy?” published in 1882 (...).”

As founder of the value-theoretical tradition of the Southwest Neo-Kantian school,
Windelband defined Philosophy as a science of universal values. From his point of view,
the main task of Philosophy was to establish universal principles for logical, ethical and
aesthetical judgement, thus always oriented by a thelos. Following the way paved by the
Windelbandian tradition, Frege opened the paper [Frege, 1956] by defining logic in the
following manner:

“The word ‘true’ indicates the aim of logic as does ‘beautiful’ that of aes-
thetics or ‘good’ that of ethics.” [Frege, 1956]

Regarding the roots of that tradition, Gabriel [Gabriel, 2001] highlights that the
underlying philosophical position of the Southwest school was based in the reunion of
a Platonist and Kantian philosophy that emerged from Lötze’s interpretation of Plato.
Such a position was called as transcendental platonism:

“Transcendental platonism is platonist because it accepts contents of think-
ing(thoughts) that are independent of the individual thinking subjects, and
it is transcendental (as opposed to transcendent) because the independence is
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not thought of as an ontological one of existence, but a logical one of being
valid.” [Gabriel, 2001]

According to [Gabriel, 2001], the position of Frege and some Neo-Kantians (like
Windelband) could be described as transcendental platonism. Moreover, the above def-
inition could be presented in the form of a transcendental argument which reveals how
truth-values appear within the philosophical view purported by the southwest neo-kantian
perspective:

“Logic starts with making a ‘distinction of value’ between ‘truth and un-
truth’. True and untrue, or false, cannot appear as properties of processes of
thinking, but only of contents of thinking. To think about truth and falsehood
necessarily pressuposes – as a condition sine qua non, that is, as a ‘condition
of possibility’ in the Kantian sense – that we have first grasped the same cog-
nitive content and are discussing the same thought. To take this consequence
seriously, we have to accept that a thought cannot be a psychological item,
because such a view would imply that different individual subjects are not
able to participate in the same cognitive content or thought.” [Gabriel, 2001]

The position described above is certainly influential to some later thesis defended
by Frege, like his notion of sense as the Gedanke (thought) expressed by a sentence
and his rejection of psychologism. However, to what extent Frege might be considered a
Platonist or a Kantian is a question that shall not be adressed in this study. The important
point to underline is that such independence of thought suggested above implies an item
which we want to value as true or false, an item that is meant as the bearer of a truth-
value and cannot have individual psychological existence2. This is important to Frege’s
treatment of the relation between senses and truth-values as reference. However, it is
important to remark that despite Frege’s being influenced by Windelbrand in choosing
the word Warheitswert to refer to truth values, he understands it in a different sense from
Windelbrand, because Frege treats truth-values as referents of concept expressions. This
is a straight consequence of his mathematical approach to language. How it was explained
before, given that concept expressions are predicates which, after being applied to singular
terms as arguments, produce sentences, then the values of those functions must be the
reference of the sentences.

By considering that the range of functions contain typically objects, then the
reference of sentences should be objects, as well 3. The interesting step taken by Frege
here was to treat ‘the True’ and ‘the False’ as objects and not merely as properties. Frege
2 Cf. [Gabriel, 2001].
3 Cf. [Shramko and Wansing, 2011].
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understood truth values as logical objects, that is, mathematical objects such as numbers,
sets and alike. He considered truth-values among the grounding objects for his ontology.
The major part of Frege’s later work is dedicated to investigating the nature of such
logical objects aiming to achieve a rigorous ontological foundation. In this way, those
objects were not only abstract, but also possessed a different ontological import in virtue
of their primacy4.

In the next section, we shall expose Jan Łukasiewicz’s approach to truth-values.
He is responsible for deviating from Frege’s conception of truth-values and being able to
postulate the need for a third truth-value, beyond the True and False dichotomy.

1.2 Łukasiewicz and The Possibles
“Entre o sim e o não existe um
vão.”

— Itamar Assumpção

For some authors, a great share of contemporary philosophy emerged from the
works of Brentano and his pupils5. The development and consolidation of Polish philos-
ophy was no exception, since the most influential figure of the Lvóv-Warsaw School was
Kazimierz Twardoswki, one of the three most distinguished students of Brentano (the
other two were Alexius Meinong and Edmund Husserl)6. Naturally, Twardowski was in-
fluenced by the discussions and subjects explored by his intellectual mentor and dedicated
his life to the study of ontology and its relation to language and psychology. To some ex-
tent, those were the themes explored by the first members of the Lvóv-Warsaw school,
moved by a scientific conception of philosophy. However, the school inherited not only the
philosophical standpoint from the Brentanian tradition, but the Russellian approach to
logic and philosophy as well.

The Russellian tradition was introduced by the first three Polish modern logicians,
followers of Russell and Frege: Leon Chwistek, co-inventor of the simple theory of types;
Jan Łukasiewicz, one of the founders of many-valued logic; and Stanislaw Lesniewski,
famous for his great contributions to nominalistic philosophy of mathematics and to con-
temporary mereology. Although Meinong is often recognized as one of the founders of the
contemporary tradition that seeks to think the nature of non-existent and contradictory
objects, according to [Betti, 2011, ], “(...) [Twardoswski] was the first philosopher to hold
4 It is not our concern to adress the question of the adequate meaning of logical objects in Frege’s work.

It is our only goal to describe a little of the history of the concept of truth and how it is related to
the modern notion of truth-value.

5 Cf. [Dummett, 2014].
6 Cf. [Perzanowski, ].
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a theory of intentionality, truth, and predication in which thinking and speaking about
non-existents, including contradictions, involves presenting and naming non-existents, in-
cluding contradictory objects.” As we shall see, the struggle for adequate logical tools for
dealing with non-existents, as well as contradictory objects, played an important role in
the development of many-valued logics.

Some authors, such as [Rescher, 1968] and [Malinowski, 2009], commonly accredit
the first discussions related to many-valuedness to the ancient Greek philosophers. Re-
gardless of that, Rescher [Rescher, 1968] locates the “Early History” of many-valued logics
within the period from 1875 to 1916. He indicates Hugh MacColl (1837-1909), Charles
Peirce (1839-1914) and Nikolai Vasil’ev (1880-1940) as the founding fathers of many-
valued logic. However, since few formal developments were made by those authors to-
wards the creation of a many-valued logical system, Rescher calls “The Pioneering Era”
of many-valued logics the period from 1920 to 1932, in which first appeared the works of
Łukasiewicz and Emil Post. In the present thesis, for the sake of a better explanation of
the influences around Suszko’s ideas, we shall not talk about Post or any other author
from the early history.

1920, the year of the first publication of [Łukasiewicz, 1968], is often mentioned as
marking the date of birth of Łukasiewicz’s three-valued logic. Albeit, already in 1918, in
his farewell speech at Warsaw University, he asserts:

In 1910 I published a book on the principle of contradiction in Aristotle’s
work, in which I strove to demonstrate that that principle is not so self-evident
as it is believed to be. Even then I strove to construct non-Aristotelian logic,
but in vain. Now I believe I have succeeded in this... I have proved that in
addition to true and false propositions there are possible propositions, to which
objective possibility corresponds as a third in addition to being and non-
being.(Łukasiewicz apud [Wolenski, 1989], p. 119)

As we can notice in the above paragraph, many-valued logic as conceived by
Łukasiewicz was created from a dissatisfaction of having only truth and falsity as pri-
mary notions. The motivations found by him comes from investigations about the nature
of science, ontology and probability. Among the main reasons for his abandonment of the
classical perspective, are7:

1) The design of a formal system capable of dealing with the theory of objects proposed
by Brentano, Twardowski and Meinong;

2) The problems related to induction and the theory of probability;
7 Cf. [Malinowski, 2009].
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3) The concern with the problem of determinism and its relation to modality.

The first one has direct connections to the issues dealt with by Łukasiewicz in
his 1910’s book: On the principle of contradiction in Aristotle. In it, under the influ-
ence of Meinong’s theory about the existence of contradictory objects, objects for which
an ontological version of the law of non contradiction fails to hold 8, Łukasiewicz had
some intuition towards the necessity of values beyond truth and falsity9. Furthermore,
while contradictory objects, such as Meinong’s round square, infringe the law of non-
contradiction, Łukasiewicz also considered abstract objects (like the triangle), called by
him “incomplete objects”, which infringe the law of excluded middle for being free of
existence.

As pointed out earlier in this section, Łukasiewicz was a product of two tradi-
tions, the philosophical approach pursued by those from the Brentanian tradition and
the concern with the ontology of logic and its connection to the world, typical from the
Frege-Russellian tradition. It is from such a standpoint that it is possible to understand
Łukasiewicz’s position regarding the nature of truth values and his creation of the third
value. For him, it was clear that the principle of bivalence together with the law of ex-
cluded middle made science committed with determinism, because every proposition can
only be true or false, specially those about the future since exluded middle ensure the
truth of the disjunction despite none of its parts being true10. For him, statements about
the future do not satisfy the excluded middle since they are neither true nor false. As put
by [Simons, 1989], Łukasiewicz’s main concern was to make “science free from absolute
determinism” and the way to accomplish such a task should involve the causal necessity
that pervades scientific prediction. The strive with future contingents and modality stood
out as his main drive in order to formulate an adequate semantics for a three-valued logic.
According to [Simons, 2014], Łukasiewicz was bothered by the idea of modal logic being
trapped into classical bivalent logic. Łukasiewicz’s way out of such problem he added a
third value, ‘the possible’, denoted by 1

2 . Thus, Łukasiewicz believed the significance of
his three-valued logic was in creating a non-Aristotelian logic.

Łukasiewicz’s system Ł3 may be defined in the following way. Let 𝒱 = {0, 1
2 , 1}

be the set of truth-values, with 𝒟 = {1} and 𝒰 = {0, 1
2}. The elements of 𝒟 are called

designated truth-values and the elements of 𝒰 are called undesignated. The connectives
‘¬’, ‘→’ and ‘∨’ are defined by the following truth-tables:

8 For all 𝑎 and 𝑃 : it is not the case that 𝑃 (𝑎) and ¬𝑃 (𝑎).
9 Cf. [Simons, 1989].
10 This standpoint on determinism is often called in the literature as Aristotle’s fantasy.
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→ 0 1
2 1

0 1 1 1
1
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1
2 1 1

1 0 1
2 1

¬

0 1
1
2

1
2
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∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

We say a formula is a tautology if it is always assigned a designated value. In this
case, note that, 𝛼∨¬𝛼 and ¬(𝛼∧¬𝛼) are not tautologies in Ł3. Later on, Łukasiewic also
exhibited how to extend his system in having finitely or infinitely many truth-values. For
him, truth-values within those systems expressed the truth degree of sentences. The idea
set the basis for what is nowadays called Fuzzy logics.

It is important to mention that Łukasiewicz’s conception of truth-value was based
on the technical tools explored by the polish logicians, what also moved a mathemati-
cal conception of truth-values. According to [Béziau, 2012], this mathematical conception
of truth-values appears in its complete form in the history of logic only after the devel-
opment of the notion of logical matrices11. In [Béziau, 2012], the author describes the
mathematical concept of truth value in the following way:

“Let us have a look at the MTV [Mathematical concept of Truth Value].
It is a double structure: on the one hand we have an absolutely free algebra,
on the other hand, facing it, an algebra of similar type, finite or not, and
between them, the central notion establishing relations between mathemati-
cal structures, the notion of morphism. The elements of the free algebra are
called propositions and its functions connectives, the elements of the facing
structure are called truth-values and its functions truth-functions, and finally
the morphisms between the two structures valuations.[Béziau, 2012]”

From this perspective, truth-values are only mathematical elements from an al-
gebra of an adequate similarity type. They are divided by distinguishing proper subsets
of them into designated and non-designated. From this, each morphisms between the
structures plays the role of assigning the propositions that receive a designated value and,
therefore, have a model, from the ones which does not have a model. The mathematical ap-
proach to the concept of truth-value led us to define properties such as truth-functionality,
analyticity, and so on, in a proper manner. The development of such mathematical struc-
ture of truth values owes a great debt to Boole and Peirce. However, it was Tarski and
Lindenbaum the first ones to set the algebra of formulas and truth values in a clear ab-
stract perspective. Their treatment established the foundations for the total abstraction
of the concept of logic by looking at the structural features of the notion of entailment.
11 Yet in this chapter we shall focus only on the philosophical aspects of the concept of truth-value.

The mathematical aspects will be explored in the remaining chapters.
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Therefore, the connections between truth values and logical consequence were thus prop-
erly revealed and treated. In this regard, as we shall discuss in Part III of the present
thesis, the notion of logical consequence became prominent in defining what a logical
system is.

1.3 Roman Suszko on algebraic and logical values
Roman Suszko (1919-1979) is one of the most prominent modern logicians from

the Lvóv-Warsaw school. He is accredited with an extensive work on abstract logic, on
model theory, and on the algebraic tradition initiated with Alfred Tarski. Suszko appeared
in Poland’s philosophical scenario as a contemporary of Łukasiewicz, therefore during the
mix between the Brentanian and the Russellian tradition. Despite the contact of the
Brentanian tradition on the philosophical approach pursued by the Lvóv-Warsaw school,
the main influences for Suszko, on what regards his treatment of logic and ontology, are
the figures of Frege and Wittgenstein.

Suszko’s concern with the nature of truth values became central in his work only
by the end of his career. The famous paper in which he develops his thoughts on truth
values is [Suszko, 1975a], in which he addresses the discussion about the expressive power
of so-called non-Fregean logics (NFL), logics characterized by the failure of the so-called
Fregean Axiom (FA). The paper is a presentation and development of the most sim-
plified version of NFL, the so-called Sentential Calculus with Identity, (SCI), that is a
product of other investigations by Suszko and his co-authors like [Bloom et al., 1972] and
[Bloom and Suszko, 1971]. For Suszko, NFL was responsible for continuing Frege’s pro-
gram without the Fregean Axiom, what could be seen as equivalent to “realising Euclid’s
program without the fifth postulate”.

Suszko’s conception of truth values and the ontology of logic provided the the-
oretical motivations for his creation of NFL. His ideas were elaborated in the context
of struggling with the Fregean axiom and its implications. He used the expression non-
Fregean logics to refer to the class of logics that do not satisfy the following principle:

(FA1) all true (and, similarly, all false) sentences describe the same,
that is, have a common referent.

(FA1) is recognized as the general version of the Fregean Axiom12. Following
Frege’s ideas, since the referent of sentences are truth values and there are only two
of them, then all true sentences denote the truth value True, whilst all false sentences
denote the truth value False.
12 Also called the semantic version of the Fregean Axiom, [Malinowski and Zygmunt, 1978].
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Suszko starts the paper [Suszko, 1975a] by interpreting Frege’s semantic scheme
in the following way: given a sentence 𝜑, we shall call 𝑟(𝜑) the referent of the sentence,
𝑠(𝜑) the sense of 𝜑, and 𝑡(𝜑) its logical value. In Frege’s theoretical construction, once the
reference of saturated sentences are truth values, we have the following conditions on the
assignments, given sentences 𝜑 and 𝜓:

𝑟(𝜑) ̸= 𝑟(𝜓) implies 𝑠(𝜑) ̸= 𝑠(𝜓) (1.1)

𝑡(𝜑) ̸= 𝑡(𝜓) implies 𝑟(𝜑) ̸= 𝑟(𝜓) (1.2)

The converse of (2), according to Suszko, is one version of the Fregean Axiom, since
it tell us that different referents must receive different logical values. The whole point of
Suszko’s construction with NFL is in negating such idea by allowing that different referents
may receive the same logical values. For him, the way to accomplish depends on being
able to draw a difference between logical values and the referents of sentences.

By still making use of Frege’s terminology of sense and reference, Suszko defined
the referent of a sentence 𝜑 as the situation denoted by 𝜑 and the sense as the proposition
expressed by 𝜑. Based on this, we can mention two reasons for Suszko’s rejection of
the Fregean Axiom: 1) The fact that equating reference and logical values implies the
existence of only two possible situations described by sentences, and 2) It entails the
confusion between what sentences describes/denote and their logical values. Therefore,
by evading the Fregean Axiom, one would obtain a richer ontology with more than two
possible referents.

In order to avoid the problem of having at most two possible situations as reference,
caused by the Fregean Axiom, Suszko enriched the language of propositional logic with
a new operator ‘≡’, which is used to assert the identity of situations, i.e, the identity of
what the sentences describe. By taking classical propositional logic plus ‘≡’, we obtain
SCI if we impose the following constraints upon ‘≡’ 13:

𝜙 ≡ 𝜙 (1.3)

(𝜙 ≡ 𝜓) ⇒ 𝜎[𝑝 ↦→ 𝜙] ≡ 𝜎[𝑝 ↦→ 𝜓] (FA3)

(𝜙 ≡ 𝜓) ⇒ (𝜙 → 𝜓) (1.4)
13 The full non-Fregean logic is obtained by constructing a first-order language which includes quanti-

fiers over both individual variables and variables which may be substituted only by sentences (variables
running over situations). Cf. [Wójcicki, 1984]. It is not within the scope of the present study to provide
a complete description of how Suszko built NFL. The important point to notice is Suszko’s rejection
of the Fregean Axiom and the philosophical reasons for doing so.



1.3. Roman Suszko on algebraic and logical values 29

where 𝜎[𝑝 ↦→ 𝛼] denotes the substitution of every 𝑝 in 𝜎 by 𝛼. The remaining symbols
stands as usual.
The connective “≡” may also be introduced in the following way:

𝑡(𝜑 ≡ 𝜓) = 1 iff 𝑟(𝜑) = 𝑟(𝜓) (1.5)

Note that, (1.5) states that 𝜑 ≡ 𝜓 takes the value 1 if and only if 𝜑 and 𝜓 describe
the same situation. One of Suszko’s goals in defining ‘≡’ in the above manner is in avoiding
what he calls the ontological version of the Fregean Axiom, namely the converse to 1.4:14.

(𝜑 ↔ 𝜓) ⇒ (𝜑 ≡ 𝜓) (FA2)

For Suszko, the problem with (FA2) is in confusing identity of situations and
material equivalence. In [Suszko, 1975a], he presented an axiomatic basis for NFL, called
𝒲 (for Wittgenstein), and shows how to construct stronger systems by adding different
axioms to 𝒲 (what gives us the hierarchy of kind 𝒲 systems). The strongest system
of the hierarchy, called 𝒲ℱ , is obtained from 𝒲 by adding the ontological version of
the Fregean Axiom. Moreover, according to Suszko, the different systems between 𝒲
and 𝒲ℱ , constructed by imposing different constraints, stands for different “ontological
principles concerning the structure of the universe of situations”. That is why he believed
that (FA) represents a strong ontological constraint, because, as was explained above, it
limits the set of possible situations to at most two.

Another interesting point of kind 𝒲 systems is in exploring the relation between
material equivalence and identity. This relation is a theme well explored in Suszko &
Bloom’s sentential calculus with identity (SCI). According to them, SCI is the “weakest
extensional two-valued logic”. Suszko’s obsession with an adequate treatment for identity
and material equivalence relies on his appreciation of extensionality and his fear of “inten-
sional ghosts”. Therefore, in [Suszko, 1975a], he discusses the truth-functional character
of identity and even claim that “[identity] is truth functional and, then, coincides with
material equivalence, if and only if the Fregean axiom holds”.
14 It is important to highlight the fact that Suszko had different formulations of the Fregean Ax-

iom. In particular, (FA2) appeared first in [Suszko, 1975b]. This version is mentioned and ex-
plored by [Caleiro et al., 2003]. Despite the differences in each formulation of the Fregean Axiom,
Suszko’s motivation for each one is in avoiding the strong ontological constraint implied by (FA1).
In [Suszko, 1975b], he claims that Łukasiewicz’s logic represents the “true abolition of the Fregean
Axiom [(FA3)]”. This seems to suggest that Suszko believed that many-valuedness would always imply
the failure of (FA3). The claim was analysed and corrected in [Caleiro et al., 2007] by exhibiting a
many-valued logic that satisfy (FA3) and showing the condition under which Suszko’s claim is correct.
Another important point concerns the exact relation between each formulation of (FA). The failure
of each formulation of the Fregean Axiom does not seem to characterize the same class of logics.
For instance, it is well known that the logics that rejects (FA1) are the ones that do not allow for
the formulation of slingshot arguments; the ones that fail (FA3) are in the class of non-algebraizable
logics and, moreover, (FA2) is rejected in NFLs. Thus, what is the precise relation between each of
those properties and the formulation of (FA) is a question that remains to be further investigated.



30 Chapter 1. Truth-values and many-valuedness

On what regards Suszko’s conception of reference, it is based on the notion of states
of affairs, exposed by Wittgenstein in the Tractatus. In [Suszko et al., 1968], he elaborated
a system intended as a formalized version of the ontology developed in the Tractatus. (He
points out the monograph written by the logician Boguslaw Wolniewicz [Wolniewicz, 1968]
as his primary source of inspiration.). By following the Tractarian perspective on reference,
Suszko is avoiding Frege’s neo-Kantian perspective on truth values. Therefore, Suszko is
building the path toward an alternative conception about reference and the role of truth
values as semantic entities. According to Malinowski [Malinowski, 2009], “One could say
that Suszko’s interpretation of truth-values rests on the distinction between two semantic
levels: ontological and logical”. Thus, Suszko’s account tries to separate the ontological
world standing as the denotation of sentences from the logical notions of truth and falsity.

According to Suszko’s later papers, [Suszko, 1975a] and [Suszko, 1977], 𝒱 , the set
of truth-values, stands as the set of algebraic values and each of its elements denotes
the possible referents of sentences, i.e., situations. Moreover, the distinction of the alge-
braic values into two subsets 𝒟 and 𝒰 , called, respectively, designated and undesignated,
represents the two genuine logical values, the adequate notions of truth and falsity.

The first paper written by Suszko about the concept of logical values dates from
1957, entitled Formal theory of logical values; unfortunately, it never received an English
translation 15. An important consideration made by Suszko regarding the concept of
logical value appeared as a definition of logical value in an encyclopedia called Notions
and theorems of elementary formal logic [Pogorzelski and Pogorzelski, 1994]:

“Generally speaking, the term logical value in a metalanguage of a certain
propositional logic refers to every element of characteristic matrix of that
logic or (more generally) an arbitrary element of a universum of an arbitrary
logical matrix of the language 𝑆0. In the early stages of the development of
modern logic, truth and falseness (which were referred only to propositions
or propositional expressions) were called logical values. When it was assumed
that a sentence 𝛼 was true, then it was said that it had a logical value of truth
and it was possible to replace it by the symbol 1 or 𝑇 ; when it was false, it was
possible to be replaced by the symbol 0 or the sign 𝐹 (0, 1 — symbols taken
from Boolean algebra). However, this point of view was not uniform: as logical
values were treated both as truth and falseness (intuitively understood), and
the symbols 0, 1, or as symbols of a fixed but arbitrary — false or true sentence.
In the last case, it was a linguistic understanding of logical values. ” Suszko:
Formal theory of logical values apud [Pogorzelski and Pogorzelski, 1994]

In the above passage Suszko claims the term logical value refers to every element
15 Cf. [Béziau, 2012].
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of a matrix, what is contradictory to our separation between algebraic and logical values.
However, in the same passage, Suszko goes on and expresses dissatisfaction with such
use of the term logical value and how it has been treated since the birth of so-called
many-valued logics:

“Good foundation of such a formulation of the notion of logical value was
Post’s proof showing that classical propositional logic in axiomatic form has
two-valued characteristic matrix. However, almost at the same time logics
with characteristic matrices of numbers bigger than two occurred — e.g.,
Łukasiewicz’s three-valued logic (the term logic is understood here as set of
tautologies of a matrix). This third element of universum of this matrix was
traditionally interpreted as possibility.

Logical values have quickly lost their philosophically intuitive interpreta-
tions when logics, whose characteristic matrices were 𝑛-ary, occurred (with an
arbitrary, natural 𝑛) or could even be of infinite cardinality.

Obviously, logical values (many-valued logics, in contradistinction to two-
valued logic) were — and are — discussed but these logical values have lost
their intuitive sense, although an opinion was stated that they could be degress
of truthfulness of propositions.

(...)
As the propositional logics and their metatheories were developing, the va-

riety of characteristic models (matrices) and elements of their carriers (from
rational numbers to topological spaces) increased and, according to that, it
is stated that by logical values are understood elements of a universum of
logical matrix, which because of intuitive or philosophical reasons, are iden-
tified with the notion of truth, falseness or their variants (necessity, possi-
bility, randomness). However, when such identifications are not made and
intentions of founders of a certain logic do not lead to a simple split of the
notion of truth or falseness and so making a logic with many logical values
instead of two, then a certain logic is not called many-valued and elements
of universum of characteristic matrix are not always called logical values.
Thus, this notion is not described properly and the fact whether a certain
element of characteristic matrix of a certain logic is called logical value or
not depends on non-formal means, intuitions or a predilection of a founder
of a logic or its main users. ” Suszko: Formal theory of logical values apud
[Pogorzelski and Pogorzelski, 1994]

The above quote clearly states Suszko’s dissatisfaction with the lost of the philo-
sophical meaning, or intuition, behind the notion of logical values. The last papers pub-
lished by him tried to renew the discussion about the philosophical meaning of logical
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value. Suszko is interested on the way we understand truth values within the mathemati-
cal structures we use in mathematical logic. His remark about the good foundation found
in Post’s result had some influence on his project of showing that every many-valued
semantics can be characterized by a bivalent one, a result nowadays called Suszko’s Re-
duction. Even though Suszko [Suszko, 1975b] and Malinowski [Malinowski, 1990a] have
made some contribution to the way Suszko’s Reduction may effectively be carried out, an
algorithmic procedure for such a task was exhibited only later on by [Caleiro et al., 2007].

Given the distinction between algebraic and logical values, we see that truth values
play a dubious semantic role in a logical system. This ambiguity reveals itself by highlight-
ing the fact that, in Suszko’s terminology, the expression truth values denotes different
things, e.g, the elements inside the matrix, as well as its partitions. From this, hereafter we
shall adopt a terminology to refer to the different modes in which many-valuedness may
express itself by using the expressions referential and inferential many-valuedness. The
former is about the cardinality of the designated set of truth values, whereas the latter
concerns the number of partitions of the matrix 16. This difference will be important in
order to stress the meaning of Suszko’s Thesis and its later developments.

From what was said above, we can conclude that there were two central reasons for
Suszko’s criticism of the Fregean Axiom: 1) the fact that it collapses algebraic and logical
values, 2) that it entails the confusion between identity and material equivalence. Only the
former shall be thorougly explored in thein present study in virtue of its direct connection
with the formulation of Suszko’s Thesis and how it was understood and developed in the
literature 17.

1.4 Suszko’s Thesis and many-valuedness

During the 1970s, in a talk delivered at the 22𝑛𝑑 Conference on History of Logic
(Craców), Roman Suszko called into question the nature of the logical enterprise pursued
by Polish logic since the 1920s under the influence of Łukasiewicz [Suszko, 1977]. Suszko
striked and accused Łukasiewicz to be “the chief perpetrator of a magnificent concep-
tual deceit lasting out in mathematical logic” and provoked: “how was it possible that
the humbug of many logical values persisted over the last fifty years?”. Suszko’s ideas
questioned the notion of many-valuedness proposed by Łukasiewicz.

Based on the above difference between algebraic and logical values, Suszko asked
“How could he [Łukasiewicz] confuse truth and falsity with what sentences describe?”,
the difference that led him to claim “there are but two genuine logical values”. His ideas
16 The expressions referential and inferential many-valuedness were not used by Suszko. Instead, the

first authors to use it were Wójcicki and Malinowski.
17 For more about SCI and its treatment of identity, see [Bloom et al., 1972] and

[Bloom and Suszko, 1971].
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endorse the fact that, while the classical conception of truth values might be denied at
the referential level, i.e., at the level of what sentences describe, it remains true at the
inferential level, through the Tarskian notion of inference. The reason for this is in the fact
that Tarski’s notion of entailment depends only on the dichotomy between the designated
and undesignated sets of truth values. Then, once for Suszko the genuine notions of truth
and falsity are expressed by logical values, they are our genuine values and it would be
a “mad idea” to have more than two of them. This philosophical position concerning the
nature of many-valuedness became known and referred to in the literature as Suszko’s
Thesis.

In [Suszko, 1975b], Suszko exhibited a sketch of a bivalent description of Łukasiewicz
three-valued logic and suggested that such approach was strong enough to be applied to
any many-valued logic. However, the first one to give a first step in showing that Suszko’s
approach could be applied to any many-valued logic was Malinowski in [Malinowski, 1990a].
Nevertheless, the first ones to show a full description on the procedure of finding an ade-
quate bivalent semantics to any many-valued semantics were Caleiro et al [Caleiro et al., 2003]18.

As was said above, Frege assumed that there were only two referents of sentences:
the True and the False. All true sentences denote the True, and all false sentences denote
the False. By adopting a Tractarian perspective on reference, Suszko takes a realist stance
and builds a richer ontology of situations. Moreover, his division of algebraic and logical
values had the importance of defending the idea that sentences assigned the same logical
value need not denote the same.

For Suszko, as for Wittgenstein, the world is conceived as the totality of facts
(situations). The classification into designated and undesignated values has the purpose
of selecting the situations that obtain and the ones that do not. This idea is obviously very
close to Wittgenstein’s Tractarian construction in dividing the world into negative and
positive facts19. According to Suszko, an adequate formalized language to deal with objects
and situations must have two types of variables: nominal variables running through the
universe of objects and sentential variables running through the universe of situations.
This construction set the basis for NFL.

The importance of such concept of reference is in going against the Fregean con-
ception of truth values. Suszko did not take logic as a machinery tool to discover truths
about an ontological realm beyond human direct experience. Instead, Suszko believes that
formal languages are created from the attempt to grasp some fragments of reality. Accord-
ing to Omyla [Omyla, ], for Suszko “the subject-matter of logical investigations are any
conceptual structures emerging from the process of world cognition”. Moreover, “there is

18 Here we take a bivalent semantics as any arbitrary family of functions from the set of propositional
formulas to the set 𝒱2 = {0, 1}. Font [Font, 2009] called such notion of semantics Susko’s semantics.

19 In his writings, however, Suszko did not treated the question of what is a negative situation. This
was only later explored by Wójcicki in [Wójcicki, 1984].
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a structural syntatic framework, by means of which consciousness can grasp reality.” Thus
the logical structure of a language related to the fragment of reality it tries to formalize
is never arbitrary and purely linguistic but is determined by20:

(a) the ontological structure of the fragment of reality to which the language refers.
(b) the semantic principles adopted.

Suszko’s position is similar to the Wittgensteinean conception of the interaction
between reality and the logical structure of language, by which formal languages are
able to exhibig the logical form of reality. He takes logic as dealing with some aspects
of the logical structure of the world, what is supported by his view on the ontology of
the world as the totality of situations. Thus, his realist conception of reference serve as
foundation for a relational general theory of reference, where situations are seen as blocks
of reality that logical systems tries to grasp. Although he had not entirely developed a
theory of situations21, Suszko was aware of the importance of taking situations as primary
ontological entities. In [Suszko, 1994], he took events as objects abstracted from situations
and proved that some theories of situations are mutually translatable into theories of
events.

Suszko’s concern is directed toward drawing a sharp distinction between the levels
in which many-valuedness may be expressed by establishing the difference of algebraic
and logical values. The notions of algebraic and logical values are useful to relate a rich
ontology of situations as referents, and yet avoid clouded concepts related to undetermined
truth or falsity. By doing that, Suszko gives support to fundamental notions of truth and
falsity and helps to clarify the nature of many-valuedness in logic.

1.5 Michael Dummett and Dana Scott on many-valuedness
Despite the richness of Suszko’s thoughts, he was not the first one to contend

against many-valuedness. Other authors such as Michael Dummett ([Dummett, 1991] and
[Dummett, 1978]) and Dana Scott ([Scott, 1973] and [Scott, 1974]) made, independently,
similar criticism regarding the way many-valuedness was treated and defined. In what
follows, we present these criticisms and how they relate to each other.

The precise sense in which we claim that Dummett’s and Suszko’s comments are
similar lies on the fact that both of them considered truth and falsiy as concepts expressed
by the Tarskian dichotomy of designated and undesignated values. Already in 1959, in
[Dummett, 1978] and also [Dummett, 1991], Dummett analyzes the different uses of truth
and falsity as performed by some utterances. However, differently from Suszko, Dummett
20 Cf. [Omyla, ].
21 That would only be accomplished some years later by Barwise and Perry.
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is not worried with an ontological principle behind the treatment of truth values, but in
setting a in treating the different uses of truth and falsity.

In the preface of [Dummett, 1978], the author says:

“Truth(...) was a defense of the principle of tertium non datur22 against
certain kinds of counterexample; not, of course, that I wanted to contend
against uses of ‘true’ and ‘false’ under which an utterance could be said to
be recognised, in certain senses, as being neither true nor false, so long as
the point of using those words in such a way was acknowledged to be only to
attain a smoother description of the way the sentential operators worked.”

Thus, according to Dummett, we can accept different or intermediate notions of
truth and falsity as long as they are used only to get a better description of the connectives.
This point is very similar to Suszko’s later consideration on algebraic valuations, which
are characterized by a homomorphism between the algebra of formulas and the algebra
of truth values. The bivalent characterization of the algebra of truth values, of course,
would lose its homomorphic structure, thus not possessing a “smooth” description of the
connectives. In [Dummett, 1978], in the context of discussing a logic with 𝑇 , 𝐹 , 𝑋 and
𝑌 as truth-values, Dummett remarks:

“Logicians who study many-valued logics have a term which can be em-
ployed here: they would say 𝑇 and 𝑋 are ‘designated’ truth-values and 𝐹 and
𝑌 ‘undesignated’ ones. (In a many-valued logic those formulas are considered
valid which have a designated value for every assignment of values to their
sentence-letters). The point to observe are just these. (i) The sense of a sen-
tence is determined wholly by knowing the case in which it has a designated
value and the cases in wich it has an undesignated one. (ii) Finer distinctions
between different designated values or different undesignated ones, however
naturally they come to us, are justified only if they are needed in order to
give a truth-functional account of the formation of complex statements by
means of operators. (iii) In most philosophical discussions of truth and fal-
sity, what we really have in mind is the distinction between a designated and
an undesignated value, and hence choosing the names ‘truth’ and ‘falsity’ for
particular designated and undesignated values respectively will only obscure
the issue.(...)” [Dummett, 1978]

Dummett then reveal similar ideas to Suszko’s distinction on algebraic and logical
values. For Dummett, though we can have statements that may seem neither true nor
22 Dummett understands tertium non datur as the following semantic principle: no statement is neither

true nor false.
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false regarding its content, they are all classified as designated or undesignated. There-
fore the genuine conceptions of truth and falsity are expressed in the distinction des-
ignated/undesignated. In chapter 2 of [Dummett, 1991], Dummett draws a distinction
between ingredient sense and assertoric content of sentences. A distinction very similar
to the difference of algebraic and logical values. Dummett’s approach, however, is justified
by the content of some utterances, which may be regarded as neither true nor false and,
at the formal level, they are described by undetermined truth values only to attain an
adequate functional description of the operators. In [Dummett, 1978], the author gives
the following example:

“I once imagined a case in which a language contained a negation operator
‘`’ which functioned much like our negation save that it made ‘` (𝐴 → 𝐵)’
equivalent to ‘𝐴 →` 𝐵’, where → is the ordinary two-valued implication. In
this case, the truth or falsity of ‘` (𝐴 → 𝐵)’ would not depend solely on the
truth or falsity of ‘𝐴 → 𝐵’, but on the particular way in which ‘𝐴 → 𝐵’ was
true (whether by the truth of both constituents or by the falsity of the an-
tecedent). This would involve the use of three-valued truth tables, distinguish-
ing two kinds of truth. In the same way, it might be necessary to distinguish
two kinds of falsity.”

L. Humberstone [Humberstone, 1998], explains that the difference between asser-
toric content and ingredient sense is introduced “in terms of the distinction between
knowing the meaning of a statement in the sense of grasping the content of an assertion
of it and in the sense of knowing the contribution it makes to determining the content of
a complex statement in which it is a constituent.” Sentences that are alike regarding the
assertoric content (have the same designated value) are true under the same conditions.
Therefore, despite sentences being equal regarding their assertoric content (in Suszko’s
terminology, the logical value), they differ relative to their ingrediente sense (the algebraic
value).

As it was said before at the beginning of this section, Dana Scott is another
author to make independent similar considerations on many-valuedness. In [Scott, 1974],
after some biographical considerations about his relation with Tarski, in adressing the
treatment that many-valued logic has received as the natural generalization of matrix
semantics, Scott puts hte following question, “Just how many calculi do you want anyway?
Multiple-valued logics had not found much of a foundational role, and there did not seem
much point in creating new ones.” One of his goals in the paper is to discuss whether the
matrix method for many-valued logics is actually the correct generalization of the two-
valued method, a debate he had partially begun to treat in [Scott, 1973]. In comparing
{t, f}-valuations and many-valued truth tables, he remarks, “everyone can understand



1.5. Michael Dummett and Dana Scott on many-valuedness 37

{t, f}-valuations, but few — even the creators of the subject — can understand many-
valued truth tables”.

Aiming to discuss the notion of inference related to Łukasiewicz logic, Scott presents
his criticism to many-valued logics in the following way23. Take, for instance, Łukasiewicz’s
3 valued conjunction with values 𝒱 = {0, 1, 2}, 𝒟 = {1} defined in the following way :

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

where 2 corresponds to true and 0 to false. However, in order to avoid calling them values,
Scott advises to treat them as types of sentences. In this way, we could set 𝑆 = {0, 1, 2}
and map the set of propositions to their respective types. Moreover, he considers that
Łukasiewicz’s intuitions about designation are vague and stresses “Is not the division of
statements types into the designated and undesignated just a truth-valuation? Of course.
So why not call it one?” In this way, there are many valuations that we could consider.
We can show them in a table:

𝑉 𝑣0 𝑣1

0 f f
1 f t
2 t t

where 𝑉 = {𝑣0, 𝑣1}, consists of two valuations able to distinguish three types of sentences.
Each valuation therefore represents one way of designating the elements. From this, we
can define an entailment relation in the following way:

Γ 
 𝛼 iff Γ |=𝑉 𝛼, for all 𝑣 ∈ 𝑉. (1.6)

and it is straightforward to see that 
 𝛼 iff 𝑣0(𝛼) = t. For instance, the truth-conditions
for conjunction can be described by using the valuations as:

𝑣𝑖(𝛼 ∧ 𝛽) = t iff 𝑣𝑖(𝛼) = t and 𝑣𝑖(𝛽) = t (1.7)

𝑣𝑖(𝛼 ∧ 𝛽) = f iff 𝑣𝑖(𝛼) = f or 𝑣𝑖(𝛽) = f (1.8)
23 A first argument presented by Scott against Łukasiewicz’s notion of many-valuedness is in claiming

that Łukasiewicz’s interpretation of truth-values as probabilities does not seem adequate since proba-
bilities are not truth-functional, i.e, the probability of a compound proposition may not be a function
of the probability of its parts.
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where 0 ≤ 𝑖 < 2. Here the numbers work only as the subscripts for the valuations.
After showing this kind of construction, Scott then considers, “it seems much better to
consider a variety of valuations rather than a variety of ‘truth’ values. Valuations use the
ordinary truth-values, t and f, and sentential ‘values’ could creep in again (...) as types of
sentences as distinguished by the valuations (...)”. Scott’s construction makes it possible to
obtain a bivalent characterization of the original many-valued semantics24. This sets the
foundations for his criticism to many-valued logics. In the next chapter, we use a similar
approach to prove Suszko’s reduction theorem, a result that establishes and reveals the
bivalent character of many-valued Tarskian systems.

24 For a more thoroughly discussion on Scott’s ideas about consequence relations and many-valuedness,
see [Humberstone, 2012].
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2 Exploring Suszko’s reduction

Before starting to list the main points of this chapter, some remarks about the
way we shall define logic and the understanding that shall drive the present study might
be necessary. Such a conception of logic (see Definition 5 below) is borrowed from Jean-
Yves Béziau from what he baptized as Universal Logic. The history of Universal Logic,
understood here as a general theory of logics and not as a universal system of logic (as
some might believe) begins with Alfred Tarski. Tarski launched his theory of an abstract
consequence operator with the intention of describing the processs of reasoning underlying
the methodology of deductive sciences. Despite the influential character of Tarski’s ideas
on the abstract theory of logics, like the one pursued by Brown, Suszko and Bloom
[Brown et al., 1973], some other abstract approaches were developed independently, like
the idea of sequents by Hertz and Gentzen 1. The importance of Tarski and the others
lies in the fact that they created tools to investigate the notion of deduction apart from
the traditional Hilbert-style proof systems 2. Along with that development, several types
of semantic tools, such as model theory and matrix theory, were developed to characterize
the semantic notion of consequence subjacent to logical systems. This chapter is about
how bivaluations are related to matrix theory as an adequate semantic tool to characterize
Tarski’s notion of consequence.

Bivaluations are not new animals in the logical zoo. We might say that they abound
in the logical realm since its modern foundations and they appeared as a semantic tool
with the creation of classical logic and its semantics. The aim of this chapter is for it
to be an investigation about the range of applicability of bivaluations as an appropriate
semantic tool for logical systems by analyzing their fundamental properties in comparison
to the usual matrix semantics. The first section is a detailed exposition of the central result
that led Suszko to formulate his ideas about algebraic and logical many-valuedness. The
result was important in establishing the foundations for studies that sought to develop
the theory of bivaluations as a general machinery to construct semantics for different
logical systems. On that regard, an important step was taken by Newton da Costa and
collaborators in [Loparic and da Costa, 1984], [da Costa and Béziau, 1994] in proposing
what is known as the Theory of Valuations. Newton da Costa’s theory of valuations was
intended as an abstract bivalent framework for developing semantics for arbitrary logical
systems. The second section aims to be an exposition of the major contributions made
to the bivalent reduction procedure initiated by Suszko. Based on Caleiro & Marcos’s
reduction procedure, we will illustrate how to obtain a bivalent semantic characterization

1 Cf. [Beziau, 2005].
2 A Hilbert-style proof system can be described as a set of axioms endowed with a set of inference rules.
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of Gödel’s 3-valued logic. We also point out how the procedure can be applied to any
finite-valued logic.

2.1 On the meaning of Suszko’s reduction
This section introduces some of the main results that laid the foundations for

Suszko’s Thesis, as well as the major developments based on Suszko’s ideas. We begin
by presenting the technical machinery that will be useful to prove Suszko’s fundamental
result, the well-known Suszko’s Reduction theorem – that states that every Tarskian logic
may be characterized by a bivalent semantics. The theorem is responsible for showing
that many-valued semantics may be recognized as bivalent semantics in disguise. After-
wards, we will present a sketch of how the technique for Suszko’s reduction procedure was
improved by Carlos Caleiro & João Marcos in order to extend its range of application and
provide a recipe for carrying it out.

Fundamental concepts

We begin by introducing some basic terminology regarding the concept of an ab-
stract algebra.

Definition 1. An algebraic type is a pair 𝜏 = ⟨𝐹, 𝜌⟩ where 𝐹 ̸= ∅ is a set of symbols
and 𝜌 : 𝐹 → N is the arity function, the map that assigns an arity to each symbol in 𝐹 .

Definition 2. An algebra of type 𝜏 is a structure A = ⟨𝒜,𝒪⟩ where 𝒜 ≠ ∅ is the domain
of the algebra (the carrier set) and 𝒪 = {𝑓A

𝑖 }𝑖∈𝐹 such that for all 𝑖 ∈ 𝐹 :

if 𝜌(𝑖) = 𝑛, then 𝑓A
𝑖 : 𝒜𝑛 → 𝒜 (2.1)

Given two algebras A and B, we say they have the same type in case 𝜏(A) = 𝜏(B).

Definition 3. The notion of homomorphism between algebras is defined in the follow-
ing way. Let A and B be two algebras of the same type. We say that ℎ : 𝒜 → ℬ is a
homomorphism of A into B if and only if for every 𝑛-ary function 𝑓A

𝑖 , we have that

ℎ(𝑓A
𝑖 (𝑎1, ..., 𝑎𝑛)) = 𝑓B

𝑖 (ℎ(𝑎1), ..., ℎ(𝑎𝑛)) (2.2)

The set of all homomorphisms of A into B is denoted by 𝐻𝑜𝑚(A,B). If a homomorphism
is from a given algebra A into itself (ℎ : 𝒜 → 𝒜), then it is called an endomorphism.
The set of all endomorphisms on A is denoted by 𝐸𝑛𝑑(A).

Now we introduce our algebra of formulas, first let 𝐴𝑡 = {𝑝1, 𝑝2, ...} be a denumer-
able set of atoms, and let Σ = {Σ𝑛}𝑛∈N be a propositional signature, where each element
from Σ𝑛 has 𝜌(𝜑) = 𝑛.
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Definition 4. We define the set of formulas For as the algebra freely generated by 𝐴𝑡

over Σ, where its set of operations is determined by the connectives from Σ.

In what follows, we introduce the concept of an abstract logic following the ap-
proach initiated with Tarski and other logicians such as Bloom, Brown and Suszko
[Brown et al., 1973] 3. Here we depart a little from the perspective of Universal Logic
since it is being required some structure on the set of formulas.

Definition 5. We take an (abstract) logic ℒ to be a pair ℒ = ⟨𝐹𝑜𝑟,
⟩, where 
 is a
binary relation between sets of formulas and formulas of 𝐹𝑜𝑟. Such 
 is called a single-
conclusion relation. We also assume that 
 is a non-trivial consequence relation, i.e,
there is some formula 𝜑 ∈ 𝐹𝑜𝑟 such that 1 𝜑.

In the following we introduce the notion of a Tarskian consequence relation:

Definition 6. A tarskian consequence relation is a single-conclusion relation 
 that
has the following properties, for every 𝜙 ∈ 𝐹𝑜𝑟 and every Δ,Γ ⊆ 𝐹𝑜𝑟 it has the following
properties:

Δ ∪ {𝜙} 
 𝜙 (Reflexivity) (2.3)

If Δ 
 𝜙 then Δ ∪ Γ 
 𝜙 (Monotonicity) (2.4)

If Δ 
 𝜙 and for all 𝛿 ∈ Δ, Γ 
 𝛿, then Γ 
 𝜙 (Cut for Sets) (2.5)

Γ 
 𝜙 implies that there is some Σ ∈ 𝐹𝑖𝑛(Γ) such that Σ 
 𝜙 (Compactness) (2.6)

where 𝐹𝑖𝑛(Γ) = {Σ ⊆ Γ | Σ is finite}. Given (Compactness) we may call such consequence
relation a finitary Tarskian consequence relation.

Definition 7. A consequence relation is called substitution-invariant if the following
holds:

Γ 
 𝛼 implies 𝜎(Γ) 
 𝜎(𝛼), for all 𝜎 ∈ 𝐸𝑛𝑑(𝐹𝑜𝑟) (Substitution-invariance) (2.7)

where 𝜎(Γ) = {𝜎(𝛾)|𝛾 ∈ Γ}.

Any logic ℒ endowed with a Tarskian consequence relation shall be called a
Tarskian logic. In what follows, in order to associate a semantics to the logic ℒ we
define a matrix structure in the following way:
3 Cf. [Jansana, 2011]



44 Chapter 2. Exploring Suszko’s reduction

Definition 8. We call a logical matrix an algebra M = ⟨𝒱 ,𝒟,𝒪⟩, where 𝒟 is a non-
empty proper subset of 𝒱 and for every 𝑛-ary connective 𝑐 from Σ𝑛, 𝒪 includes a corre-
sponding 𝑛-ary function 𝑓𝑐: 𝒱𝑛 → 𝒱.

If the cardinality of 𝒱 is greater than 2, we call M a many-valued matrix. The
elements of 𝒱 are called truth-values, where the elements of 𝒟 are designated truth
values and the elements of 𝒰 = 𝒱 − 𝒟 are called undesignated.

Definition 9. Fix a matrix M. Any function 𝑣 from ℒ into M is called a valuation.
Any set of valuations is called a 𝑛-valued semantics SEM, where 𝑛 is the cardinality
of the set 𝒱, hereafter denoted by |𝒱|. If all valuations are homomorphisms, i.e, respect
the following condition for all 𝑐 ∈ Σ𝑛 and 𝑓𝑐 ∈ 𝒪:

𝑣(𝑐(𝜙1, ..., 𝜙𝑛)) = 𝑓𝑐(𝑣(𝜙1), ..., 𝑣(𝜙𝑛)) (2.8)

then we say ℒ is a truth-functional logic.

If a logic ℒ is characterized by a 𝑛-valued semantics SEM, then we call ℒ a
many-valued logic.

Definition 10 (Tarskian entailment relation). After taking valuations into the semantics
SEM, a Tarskian entailment relation (or semantic consequence) given by |=SEM

⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟 associated to the semantics SEM is defined by saying that a formula
𝜑 follows from a set of formulas Γ whenever any valuation from SEM that assigns a
designated value to all formulas from Γ also assigns a designated value to 𝜑. This amounts
to:

Γ |=SEM 𝜑 iff 𝑣(Γ) ⊆ 𝒟 implies 𝑣(𝜑) ∈ 𝒟, for every 𝑣 ∈ SEM (2.9)

By the above definition, it is possible to prove the following fact:

Remark 1. Every Tarskian entailment relation has the properties of a Tarskian conse-
quence relation.

Proof. For (Reflexivity), suppose by reductio that 𝛼 2 𝛼. By definition of Tarskian en-
tailment, there is a valuation 𝑣 ∈ SEM such that 𝑣(𝛼) ∈ 𝒟 and 𝑣(𝛼) /∈ 𝒟. However, since
all valuations are functions, the same valuation can not assign two different values to a
given a formula, therefore our desired conclusion follows.

For the case of (Monotonicity), suppose, by contraposition, that Δ ∪ Γ 2SEM 𝛼.
Therefore, from the definition of Tarskian entailment, it follows there is a valuation 𝑣 ∈
SEM such that (i) 𝑣(Δ ∪ Γ) ⊆ 𝒟 and (ii) 𝑣(𝛼) /∈ 𝒟. Then, since Δ ⊆ Δ ∪ Γ, from (i) we
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shall conclude that (iii) 𝑣(Δ) ⊆ 𝒟. Therefore, from (iii), (ii) and definition of a Tarskian
entailment, it follows that Δ 2SEM 𝛼.

To prove (Cut for sets), assume by reductio that (i) Δ |=SEM 𝛼, (ii) Γ |=SEM 𝛿 for
all 𝛿 ∈ Δ, and (iii) Γ 2SEM 𝛼. From (iii) and definition of Tarskian entailment, it follows
that there is a valuation 𝑣 ∈ SEM such that (iv) 𝑣(Γ) ⊆ 𝒟 and (v) 𝑣(𝛼) /∈ 𝒟. But from (i)
and the definition of Tarskian entailment, we know that for every valuation 𝑣 ∈ SEM, if
𝑣(Γ) ⊆ 𝒟, then 𝑣(𝛿) ∈ 𝒟 for all 𝛿 ∈ Δ. Moreover, from (ii) and the definition of Tarskian
entailment, it follows that for every 𝑣 ∈ SEM, 𝑣(Δ) ⊆ 𝒟 implies 𝑣(𝛼) ∈ 𝒟. Therefore
since we do have 𝑣(Γ) ⊆ 𝒟 by (iv), it follows that 𝑣(𝛼) ∈ 𝒟, what contradicts (v).

For (Substitution-invariance), assume by reductio that (i) Γ |=SEM 𝛼 and (ii)
𝜎(Γ) 2SEM 𝜎(𝛼). From (ii) and definition of Tarskian entailment, it follows that (iii) there
is a valuation 𝑣 ∈ SEM such that 𝑣(𝜎(Γ)) ⊆ 𝒟 and (iv) 𝑣(𝜎(𝛼)) /∈ 𝒟. But from (i), we
know that (v) for every valuation 𝑣 ∈ SEM, 𝑣(Γ) ⊆ 𝒟 implies 𝑣(𝛼) ∈ 𝒟. Since 𝜎 is an
endomorphism, from (iii) and (iv), we may conclude that 𝑣(Γ) ⊆ 𝒟 and 𝑣(𝛼) /∈ 𝒟, what
contradicts (v).

We shal define a s-logic as a structure ℒ = ⟨𝐹𝑜𝑟, |=SEM⟩, where |=SEM is a Tarskian
entailment relation. Given a logic ℒ1 = ⟨𝐹𝑜𝑟,
⟩ and a s-logic ℒ2 = ⟨𝐹𝑜𝑟, |=SEM⟩, we shall
say that ℒ2 is sound with respect to ℒ1 in case 
 ⊆ |=SEM; and ℒ1 is complete with
respect to ℒ2 in case |=SEM ⊆ 
. Moreover, if 
 = |=SEM, then we say ℒ2 is an adequate
semantics for ℒ1.

In the following, we prove two auxiliary remarks that shall be useful in proving
the main theorems of this section:

Consider a family of logics ℱ = {ℒ𝑖}𝑖∈𝐼 over some fixed set of formulas 𝐹𝑜𝑟. Define
the superlogic ℒℱ of this family by taking ⋂︀

𝑖∈𝐼 ℒ𝑖, namely, ℒℱ = ⟨𝐹𝑜𝑟,⋂︀𝑖∈𝐼 
𝑖⟩, where
each ℒ𝑖 = ⟨𝐹𝑜𝑟,
𝑖⟩ is a structural Tarskian logic, for 𝑖 ∈ 𝐼.

Remark 2. The intersection of substitution-invariant Tarkian logics is a substitution-
invariant Tarskian logic.

Proof. Assume ℒℱ is not substitution-invariant. Then there are formulas Γ ∪ {𝛼} ⊆ 𝐹𝑜𝑟

such that (i) Γ 
ℱ 𝛼 and (ii) 𝜎(Γ) 1ℱ 𝜎(𝛼) are the case. From (ii), by definition of ℒℱ ,
we know there is some 
𝑘 𝑘 ∈ 𝐼, such that (iii) 𝜎(Γ) 1𝑘 𝜎(𝛼). However, we know that
each 𝑘 ∈ 𝐼 is a substitution-invariant Tarskian logic. Therefore, by contraposition and the
definition of substitution-invariance in (iii), we have Γ 1𝑘 𝛼. At last, by definition of ℒℱ ,
we shall get Γ 1ℒℱ 𝛼, what is a contradiction with (i).
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Assume (Cut for sets) does not hold for ℒℱ . Then there are formulas Δ, Γ, 𝜑 such
that (i) Δ 
ℱ 𝜑, (ii) Γ 
ℱ 𝛿, for all 𝛿 ∈ Δ, and (iii) Γ 1ℱ 𝜑 are the case. From (iii) and
definition of ℒℱ , it follows that there is some 𝑘 ∈ 𝐼 such that (iv) Γ 1𝑘 𝜑. However, we
know that each 𝑘 ∈ 𝐼 is a Tarskian logic and, by definition of a Tarskian consequence
relation, satisfy (Cut for sets). Therefore, by contraposition it follows that either Δ 1𝑘 𝜑

or Γ 1𝑘 𝛿, for some 𝛿 ∈ Δ are the case. By both cases, by definition of ℒℱ , we shall have
a contradiction with (i) or (ii).

Note that analogous reasoning may be employed to prove the other properties of
(Reflexivity) and (Monotonicity).

While Remark 2 guarantee that the construction of the superlogic inherit all prop-
erties of a substitution-invariant Tarskian logic, Remark 3 below guarantee that the pro-
cedure used to construct the semantics of a super s-logic is determined by taking the
intersection of all inferences from each logic of the index set 𝐼.

Remark 3. The intersection of inferences from a set of entailment relations is equivalent
to the relation determined by the union of all their distinct semantics, i.e,

⋂︀
𝑖∈𝐼 |=SEM𝑖 = |=∪𝑖∈𝐼SEM𝑖

Proof. (From r.h.s to l.h.s.)

Take ⟨Γ, 𝜑⟩ ∈ ⋂︀
𝑖∈𝐼(|=SEM𝑖). Thus ⟨Γ, 𝜑⟩ ∈ |=SEM𝑖 for all 𝑖 ∈ 𝐼. It follows that for

all 𝑖 ∈ 𝐼 we have (i) Γ |=SEM𝑖 𝜑, i.e, for all 𝑣 ∈ SEM𝑖, 𝑣(Γ) ⊆ 𝒟𝑖 ⇒ 𝑣(𝜑) ∈ 𝒟𝑖. Now fix
𝑣 ∈ ⋃︀

𝑖∈𝐼 SEM𝑖, i.e, 𝑣 ∈ SEM𝑖 for some 𝑖 ∈ 𝐼. Suppose 𝑣(Γ) ⊆ 𝒟𝑖. By (𝑖), it follows that
𝑣(𝜑) ∈ 𝒟𝑖. Therefore, by definition of entailment and the fact that 𝑣 and 𝑖 are arbitrary,
we have Γ |=∪𝑖∈𝐼SEM𝑖 𝜑. Thus ⟨Γ, 𝜑⟩ ∈ |=∪𝑖∈𝐼SEM𝑖 .

The proof from l.h.s. to r.h.s. follows in a similar manner.

In what follows, we define an an algebraic structure introduced by A. Lindenbaum,
the so-called Lindenbaum matrix. The main difference of the Lindenbaum matrix to the
usual notion of a logical matrix (as in Definition 8) is that, in the Lindenbaum matrix
we take the very objects in the algebra of formulas 𝐹𝑜𝑟 as the set of truth values. Then,
we use the closure of a given subset of 𝐹𝑜𝑟 to determine the filter (the designated set
of values) of the matrix. In this case, since we are working with the same set of objects
and treating them as formulas and truth-values, the semantics of a Lindenbaum matrix is
given by a set of endomorphisms. We let the closure of a given set of formulas Γ ⊆ 𝐹𝑜𝑟

be defined as Γ
 = {𝛼 | Γ 
 𝛼}
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Definition 11. Given a logic ℒ = ⟨𝐹𝑜𝑟,
⟩, the closure of a given set of formulas Γ ⊆ 𝐹𝑜𝑟

determines a matrix of the form

MΓ = ⟨𝐹𝑜𝑟,Γ
,𝒪⟩ (2.10)

called a Lindenbaum matrix of ℒ. The class of all lindenbaum matrices induced by
𝐹𝑜𝑟, that is, {MΓ : Γ ⊆ 𝐹𝑜𝑟} define what is called the Lindenbaum bundle of ℒ.

From Definition 10 and 11, note that every lindenbaum matrix of a logic ℒ induces
a s-logic ℒΓ = ⟨𝐹𝑜𝑟, |=Γ⟩, where Δ |=Γ 𝛼 holds if 𝑣(Δ) ⊆ Γ
 implies 𝑣(𝛼) ∈ Γ
, for all
𝑣 ∈ SEM. Therefore, the s-logic ℒΓ is determined by the set of valid inferences (the
closure set) of Γ. Note, moreover, that by the above definition, based on a Lindenbaum
bundle of a given logic ℒ it is possible to define a super-s-logic to which both Remark 3
and 2 apply.

The forthcoming results are divided into three main theorems. We first shall
prove the so-called Wójcicki’s reduction, the theorem that states that every tarskian
logic is many-valued, such a result was first proved, in its restricted form, by Wójcicki in
[Wójcicki, 1970]. After that, we will make use of Wójcicki’s reduction to prove Suszko’s
Reduction, the theorem that states that every many-valued logic can be characterized by
a bivalent semantics. The general idea is to show how Suszko’s reduction procedure may
be applied to a many-valued semantics in order to produce a sound and complete bivalent
semantics for it. After that, we shall discuss the fact that Suszko’s reduction does not
give us a general algorithmic procedure to build the bivalent characterization of a given
finite-valued semantics, it only gives us a hint about where on the road we should keep
the eye. Thus, in the next section we shall exhibit an improvement of such procedure due
to [Caleiro et al., 2007].

For now, we will show Wójcicki’s reduction and prove it in a restricted form
only for substitution-invariant tarskian logics and in a generalized form for logics with-
out substitution-invariance by following the construction due to [Caleiro et al., 2007] and
[Marcos, 2004].

In the following, for the sake of simplicity and convenience to prove the result,
based on Definition 12 and the s-logic generated by a Lindenbaum matrix, we use an
auxiliar definition:

Definition 12. Given a logic ℒ = ⟨𝐹𝑜𝑟,
⟩ and a set of formulas Γ ⊆ 𝐹𝑜𝑟, each Linden-
baum matrix induces a s-logic ℒΓ = ⟨𝐹𝑜𝑟, |=Γ⟩ such that:

𝐹𝑜𝑟 = 𝒱 (2.11)

Γ
 = 𝒟 (2.12)
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Δ |=Γ 𝛼 iff 𝑔(Δ) ⊆ Γ
 implies 𝑔(𝛼) ∈ Γ
, for all 𝑔 ∈ SEM (2.13)

where each 𝑔 : 𝐴𝑡 → 𝐹𝑜𝑟 is a uniform-substitution. We write 𝜑(𝑝1, ..., 𝑝𝑛) to denote
a formula 𝜑 whose atoms appear among 𝑝1, ..., 𝑝𝑛. We use 𝑔(𝜑(𝑝1, ..., 𝑝𝑛)) to denote the
result of applying a substitution 𝑔 to a formula 𝜑 by simultaneously replacing the formulas
𝑝1, ..., 𝑝𝑛 by 𝑔(𝑝1), ..., 𝑔(𝑝𝑛). We denote by 𝑔(Γ) the set resulting of applying a substitution
𝑔(𝛾) to each 𝛾 ∈ Γ.

Since the Lindenbaum bundle is generated as the collection of all Lindenbaum
matrices relative to the set of formulas 𝐹𝑜𝑟. By Definition 13, the lindenbaum bundle
will be the Lindenbaum superlogic generated by the intersection of each Lindenbaum
s-logic. Note that the semantics of each Lindenbaum s-logic is defined by a collection
of substitutions 𝑔. Moreover, Remarks 1 and 2 guarantee that the superlogic generated
by the Lindenbaum bundle of a given set of formulas 𝐹𝑜𝑟 inherit the properties of each
Lindenbaum matrix.

The result depends on two important facts about the notion of closure: Fact 1:
Γ
 
 𝛼 ⇔ Γ 
 𝛼 and Fact 2: For any tarskian logic ℒ = ⟨𝐹𝑜𝑟,
⟩, where 𝐹𝑜𝑟 is a de-
numerable set of formulas endowed with a tarskian consequence relation, given arbitrary
Σ ∪ Δ ∪ {𝜙} ⊆ 𝐹𝑜𝑟, to check whether Σ,Δ 
 𝜙 hold is equivalent to checking whether
(∀𝛿 ∈ Δ)Σ 
 𝛿 implies Σ 
 𝜙.

Fact 1: Γ
 
 𝛼 ⇔ Γ 
 𝛼

Proof. Assume Γ 
 𝛼. By definition of closure, we have 𝛼 ∈ Γ
. Therefore, by (Reflexiv-
ity), Γ
 
 𝛼.
Now assume (i) Γ
 
 𝛼. By definition of closure, we have (ii) Γ 
 𝛾, for all 𝛾 ∈ Γ
. By
(Cut for sets) in (i) and (ii), we have Γ 
 𝛼.

Fact 2: To check whether Σ,Δ 
 𝜙 hold is equivalent to checking whether (∀𝛿 ∈
Δ)Σ 
 𝛿 implies Σ 
 𝜙

Proof. Take as a premise that (∀𝛿 ∈ Δ)Σ 
 𝛿 implies Σ 
 𝜙. Now suppose (i) (∀𝛿 ∈
Δ)Σ 
 𝛿. From our premise and (i), we may conclude Σ 
 𝜙. Therefore, by using (Mono-
tonicity), we have Σ,Δ 
 𝜙.
Now take Σ,Δ 
 𝜙 as a premise and suppose (∀𝛿 ∈ Δ),Σ 
 𝛿. By using (Cut for sets) in
our premise and our supposition, we have Σ 
 𝜙.

From the Facts above and the properties of a Tarskian consequence relation, we
prove Wójcicki’s Reduction:
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Theorem 2.1.1 (Wójcicki’s reduction). Every substitution-invariant Tarskian logic has
an adequate semantics.

Proof. The proof amounts to showing the adequacy between a Tarskian logic and the
superlogic generated by its set of formulas. Take a tarskian logic ℒ = ⟨𝐹𝑜𝑟,
⟩, fix the
Lindenbaum bundle generated by 𝐹𝑜𝑟 and let ℒℱ = ⟨𝐹𝑜𝑟, |=ℱ⟩ be defined as its associated
superlogic.

For Completeness, suppose Δ |=ℱ 𝛼. From the definition of |=ℱ , we have (i)
Δ |=Γ 𝛼, for every Γ ⊆ 𝐹𝑜𝑟. Now suppose Δ ⊆ Γ
. From (i) and Fact 2 about the
definition of closure, we have (ii) (∀𝛿 ∈ Δ)Γ
 
 𝛿 implies Γ
 
 𝛼. Given (ii), we may
apply Fact 1 about closure and conclude (iii) (∀𝛿 ∈ Δ)Γ 
 𝛿 implies Γ 
 𝛼. But we know
by Fact 2 that to check (iii) is equivalent to checking Γ,Δ 
 𝛼. For the particular case in
which Γ = ∅, follows the desired conclusion.

For Soundness, fix some Γ ⊆ 𝐹𝑜𝑟 and its associated Lindenbaum s-logic ℒΓ =
⟨𝐹𝑜𝑟, |=Γ⟩. Now suppose (i) Δ 
 𝛼 for Δ ⊆ Γ and take (ii) some 𝑔 ∈ SEM such that
𝑔(Δ) ⊆ 𝒟. Note each 𝑔 ∈ 𝑆𝐸𝑀 is an endomorphism 𝜎 ∈ 𝐸𝑛𝑑(𝐹𝑜𝑟). By substitution-
invariance in (i), it follows that (iv) 𝑔(Δ) 
 𝑔(𝛼). By (Reflexivity) and the fact that all
𝑔 is an endomorphism, it follows (v) Δ 
 𝑔(𝛿), for all 𝑔(𝛿) ∈ 𝑔(Δ). Finally, by (Cut for
sets) in (iv) and (v), we shall have Δ 
 𝑔(𝛼). Then, by the definition of closure, it follows
𝑔(𝛼) ∈ Δ
 and since Δ
 ⊆ Γ
4, by Definition 12, it follows 𝑔(𝛼) ∈ 𝒟. Thus, we have
our desired conclusion Δ |=Γ 𝛼. By construction of |=ℱ and Remark 3, we shall obtain
Δ |=ℱ 𝛼.

Corollary 2.1.1.1. Every substitution-invariant Tarskian logic is 𝑛-valued, for 𝑛 =
|𝐹𝑜𝑟|.

Proof. By the definition of the Lindenbaum matrix, since we have the set 𝐹𝑜𝑟 as our set
of truth values.

Corollary 2.1.1.2. Every substitution-invariant Tarskian logic has a characteristic set
of matrices.

Proof. Trivial.

An important result related to Corollary 2.1.1.2 was proved in [Shoesmith and Smiley, 1971],
where the authors proved that a finitary Tarskian logic is characterized by a single matrix
4 Since Δ ⊆ Γ and (Motonicity).
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if the following property holds:

If Γ,Δ 
 𝜑,𝐴𝑡𝑜𝑚(Γ∪{𝜑})∩𝐴𝑡𝑜𝑚(Δ) = ∅, and Δ is consistent then Γ 
 𝜑 (Uniformity)
(2.14)

where consistency means that Δ 1 𝜓, for some 𝜓 ∈ 𝐹𝑜𝑟. [Marcos, 2009] highlights (Uni-
formity) as the abstract characteristic property of truth-functional logics. In [Humberstone, 1998],
the author calls a broad many-valued logic any logic characterized by a set of matrices,
while a logic is called narrow many-valued if it is characterized by a single matrix. Thus,
Corollary 2.1.1.2 shows that every substitution-invariant Tarskian logic is broadly many-
valued. As it will be shown, Suszko’s Reduction can be applied to many-valued logics on
the broad and the narrow sense.

In the following, we prove the generalized version of Wójcicki’s reduction due to
[Caleiro et al., 2007] and [Marcos, 2004]. Such version of Wójcicki’s reduction does not
depend on substitution-invariance nor on the algebraic structure of the set of formulas.
Their proposal follows the perspective inherited from the so-called Universal Logic.

In what follows, fix some logic ℒ = ⟨𝐹𝑜𝑟,
⟩. By making use of Definition 12 and
the properties of a Tarskian consequence relation, it is possible to prove the following
lemma:

Lemma 2.1.1. Any matrix from the Lindenbaum bundle is sound for a Tarskian logic.

Proof. Once we fixed a logic ℒ = ⟨𝐹𝑜𝑟,
⟩, take some arbitrary Lindenbaum matrix ℒΓ,
where Γ ⊆ 𝐹𝑜𝑟, and assume (i) Δ 
 𝛼. Now suppose 𝑔(Δ) ⊆ 𝒟. Then, by Definition
12-(2.12) above, we have Δ ⊆ Γ
. By (Reflexivity), we get (ii) (∀𝛽 ∈ Δ)Γ
 
 𝛽. From
this, applying (Cut for sets) at (i) and (ii), we get Γ
 
 𝛼. Therefore from Fact (i), it
follows Γ 
 𝛼. Thus 𝛼 ∈ Γ
 follows by definition of closure. From Definition 12-(2.12),
we have 𝑔(𝛼) ∈ 𝒟. Finally, since the Lindenbaum matrix comes endowed with a Tarkian
relation of entailment, it follows that Δ |=Γ 𝛼.

Lemma 2.1.1 have shown us that for any inference Δ 
 𝛼 from a Tarskian logic,
there is a Lindenbaum matrix sound for it5. From Lemma 2.1.1 and the properties of a
Tarskian consequence relation, it is possible to prove the following result with respect to
any Tarskian logic6:

Theorem 2.1.2 (Generalized Wójcicki’s reduction). Every Tarskian logic is 𝑛-valued, for
𝑛 = |𝐹𝑜𝑟|.
5 We have shown that Δ 
 𝛼 ⇒ Δ |=Γ 𝛼, for every Γ ⊆ 𝐹𝑜𝑟.
6 Some authors, for instance [Font, 2009], call this structure a pre-logic because of the absence of

substitution-invariance.
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Proof. Fix a tarskian logic ℒ = ⟨𝐹𝑜𝑟,
⟩, take the Lindenbaum bundle generated by its
set of formulas and define the logic ℒℱ = ⟨𝐹𝑜𝑟, |=ℱ⟩, where |=ℱ is a Tarskian entailment
relation defined as ⋂︀

Γ⊆𝐹 𝑜𝑟 |=Γ. To prove Wójcicki’s reduction, our goal now is to show
soundness and completeness with respect to our fixed Tarskian logic ℒ and the s-logic
ℒℱ .

Soundness: Using Lemma 2.1.1 and the definition of ℒℱ , we have 
 ⊆ |=ℱ .

Completeness: Suppose Δ |=ℱ 𝛼. From the definition of |=ℱ , we have (i) Δ |=Γ 𝛼,
for every Γ ⊆ 𝐹𝑜𝑟. Now suppose Δ ⊆ Γ
. From (i) and Fact 2 about the definition of
closure, we have (ii) (∀𝛿 ∈ Δ)Γ
 
 𝛿 implies Γ
 
 𝛼. Given (ii), we may apply Fact 1
about closure and conclude (iii) (∀𝛿 ∈ Δ)Γ 
 𝛿 implies Γ 
 𝛼. But we know by Fact 2
that to check (iii) is equivalent to checking Γ,Δ 
 𝛼. For the particular case in which
Γ = ∅, follows the desired conclusion.

In order to prove the second theorem, we begin by introducing some other technical
tools. Based on Definition 9, let us first denote a 𝑛-valued semantics in the following way
SEM = {𝑣𝑖 | 𝑣𝑖 : 𝐹𝑜𝑟 → 𝒱𝑛, where 𝑖 ∈ 𝐼} given some appropriate index set 𝐼, 𝐹𝑜𝑟 is
the set of formulas of a given logic and 𝒱𝑛 is a set of truth-values with 𝑛 denoting its
cardinality. We shall write SEM𝑛 to denote a many-valued semantics. We define also the
function 𝑡 : 𝒱𝑛 → 𝒱2, where 𝒱2 = 𝒟2 = {𝑇} ∪ 𝒰2 = {𝐹}, in the following manner:

𝑡(𝑥) =

⎧⎨⎩ 𝑇, if 𝑥 ∈ 𝒟
𝐹, if 𝑥 ∈ 𝒰

Then, given a function 𝑣 and 𝑡, we can define a bivaluation 𝑏𝑣 = 𝑡 ∘ 𝑣 and collect
such bivaluations into the semantics SEM2 = {𝑏𝑣 | 𝑣 ∈ SEM}. Hereafter, following
[Font, 2009], we shall call any set of bivaluations defined in this general sense a Suszko’s
semantics. The proof of the next theorem makes use of the fact that, since a 𝑛-valued
semantics is defined as the set of valuations from the set of formulas into the set of truth-
values, by composing such valuations with our function 𝑡, we can map each designated
value to 𝑇 and each antidesignated value to 𝐹 . Such composite functions are collected
into the semantics SEM2. Thus, we have a bivalent reduction of the original semantics.
Of course, such a procedure must carry some undesired consequences, and those shall be
commented upon in the next section. It is important to remark that such construction
was exhibited by Suszko already in [Suszko, 1975b]. At last, by making use of Theorem
2.1.2, our goal is to prove the following:

Theorem 2.1.3 (Suszko’s reduction). Every Tarskian logic is 2-valued.
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In order to prove Theorem 2.1.3, first note that it reduces to showing that:

Γ |=sem𝑛 𝛼 sse Γ |=sem2 𝛼.

Proof. (From r.h.s to l.h.s.)

By contraposition, assume Γ 2sem𝑛 𝛼. The definition of entailment implies the ex-
istence of a valuation 𝑣 ∈ sem𝑛 such that 𝑣(Γ) ⊆ 𝒟 and 𝑣(𝛼) ∈ 𝒰 . Composing 𝑡 with such
valuation will give us 𝑡(𝑣(Γ)) ⊆ {𝑇} and 𝑡(𝑣(𝛼)) = 𝐹 . Therefore, there is a bivaluation
𝑏𝑣 ∈ sem2 such that 𝑏𝑣(Γ) ⊆ 𝑇 and 𝑏𝑣(𝛼) = 𝐹 . Then, applying the definition of entailment
again will give our desired result Γ 2sem2 𝛼.

(From l.h.s to r.h.s.)

By contraposition, assume Γ 2sem2 𝛼. That guarantees the existence of a valuation
𝑏 such that 𝑏(Γ) ⊆ 𝑇 and 𝑏(𝛼) = 𝐹 . By definition of sem2, there must exist some 𝑣 ∈ sem𝑛

such that 𝑏 = 𝑏𝑣. So, by definition of 𝑏𝑣, we know that 𝑡(𝑣(Γ)) ⊆ {𝑇} and 𝑡(𝑣(𝛼)) = 𝐹 .
Therefore, by definition of 𝑡, it follows 𝑣(Γ) ⊆ 𝒟 and 𝑣(𝛼) ∈ 𝒰 , what will guarantee our
desired result Γ 2sem𝑛 𝛼.

Suszko’s claims find particular support in Suszko’s reduction. According to Suszko,
this particular result shows that the Tarskian notion of entailment hides a bivalent char-
acter at the division of truth-values in designated and undesignated. However simple
and straightforward the bivalent reduction procedure proposed by Suszko may appear, it
does not give us any clue about how to construct an adequate bivalued semantics given a
many-valued one. Despite Theorem 2.1.3 ensuring the existence of an adequate two-valued
semantics for any many-valued semantics, the procedure for transforming a many-valued
characterization of a semantics into a two-valued one is not at all constructive. In the
next section we shall comment some developments originated from such a problem.

2.2 Improving Suszko’s reduction
Suszko’s reduction, as well as the considerations made by Scott in [Scott, 1974]

and exhibited in Section 1.5, gave birth to the systematic study of the relations be-
tween bivaluations and other kinds of semantics. Moreover, Newton da Costa et al in
[Loparic and da Costa, 1984] proposed a general theory of bivaluations as a general se-
mantic tool for logical systems. The first systematic study of bivaluations and their re-
lation to the abstract perspective of Universal Logic was made by Jean-Yves Béziau in
[Béziau, 1998]. The importance of Béziau’s approach was in finding the adequate set of
bivaluations necessary to characterize a Tarskian operator. Moreover, the abstract setting
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pursued by him had the importance of revealing that logical two-valuedness does not
depend on substitution-invariance since, in contrast to what was pointed out by Marcelo
Tsuji in [Tsuji, 1998, p.308], “we may say that Suszko thought that the key to logical
two-valuedness rested in the substitution-invariance of the abstract logics”.

Although simple as Suszko’s reduction may appear, it raises the question of how,
given a finite-valued semantic, could we produce the bivalent characterization of it. In
[Suszko, 1975b], Suszko presented a sketch of how to obtain a bivalent description of
Łukasiewicz three-valued logic. This same procedure was improved in [Malinowski, 1993]
by making use of Rosser-Turquette functions. In [Malinowski, 1993], despite presenting
the bivalent description of Łukasiewicz’s three-valued logic, Malinowski does not exhibit
a general procedure behind the result. It is important to remark that the procedure of
taking a many-valued semantic and transforming it into a bivalent one is not immune
to undesirable consequences. The first of these consequences obtained via the procedure
used in Theorem 2.1.3 is that the logic in hand shall lose its truth-functionality.

Now consider Gödel’s three-valued logic, which can be formulated by way of:

𝐺3 = ⟨𝒱3,𝒟3, {𝑓¬, 𝑓→}⟩.

where 𝒱3 = {0, 1
2 , 1} and 𝒟3 = {1}. The operations over the truth-values can be defined by

𝑓→(𝑣(𝛼), 𝑣(𝛽)) = 1, if 𝑣(𝛼) ≤ 𝑣(𝛽) and 𝑓→(𝑣(𝛼), 𝑣(𝛽)) = 𝑣(𝛽), if 𝑣(𝛼) > 𝑣(𝛽); 𝑓¬(𝑣(𝛼)) =
1, if 𝑣(𝛼) = 0, and 𝑓¬(𝑣(𝛼)) = 0 otherwise. What give us the following truth-tables:

→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

¬

0 1
1
2 0
1 0

We present also the rules of formation of the set of formulas 𝐹𝑜𝑟 of 𝐺3, and its
associated measure of complexity of the formulas:

Definition 13. The set of formulas 𝐹𝑜𝑟 is inductively defined in the following way:
(1) 𝑝 ∈ 𝐹𝑜𝑟, for every 𝑝 ∈ 𝐴𝑡𝑜𝑚.
(2) 𝜑 ∈ 𝐹𝑜𝑟, then ¬𝜑 ∈ 𝐹𝑜𝑟.
(3) 𝜑, 𝜓 ∈ 𝐹𝑜𝑟, then (𝜑 → 𝜓) ∈ 𝐹𝑜𝑟.

Definition 14. We define the measure of complexity of the formulas of 𝐺3 in the following
way:
Let the function ℓ : 𝐹𝑜𝑟 → N+ be defined as:
ℓ(𝛼) = 1, onde 𝛼 = 𝑝, tal que 𝑝 ∈ 𝐴𝑡𝑜𝑚.
ℓ(¬𝛼) = 1 + ℓ(𝛼).
ℓ(⊗(𝛼1, ..., 𝛼𝑛)) = 1 + ℓ(𝛼1) + ...+ ℓ(𝛼𝑛), for ⊗ ∈ {→}.
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Furthermore, we shall write SEM𝐺3 = {𝑣𝑖}𝑖∈𝐼 to denote the set of valuations from
𝐹𝑜𝑟 into 𝒱3. Note that if we use the function 𝑡(𝑥), as defined in Section 2.1, over our
SEM𝐺3 valuations, for each valuation 𝑣 we get the following bivaluation 𝑏𝑣 : 𝐹𝑜𝑟 →
{𝑇, 𝐹}:

𝑣(𝜑) 𝑏𝑣(𝜑)
0 𝐹
1
2 𝐹

1 𝑇

Thus, the bivaluations 𝑏𝑣 cannot see the difference between the values 0 and 1
2 and

identify them by the same value 𝐹 . For instance, in the case of negation, if 𝑣(𝜑) = 1
2 ,

then 𝑏𝑣(𝜑) = 𝐹 and 𝑏𝑣(¬𝜑) = 𝐹 . However, if 𝑣(𝜑) = 0, then 𝑏𝑣(𝜑) = 𝐹 and 𝑏𝑣(¬𝜑) = 𝑇 .
From this, we see that in the bivalent setting acquired from Suszko’s reduction we can
not compute the value of ¬𝜑 by just knowing the value of 𝜑. Thus implying the lost of
truth-functionality. Such a phenomena is a direct consequence of the fact that the function
𝑡(𝑥) assign 𝑇 to all designated values and 𝐹 to all undesignated values.

Relative to that matter, several important contributions were achieved by Car-
los Caleiro, Walter Carnielli, Marcelo Coniglio and João Marcos. In [Caleiro et al., 2003]
and [Caleiro et al., 2007], the authors devised an effective algorithmic procedure able to
reduce any finite-valued semantic into a bivalent one. Their method uses the very prim-
itive linguistic resources of the logic or a conservative extension thereof to construct a
sufficiently expressive language capable of distinguishing each ‘algebraic’ value within the
bivalent semantics. Thus, it shows how any finite many-valued algebraic semantics may
be described in terms of only truth and falsehood.

To avoid the problem concerning the 𝑏𝑣 valuation of referring to all undesignated
values by 𝐹 and to all designated values by 𝑇 , thus losing the information about the
functional character of the original semantics, Caleiro et al’s method establish a way of
characterizing each truth-value in a unique form. The core idea is to use the linguistic
resources of the logic to separate the truth-values located in the same set by the 𝑏𝑣

valuations. In our 𝐺3 case, we only need a formula capable of separating 0 and 1
2 once

they have been identified to a single reference 𝐹 . In the following, we exhibit how Caleiro
et al’s procedure works for our logic 𝐺3

7.

First, we define a separator formula in the folllowing way:

Definition 15 ([Caleiro et al., 2007]). Given 𝑥, 𝑦 ∈ 𝒱3, we write 𝑥#𝑦 and say that 𝑥
and 𝑦 are separated in case one is designated and the other is undesignated. We say
7 It is important to remark that our only goal here is to exhibit how the procedure works with a

concrete example. It is not in the scope of the work to work out all the proofs and constructions in
[Caleiro et al., 2003].
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that a one-variable formula 𝜃(𝑝) of 𝐹𝑜𝑟 distinguishes two truth-values 𝑥 and 𝑦 if
𝑣(𝜃(𝑥))#𝑣(𝜃(𝑦)). A logic is called separable in case its truth-values are pairwise dis-
tinguishable8.

In [Caleiro et al., 2013], Proposition 2.9 guarantees that if the original finite-valued
logic does not have a separator, then there is a conservative extension of it that does. 9

In case of 𝐺3, we need a separator for the values 0 and 1
2 , as it is possible to note in the

following table:

𝜑 𝜃(𝜑)
0 𝐹 1 𝑇
1
2 𝐹 0 𝐹

1 𝑇 0 𝐹

In [Caleiro et al., 2013], the authors describe the algorithm to find an adequate
separator for a given a logic in the following way:

1 Decide whether the logic in question is separable. To decide whether a given 𝑛-
valued logic ℒ is separable, it suffices to compute the set of all unary functions
𝑓 : 𝒱𝑛 → 𝒱𝑛 that are definable by the connectives in Σ.

2 Test each definable function on the pair of values that need separation. The definable
truth-functions are precisely those that can be expressed by a formula written with
at most one variable.

3 Choose one of the formulas capable of separating the truth-values and use it as the
separator.

4 If there are no definable function capable of separating the pair of values that need
separation, then build a conservative extension10.

By carrying the first step of the procedure describe above, since 𝐺3 has three
truth-values, we shall obtain the following 27 possible unary functions:

8 In [Caleiro et al., 2003], the authors highlight that their reduction procedure only works under the
assumption of sufficiently expressiveness. A logic is sufficiently expressive if it is possible to define
a separator formula and it is genuinely 𝑛-valued logic. A logic is said genuinely 𝑛-valued if it is
characterized only by a 𝑛-valued semantics.

9 Given two languages 𝐿1, 𝐿2 and their respective logics ℒ1 and ℒ2, we say ℒ2 is a conservative extension
of ℒ1 in case Γ 
ℒ2 𝛼 iff Γ 
ℒ2 𝛼 for every Γ ∪ {𝛼} ⊆ 𝐿1.

10 An example with the use of a conservative extension is exhibited in Section 3.1.1.
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𝜑 𝑓1 := 𝐼𝑑 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 := 𝑓¬ 𝑓10 𝑓11 𝑓12 := 𝑓¬¬ 𝑓13 𝑓14 𝑓15

0 0 0 1
2 1 0 0 1

2
1
2 1 1 0 0 1

2
1
2 1

1
2

1
2 0 1

2 1 1
2 1 0 1 0 1

2 0 0 1
2

1
2 1

1 1 0 1
2 1 1

2 1 0 1 0 1
2

1
2 1 0 1 0

𝑓16 𝑓17 𝑓18 𝑓19 𝑓20 𝑓21 𝑓22 𝑓23 𝑓24 𝑓25 𝑓26 𝑓27

1 0 1
2

1
2 1 1 0 0 1

2
1
2 1 1

1 1 0 1 1
2 0 1

2 1 0 1 0 1
2

1
2

1
2 1 0 0 1

2 0 0 1
2

1
2 1 1

Note that among the 27 unary functions found above, only 12 of them are able to
separate the undesignated values 0 and 1

2 , they are the functions 𝑓6, 𝑓8, 𝑓9, 𝑓10, 𝑓17, 𝑓19,
𝑓20, 𝑓21, 𝑓23, 𝑓25, 𝑓26 and 𝑓27. Moreover, among the 12, only two of them are definable by
a formula with at most one variable, i.e, 𝑓9 and 𝑓12. Step 3 of the algorithm tell us to
choose one of the two and we will then pick to use 𝑓9 as our separator. For such a case,
we have that 𝑣(¬𝜑)(𝜑 := 0)#𝑣(¬𝜑)(𝜑 := 1

2). Thus, ¬𝜑 is an adequate separator formula
to fulfill the conditions of a separator. From this, we have:

𝜑 𝜃(𝜑) := ¬𝜑

0 𝐹 1 𝑇
1
2 𝐹 0 𝐹

1 𝑇 0 𝐹

Once we have found our formula separator, the second step of Caleiros et al’s
reduction procedure is to make use of the separator to express each truth-value individu-
ally. Moreover, from now on negation will play a double role as a separator and a unary
connective. By using our separator, we can mark/describe each truth-value with a ‘binary
print’ of it. We say a binary print is a unique sequence of Ts and Fs used to characterize
truth-values separately11. The binary prints we get for 𝐺3 are the following:

𝑣(𝜑) = 0 iff 𝑏(𝜑) = 𝐹 & 𝑏(¬𝜑) = 𝑇 .
𝑣(𝜑) = 1

2 iff 𝑏(𝜑) = 𝐹 & 𝑏(¬𝜑) = 𝐹 .
𝑣(𝜑) = 1 iff 𝑏(𝜑) = 𝑇 & 𝑏(¬𝜑) = 𝐹 .

Thus, within our bivalent semantics, we shall talk about the value of the formula
and its separator. We only need these two informations to separate all truth-values and
refer to them individually. From now on, with our binary prints at hand, the third step of
Caleiro et al’s reduction procedure amounts to using them to describe the bivalent version
of each truth-table.
11 Cf. [Caleiro et al., 2007].
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To help our task, we can shorten the binary prints that refers to 0 and 1. Since
there is only one case where 𝑏(¬𝜑) = 𝑇 happens, we need only this information to refer to
0. In the same way, we need only 𝑏(𝜑) = 𝑇 to refer to 1. With this in mind, we shall use our
binary prints to formulate axioms that describe each line of the truth-tables of 𝐺3. To fully
characterize each line of all connectives truth-tables, we must also describe the truth-tables
resulting from the separator applied to each connective individually. Take for instance the
case of negation, the axioms shall describe the resulting bivalent truth-tables12. In what
follows, ‘&’ shall signify the metalinguistic ‘and’, ‘|’ will denote metalinguistic ‘or’ and ‘*’
will denote the metalinguistic absurdity, amounting to an obtainable situation:

𝜑 ¬𝜑 ¬¬𝜑

0 𝐹 1 𝑇 0 𝐹
1
2 𝐹 0 𝐹 1 𝑇

1 𝑇 0 𝐹 1 𝑇

(N1) 𝑏(¬𝜑) = 𝐹 ⇒ 𝑏(𝜑) = 𝐹 | 𝑏(𝜑) = 𝑇 .
Axiom (N1) describe the second and third rows of the truth-table for negation. Here the
condition regarding the first row is already guaranteed by the binary prints, therefore is
not necessary a new axiom.

(N2) 𝑏(¬¬𝜑) = 𝐹 ⇒ 𝑏(¬𝜑) = 𝑇 .
Axiom (N2) describe the first row of the truth-table for the separator applied to negation.

(N3) 𝑏(¬¬𝜑) = 𝑇 ⇒ 𝑏(¬𝜑) = 𝐹 .
Axiom (N3) describe the second and third row of the truth-table for separator applied to
negation.

By using only three axioms and our binary prints, we were able to characterize the
behavior of negation in Gödel’s 3-valued logic. Applying the same procedure to implication
will be enough to describe its behavior as well. At last, we shall have the following axioms:

(N1) 𝑏(¬𝜑) = 𝐹 ⇒ 𝑏(𝜑) = 𝐹 | 𝑏(𝜑) = 𝑇

(N2) 𝑏(¬¬𝜑) = 𝐹 ⇒ 𝑏(¬𝜑) = 𝑇

(N3) 𝑏(¬¬𝜑) = 𝑇 ⇒ 𝑏(¬𝜑) = 𝐹

(I1) 𝑏(𝜑 → 𝜓) = 𝑇 ⇒ 𝑏(¬𝜑) = 𝑇 | 𝑏(𝜓) = 𝑇 | 𝑏(𝜑) = 𝑏(¬𝜑) = 𝑏(𝜓) = 𝑏(¬𝜓) = 𝐹

(I2) 𝑏(𝜑 → 𝜓) = 𝐹 ⇒ 𝑏(𝜑) = 𝑇 & 𝑏(𝜓) = 𝐹 | 𝑏(𝜑) = 𝑏(¬𝜑) = 𝐹 & 𝑏(¬𝜓) = 𝑇

12 Note that those are bivalent ‘flattened’ versions of the resulting truth-tables since each individual
value is determined by a binary print. The resulting structure structure was called by [Skurt, 2011]
as bivalent multi-dimensional models.
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(I3) 𝑏(¬(𝜑 → 𝜓)) = 𝑇 ⇒ 𝑏(𝜑) = 𝑇 & 𝑏(¬𝜓) = 𝑇 | 𝑏(𝜑) = 𝑏(¬𝜑) = 𝐹 & 𝑏(¬𝜓) = 𝑇

(I4) 𝑏(¬(𝜑 → 𝜓)) = 𝐹 ⇒ 𝑏(¬𝜑) = 𝑇 | 𝑏(𝜓) = 𝑇 | 𝑏(𝜓) = 𝑏(¬𝜓) = 𝐹

(C1) 𝑏(𝜑) = 𝑇 & 𝑏(¬𝜑) = 𝑇 ⇒ *

(C2) 𝑏(𝜑) = 𝑇 & 𝑏(𝜑) = 𝐹 ⇒ *

The last two axioms, (C1) and (C2), stands for closure conditions representing
unobtainable situations. Condition (C2) internalizes the fact that all valuations are func-
tions, while (C1) correspond to the fact that there is no valuation in 𝐺3 that assign a
designated value to a formula and its negation, what is an unobtainable situation. Now
define SEM𝐺2 as the set of bivaluations respecting all the axioms above. Such kind of
semantics was baptized in [Caleiro et al., 2007] as gentzenian semantics. A gentzenian
semantics is a Suszko’s semantics respecting a finite number of conditional bivaluations
clauses as those above. It is defined in the following way:

Definition 16 ([Caleiro et al., 2007]). A gentzenian semantics for a logic ℒ is an
adequate (sound and complete) set of 2-valued valuations 𝑏 : 𝐹𝑜𝑟 → {𝑇, 𝐹} given by
conditional clauses (Φ → Ψ) where both Φ and Ψ are (meta)formulas of the form ⊤
(top), ⊥ (bottom) or:

𝑏(𝜑1
1) = 𝑤1

1&...&𝑏(𝜑𝑛1
1 ) = 𝑤𝑛1

1 |....|𝑏(𝜑1
𝑚) = 𝑤1

𝑚&...&𝑏(𝜑𝑛𝑚
𝑚 ) = 𝑤𝑛𝑚

𝑚 (2.15)

Here, 𝑤𝑗
𝑖 ∈ {𝑇, 𝐹}, each 𝜑𝑗

𝑖 is a formula of ℒ. The (meta)logic governing these
clauses is FOL (further on, → will be used to represent the implication connective from
this metalogic).

Thereby a gentzenian semantics is a Suszko’s semantics that comes with a built-
in gentzenian presentation. The use of the conditional clauses is important to guaran-
tee a constructive way of transforming the original semantics into a 2-valued one. The
clauses has the goal of describing/storing the information obtained from the original many-
valued semantics. This feature makes possible to prove, in a constructive manner, that
the 2-valued semantics obtained from a finite-valued semantics is sound and complete to
the original one. Moreover, our bivalent axioms allows us to extract a set of two-signed
tableaux rules for introduction and elimination to every connective.

Since we have defined our two-valued semantics SEM𝐺2 in the gentzenian format,
our next step is to show that SEM𝐺2 is sound and complete wih respect to SEM𝐺3 . The
proof runs by showing that each valuation from SEM𝐺3 may be interpreted into SEM𝐺2

and vice-versa. Based on that, it is possible to prove that the set of valuations of both
semantics validates the same inferences, i.e, Γ |=SEM𝐺3

𝛼 ⇔ Γ |=SEM𝐺2
𝛼. But first, we

need to prove two auxiliary lemmas:
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Lemma 2.2.1. Given a valuation 𝑏 ∈ SEM𝐺2, it is possible to define an interpretation
𝑣𝑏 ∈ SEM𝐺3 such that 𝑏(𝜑) = 𝑇 iff 𝑣𝑏(𝜑) ∈ 𝒟.

Given a valuation 𝑏 ∈ SEM𝐺2 , define:

𝑣𝑏(𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 𝑏(¬𝜑) = 𝑇
1
2 , if 𝑏(𝜑) = 𝐹 & 𝑏(¬𝜑) = 𝐹

1, if 𝑏(𝜑) = 𝑇

Proof. The proof is made by induction on the complexity of the formulas.

Basic case:
(⇒)
For an atom 𝑝. Suppose 𝑏(𝑝) = 𝑇 , then by definition of 𝑣𝑏, we have 𝑣𝑏(𝑝) = 1. Therefore,
𝑣𝑏(𝑝) ∈ 𝒟.
(⇐)
Suppose 𝑣𝑏(𝑝) ∈ 𝒟. Therefore 𝑣𝑏(𝑝) = 1. By definition of 𝑣𝑏, it follows 𝑏(𝜑) = 𝑇 .

Inductive step:
Inductive Hypothesis: for all formulas 𝛼 and 𝛽 such that ℓ(𝛼) < ℓ(𝜑) and ℓ(𝛽) < ℓ(𝜑), it
follows that 𝑏(𝛼) = 𝑇 iff 𝑣𝑏(𝛼) ∈ 𝒟 and 𝑏(𝛽) = 𝑇 iff 𝑣𝑏(𝛽) ∈ 𝒟.

1.𝜑 = ¬𝛼.
(⇒)
Suppose 𝑏(¬𝛼) = 𝑇 , by definition of 𝑣𝑏, we have 𝑣𝑏(¬𝛼) = 0. Then, by definition of 𝑓¬,
we have 𝑣𝑏(¬𝜑) = 1.

(⇐).
Suppose (i) 𝑣𝑏(¬𝛼) ∈ 𝒟. Since ℓ(𝛼) < ℓ(𝜑), by inductive hypothesis follows that 𝑏(𝛼) = 𝑇

iff 𝑣𝑏(𝛼) ∈ 𝒟. By (i), we know that 𝑣𝑏(𝛼) /∈ 𝒟. Therefore 𝑏(𝛼) ̸= 𝑇 and by contraposition
on Axiom (N1), it follows that 𝑏(¬𝛼) = 𝑇 .

2. 𝜑 = ¬¬𝛼.
(⇒)
If 𝑏(¬¬𝛼) = 𝑇 , by using Axiom (N3), we have 𝑏(¬𝛼) = 𝐹 . Therefore, by axiom (N1), we
shall have (i) 𝑏(𝛼) = 𝐹 or (ii) 𝑏(𝛼) = 𝑇 .

For case (i), note we have 𝑏(𝛼) = 𝑏(¬𝛼) = 𝐹 . Therefore, by definition of 𝑣𝑏, we have
𝑣𝑏(𝛼) = 1

2 . So by applying double negation to 𝛼, by definition of 𝑓¬, we shall get 𝑣𝑏(¬¬𝛼) =
1.

For case (ii), since 𝑏(𝛼) = 𝑇 , by definition of 𝑣𝑏, we have 𝑣𝑏(𝛼) = 1. Again, by applying
double negation to 𝛼, we shall get 𝑣𝑏(¬¬𝛼) = 1.
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(⇐)
Suppose (i) 𝑣𝑏(¬¬𝛼) ∈ 𝒟. Since ℓ(¬𝛼) < ℓ(¬¬𝛼), it follows that 𝑏(¬𝛼) = 𝑇 iff 𝑣𝑏(¬𝛼) ∈ 𝒟.
Then, from (i) follows that 𝑣𝑏(¬𝛼) /∈ 𝒟 and 𝑏(¬𝛼) ̸= 𝑇 . Thus, by contraposition on Axiom
(N2), we will have 𝑏(¬¬𝛼) ̸= 𝐹 , i.e, 𝑏(¬¬𝛼) = 𝑇 .

3. 𝜑 = (𝛼 → 𝛽).
(⇒)
If 𝑏 = (𝛼 → 𝛽) = 𝑇 , by Axiom (I1), we have (i) 𝑏(¬𝛼) = 𝑇 , or (ii) 𝑏(𝛽) = 𝑇 , or
𝑏(𝛼) = 𝑏(¬𝛼) = 𝑏(𝛽) = 𝑏(¬𝛽) = 𝐹 .

For case (i). If 𝑏(¬𝛼) = 𝑇 , then by definition of 𝑣𝑏, we have 𝑣𝑏(¬𝛼) = 0. Therefore, by
definition of 𝑓→, it follows 𝑣𝑏(𝛼 → 𝛽) = 𝑇 .

For case (ii). If 𝑏(𝛽) = 𝑇 , by definition of 𝑣𝑏, that gives us 𝑣𝑏(𝛽) = 1. Therefore, by
definition of 𝑓→, we shall have 𝑣𝑏(𝛼 → 𝛽) = 1, i.e, 𝑣𝑏(𝛼 → 𝛽) ∈ 𝒟.

For case (iii). If 𝑏(𝛼) = 𝑏(¬𝛼) = 𝑏(𝛽) = 𝑏(¬𝛽) = 𝐹 , by definition of 𝑣𝑏, we get 𝑣𝑏(𝛼) =
𝑣𝑏 = (𝛽) = 1

2 . At last, by definition of 𝑓→, it follows 𝑣𝑏(𝛼 → 𝛽) = 1.

(⇐)
Suppose 𝑣𝑏(𝛼 → 𝛽) ∈ 𝒟. Since ℓ(𝛼) < ℓ(𝛼 → 𝛽) and ℓ(𝛽) < ℓ(𝛼 → 𝛽), by inductive
hypothesis follows that 𝑏(𝛼) = 𝑇 iff 𝑣𝑏(𝛼) ∈ 𝒟 and 𝑏(𝛽) = 𝑇 iff 𝑣𝑏(𝛽) ∈ 𝒟. Therefore by
contraposition on Axiom (I2), it follows that 𝑏(𝛼 → 𝛽) ̸= 𝐹 , i.e, 𝑏(𝛼 → 𝛽) = 𝑇 .

4. 𝜑 = ¬(𝛼 → 𝛽).

(⇒)
Suppose 𝑏(¬(𝛼 → 𝛽)) = 𝑇 , by axiom (I3), follows (i) 𝑏(𝛼) = 𝑇&𝑏(¬𝛽) = 𝑇 or (ii)
𝑏(𝛼) = 𝑏(¬𝛼) = 𝐹&𝑏(¬𝛽) = 𝑇 .

For case (i), since 𝑏(𝛼) = 𝑇&𝑏(¬𝛽) = 𝑇 , by definition of 𝑣𝑏 follows 𝑣𝑏(𝛼) = 1 and
𝑣𝑏(𝛽) = 0. Therefore, by definition of 𝑓→, we shall have 𝑣𝑏(𝛼 → 𝛽) = 0. Now, using
definition of 𝑓¬, follows 𝑣𝑏(¬(𝛼 → 𝛽)) = 1.

For case (ii). Since we have 𝑏(𝛼) = 𝑏(¬𝛼) = 𝐹&𝑏(¬𝛽) = 𝐹 , by definition of 𝑣𝑏, we have
𝑣𝑏(𝛼) = 1

2 and 𝑣𝑏(𝛽) = 0. Therefore, definition of 𝑓→ will imply 𝑣𝑏(𝛼 → 𝛽) = 0. At last,
from definition of 𝑓¬ we shall have our desired conclusion, 𝑣𝑏(¬(𝛼 → 𝛽)) = 1.

(⇐)
Suppose (i) 𝑣𝑏(¬(𝛼 → 𝛽)) ∈ 𝒟. Since ℓ(𝛼 → 𝛽) < ℓ(¬(𝛼 → 𝛽)), by inductive hypothesis
follows that 𝑣𝑏(𝛼 → 𝛽) ∈ 𝒟 iff 𝑏(𝛼 → 𝛽) = 𝑇 . From (i), follows that 𝑏(𝛼 → 𝛽) ̸= 𝑇 ,
i.e, 𝑏(𝛼 → 𝛽) = 𝐹 . Therefore, from Axiom (I2), it follows (i) 𝑏(𝛼) = 𝑇&𝑏(𝛽) = 𝐹 or (ii)
𝑏(𝛼) = 𝑏(¬𝛼) = 𝐹&𝑏(¬𝛽) = 𝑇 . From both cases, by contraposition on Axiom (I4), it
follows 𝑏(¬(𝛼 → 𝛽)) ̸= 𝐹 , i.e, 𝑏(¬(𝛼 → 𝛽) = 𝑇 .
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Lemma 2.2.2. Given a valuation 𝑣 ∈ SEM𝐺3, it is possible to define an interpretation
𝑏𝑣 ∈ SEM𝐺2 such that 𝑣(𝜑) ∈ 𝒟 iff 𝑏𝑣(𝜑) = 𝑇 .

Given a valuation 𝑣 ∈ SEM𝐺3 , define:

𝑏𝑣(𝜑) =

⎧⎨⎩ 𝐹, if 𝑣(𝜑) = 0 or 𝑣(𝜑) = 1
2

𝑇, if 𝑣(𝜑) = 1

Proof. The proof is made by induction on the complexity of the formulas.

Basic case:
(⇒)
For an atom 𝑝. Suppose 𝑣(𝑝) ∈ 𝒟, i.e, 𝑣(𝑝) = 1. by definition of 𝑏𝑣, it follows 𝑏𝑣(𝑝) = 𝑇 .

(⇐) Suppose 𝑏𝑣(𝑝) = 𝑇 . Therefore, by definition of 𝑏𝑣, it follows 𝑣(𝑝) = 1.

Inductive step:
Inductive Hypothesis: for all formulas 𝛼 and 𝛽 such that ℓ(𝛼) < ℓ(𝜑) and ℓ(𝛽) < ℓ(𝜑), it
follows that 𝑣(𝛼) ∈ 𝒟 iff 𝑏𝑣(𝛼) = 𝑇 and 𝑣(𝛽) ∈ 𝒟 iff 𝑏𝑣(𝛽) = 𝑇 .

1. 𝜑 = ¬𝛼.
(⇒)
Suppose (i) 𝑣(¬𝛼) ∈ 𝒟. Since ℓ(𝛼) < ℓ(¬𝛼), by inductive hypothesis follows that 𝑏𝑣(𝛼) =
𝑇 iff 𝑣(𝛼) ∈ 𝒟. From (i) and 𝑓¬, we know that 𝑣(𝛼) /∈ 𝒟. Therefore 𝑏𝑣(𝛼) ̸= 𝑇 and, by
contraposition on Axiom (N1), it follows 𝑏𝑣(¬𝛼) ̸= 𝐹 , i.e, 𝑏𝑣(¬𝛼) = 𝑇 .

(⇐)
Suppose (i) 𝑏𝑣(¬𝛼) = 𝑇 . By definition of 𝑏𝑣, we have that 𝑣(¬𝛼) = 1, i.e, 𝑣(¬𝛼) ∈ 𝒟.

2. 𝜑 = ¬¬𝛼.
(⇒)
Suppose (i) 𝑣(¬¬𝛼) ∈ 𝒟. Since ℓ(¬𝛼) < ℓ(¬¬𝛼), by inductive hypothesis follows that
𝑣(¬𝛼) ∈ 𝒟 iff 𝑏𝑣(¬𝛼) = 𝑇 . From (i) and 𝑓¬, we know that 𝑣(¬𝛼) /∈ 𝒟. Therefore, we have
𝑏𝑣(¬𝛼) ̸= 𝑇 . In this case, by contraposition on Axiom (N2), we shall have 𝑏𝑣(¬¬𝛼) ̸= 𝐹 ,
i.e, 𝑏𝑣(¬¬𝛼) = 𝑇 .

(⇐)
Suppose 𝑏𝑣(¬¬𝛼) = 𝑇 . By Axiom (N3), it follows 𝑏𝑣(¬𝛼) = 𝐹 . Then, by the defini-
tion of 𝑏𝑣, it follows that (i) 𝑣(¬𝛼) = 1

2 or (ii) 𝑣(¬𝛼) = 0. For case (i), we shall obtain
𝑏𝑣(¬¬𝛼) = 𝐹 , what stands as unobtainable situation by (C2). Therefore, from (ii), by 𝑓¬,
it follows that 𝑣(¬¬𝛼) = 1, i.e, 𝑣(¬¬𝛼) ∈ 𝒟.
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3. 𝜑 = (𝛼 → 𝛽).
(⇒)
Suppose (i) 𝑣(𝛼 → 𝛽) ∈ 𝒟. Since ℓ(𝛼) < ℓ(𝛼 → 𝛽) and ℓ(𝛽) > (𝛼 → 𝛽), by inductive
hypothesis it follows that 𝑣(𝛼) ∈ 𝒟 iff 𝑏𝑣(𝛼) = 𝑇 and 𝑣(𝛽) ∈ 𝒟 iff 𝑏𝑣(𝛽) = 𝑇 . Then, by
contraposition on Axiom (I2), we shall obtain 𝑏𝑣(𝛼 → 𝛽) = 𝑇 .

(⇐)
Suppose 𝑏𝑣(𝛼 → 𝛽) = 𝑇 . By Axiom (I1), it follows that 𝑏𝑣(¬𝛼) = 𝑇 , or 𝑏𝑣(𝛽) = 𝑇 or
𝑏𝑣(𝛼) = 𝑏𝑣(¬𝛼) = 𝑏𝑣(𝛽) = 𝑏𝑣(¬𝛽) = 𝐹 . Therefore, by definition of 𝑏𝑣, we shall obtain
𝑣(𝛼) = 0, 𝑣(𝛽) = 1 and 𝑣(𝛼) = 𝑣(𝛽) = 1

2 . For all such cases, by 𝑓→, follows 𝑣(𝛼 → 𝛽) = 1.

4.𝜑 = ¬(𝛼 → 𝛽).

(⇒)
Suppose (i) 𝑣(¬(𝛼 → 𝛽)) ∈ 𝒟. Since ℓ(𝛼 → 𝛽) < ℓ(¬(𝛼 → 𝛽)), by inductive hypothesis
follows that 𝑣(𝛼 → 𝛽) ∈ 𝒟 iff 𝑏𝑣(𝛼 → 𝛽) = 𝑇 . Therefore, from (i) it follows that
𝑏𝑣(𝛼 → 𝛽) ̸= 𝑇 , i.e, 𝑏𝑣(𝛼 → 𝛽) = 𝐹 . Then, by Axiom (I2), follows 𝑏𝑣(𝛼) = 𝑇&𝑏𝑣(𝛽) = 𝐹

or 𝑏𝑣(𝛼) = 𝑏𝑣 = 𝐹&𝑏𝑣(¬𝛽) = 𝑇 . Thus, by contraposition on Axiom (I4), we shall obtain
𝑏𝑣(¬(𝛼 → 𝛽)) ̸= 𝐹 , i.e, 𝑏𝑣(¬(𝛼 → 𝛽)) = 𝑇 .

(⇐)
Suppose 𝑏𝑣(¬(𝛼 → 𝛽)) = 𝑇 . By Axiom (I4), follows (i) 𝑏𝑣(𝛼) = 𝑇&𝑏𝑣(¬𝛽) = 𝑇 or
(ii) 𝑏𝑣(𝛼) = 𝑏𝑣(¬𝛼) = 𝐹&𝑏𝑣(¬𝛽) = 𝑇 . For case (i), by definition of 𝑏𝑣, we shall obtain
𝑣(𝛼) = 1&𝑣(¬𝛽) = 1. By definition of 𝑓¬𝑣(𝛽) = 0. Therefore, 𝑣(𝛼 → 𝛽) = 0 and 𝑣(¬(𝛼 →
𝛽)) = 1. The same applies to case (ii) and our desired result follows 𝑣(¬(𝛼 → 𝛽)) ∈ 𝒟.

Theorem 2.2.1. SEM𝐺2 is a sound and complete semantics for SEM𝐺3

Γ |=SEM𝐺3
𝛼 ⇔ Γ |=SEM𝐺2

𝛼

Proof. (⇒)

Suppose (i) Γ |=SEM𝐺3
𝛼. Then, by definition of entailment, we know that for every

valuation 𝑣 ∈ SEM𝐺3 (ii) 𝑣(Γ) ⊆ 𝒟3 implies 𝑣(𝛼) ∈ 𝒟3. Now take an arbitrary valuation
from 𝑣 ∈ SEM𝐺3 and suppose (iv) 𝑣(Γ) ⊆ 𝒟3. Thus, from (ii), we have 𝑣(𝛼) ∈ 𝒟3. From
this, by Lemma 2.2.2, it is possible to define an interpretation 𝑏𝑣 such that 𝑣(𝜑) ∈ 𝒟3 iff
𝑏𝑣(𝜑) = 𝑇 . Therefore, we have (v) 𝑏𝑣(Γ) ⊆ {𝑇} and 𝑏𝑣(𝛼) = 𝑇 . Finally, by definition of
entailment, we get Γ |=SEM𝐺2

𝛼.

(⇐)

Suppose (i) Γ |=SEM𝐺2
𝛼. Then, by definition of entailment, we know that for

every valuation 𝑏 ∈ SEM𝐺2 (ii) 𝑏(Γ) ⊆ {𝑇} implies 𝑣(𝛼) ∈ {𝑇}. Now take an arbitrary
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bivaluation from SEM𝐺2 and suppose (iv) 𝑏(Γ) ⊆ {𝑇}. Therefore, from (ii), we have that
𝑣(𝛼) = 𝑇 . From this, by Lemma 2.2.1, it is possible to define an interpretation 𝑣𝑏 such
that 𝑏(𝜑) ∈ {𝑇} iff 𝑣𝑏(𝜑) ∈ 𝒟3. Therefore, we have 𝑣𝑏(Γ) ⊆ 𝒟3 and 𝑣𝑏(𝛼) ∈ 𝒟3. At last,
by definition of entailment, it follows that Γ |=SEM𝐺3

𝛼.

The main difference between Theorem 2.1.3 and Theorem 2.2.1 is the construc-
tive character of the latter, acquired by the reduction procedure proposed by Caleiro et
al. The use of binary prints as a linguistic resource allows one to obtain a systematic
characterization of the original many-valued truth-tables. To summarize, Caleiro et al’s
procedure is obtained through the following steps:

1 Use the procedure described in this section to find adequate formula separators.

2 Use the separators to define binary prints of each truth-values from the original
semantics.

3 Use the binary prints to obtain bivalent axioms describing the behavior of the con-
nectives and the separators applied to the connectives.

4 Define the bivalent semantics SEM2 as a Suszko’s semantics respecting all bivalent
axioms obtained in step 3.

The above procedure can be applied to all finite-valued logics. In [Marcelino et al., 2014],
the authors extended the range of application of the method to finite-non-deterministic
matrices. As was said above, one of the advantages of obtaining a gentzenian semantics
from a finite-valued one is that the bivalent axiomatic description allows one to obtain
sound and complete two-signed tableaux with respect to the bivalent semantics 13.

13 For more, see [Caleiro et al., 2007].
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3 Logical values

This chapter investigates the notion of logical value. As it was shown in Chapter
1, the terminology was introduced by Roman Suszko in unraveling the double character
of truth-values with the distinction in between algebraic and logical values. While alge-
braic values denote what sentences describe, logical values denote the notions of truth and
falsehood. Therefore, algebraic many-valuedness is the kind of many-valuedness obtained
by introducing more than two objects in the carrier set of the algebra of truth-values,
while logical many-valuedness is obtained by dividing the set of truth-values in more than
two parts. Logical many-valuedness was first presented by Grzegorz Malinowski in re-
vealing what was called by him inferential many-valuedness. Inferential many-valuedness
was created with the intention of increasing the number of logical values in the sense of
Suszko. Like Łukasiewicz going beyond the being/non-being dichotomy, inferential many-
valuedness goes beyond the designated/undesignated dichotomy by considering alterna-
tive ways of classifying the algebraic values. As we shall see, such a framework naturally
leaves room for the construction of non-standard definitions of a matrix, as well as non-
Tarskian conceptions of entailment.

We start by taking a step beyond Suszko’s ideas and considering the introduction
of a third logical value. This was proposed in [Malinowski, 1990a] by creating what the
author called 𝑞𝑢𝑎𝑠𝑖-consequence operations. In his construction, Malinowski abandoned
the traditional partition of the set of truth-values in between designated and undesig-
nated by dividing the truth-values between accepted, rejected and neither accepted nor
rejected values. In this context, Suszko’s thesis may be updated to a 3-valued format. In
Section 1 we present 𝑞-consequence operations and the class of logics that they give rise to
(called 𝑞-logics), and prove the reduction theorems related to them. We also exhibit how
Caleiro et al’s reduction algorithm may be applied to reduce any finite-valued 𝑞-logic to
a 3-valued semantics. Moreover, based on a dual construction of Malinowski’s 𝑞-matrices,
we shall present another non-Tarskian notion of entailment introduced by Frankowski
[Frankowski, 2004], the so-called 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒-consequence (shortened 𝑝-consequence). Sec-
tion 2 aims at showing Shramko & Wansing’s definition of logical value and how it affects
the meaning of Suszko’s reduction. Criticisms to Malinowski’s notion of inferential many-
valuedness and Suszko’s thesis will also be presented. The section raises the discussion
of what we should expect and consider as an adequate notion of logical consequence
and, moreover, why to go beyond the Tarskian realm of consequence. At Section 3, we
end up by showing the bi-dimensional notion of entailment called B-entailment, intro-
duced in [Bochman et al., 1998]. By following [Blasio et al., 2014], we aim to show how
B-entailment is able to express all conceptions of entailment exposed before and why it
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is a natural and rich framework to explore different notions of logical consequence.

3.1 G. Malinowski and inferential many-valuedness
In Malinowski [Malinowski, 1990a], the Polish logician Grzegorz Malinowski con-

structed an example to line-off the limits of Suszko’s reduction by changing the underlying
definition of matrix and, moreover, constructing a non-Tarskian notion of entailment. Ma-
linowski’s motivation lied in increasing the number of logical values, thus evading Suszko’s
Thesis by considering an additional value, neither designated nor rejected. Therefore, he
had the purpose of increasing a third undetermined value at the level of logical values,
beyond the traditional idea of designated and rejected, i.e, from Suszko’s point of view,
of truth and falsity. He baptized this notion of many-valuedness as inferential many-
valuedness. Since logical values, according to Suszko, are expressed at the level of the
division of the set of truth-values, Malinowski’s 𝑞-entailment makes use of three logical
values, thus adding a third ‘undetermined’ value at the inferential level. It was this kind
of consideration that led Malinowski to think of many-valuedness as “expressed in two
facets – the referential and the inferential one”. In [Malinowski, 2011], the author explains
the difference in the following manner: “The first fits the standard approach and it results
in multiplication of semantic correlates of sentences(...). The second (...) is a metalogical
property of inference and refers to partition of the matrix universe into more than two
disjoint subsets, used in the definition of inference”. In [Malinowski, 1990b], Malinowski
suggests that if, like Suszko, we think of the elements of the matrix as situations, then
we must consider three kinds of situations: those which obtain, those which do not obtain
and those that are undetermined. Thus, his step towards logical many-valuedness was
motivated by Łukasiewicz’s ontological basis for considering more than two truth-values
in his logical systems.

In what follows, we present Malinowski’s technical construction:
Recall Definition 5 from Section 2.1. Let 𝐴𝑡 = {𝑝1, 𝑝2, ...} be a denumerable set of atoms,
and let Σ = {Σ𝑛}𝑛∈N be a propositional signature, where each Σ𝑛 is a set of connectives of
arity 𝑛. Let the set of formulas 𝐹𝑜𝑟 be defined as the algebra freely generated by 𝐴𝑡 over
Σ. We start presenting Malinowski’s construction by defining a 𝑞-consequence relation:

Definition 17. A 𝑞-consequence relation (or Malinowskian consequence relation) is
a single-conclusion consequence relation 
𝑞 such that for every 𝜙 ∈ 𝐹𝑜𝑟 and every Δ,Γ ⊆
𝐹𝑜𝑟 it has the following properties 1:

If Δ 
𝑞 𝜙 then Δ ∪ Γ 
𝑞 𝜙 (Monotonicity) (3.1)

Γ ∪ {𝛾 | Γ 
𝑞 𝛾} 
𝑞 𝜑 implies Γ 
𝑞 𝜑 (Weak-cut) (3.2)
1 Cf. [Shramko and Wansing, 2011].
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Therefore we define a 𝑞-logic in the following way:

Definition 18. An (abstract) q-logic ℒ𝑞 is a pair ℒ𝑞 = ⟨𝐹𝑜𝑟,
𝑞⟩, where 
𝑞 is a 𝑞-
consequence relation.

Definition 19. A 𝑞-consequence relation is called substitution-invariant if the follow-
ing holds:

Γ 
𝑞 𝛼 implies 𝜎(Γ) 
𝑞 𝜎(𝛼), for all 𝜎 ∈ 𝐸𝑛𝑑(𝐹𝑜𝑟) (Substitution-invariance) (3.3)

where 𝜎(Γ) = {𝜎(𝛾)|𝛾 ∈ Γ}.

A 𝑞-logic is called substitution-invariant if its associated consequence relation
is substitution-invariant.

Theorem 3.1.1. Every Tarskian consequence relation is a 𝑞-consequence relation.

The proof consists in showing that (Reflexivity) + (Cut for sets) implies (Weak-
Cut) and (Reflexivity) + (Weak-Cut) + (Monotonicity) implies (Cut for sets). The second
part shows the trade-off between (Reflexivity) and (Cut for sets) and why 𝑞-consequence
operations are presented as a natural generalization for Tarskian consequence operations.

Proof. (Reflexivity) + (Cut for sets) ⇒ (Weak-cut)
Assume (i) Γ ∪ {𝛾 | Γ 
 𝛾} 
 𝜑. By (Reflexivity), we know that (ii) Γ 
 𝛾, for all 𝛾 ∈ Γ.
Therefore, using (Cut for sets), it follows that Γ 
 𝜑.

(Reflexivity) + (Weak-cut) + (Monotonicity) ⇒ (Cut for sets)
Suppose (i) Δ 
 𝜑 and (ii) Γ 
 𝛿, for all 𝛿 ∈ Δ. By monotonicity in (i), it follows that
(iii) Γ ∪ Δ 
 𝜑. By (Reflexivity), we know that Γ 
 𝛾, for all 𝛾 ∈ Γ. But from (ii), it
follows that (iv) Δ ⊆ {𝛾 | Γ 
 𝛾}. Thus, by monotonicity on (i) and (iv) we shall have
(v) Γ ∪ {𝛾 | Γ 
 𝛾} 
 𝜑 and at last, by (Weak-cut) on (v), it follows that Γ 
 𝜑.

In what follows, we associate to a 𝑞-logic ℒ𝑞 an appropriate semantic structure by
defining a 𝑞-matrix structure, as proposed by [Malinowski, 1990a], in the following way:

Definition 20. A logical 𝑞-matrix based on ℒ𝑞 is an algebra M𝑞 = ⟨𝒱 ,𝒟,ℛ,𝒪⟩, where
𝒟 and ℛ are disjoints non-empty proper subset of 𝒱 and for every 𝑛-ary connective 𝑐

from Σ𝑛, 𝒪 includes a corresponding 𝑛-ary function 𝑓𝑐: 𝒱𝑛 → 𝒱.

The elements of 𝒟 are called accepted truth-values and the elements of ℛ are
called rejected truth-values. Note that if 𝒟 and ℛ are complementary sets, i.e, 𝒱 = 𝒟∪ℛ,
the 𝑞-matrix is reduced to the usual concept of logical matrix (see Definition 8). We also
shall use 𝒩 to denote the set of values that are neither designated nor rejected, i.e,
𝒩 𝑑𝑒𝑓= 𝒱 − (𝒟 ∪ ℛ).
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Thus, in a logical 𝑞-matrix we may have three logical values: accepted, rejected and
neither accepted nor rejected. Malinowski considered such logical values as expressing the
notions of truth, falsity and undeterminedness. His approach was based on Łukasiewicz’s
idea that acceptance and rejection need not be complementary2. According to Malinowski,
the basic assumption that acceptance and rejection need not to be complementary re-
flected “the mathematical practice that treats some auxiliary assumptions as mere hy-
pothesis rather than axioms. These assumptions may be accounted for by deduction (or
not), which results in their justified further occurrence in the place of conclusions”3. Thus
𝑞-consequence operations would reflect the scientific modus operandi of working with hy-
pothesis and evaluating their consequences. From such a point of view, the demise of
Reflexivity seems natural once we do not want that a scientific hypothesis is used to
justify itself.

With the notion of a 𝑞-matrix in hand, we can now introduce a semantics:

Definition 21. Fix a 𝑞-matrix M𝑞. The set of homomorphisms (also called valuations)
from ℒ𝑞 into M𝑞 is called a 𝑛-valued semantics SEM𝑞, where 𝑛 is the cardinality of
𝒱, hereafter denoted by |𝒱|.

After collecting valuations and introducing the semantics, a 𝑞-entailment relation
(or quasi entailment) given by |=𝑞

SEM⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟 associated to the semantics SEM𝑞

can be defined by saying that a formula 𝛼 follows from a set of formulas Γ if all valuations
from SEM𝑞 that do not assign a rejected value to any formula 𝛾 ∈ Γ imply that 𝛼 takes
a designated value. Formally:

Definition 22. Malinowskian relation of 𝑞-entailment:

Γ |=𝑞
SEM𝑞 𝛼 iff 𝑣(Γ) ∩ ℛ = ∅ implies 𝑣(𝛼) ∈ 𝒟, for every 𝑣 ∈ SEM𝑞 and Γ ∪ {𝛼} ⊆ 𝐹𝑜𝑟

(3.4)

This way, differently from the Tarskian relation of entailment, where a valid infer-
ence means the preservation of truth from all premises to the conclusion, in the relation of
𝑞-entailment valid inference means that an accepted conclusion follows from a non-rejected
set of premises.

Theorem 3.1.2. Every relation of 𝑞-entailment has the properties of a 𝑞-consequence
operation.4

Proof. For the case of (Monotonicity), suppose, by contraposition, that Δ ∪ Γ 2𝑞
SEM𝑞 𝛼.

Therefore, from the definition of 𝑞-entailment, it follows there is a valuation 𝑣 ∈ SEM𝑞

2 Cf. [Malinowski, 1990a].
3 Cf [Malinowski, 2007].
4 To see that reflexivity does not hold, let 𝛼 be an atom and consider a valuation 𝑣 such that 𝑣(𝛼) ∈ 𝒩 .

Since 𝛼 is neither rejected nor accepted according to 𝑣, we have that 𝛼 2𝑞 𝛼.
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such that (i) 𝑣(Δ∪Γ)∩ℛ = ∅ and (ii) 𝑣(𝛼) /∈ 𝒟. Then, since Δ ⊆ Δ∪Γ we shall have (iii)
𝑣(Δ) ∩ ℛ = ∅. Therefore, from (iii), (ii) and the definition of a Malinowskian entailment,
it follows that Δ 2𝑞

SEM𝑞 𝛼.

For (Weak-cut), by contraposition, suppose Γ 2𝑞
SEM𝑞 𝛼. Therefore, from the def-

inition of 𝑞-entailment, it follows that there is a valuation 𝑣 ∈ SEM𝑞 such that (i)
𝑣(Γ) ∩ ℛ and (ii) 𝑣(𝛼) /∈ 𝒟. Using (i), (ii), (monotonicity) proven above and definition of
𝑞-entailment, we shall obtain Γ ∪ {𝛾 | Γ 
𝑞 𝛾} 2𝑞

SEM𝑞 𝛼.

We shal define a s-𝑞-logic as a structure ℒ𝑞 = ⟨𝐹𝑜𝑟, |=𝑞
SEM𝑞⟩, where |=𝑞

SEM𝑞 is
a Malinowskian relation of 𝑞-entailment. Given a logic ℒ𝑞

1 = ⟨𝐹𝑜𝑟,
𝑞⟩ and a s-𝑞-logic
ℒ𝑞

2 = ⟨𝐹𝑜𝑟, |=𝑞
SEM𝑞⟩, we shall say that ℒ𝑞

2 is sound with respect to ℒ𝑞
1 in case 
𝑞 ⊆ |=𝑞

SEM𝑞 ;
and ℒ𝑞

1 is complete with respect to ℒ𝑞
2 in case |=𝑞

SEM𝑞 ⊆ 
𝑞. Moreover, if 
𝑞 = |=𝑞
SEM𝑞 ,

then we say ℒ𝑞
2 is an adequate semantics for ℒ𝑞

1.

We prove now an auxiliary remark useful to prove the main results of this section:

Consider a family of 𝑞-logics ℱ = {ℒ𝑞
𝑖 }𝑖∈𝐼 over some fixed set of formulas 𝐹𝑜𝑟.

Define the superlogic ℒ𝑞
ℱ of this family by taking ⋂︀

𝑖∈𝐼 ℒ𝑞
𝑖 , that is, ℒ𝑞

ℱ = ⟨𝐹𝑜𝑟,⋂︀𝑖∈𝐼 

𝑞
𝑖 ⟩,

where each ℒ𝑞
𝑖 = ⟨𝐹𝑜𝑟,
𝑞

𝑖 ⟩ is a structural 𝑞-logic, for 𝑖 ∈ 𝐼.

Remark 4. The intersection of substitution-invariant 𝑞-logics is a substitution-invariant
𝑞-logic.

Proof. Assume ℒ𝑞
ℱ is not substitution-invariant. Then there are formulas Γ ∪ {𝛼} ⊆ 𝐹𝑜𝑟

such that (i) Γ 
𝑞
ℱ 𝛼 and (ii) 𝜎(Γ) 1𝑞

ℱ 𝜎(𝛼) are the case. From (ii), by definition of ℒ𝑞
ℱ , we

know there is some 
𝑞
𝑘 𝑘 ∈ 𝐼, such that (iii) 𝜎(Γ) 1𝑞

𝑘 𝜎(𝛼). However, we know that each
𝑘 ∈ 𝐼 is a substitution-invariant 𝑞-logic. Therefore, by contraposition and the definition
of substitution-invariance in (iii), we have Γ 1𝑞

𝑘 𝛼. At last, by definition of ℒ𝑞
ℱ , we shall

get Γ 1𝑞
ℒℱ

𝛼, what is a contradiction with (i).

Analogous reasoning may be employed to prove the other properties of (Mono-
tonicity) and (Weak-Cut).

In what follows, we make use of the notion of a Lindenbaum matrix used in Section
3.1 to prove Wójcicki’s reduction (Theorem 2.1.2). Here we adapt it for 𝑞-logics and prove
Malinowski’s reduction. For the sake of defining our Lindenbaum 𝑞-matrix in an adequate
way, we need to separate the set of formulas in pairs of mutually disjoints subsets.
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Definition 23. Let 𝐷𝑆(𝐹𝑜𝑟) be the class of all pairs of mutually disjoints subsets of 𝐹𝑜𝑟:

𝐷𝑆(𝐹𝑜𝑟) = {⟨Σ,Δ⟩ : ⟨Σ,Δ⟩ ∈ ℘(𝐹𝑜𝑟) × ℘(𝐹𝑜𝑟) and Σ ∩ Δ = ∅} (3.5)

Definition 24 ([Malinowski, 1990a]). Let 𝑄 ⊆ 𝐷𝑆(𝐹𝑜𝑟). We shall say that a pair ⟨Σ,Δ⟩
is 𝑞-closed relative to Γ ⊆ 𝐹𝑜𝑟 provided that:

Δ =
⋂︁

{Δ : ⟨Σ,Δ⟩ ∈ 𝑄 and Γ ∩ Σ = ∅} (3.6)

Σ = 𝐹𝑜𝑟 − (Γ ∪ Δ) (3.7)

A set 𝑄 ⊆ 𝐷𝑆(𝐹𝑜𝑟) is called a 𝑄-closure system whenever 𝑄 = {⟨Σ,Δ⟩ ∈ 𝐷𝑆(𝐹𝑜𝑟) :
⟨Σ,Δ⟩ is 𝑞-closed relative to some Γ ⊆ 𝐹𝑜𝑟}.

In what follows, we will define a Lindenbaum 𝑞-matrix based on the relative 𝑞-
closure to a given set of formulas:

Definition 25. Given a logic ℒ𝑞 = ⟨𝐹𝑜𝑟,
𝑞⟩, the pair ⟨Σ,Δ⟩ 𝑞-closed relative to a given
set of formulas Γ ⊆ 𝐹𝑜𝑟 determines a 𝑞-matrix of the form

M𝑞
Γ = ⟨𝐹𝑜𝑟,𝒟,ℛ⟩, where (3.8)

𝒟 = Δ (3.9)

ℛ = Σ (3.10)

called a Lindenbaum 𝑞-matrix of ℒ𝑞. The class of all Lindenbaum 𝑞-matrices induced
by 𝐹𝑜𝑟, that is, {M𝑞

Γ : Γ ⊆ 𝐹𝑜𝑟} define what is called the Lindenbaum bundle of ℒ𝑞.

Given the fact that the Lindenbaum 𝑞-matrices were defined in relation to a pair
⟨Σ,Δ⟩ which is 𝑞-closed relative to Γ ⊆ 𝐹𝑜𝑟, we let the 𝑞-closure of a set of formulas Γ be
defined as Γ
𝑞 = ⋂︀{Δ𝑖 : ⟨Σ,Δ⟩ ∈ 𝑄 and Γ ∩ Σ = ∅}. The definition is in accordance with
the notion of 𝑞-entailment since it guarantee that all premises are non-rejected. Again,
for the sake of convenience, we shall present the Lindenbaum 𝑞-matrix in the form of its
associated s-𝑞-logic:

Definition 26. Given a 𝑞-logic ℒ𝑞 = ⟨𝐹𝑜𝑟,
𝑞⟩ and a set of formulas Γ ⊆ 𝐹𝑜𝑟, we shall
call a Lindenbaum 𝑞-matrix the s-𝑞-logic ℒ𝑞

Γ = ⟨M𝑞
Γ, |=

𝑞
Γ⟩, where MΓ = ⟨𝐹𝑜𝑟,𝒟,ℛ⟩ is

such that:
𝐹𝑜𝑟 = 𝒱 (3.11)

𝒟 = Γ
𝑞 (3.12)
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ℛ = 𝐹𝑜𝑟 − (Γ ∪ Γ
𝑞) (3.13)

Δ |=𝑞
Γ 𝛼 iff 𝑔(Δ) ∩ ℛ = ∅ implies 𝑔(𝛼) ∈ 𝒟, for all 𝑔 ∈ SEM𝑞, (3.14)

where each 𝑔 is a uniform-substitution as in Definition 12 (Section 2.1).

In what follows, by making use of the tools constructed above, we prove the fol-
lowing theorems:

Theorem 3.1.3. [Malinowski, 1990a] Every substitution-invariant 𝑞-logic has an ade-
quate semantics.

Proof. Fix a 𝑞-logic ℒ𝑞 = ⟨𝐹𝑜𝑟,
𝑞⟩, take the Lindenbaum bundle generated by 𝐹𝑜𝑟 and
define the super s-𝑞-logic ℒ𝑞

ℱ = ⟨𝐹𝑜𝑟, |=𝑞
ℱ⟩, by taking |=𝑞

ℱ as ⋂︀
Γ⊆𝐹 𝑜𝑟 |=𝑞

Γ.

For Completeness, take some pair ⟨Σ,Δ⟩ Q-closed relative to some Γ ⊆ 𝐹𝑜𝑟 and
the Lindenbaum 𝑞-matrix ℒ𝑞

Γ generated from Γ. Suppose Δ |=𝑞
ℱ 𝛼. From the definition of

|=𝑞
ℱ 𝛼, we have Δ |=Γ 𝛼, for every Γ ⊆ 𝐹𝑜𝑟. Now assume (i) Δ ⊆ Γ
. By definition of

𝑞-closure, we know that (ii) Γ ∩ Σ = ∅. Since every valuation of a Lindenbaum 𝑞-matrix
is an endomorphism, from (ii) and the definition of a Lindenbaum 𝑞-matrix, we obtain
(iii) 𝑔(Γ) ∩ ℛ = ∅. Moreover, given our hypothesis and the definition of 𝑞-entailment, we
know that, for every valuation 𝑣 ∈ SEMΓ, 𝑣(Γ) ∩ ℛ = ∅ implies 𝑣(𝛼) ∈ 𝒟. Therefore,
from (iii), it follows that 𝑔(𝛼) ∈ 𝒟. Additionally, by definition of a Lindenbaum 𝑞-matrix,
𝛼 ∈ Γ
, i.e, 𝛼 ∈ ⋂︀ Δ. Then it follows that Δ ∪ {𝛿|Δ 
𝑞 𝛿} 
𝑞 𝛼. Thus, by (Weak-cut) we
shall obtain Δ 
𝑞 𝛼.

For Soundness, suppose (i) Δ 
𝑞 𝛼 and select some logic ℒΓ from ℒℱ . Assume
𝑔 to be a valuation such that (ii) 𝑔(Δ) ∩ ℛ = ∅. Then, by definition of a Lindenbaum 𝑞-
matrix, we shall have that (iii) 𝑔(Δ) ⊆ (Γ∪Γ
). From (i), substitution-invariance and the
fact that all valuations of a Lindenbaum 𝑞-matrix are endomorphisms, it follows that (v)
𝑔(Δ) 
𝑞 𝑔(𝛼). Therefore, from (iii), (iv) and monotonicity, we obtain (v) Γ,Γ
 
𝑞 𝑔(𝛼).
Moreover, using (Weak-cut) in (v), it follows that Γ 
𝑞 𝑔(𝛼). Therefore, by definition
of closure and of Lindenbaum 𝑞-matrix, we have 𝑔(𝛼) ∈ 𝒟. Finally, by definition of 𝑞-
entailment, our desired conclusion Δ |=Γ 𝛼 follows.

Corollary 3.1.3.1. Every substitution-invariant 𝑞-logic is 𝑛-valued, for 𝑛 = |𝐹𝑜𝑟|

Proof. By construction of the Lindenbaum 𝑞-matrices.

Corollary 3.1.3.2. Every substitution-invariant 𝑞-logic is characterized by a set of ma-
trices.
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Proof. By construction of the super s-𝑞-logic.

Until the present date the author is not aware of any contribution that shows the
property that characterizes the existence of a single 𝑞-matrix adequate to a given 𝑞-logic.

We now employ the same construction used to prove Theorem 2.1.3 in order to
show a generalized version of the same theorem. This actualized version shall be called
Malinowski’s Reduction and it shows that every 𝑞-logic may be charaterized by a trivalent
semantics. Based on Definition 30, let us denote a 𝑛-valued semantics in the following
way SEM𝑞

𝑛, where 𝑛 denote the cardinality of the set 𝒱𝑞 and 𝒱𝑞 is the carrier set of
the associated 𝑞-matrix. Analogous to the function 𝑡(𝑥) that we used to prove Suszko’s
Reduction, we now define the function 𝑓 : 𝒱𝑛 → 𝒱3, where 𝒱3 = 𝒟 = {𝑇} ∪ ℛ = {𝐹}, in
the following way:

𝑓(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇, if 𝑥 ∈ 𝒟
𝐹, if 𝑥 ∈ ℛ
𝑁, if 𝑥 ∈ 𝒱 − (𝒟 ∪ ℛ)

Now given a valuation 𝑣, we can define a trivaluation 𝑡𝑣 = 𝑓 ∘ 𝑣 and collect such
trivaluations into the semantics SEM𝑞

3 = {𝑡𝑣 | 𝑣 ∈ SEM𝑞
𝑛}.

Theorem 3.1.4 (Malinowski’s reduction – [Malinowski, 1994]). Every substitution-invariant
𝑞-logic is 2-valued or 3-valued.

Proof. Γ |=𝑞
SEM𝑞

𝑛
𝛼 ⇔ Γ |=𝑞

SEM𝑞
3
𝛼

(⇐)

By contraposition, suppose (i) Γ 2𝑞
SEM𝑞

𝑛
𝛼. Therefore, by definition of 𝑞-entailment, there

is a valuation 𝑣 ∈ SEM𝑞
𝑛 such that (ii) 𝑣(Γ) ∩ ℛ𝑛 = ∅ and (iii) 𝑣(𝛼) /∈ 𝒟𝑛. By composing

𝑓 with such 𝑣, we shall get 𝑓(𝑣(Γ)) ∩ {𝐹} = ∅ and either 𝑓(𝑣(𝛼)) = 𝐹 or 𝑓(𝑣(𝛼)) = 𝑁 .
Therefore, there is a trivaluation 𝑡𝑣 ∈ SEM𝑞

3 such that 𝑡𝑣(Γ) ∩ 𝐹 = ∅ and either 𝑡𝑣(𝛼) =
{𝐹} or 𝑡𝑣(𝛼) = 𝑁 . In both cases, by applying the definition of 𝑞-entailment, it follows
that Γ 2𝑞

SEM𝑞
3
𝛼.

(⇒)

By contraposition, suppose (i) Γ 2𝑞
SEM𝑞

3
𝛼. Therefore, by the definition of 𝑞-entailment,

there is a valuation 𝑡 ∈ SEM𝑞
3 such that (ii) 𝑡(Γ) ∩ ℛ3 = ∅ and (iii) 𝑡(𝛼) /∈ 𝒟3. By

definition of SEM𝑞
3, there must exist some 𝑣 ∈ SEM𝑞

𝑛 such that 𝑡 = 𝑡𝑣. Thus by definition
of 𝑡𝑣, it follows that 𝑓(𝑣(Γ)) ⊆ 𝒱3 − {𝐹} and 𝑡(𝑣(𝛼)) ̸= 𝑇 . By definition of 𝑓 , we shall
have 𝑣(Γ) ∩ ℛ𝑛 = ∅ and 𝑣(𝛼) /∈ 𝒟𝑛. Then, from the definiton of 𝑞-entalment, it follows
that Γ 2𝑞

SEM𝑞
𝑛
𝛼.
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The above theorem is a generalized version of Suszko’s reduction. The 3-valued re-
duction is obtainable due to the tripartitioned character of the 𝑞-matrices. In [Malinowski, 2011]
and [Malinowski, 1994], Malinowski shows how to increase the number of partitions of the
matrix universe for more than three and define alternative notions of entailment based on
them, althoug he does not show how to obtain alternative abstract notions of consequence
in each case. From this approach, we see that Suszko’s Reduction is applied only to the
referential nature of many-valuedness as discussed in Chapter 1. The inferential nature of
many-valuedness can evade bivalence by making use of Malinowski’s ideas about the ex-
istence of a class of ‘undetermined’ values. This makes possible to import Suszko’s Thesis
in a generalized version for 𝑞-logics.

3.1.1 Reducing Q-logics

In this section, we show how to use the same algorithmic procedure proposed
at [Caleiro et al., 2007] in order to reduce a 𝑞-logic to a three-valued semantics. The
underlying strategy is kept all the same as illustrated in Section 2.2, the only difference
is that now we must construct a three-valued semantics defined by three-valued axioms
describing the behavior of each operator from the original logic.

Consider now the 𝑞-version of Gödel’s four-valued logic:

𝐺𝑞
4 = ⟨𝒱4,𝒟4,ℛ4, {𝑓¬, 𝑓→}⟩.

where 𝒱4 = {0, 1
3 ,

2
3 , 1}, with 𝒟4 = {1} and ℛ4 = {0}. The operations over the truth-

values can be defined as 𝑓→(𝑣(𝛼), 𝑣(𝛽)) = 1, if 𝑣(𝛼) ≤ 𝑣(𝛽) and 𝑓→(𝑣(𝛼), 𝑣(𝛽)) = 𝑣(𝛽), if
𝑣(𝛼) > 𝑣(𝛽); 𝑓¬(𝑣(𝛼)) = 1, if 𝑣(𝛼) = 0, and 𝑓¬(𝑣(𝛼)) = 0 otherwise. Then the operations
give us the following truth-tables:

→ 0 1
3

2
3 1

0 1 1 1 1
1
3 0 1 1 1
2
3 0 1

3 1 1
1 0 1

3
2
3 1

¬

0 1
1
3 0
2
3 0
1 0

Note that the function 𝑓(𝑥) as defined in the previous section gives us the following
assignment:
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𝜑 𝑓(𝜑)
0 𝐹
1
3 𝑁
2
3 𝑁

1 𝑇

The step-by-step described by the end of Section 2.2 tell us to first look for ad-
equate separators. However, for the sake of economy, we shall not list all unary truth-
functions and search the separators among them (as it was done in Section 2.2), instead
we shall use a conservative extension of the logic by adding an adequate separator. Let
us first recall the definition of a separator:

Definition 27 ([Caleiro et al., 2007]). Let 𝑥1, 𝑥2 ∈ 𝒱4. We say that 𝑥1 and 𝑥2 are sepa-
rated, and we write 𝑥1#𝑥2, in case 𝑥1 and 𝑥2 belong to different classes of truth-values.
We say that a one-variable formula 𝜃(𝑝) of 𝐹𝑜𝑟 distinguishes two truth-values 𝑥 and
𝑦 if 𝑣(𝜃(𝑥))#𝑣(𝜃(𝑦)). A logic is called separable in case its truth-values are pairwise
distinguishable

Therefore the 3-valued description of the 𝑞-version of Gödel’s four-valued logic
depends on being able to separate the values inside the set 𝒩 = 𝒱−(𝒟∪ℛ). For that sake,
define as a separator the formula 𝜃(𝜑) 𝑑𝑒𝑓= 𝜑 ↔ 2

3 , where (𝜑 ↔ 𝜓) = (𝜑 → 𝜓) ∧ (𝜓 → 𝜑)5.
We shall then obtain the following truth-table:

𝜑 𝜃(𝜑)
0 𝐹 0 𝐹
1
3 𝑁 1

3 𝑁
2
3 𝑁 1 𝑇

1 𝑇 2
3 𝑁

The third step of the algorithmic reduction procedure tell us to use the separator
to obtain the ‘ternary prints’ of each truth-value of 𝒱4, where the ternary prints are
three-valued characterizations of the truth-values. Based on the truth-table above, we
shall have:

𝑣(𝜑) = 0 iff 𝑡(𝜑) = 𝐹 & 𝑡(𝜃(𝜑)) = 𝐹

𝑣(𝜑) = 1
3 iff 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜑)) = 𝑁

𝑣(𝜑) = 2
3 iff 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜑)) = 𝑇

𝑣(𝜑) = 1 iff 𝑡(𝜑) = 𝑇 & 𝑡(𝜃(𝜑)) = 𝑁

5 Here we are building a linguistic extension of the logic since we have only ‘¬’ and ‘→’ as our primitive
operators. The ‘∧’ works in the usual way as the 𝑚𝑖𝑛(𝑣(𝛼), 𝑣(𝛽)). Theorem 3.1.5 below will also
guarantee that such a construction results in a conservative extension of the logic.
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Given our ternary prints, the next step is to describe every line of the truth-tables
by means of the conditions for truth, falsity and undeterminedness. Observe that in this
case, since we have three-values, we shall have more unobtainable conditions corresponding
to impossible assignments. So we will naturally have more closure conditions, in this case,
we shall obtain the conditions (C1)-(C6) below, where (C6) internalizes the fact that
every valuation is a function and (C1)-(C5) forbids the other possible combinations for
the three truth-values. At last, the following axioms are obtained:

(N1) 𝑡(¬𝜑) = 𝑇 ⇒ 𝑡(𝜑) = 𝐹 & 𝑡(𝜃(𝜑)) = 𝐹

(N2) 𝑡(¬𝜑) = 𝐹 ⇒ 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜑)) = 𝑁 | 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜑)) = 𝑇 | 𝑡(𝜑) =
𝑇 & 𝑡(𝜃(𝜑)) = 𝑁

(N3) 𝑡(𝜃(¬𝜑)) = 𝐹 ⇒ 𝑡(¬𝜑) = 𝐹

(N4) 𝑡(𝜃(¬𝜑)) = 𝑁 ⇒ 𝑡(¬𝜑) = 𝑇

(I1) 𝑡(𝜑 → 𝜓) = 𝑇 ⇒ 𝑡(𝜑) = 𝐹 | 𝑡(𝜓) = 𝑇 | 𝑡(𝜃(𝜑)) = 𝑇 & 𝑡(𝜃(𝜓)) = 𝑇 | 𝑡(𝜃(𝜑)) =
𝑇 & 𝑡(𝜓) = 𝑡(𝜃(𝜓)) = 𝑁 | 𝑡(𝜑) = 𝑡(𝜃(𝜑)) = 𝑡(𝜓) = 𝑡(𝜃(𝜓)) = 𝑁

(I2) 𝑡(𝜑 → 𝜓) = 𝐹 ⇒ 𝑡(𝜃(𝜑)) = 𝑇 & 𝑡(𝜓) = 𝐹 | 𝑡(𝜑) = 𝑡(𝜃(𝜑)) = 𝑁 & 𝑡(𝜓) = 𝐹 | 𝑡(𝜑) =
𝑇 & 𝑡(𝜓) = 𝐹

(I3) 𝑡(𝜑 → 𝜓) = 𝑁 ⇒ 𝑡(𝜑) = 𝑡(𝜃(𝜑)) = 𝑁 & 𝑡(𝜃(𝜓)) = 𝑇 | 𝑡(𝜑) = 𝑇 & 𝑡(𝜃(𝜓)) =
𝑇 | 𝑡(𝜑) = 𝑇 & 𝑡(𝜓) = 𝑡(𝜃(𝜓)) = 𝑁

(I4) 𝑡(𝜃(𝜑 → 𝜓)) = 𝑇 ⇒ 𝑡(𝜃(𝜑)) = 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜓)) = 𝑇 | 𝑡(𝜑) = 𝑇 & 𝑡(𝜃(𝜓)) = 𝑇

(I5) 𝑡(𝜃(𝜑 → 𝜓)) = 𝐹 ⇒ 𝑡(𝜃(𝜑) = 𝑇 & 𝑡(𝜓) = 𝐹 | 𝑡(𝜑) = 𝑡(𝜃(𝜑)) = 𝑁 & 𝑡(𝜓) =
𝐹 | 𝑡(𝜑) = 𝑇 & 𝑡(𝜓) = 𝐹

(I6) 𝑡(𝜃(𝜑 → 𝜓)) = 𝑁 ⇒ 𝑡(𝜑) = 𝐹 | 𝑡(𝜓) = 𝑇 | 𝑡(𝜓) = 𝑡(𝜃(𝜓)) = 𝑁 | 𝑡(𝜃(𝜑)) =
𝑡(𝜃(𝜓)) = 𝑇

(C1) 𝑡(𝜑) = 𝑇 & 𝑡(𝜃(𝜑)) = 𝑇 ⇒ *

(C2) 𝑡(𝜑) = 𝑇 & 𝑡(𝜃(𝜑)) = 𝐹 ⇒ *

(C3) 𝑡(𝜑) = 𝐹 & 𝑡(𝜃(𝜑)) = 𝑇 ⇒ *

(C4) 𝑡(𝜑) = 𝐹 & 𝑡(𝜃(𝜑)) = 𝑁 ⇒ *

(C5) 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜑)) = 𝐹 ⇒ *

(C6) 𝑡(𝜑) = 𝑋 & 𝑡(¬𝜑) = 𝑋 ⇒ *, for 𝑋 ∈ 𝒱3
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Now define SEM𝐺𝑞
3

as the set of trivaluations respecting all axioms above. As in
the example exhibited in Section 2.2, the following lemmas are guaranteed:

Lemma 3.1.1. Given a valuation 𝑣 ∈ SEM𝐺𝑞
4
, it is possible to define an interpretation

𝑡𝑣 ∈ SEM𝐺𝑞
3

such that 𝑣(𝜑) ∈ 𝒟 iff 𝑡𝑣(𝜑) = 𝑇 and 𝑣(𝜑) ∈ ℛ iff 𝑡𝑣(𝜑) = 𝐹 .

Given a valuation 𝑣 ∈ SEM𝐺𝑞
4
, define:

𝑡𝑣(𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐹, if 𝑣(𝜑) = 0
𝑁, if 𝑣(𝜑) = 1

3 or 𝑣(𝜑) = 2
3

𝑇, if 𝑣(𝜑) = 1

Proof. The proof is made by induction on the complexity of the formulas.

Basic case:

(⇒)
For an atom 𝑝. Suppose 𝑣(𝑝) ∈ 𝒟 or 𝑣(𝑝) ∈ ℛ. For case (i), we have 𝑣(𝑝) = 1. Thus, by
definition of 𝑡𝑣, it follows 𝑡𝑣(𝑝) = 𝑇 . For case (ii), we have that 𝑣(𝑝) = 0. Therefore, by
definition of 𝑡𝑣, we shall obtain 𝑡𝑣(𝑝) = 𝐹 .

(⇐)
Now suppose (i) 𝑡𝑣(𝑝) = 𝑇 or (ii) 𝑡𝑣(𝑝) = 𝐹 . For case (i), by definition of 𝑡𝑣, we have
𝑣(𝑝) = 1, i.e, 𝑣(𝑝) ∈ 𝒟. For case (ii), by definition of 𝑡𝑣, it follows 𝑣(𝑝) = 0, i.e, 𝑣(𝑝) ∈ ℛ.

Inductive step:
Inductive Hypothesis: for all formulas 𝛼 and 𝛽 such that ℓ(𝛼) < ℓ(𝜑) and ℓ(𝛽) < ℓ(𝜑), it
follows that 𝑡𝑣(𝛼) = 𝑇 iff 𝑣(𝛼) ∈ 𝒟 or 𝑡𝑣(𝛼) = 𝐹 iff 𝑣(𝛼) ∈ ℛ, and 𝑡𝑣(𝛽) = 𝑇 iff 𝑣(𝛽) ∈ 𝒟
or 𝑡𝑣(𝛽) = 𝐹 iff 𝑣(𝛽) ∈ ℛ.

1. 𝜑 = ¬𝛼
(⇒)
Suppose (i) 𝑣(¬𝛼) ∈ 𝒟 or (ii) 𝑣(¬𝛼) ∈ ℛ. Since ℓ(𝛼) < ℓ(¬𝛼), by inductive hypothesis
follows (iii) 𝑣(𝛼) ∈ 𝒟 iff 𝑡𝑣(𝛼) = 𝑇 and (iv) 𝑣(𝛼) ∈ ℛ iff 𝑡𝑣(𝛼) = 𝐹 .

From (i), (iii) and definition of 𝑓¬, we have that 𝑣(𝛼) /∈ 𝒟. Therefore, by contraposi-
tion on (iii), it follows that 𝑡𝑣(𝛼) ̸= 𝑇 , i.e, (v) 𝑡𝑣(𝛼) = 𝐹 or (vi) 𝑡𝑣(𝛼) = 𝑁 . For case
(vi), by the closure condition (C5), it follows (vii) 𝑡𝑣(𝛼) = 𝑁&𝑡𝑣(𝜃(𝛼)) = 𝑁 or (viii)
𝑡𝑣(𝛼) = 𝑁&𝑡𝑣(𝜃(𝛼)) = 𝑇 . For both cases, by contraposition on Axiom (N2), it follows
that 𝑡𝑣(¬𝛼) ̸= 𝐹 , i.e, (ix) 𝑡𝑣(¬𝛼) = 𝑇 or (x) 𝑡𝑣(¬𝛼) = 𝑁 . From closure condition (C6)
in (xi) and (vi), we have only (ix), that is our desired result. For case (v). Since we have
(iv), it follows that 𝑣(𝛼) ∈ ℛ. Therefore 𝑣(𝛼) = 0 and, by definition of 𝑓¬, we shall obtain
𝑣(¬𝛼) = 1. Finally, by definition of 𝑡𝑣, we will have 𝑡𝑣(¬𝛼) = 𝑇 .
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For our supposition (ii), since we have (iv), by definition of 𝑓¬ and contraposition, we
shall obtain 𝑡𝑣(𝛼) ̸= 𝐹 , i.e, (x) 𝑡𝑣(𝛼) = 𝑇 or (xi) 𝑡𝑣(𝛼) = 𝑁 . For case (x), since we have
(iii), by modus ponens follows that 𝑣(𝛼) ∈ 𝒟, i.e, 𝑣(𝛼) = 1. Thus, by definition of 𝑓¬, we
have 𝑣(¬𝛼) = 0 and, by definition of 𝑡𝑣, 𝑡𝑣(¬𝛼) = 𝐹 . For case (xi), by definition of 𝑡𝑣, it
follows 𝑣(𝛼) = 1

3 or 𝑣𝑡(𝛼) = 2
3 . Therefore, from definition of 𝑓¬, we shall obtain 𝑣(¬𝛼) = 0.

At last, by definition of 𝑡𝑣, our desired result 𝑡𝑣(¬𝛼) = 𝐹 follows.

(⇐)
Suppose (i) 𝑡𝑣(¬𝛼) = 𝑇 or (ii) 𝑡𝑣(¬𝛼) = 𝐹 .
For case (i), from Axiom (N1), it follows 𝑡𝑣(𝛼) = 𝐹 . Thus, by definition of 𝑡𝑣, we shall
obtain 𝑣(𝛼) = 0. Finally, by definition of 𝑓¬, it follows 𝑣(¬𝛼) = 1, i.e, 𝑣(¬𝛼) ∈ 𝒟.

For case (ii), by Axiom (N2), we shall obtain (i) 𝑡𝑣(𝛼) = 𝑁 or 𝑡𝑣(𝛼) = 𝑇 . Therefore from
definition of 𝑡𝑣, it follows (i) 𝑣(𝛼) = 1

3 , (ii) 𝑣(𝛼) = 2
3 or (iii) 𝑣(𝛼) = 1. From this, by defi-

nition of 𝑓¬, for all cases we shall obtain our desired conclusion 𝑣(¬𝛼) = 0, i.e, 𝑣(¬𝛼) ∈ ℛ.

2. 𝜑 = (𝜃(¬𝛼))
(⇒)
Suppose (i) 𝑣(𝜃(¬𝛼)) ∈ 𝒟 or (ii) 𝑣(𝜃(¬𝛼)) ∈ ℛ. Since ℓ(¬𝛼) < ℓ(𝜃(¬𝛼)), by indutive
hypothesis follows (iii) 𝑡𝑣(¬𝛼) = 𝑇 iff 𝑣(¬𝛼) ∈ 𝒟 and (iv) 𝑡𝑣(¬𝛼) = 𝐹 iff 𝑣(¬𝛼) ∈ ℛ.
Note case (i) is done since there is no case where 𝑣(𝜃(¬𝛼)) = 1.

For case (ii), by definition of 𝜃, we have that 𝑣(¬𝛼) ∈ ℛ. Thus, by modus ponens on
(iv), it follows 𝑡𝑣(¬𝛼) = 𝐹 . Finally, by contraposition on Axiom (N4), we shall obtain
𝑡𝑣(𝜃(¬𝛼)) ̸= 𝑁 and since there is no case that 𝑡𝑣(𝜃(¬𝛼)) = 𝑇 , our desired conclusion
𝑡𝑣(𝜃(¬𝛼)) = 𝐹 follows.

(⇐)
Suppose (i) 𝑡𝑣(𝜃(¬𝛼)) = 𝑇 or (ii) 𝑡𝑣(𝜃(¬𝛼)) = 𝐹 . Since there is no axiom for case (i), by
definition of 𝑡𝑣, it follows that 𝑣(𝜃(¬𝛼)) = 1, i.e, 𝑣(𝜃(¬𝛼)) ∈ 𝒟.

For case (ii), by Axiom (N3), it follows 𝑡𝑣(¬𝛼) = 𝐹 . Therefore, by definition of 𝑡𝑣, we
have 𝑣(¬𝛼) = 0. Thus, by definition of 𝜃(𝜑), our desired conclusion 𝑣(𝜃(¬𝛼)) = 0, i.e,
𝑣(𝜃(¬𝛼)) ∈ ℛ follows.

The remaining cases for 𝜑 = (𝛼 → 𝛽) and 𝜑 = (𝜃(𝛼 → 𝛽)) runs in a similar
manner.
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Lemma 3.1.2. Given a valuation 𝑡 ∈ SEM𝐺𝑞
3
, it is possible to define an interpretation

𝑣𝑡 ∈ SEM𝐺𝑞
4

such that 𝑣𝑡(𝜑) ∈ 𝒟 iff 𝑡(𝜑) = 𝑇 and 𝑣𝑡(𝜑) ∈ ℛ iff 𝑡(𝜑) = 𝐹 .

Given a valuation 𝑡 ∈ SEM𝐺𝑞
3
, define:

𝑣𝑡(𝜑) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡(𝜑) = 𝐹 & 𝑡(𝜃(𝜑)) = 𝐹
1
3 , if 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜑)) = 𝑁
2
3 , if 𝑡(𝜑) = 𝑁 & 𝑡(𝜃(𝜑)) = 𝑇

1, if 𝑡(𝜑) = 𝑇 & 𝑡(𝜃(𝜑)) = 𝑁

Proof. The proof is made by induction on the complexity of the formulas.

Basic case:

(⇒)
For an atom p, suppose (i) 𝑡(𝑝) = 𝑇 or (ii) 𝑡(𝑝) = 𝐹 . For case (i), by closure conditions
(C1) and (C2), it folows 𝑡(𝜃(𝑝)) = 𝑁 . Therefore, by definition of 𝑣𝑡, we have 𝑣𝑡(𝑝) = 1,
i.e, 𝑣𝑡 ∈ 𝒟. For case (ii), by closure conditions (C3) and (C4), it follows that 𝑡(𝜃(𝑝)) = 𝐹 .
Then by definition of 𝑣𝑡, it follows our desired conclusion 𝑣𝑡(𝑝) = 0, i.e, 𝑣𝑡 ∈ ℛ.

(⇐)
Suppose (i) 𝑣𝑡(𝑝) ∈ 𝒟, i.e, 𝑣𝑡(𝑝) = 1 or (ii) 𝑣𝑡(𝑝) ∈ ℛ, i.e, 𝑣𝑡(𝑝) = 0. For case (i), by
definition of 𝑣𝑡, our desired result follows 𝑡(𝑝) = 𝑇 . For case (ii), by definition of 𝑣𝑡 again,
we shall have 𝑡(𝑝) = 𝐹 .

Inductive step:
Inductive Hypothesis: for all formulas 𝛼 and 𝛽 such that ℓ(𝛼) < ℓ(𝜑) and ℓ(𝛽) < ℓ(𝜑), it
follows that 𝑡(𝛼) = 𝑇 iff 𝑣𝑡(𝛼) ∈ 𝒟 or 𝑡(𝛼) = 𝐹 iff 𝑣𝑡(𝛼) ∈ ℛ, and 𝑡(𝛽) = 𝑇 iff 𝑣𝑡(𝛽) ∈ 𝒟
or 𝑡(𝛽) = 𝐹 iff 𝑣𝑡(𝛽) ∈ ℛ.

1. 𝜑 = ¬𝛼
(⇒)
Suppose (i) 𝑡(¬𝛼) = 𝑇 or (ii) 𝑡(¬𝛼) = 𝐹 .
For case (i), from Axiom (N1), it follows 𝑡(𝛼) = 𝐹 & 𝑡(𝜃(𝛼) = 𝐹 . Thus, by definition
of 𝑣𝑡, we shall obtain 𝑣𝑡(𝛼) = 0. Finally, by definition of 𝑓¬, it follows 𝑣𝑡(¬𝛼) = 1, i.e,
𝑣𝑡(¬𝛼) ∈ 𝒟.

For case (ii), by Axiom (N2), we shall obtain (i) 𝑡(𝛼) = 𝑁 &𝑡(𝜃(𝛼)) = 𝑁 , (ii) 𝑡(𝛼) =
𝑁 & 𝑡(𝜃(𝛼)) = 𝑇 or (iii) 𝑡(𝛼) = 𝑇 & 𝑡(𝜃(𝛼)) = 𝑁 . Therefore from definition of 𝑣𝑡, it
follows (i) 𝑣𝑡(𝛼) = 1

3 , (ii) 𝑣𝑡(𝛼) = 2
3 or (iii) 𝑣𝑡(𝛼) = 1. From this, by definition of 𝑓¬, for

all cases we shall obtain our desired conclusion 𝑣𝑡(¬𝛼) = 0, i.e, 𝑣𝑡(¬𝛼) ∈ ℛ.
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(⇐)
Suppose (i) 𝑣𝑡(¬𝛼) ∈ 𝒟 or (ii) 𝑣𝑡(¬𝛼) ∈ ℛ. Since ℓ(𝛼) < ℓ(¬𝛼), by inductive hypothesis
follows that (iii) 𝑡(𝛼) = 𝑇 iff 𝑣𝑡(𝛼) ∈ 𝒟 and (iv) 𝑡(𝛼) = 𝐹 iff 𝑣𝑡(𝛼) ∈ ℛ.

From (i), (iii) and definition of 𝑓¬, we have that 𝑣𝑡(𝛼) /∈ 𝒟. Therefore, by contraposition
on (iii), it follows that 𝑡(𝛼) ̸= 𝑇 , i.e, (v) 𝑡(𝛼) = 𝐹 or (vi) 𝑡(𝛼) = 𝑁 . For case (vi),
by the closure condition (C5), it follows (vii) 𝑡(𝛼) = 𝑁&𝑡(𝜃(𝛼)) = 𝑁 or (viii) 𝑡(𝛼) =
𝑁&𝑡(𝜃(𝛼)) = 𝑇 . For both cases, by contraposition on Axiom (N2), it follows that 𝑡(¬𝛼) ̸=
𝐹 , i.e, (ix) 𝑡(¬𝛼) = 𝑇 or (x) 𝑡(¬𝛼) = 𝑁 . From closure condition (C6) in (xi) and (vi),
we have only (ix), our desired result. For case (v). Since we have (iv), it follows that
𝑣𝑡(𝛼) ∈ ℛ. Therefore 𝑣𝑡(𝛼) = 0 and, by definition of 𝑓¬, we shall obtain 𝑣𝑡(¬𝛼) = 1.
Finally, by definition of 𝑣𝑡, we will have 𝑡(¬𝛼) = 𝑇 .

For our supposition (ii), since we have (iv), by definition of 𝑓¬ and contraposition, we
shall obtain 𝑡(𝛼) ̸= 𝐹 , i.e, (x) 𝑡(𝛼) = 𝑇 or (xi) 𝑡(𝛼) = 𝑁 . For case (x), since we have (iii),
it follows that 𝑣𝑡(𝛼) ∈ 𝒟, i.e, 𝑣𝑡(𝛼) = 1. Thus, by definition of 𝑓¬, we have 𝑣𝑡(¬𝛼) = 0 and
𝑡(¬𝛼) = 𝐹 . For case (xi), by closure condition (C5), we have 𝑡(𝛼) = 𝑁 & 𝑡(𝜃(𝛼)) = 𝑁 or
𝑡(𝛼) = 𝑁 & 𝑡(𝜃(𝛼)) = 𝑇 . Then, by definition of 𝑣𝑡, it follows 𝑣𝑡(𝛼) = 1

3 or 𝑣𝑡(𝛼) = 2
3 . From

definition of 𝑓¬, we shall obtain 𝑣𝑡(¬𝛼) = 0. Therefore, by definition of 𝑣𝑡, our desired
result 𝑡(¬𝛼) = 𝐹 follows.

2. 𝜑 = 𝜃(¬𝛼)
(⇒)
Suppose (i) 𝑡(𝜃(¬𝛼)) = 𝑇 or (ii) 𝑡(𝜃(¬𝛼)) = 𝐹 . Since there is no axiom for case (i), by
definition of 𝑣𝑡, it follows that 𝑣𝑡(𝜃(¬𝛼)) = 1.

For case (ii), by Axiom (N3), it follows 𝑡(¬𝛼) = 𝐹 . Therefore, by definition of 𝑣𝑡, we have
𝑣𝑡(¬𝛼) = 0. Thus, by definition of 𝜃(𝜑), our desired conclusion 𝑣𝑡(𝜃(¬𝛼)) = 0 follows.

(⇐)
Suppose (i) 𝑣𝑡(𝜃(¬𝛼)) ∈ 𝒟 or (ii) 𝑣𝑡(𝜃(¬𝛼)) ∈ ℛ. Since ℓ(¬𝛼) < ℓ(𝜃(¬𝛼)), by indutive
hypothesis follows (iii) 𝑡(¬𝛼) = 𝑇 iff 𝑣𝑡(¬𝛼) ∈ 𝒟 and (iv) 𝑡(¬𝛼) = 𝐹 iff 𝑣𝑡(¬𝛼) ∈ ℛ. Note
case (i) holds since there is no case where 𝑣𝑡(¬𝛼)) = 1.

For case (ii), by definition of 𝑣𝑡, we have that 𝑣𝑡(¬𝛼) ∈ ℛ. Thus, by modus ponens on (iv),
it follows 𝑡(¬𝛼) = 𝐹 . Finally, by contraposition on Axiom (N4), we shall obtain 𝑡(𝜃(¬𝛼)) ̸=
𝑁 and since there is no case for 𝑡(𝜃(¬𝛼)) = 𝑇 , our desired conclusion 𝑡(𝜃(¬𝛼)) = 𝐹 follows.

The remaining cases for 𝜑 = (𝛼 → 𝛽) and 𝜑 = (𝜃(𝛼 → 𝛽)) runs in a similar
manner.

The proof of the above lemmas is made by following reasoning analogous to the
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one employed in Section 2.2. Based on that, as in the case of Theorem 2.2.1, the following
is a corollary:

Theorem 3.1.5. SEM𝑞
𝐺𝑞

4
is a sound and complete semantics for SEM𝑞

𝐺𝑞
3

Γ |=𝑞
SEM

𝐺
𝑞
4
𝛼 ⇔ Γ |=𝑞

SEM
𝐺

𝑞
3
𝛼

Proof. (⇒)

Suppose (i) Γ |=𝑞
SEM

𝐺
𝑞
4
𝛼. Then, by definition of 𝑞-entailment, we know that (ii)

for every 𝑣 ∈ SEM𝐺𝑞
4
, if 𝑣(Γ) ∩ ℛ4 = ∅, then 𝑣(𝛼) ∈ 𝒟4. Now take an arbitrary valuation

from 𝑣 ∈ SEM𝐺𝑞
4

and suppose (iv) 𝑣(Γ) ∩ ℛ4 = ∅. From Lemma 3.1.1, it is possible to
define an interpretation 𝑡𝑣 such that 𝑡𝑣(Γ) ∩ {𝐹} = ∅. Moreover, from (iv) and (ii), we
shall obtain 𝑣(𝛼) ∈ 𝒟4. Therefore, by using Lemma 3.1.1, it follows 𝑡𝑣(𝛼) = 𝑇 . Finally,
by definition of 𝑞-entailment, we shall have Γ |=𝑞

SEM
𝐺

𝑞
3
𝛼.

(⇐)
Suppose (i) Γ |=𝑞

SEM
𝐺

𝑞
3
𝛼. Then, by definition of 𝑞-entailment, we know that (ii) for every

𝑡 ∈ SEM𝐺𝑞
3
, if 𝑡(Γ) ∩ {𝐹} = ∅, then 𝑡(𝛼) = 𝑇 . Now take an arbitrary valuation from

𝑡 ∈ SEM𝐺𝑞
3

and suppose (iv) 𝑡(Γ) ∩ {𝐹} = ∅. From Lemma 3.1.2, it is possible to define
an interpretation 𝑣𝑡 such that 𝑣𝑡(Γ) ∩ ℛ = ∅. Moreover, from (iv) and (ii), we shall
obtain 𝑡(𝛼) = 𝑇 . Therefore, by using Lemma 3.1.2 again, it follows 𝑣𝑡(𝛼) ∈ 𝒟. Finally, by
definition of 𝑞-entailment, we shall have Γ |=𝑞

SEM
𝐺

𝑞
4
𝛼.

Theorem 3.1.5 is a constructive version of Malinowski’s reduction. The reduc-
tion made in this section suggest that three-valued semantics might be expressed in
a gentzenian format likewise the two-valued semantics. The structure guaranteed by a
gentzenian three-valued format would allow the construction of three-signed tableaux
rules able to characterize finite-valued 𝑞-logics. The results suggests that the same algo-
rithmic procedure proposed by Caleiro et al may be updated to a three-valued format in
claming that any finite-valued 𝑞-logic may be characterized by a three-valued semantics.
In the next section, we exhibit another logically three-valued class of logics, proposed as
the dual to 𝑞-logics, the so-called 𝑝-logics.

3.1.2 Plausible entailment

In [Frankowski, 2004], Szymon Frankowski presented a different version of the 𝑞-
matrix proposed by Malinowski and introduced a consequence relation considered the
natural dual of 𝑞-consequence operations, the so-called 𝑝-consequence operations.

In what follows, we will show the technical construction behind 𝑝-consequence:
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Definition 28. A 𝑝-consequence relation is a single-conclusion consequence relation
such that for every 𝜙 ∈ 𝐹𝑜𝑟 and every Δ,Γ ⊆ 𝐹𝑜𝑟 it has the following properties 6:

Δ ∪ {𝜙} 
𝑝 𝜙 (Reflexivity) (3.15)

If Δ 
𝑝 𝜙 then Δ ∪ Γ 
𝑞 𝜙 (Monotonicity) (3.16)

We define a 𝑝-logic as ℒ𝑝 = ⟨𝐹𝑜𝑟,
𝑝⟩, where 
𝑝 is a 𝑝-consequence relation. Re-
mark 3.1.1 has shown us why (Weak-Cut) fails for 𝑝-logics, in the presence of (Weak-Cut),
𝑝-consequence relations are reduced to Tarskian consequence relations. This highlight the
fact that 𝑞- and 𝑝-logics are constructed by trading (Reflexivity) for (Weak-Cut).

Definition 29. A logical 𝑝-matrix based on ℒ𝑝 is an algebra M𝑝 = ⟨𝒱 ,ℛ,𝒟,𝒪⟩, where
𝒟 and ℛ are non-empty subsets of 𝒱, with 𝒱 = 𝒟 ∪ ℛ, and for every 𝑛-ary connective 𝑐
from Σ, 𝒪 includes a corresponding 𝑛-ary function 𝑓𝑐: 𝒱𝑛 → 𝒱.

Call 𝒜 𝑑𝑒𝑓= (𝒟 − ℛ) the accepted set of values and ℛ the rejected set. Note that
if 𝒟 ∩ ℛ = ∅, the 𝑝-matrix is reduced to the usual concept of matrix (Definition 8). We
also shall use ℬ to denote the set of both designated and rejected values, i.e, ℬ 𝑑𝑒𝑓= 𝒟 ∩ ℛ.

Definition 30. Any valuation from ℒ𝑝 into a 𝑝-matrix induces a relation of 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒-
entailment (hereafter 𝑝-entailment) or Frankowskian entailment, defined in the fol-
lowing way:

Γ |=𝑝
SEM𝑝 𝛼 iff 𝑣(Γ) ⊆ 𝒜 implies 𝑣(𝛼) /∈ ℛ, (3.17)

for every 𝑣 ∈ SEM𝑝, where SEM𝑝 is any set of valuations (homomorphisms) 𝑣 from 𝐹𝑜𝑟

into a 𝑝-matrix.

𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒-entailment was introduced with the intention of formalizing a kind of
reasoning that, from accepted premises follows non-rejected conclusions. The use of the
term plausible indicates the idea of approximate. His intuitions on the plausibility relation
was inspired in Ajdukiewicz’s project of a Pragmatic Logic. At the core of Ajdukewicz’s
project is the idea of analyzing formal and informal argumentation.

By making use of the same tools explored in the previous section, it is possible to
prove Wójcicki’s Reduction for 𝑝-matrices7 and Frankowski’s Reduction:

Theorem 3.1.6 (Frankowski’s reduction). Every substitution-invariant 𝑝-logic is 2-valued
or 3-valued.

6 Cf. [Frankowski, 2004]
7 Cf. [Malinowski, 2011].
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3.2 Shramko & Wansing beyond inferential many-valuedness

In [Wansing and Shramko, 2008] and [Shramko and Wansing, 2011], the authors
analyse Suszko’s thesis from a different angle in comparison to Malinowski’s approach. The
importance of Shramko & Wansing’s approach is in raising the question of what exactly
should characterize a logical value. Therefore, by aiming to propose a new definition of
logical value, they criticize Malinowski’s notion of logical many-valuedness. Based on an
alternative definition of logical value, they attack the meaning of Suszko’s reduction and
propose what should be recognized as an adequate logically two-valued logic.

Take some set of truth-values 𝒱 = 𝒟 ∪ 𝒰 , with 𝒟 ∩ 𝒰 = ∅, where 𝒟 is the usual
set of designated values and 𝒰 is the set of undesignated values. Remember from Section
1.2 and 1.3 that Suszko’s conception of logical values is defined as the subsets of the set
of algebraic values, and therefore 𝒟 stands for the logical value true, while 𝒰 stands for
the logical value false. Shramko & Wansing start by calling attention to the fact that the
logical value true is determined by the specification of a set of designated algebraic values
and a corresponding notion of entailment associated to it. Thus, a formula 𝛼 follows from
a set of premises Γ if and only if the conclusion is designated whenever all the premises
are. In such a context, a valid inference is one that preserves truth from the premises to
the conclusion. Let us call 𝑡-entailment such notion of logical consequence .

Now, since falsity is determined by the complement of the designated set, called
by us undesignated, its associated notion of consequence as preservation of falsity must be
read in the opposite direction, i.e, from the conclusion to at least one of the premises. Thus
if the conclusion is false this implies that at least one of the premises is also false. Such
notion of inference is called by them 𝑓-entailment and is understood as the backwards
preservation of undesignated values. Therefore, according to Shramko & Wansing, our
traditional division of the set of truth-values gives rise to two notions of entailment, on
one hand, the membership in 𝒟 (𝑡-entailment) is preserved from the premises to the
conclusion; on the other hand, the membership in 𝒰 (𝑓 -entailment) is preserved from the
premises to the conclusion, what gives us the very same notion of 𝑡-entailment.8

Shramko & Wansing goes on and point out, “since 𝒟 is uniquely determined by
its complement and vice-versa, logical two-valuedness is, in fact, reduced to logical mono-
8 Define:

Γ |=𝑡 𝛼 iff for all 𝑣, (𝑣(Γ) ⊆ 𝒟 implies 𝑣(𝛼) ∈ 𝒟)
and
Γ |=𝑓 𝛼 iff for al 𝑣, (𝑣(𝛼) ∈ 𝒰 implies 𝑣(Γ) ∩ 𝒰 ̸= ∅)
Then, note that:
Γ |=𝑓 𝛼 iff (𝑣(𝛼) ∈ 𝒰 implies 𝑣(Γ) ∩ 𝒰 ̸= ∅)
Γ |=𝑓 𝛼 iff (𝑣(𝛼) /∈ 𝒰 or 𝑣(Γ) ∩ 𝒰 ̸= ∅)
Γ |=𝑓 𝛼 iff (𝑣(Γ) ∩ 𝒰 ̸= ∅ or 𝑣(𝛼) /∈ 𝒰)
Γ |=𝑓 𝛼 iff (𝑣(Γ) ∩ 𝒰 = ∅ implies 𝑣(𝛼) /∈ 𝒰)
Then, since 𝒱 − 𝒰 = 𝒟 and 𝑣 is a total function, we have:
Γ |=𝑡 𝛼 iff 𝑣(Γ) ⊆ 𝒟 implies 𝑣(𝛼) ∈ 𝒟. Therefore, |=𝑓 = |=𝑡.
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valuedness if there is just one entailment relation defined as truth preservation from
the premises to the conclusion”. Consequently, the two entailment relations above, when
associated to each logical value, are equivalent. In this context, since Suszko’s reduction
rests on the partition of the set of truth-values, Shramko & Wansing attack it by claiming
that Suszko’s reduction is actually a reduction into a mono-valuedness since each logical
value imply the same notion of entailment. This criticism will serve as a key to Shramko
& Wansing’s definition of logical value.

Before exhibiting Shamko & Wansing’s concept of logical value, let us first take
a look at how they criticize Malinowki’s 𝑞-consequence. If we do not treat falsity as a
mere abbreviation for ‘non-truth’ and if we correspondingly distinguish not only a set 𝒟
of designated algebraic values but also a set ℛ of ‘rejected’ algebraic values such that
𝒱 ≠ 𝒟 ∪ ℛ, therefore 𝑓 -entailment may be different from 𝑡-entailment, since preservation
of designatedness from the premises to the conclusion is not the same as preservation
of rejectedness from conclusion to the premises. Thereby, Shramko & Wansing rightly
remark about Malinowki’s construction:

“This approach [𝑞-matrices] may be viewed as taking ‘true’ and ‘false’
to be expressions that give rise to contrary instead of contradictory pairs of
sentences. As such, the pair ‘true’ versus ‘false’ is reflected by the contrary pairs
‘designated’ versus ‘antidesignated’ and ‘accepted’ versus ‘rejected’. Admitting
algebraic values that are neither designated nor antidesignated amounts to
admitting, in addition to the logical values true and false, the third logical
value neither true nor false. In other words, being false is distinguished from
not being true.” [Shramko and Wansing, 2011]

Since 𝑞-matrices open the room for the admission of three logical values, accepted,
rejected and neither, we can think of at least three different entailment relations, one
as preservation of accepted values, one as preservation of rejected values and other as
preservation of neither accepted, nor rejected values. For Shramko & Wansing there is
no good reason to prefer one notion of logical consequence over the other. Thus, they
propose an increase not only in the number of logical values, but also in the number of
entailment relations associated to a given logic. For this purpose, they present a different
way of understanding the notion of a logical value by stating:

“If logic is thought of as the theory of valid inferences, then a logical value
may be seen as a value that is used to define in a canonical way an entailment
relation on a set of formulas. By a canonical definition of entailment we mean
a definition of entailment as a relation that (in the single conclusion case)
preserves membership in a certain set of algebraic values, either from the
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premises to the conclusion inferences or from the conclusion to the premises.
Such a relation will be Tarskian (...). Two logical values are independent of
each other iff the canonically defined entailment relations associated with these
values are distinct.” [Shramko and Wansing, 2011]

Given what was stressed above, the authors differ from Malinowski’s conception
of what a logical value is. While Malinowski takes logical values as merely the partitions
of the set of algebraic values, according to Shramko & Wansing a logical value is used
to define a canonical notion of entailment and is independent insofar it defines also an
independent entailment relation. These considerations led them to criticize Malinowski
by claiming that Malinowski’s approach is concerned with defining a single entailment
relation which does not need to be canonically defined. By Shramko & Wansing’s criteria,
Malinowski does not treat truth and falsity as logical values, since they are both used only
to define a single notion of consequence, given by the 𝑞-entailment. They still complement
“if the idea of entailment as the preservation of a logical value is given up, then entailment,
will not, in general, be a Tarskian relation(...) We want inferability to preserve!”. Moreover,
following Malinowski’s criteria, we could say that any subset of algebraic values is a logical
value. On the other hand, for Shramko & Wansing, a subset of algebraic values only deserve
to be called a logical value as long as it implies a canonical notion of entailment that is
independent from all the others. Therefore a logical value is defined by the entailment
relation induced by it.

In [Shramko and Wansing, 2007] and [Shramko and Wansing, 2011], the authors
go on and propose a different notion of a logical system which allows for many logical
values, associated with various corresponding consequence relations, each one being de-
fined by the Tarskian properties of entailment. In what follows, we will show Shramko &
Wansing’s construction. Let us first introduce the notion of 𝑘-dimensional logic:

Definition 31. A Tarskian 𝑘-dimensional logic (Tarskian 𝑘-logic) is a 𝑘 + 1 tuple
ℒ = (𝐹𝑜𝑟,
1, ...,
𝑘) such that:
(i) 𝐹𝑜𝑟 is a denumerable set of formulas,
(ii) for every 𝑖 ≤ 𝑘, 
𝑖⊆ ℘(𝐹𝑜𝑟) × 𝐹𝑜𝑟, where 𝑘 ≥ 2 with 𝑘 ∈ N, and
(iii) every relation 
𝑖 is a single conclusion Tarskian consequence relation. 9

Definition 32. A 𝑘-dimensional logic is called substitution-invariant if the following
holds for each 
𝑖:

Γ 
𝑖 𝛼 implies 𝜎(Γ) 
𝑖 𝜎(𝛼), for all 𝜎 ∈ 𝐸𝑛𝑑(𝐹𝑜𝑟) (Substitution-invariance) (3.18)

where 𝜎(Γ) = {𝜎(𝛾)|𝛾 ∈ Γ}.
9 (Recall Definition 7 at Section 2.1).
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We associate to a Tarskian 𝑘-dimensional logic ℒ a semantic structure by defin-
ing a 𝑘-dimensional matrix structure, proposed in [Shramko and Wansing, 2011], in the
following manner:

Definition 33. A logical 𝑘-dimensional matrix M𝑘 based on ℒ is a tuple M𝑘 =
⟨𝒱 ,𝒟1, ...,𝒟𝑘,𝒪⟩, where each 𝒟𝑖 are pairwise distinct subsets of 𝒱 (the set of truth-values)
with 1 ≤ 𝑖 ≤ 𝑘, and for every 𝑛-ary connective 𝑐 from Σ𝑛, 𝒪 includes a corresponding
𝑛-ary function 𝑓𝑐: 𝒱𝑛 → 𝒱.

We say that a semantics SEM is any collection of homomorphisms from a set of
formulas 𝐹𝑜𝑟 into M𝑘. When necessary, we shall use again the subscript SEM𝑛 in order to
refer to the cardinality of the set of truth-values. Given the definition of a 𝑘-dimensional
matrix, we introduce the associated notion of entailment:

Definition 34. For each set 𝒟𝑖 we have an associated canonical semantic consequence
relation:

Γ |=𝑖
SEM 𝛼 iff 𝑣(Γ) ⊆ 𝒟𝑖 implies 𝑣(𝛼) ∈ 𝒟𝑖, (3.19)

for every 𝑣 ∈ SEM and each 𝒟𝑖 ∈ M𝑘, with 1 ≤ 𝑖 ≤ 𝑘.

Each distinguished set of truth-values in the 𝑘-dimensional matrix induces an
associated notion of entailment. Also, each of these entailment relations is defined by the
preservation of algebraic values from premises to the conclusion10.

In the following we employ Lindenbaum matrices for 𝑘-dimensional matrices in
order to prove yet another generalization of Wójcicki’s reduction theorem. Remember
that the closure of a set of formulas Γ is defined by Γ
𝑖 = {𝛼 | Γ 
𝑖 𝛼}.

Consider a family of Tarskian 𝑘-dimensional logics ℱ = {ℒ𝑖}𝑖∈𝐼 over some fixed set
of formulas 𝐹𝑜𝑟. Define the superlogic ℒℱ of this family by considering ℒℱ = ⟨𝐹𝑜𝑟,⋂︀𝑖∈𝐼 


1
𝑖

, ...,
⋂︀

𝑖∈𝐼 

𝑘
𝑖 ⟩, where each ℒ𝑖 = ⟨𝐹𝑜𝑟,
1

𝑖 , ...,

𝑘
𝑖 ⟩ is a structural Taskian 𝑘-dimensional logic,

for 𝑖 ∈ 𝐼.

Remark 5. The intersection of substiution-invariant Tarkian 𝑘-dimensional logics is a
substitution-invariant Tarskian 𝑘-dimensional logic.

Proof. Straight forward by the same reasoning employed to prove Remark 2.

In the following we introduce the notion of a Lindenbaum 𝑘-dimensional matrix
in order to prove a generalization of Wójcicki’s Reduction for 𝑘-dimensional logics.
10 In [Shramko and Wansing, 2007] and [Shramko and Wansing, 2007], the authors also consider the

possibility of defining the entailment relation as preservation of values from conclusion to the premises,
i.e, 𝑣(𝛼) ∈ 𝒟𝑖 ⇒ 𝑣(Γ) ∩ 𝒟𝑖 ̸= ∅, for every 𝑣 ∈ SEM. However, without loss of generality, we shall use
here only the direction as preservation of values from premises to the conclusion.
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Definition 35. Given a Tarskian 𝑘-dimensional logic ℒ = ⟨𝐹𝑜𝑟,
1, ...,
𝑘⟩ and a set
of formulas Γ ⊆ 𝐹𝑜𝑟, we shall call a a Lindenbaum 𝑘-dimensional matrix ℒΓ the
s-𝑘-dimensional logic ℒΓ = ⟨𝐹𝑜𝑟, |=1

Γ, ..., |=𝑘
Γ⟩ such that:

𝒱 = 𝐹𝑜𝑟 (3.20)

𝒟𝑖 = Γ
𝑖

, for 1 ≤ 𝑖 ≤ 𝑘. (3.21)

Δ |=𝑖
Γ 𝛼 iff 𝑣(Δ) ⊆ Γ
𝑖 implies 𝑣(𝛼) ∈ Γ
𝑖

, for all uniform-substitution 𝑔 ∈ SEM.

(3.22)
We call the Lindenbaum bundle of ℒ the set of all Lindenbaum 𝑘-dimensional matrices
over a given 𝐹𝑜𝑟, that is, {ℒΓ : Γ ⊆ 𝐹𝑜𝑟}.

Theorem 3.2.1. Every Tarskian 𝑘-dimensional logic is 𝑛-valued.

Proof. The proof run by following the same reasoning employed to prove Theorem 2.1.1.

Suszko’s Reduction, as proved in Theorem 2.1.3, may be applied to the case of
Tarskian 𝑘-dimensional logics by following the same reasoning. Of course, in this case,
the bivalent reduction must be carried out for each entailment relation |=𝑘

𝑖 , for 1 ≤ 𝑖 ≤ 𝑘.
Thus, Suszko’s Reduction can be applied to each dimension of a 𝑘-dimensional logic.
However, seen as a whole, the reduction of a 𝑘-dimensional logic must not be logically two-
valued. In [Shramko and Wansing, 2011], the authors present some examples of natural
𝑘-dimensional logics. One of them is based on a trilattice structure and proposed as a
natural generalization of Belnap’s four-valued logic.

3.2.1 Reducing Tarskian 𝑘-dimensional logics

In this section we show how to employ Caleiro et al’s reduction procedure, exhib-
ited in Section 2.2, in order to reduce a Tarskian 𝑘-dimensional logic. The very same idea
used in Section 2.2 and 3.2 shall be carried out with the only difference that now the
𝑚-valued algebraic semantics shall be characterized by a 𝑛-valued semantics, where 𝑛 is
the number of partitions of the truth-values set, i.e, the number of logical values and, of
course, 𝑚 > 𝑛.

Consider now a 𝑘-dimensional version of Łukasiewicz’s four-valued logic:

Ł𝑘
4 = ⟨𝒱4,𝒟1

4,𝒟2
4,𝒟3

4, {𝑓¬, 𝑓→}⟩.
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where 𝒱4 = {0, 1
3 ,

2
3 , 1}, with 𝒟1

4 = {0}, 𝒟2
4 = {1

3 ,
2
3} and 𝒟3

4 = {1}. The opera-
tions over the truth-values can be defined by 𝑓→(𝑣(𝛼), 𝑣(𝛽)) = 1, if 𝑣(𝛼) ≤ 𝑣(𝛽) and
𝑓→(𝑣(𝛼), 𝑣(𝛽)) = (1 − 𝑣(𝛼)) + 𝑣(𝛽), if 𝑣(𝛼) > 𝑣(𝛽); 𝑓¬(𝑣(𝛼)) = 1 − 𝑣(𝛼). What give us
the following truth-tables:

→ 0 1
3

2
3 1

0 1 1 1 1
1
3

2
3 1 1 1

2
3

1
3

2
3 1 1

1 0 1
3

2
3 1

¬

0 1
1
3

2
3

2
3

1
3

1 0

We define the semantics SEMŁ𝑘
4

as the set of valuations 𝑣 : 𝐹𝑜𝑟 → 𝒱4. Now define
the function 𝑧 : 𝒱4 → 𝒱3, where 𝒱3 = {𝐴,𝐵,𝐶} and 𝒟1

3 = {𝐴}, 𝒟2
3 = {𝐵}, 𝒟3

3 = {𝐶}, in
the following way:

𝑧(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴, se 𝑥 ∈ 𝒟1

𝐵, se 𝑥 ∈ 𝒟2

𝐶, se 𝑥 ∈ 𝒟3

Thus, given a valuation 𝑣 and the function 𝑧, we can define a g-valuation 𝑔𝑣 = 𝑧 ∘𝑣
and collect such g-valuations into the semantics SEMŁ𝑘

3
= {𝑔𝑣 | 𝑣 ∈ SEMŁ𝑘

4
}. The use of

the 𝑧 function shall gives us the following:

𝜑 𝑧(𝜑)
0 𝐴
1
3 𝐵
2
3 𝐵

1 𝐶

Therefore the reduction of this 𝑘-dimensional version of Łukasiewicz’s four-valued
logics depends on being able to separate the values 1

3 and 2
3 inside the set 𝒟2. Now take

as a separator the formula 𝜃(𝜑) 𝑑𝑒𝑓= 𝜑 → 1
3 . Then we shall obtain the following truth-table:

𝜑 𝜃(𝜑)
0 𝐴 1 𝐶
1
3 𝐵 1 𝐶
2
3 𝐵 1

3 𝐵

1 𝐶 1
3 𝐵

Based on that, we shall obtain the following prints of each truth-value from 𝒱4:
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𝑣(𝜑) = 0 iff 𝑔(𝜑) = 𝐴 & 𝑔(𝜃(𝜑)) = 𝐶

𝑣(𝜑) = 1
3 iff 𝑔(𝜑) = 𝐵 & 𝑔(𝜃(𝜑)) = 𝐶

𝑣(𝜑) = 2
3 iff 𝑔(𝜑) = 𝐵 & 𝑔(𝜃(𝜑)) = 𝐵

𝑣(𝜑) = 1 iff 𝑡(𝜑) = 𝐶 & 𝑡(𝜃(𝜑)) = 𝐵

Again, after defining the set of axioms for SEMŁ𝑘
3
, it is possible to prove the

following Lemmas:

Lemma 3.2.1. Given a valuation 𝑣 ∈ SEMŁ𝑘
4
, it is possible to define an interpretation

𝑔𝑣 ∈ SEMŁ𝑘
3

such that 𝑣(𝜑) ∈ 𝒟1
4 iff 𝑔𝑣(𝜑) ∈ 𝒟1

3, and 𝑣(𝜑) ∈ 𝒟2
4 iff 𝑔𝑣(𝜑) ∈ 𝒟2

3, and
𝑣(𝜑) ∈ 𝒟3

4 iff 𝑔𝑣(𝜑) ∈ 𝒟3
3.

Lemma 3.2.2. Given a valuation 𝑔 ∈ SEMŁ𝑘
3
, it is possible to define an interpretation

𝑣𝑔 ∈ SEMŁ𝑘
4

such that 𝑔(𝜑) ∈ 𝒟1
3 iff 𝑣𝑔(𝜑) ∈ 𝒟1

4, and 𝑔(𝜑) ∈ 𝒟2
3 iff 𝑣𝑔(𝜑) ∈ 𝒟2

4, and
𝑔(𝜑) ∈ 𝒟3

3 iff 𝑣𝑔(𝜑) ∈ 𝒟3
4.

Theorem 3.2.2. SEMŁ𝑘
4

is a sound and complete semantics for SEMŁ𝑘
3

Γ |=𝑖
SEMŁ𝑘

4
𝛼 ⇔ Γ |=𝑖

SEMŁ𝑘
3
𝛼

Proof. (⇒) Suppose (i) Γ |=𝑖
SEMŁ𝑘

4
𝛼. Then, by definition of entailment, we know that for

every valuation 𝑣 ∈ SEMŁ𝑘
4

(ii) 𝑣(Γ) ⊆ 𝒟𝑖
4 implies 𝑣(𝛼) ∈ 𝒟𝑖

4. Now take an arbitrary
valuation from 𝑣 ∈ SEMŁ𝑘

4
and suppose (iv) 𝑣(Γ) ⊆ 𝒟𝑖

4. Thus, from (ii), we have 𝑣(𝛼) ∈
𝒟𝑖

4. From this, by Lemma 3.2.1, it is possible to define an interpretation 𝑔𝑣 such that
𝑣(𝜑) ∈ 𝒟𝑖

4 iff 𝑔𝑣(𝜑) ∈ 𝒟𝑖
3. Therefore, we have (v) 𝑔𝑣(Γ) ⊆ 𝒟𝑖

3 and 𝑔𝑣(𝛼) ∈ 𝒟𝑖
3. Finally, by

definition of entailment, we get Γ |=SEMŁ𝑘
3
𝛼.

(⇐) Suppose (i) Γ |=𝑖
SEMŁ𝑘

3
𝛼. Then, by definition of entailment, we know that for every

valuation 𝑔 ∈ SEMŁ𝑘
3

(ii) 𝑔(Γ) ⊆ 𝒟𝑖
3 implies 𝑔(𝛼) ∈ 𝒟𝑖

3. Now take an arbitrary valuation
from 𝑔 ∈ SEMŁ𝑘

3
and suppose (iv) 𝑔(Γ) ⊆ 𝒟𝑖

3. Thus, from (ii), we have 𝑔(𝛼) ∈ 𝒟𝑖
3. From

this, by Lemma 3.2.2, it is possible to define an interpretation 𝑣𝑔 such that 𝑔(𝜑) ∈ 𝒟𝑖
3 iff

𝑣𝑔(𝜑) ∈ 𝒟𝑖
4. Therefore, we have (v) 𝑣𝑔(Γ) ⊆ 𝒟𝑖

4 and 𝑣𝑔(𝛼) ∈ 𝒟𝑖
4. Finally, by definition of

entailment, it follows that Γ |=SEMŁ𝑘
4
𝛼.

The above results had shown that, by using the reduction exhibited, it is possible
to reduce a 𝑘-dimensional logic to a 𝑛-dimensional logic, where 𝑛 < 𝑘 and 𝑛 = the number
of logical values of the original logic. Therefore the logic characterized by 𝑛-values has a
lesser number of dimensions and validates the same set of inferences as the original logic.
For future work, it remains to be shown whether there is any example of a 𝑘-dimensional
logic that could not be reduced to a lesser number of dimensions.
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It is also important to remark that by abandoning Shramko & Wansing’s restric-
tion that entailment must be about preservation of logical values, it leaves room for
𝑘-dimensional logics where each dimension may have a different notion of entailment.
Moreover, by merging 𝑞-matrices and 𝑘-dimensional logics we can think of different ver-
sions for the 𝑘-dimensional version of Łukasiewicz’s four valued logic exhibited above. For
instance, each dimension of the 𝑘-matrix could be split into designated and rejected, what
would give us the possibility of having the first dimension determined by a 𝑞-consequence,
the second dimension determined by a tarskian consequence, and so on. Such approach
would represent different points of view internalized in the same logic/structure. In the
following section, we illustrate of a notion of entailment able to express such idea by
encompassing a two-dimensional notion of logical consequence.

3.3 The bi-dimensional notion of entailment
In this section we illustrate the bi-dimensional of entailment proposed by Alexan-

der Bochman in [Bochman et al., 1998] and recently revived and improved by [Blasio et al., 2014]11.
The bi-dimensional notion of entailment is a rich framework able to encompass a multi-
plicity of consequence relations. In what follows, we present its construction:

Definition 36. A 2-dimensional matrix is a tuple B𝑀 = ⟨𝒱 ,ℛ,𝒟,𝒪⟩, where 𝒱 is a
non-empty set, 𝒟 and ℛ are subsets of 𝒱.

𝒟 is also called the accepted set of values, ℛ is called the rejected set, the set
ℬ 𝑑𝑒𝑓= 𝒟 ∩ ℛ is called the set of both accepted and rejected values and the set 𝒩 𝑑𝑒𝑓=
𝒱 − (𝒟 ∪ ℛ) is called the set of neither accepted nor rejected values.

We say a semantics SEM is any collection of valuations from the set of formulas
𝐹𝑜𝑟 into a 2-dimensional matrix. Accordingly, any set of valuations induces an associated
bi-dimensional notion of entailment in the following way:

Definition 37. Any collection of valuations from ℒ into a bi-dimensional matrix induces
a bi-dimensional notion of entailment, defined in the following way:

𝛼
𝛾 | 𝛿𝛽 iff for every 𝑣 ∈ SEM𝐵, 𝑣(𝛾) ∈ 𝒟 ⇒ 𝑣(𝛿) ∈ 𝒟 and 𝑣(𝛽) ∈ ℛ ⇒ 𝑣(𝛼) ∈ ℛ.

Thus, a bi-dimensional s-logic is defined as ℒ𝐵 = ⟨𝐹𝑜𝑟, ·
· |

·
·⟩, where 𝐹𝑜𝑟 is a set

of formulas endowed with a 2-dimensional entailment relation. Moreover, because of the
interaction between accepted and rejected values a bi-dimensional logic is able to express
all notions of entailment exhibited before:

∙ 𝛾 |=𝑡 𝛿 iff there is no 𝑣 ∈ SEM such that, 𝑣(𝛾) ∈ 𝒟 and 𝑣(𝛿) /∈ 𝒟
11 Something similar was also presented in [Muskens et al., 1999].



92 Chapter 3. Logical values

∙ 𝛼 |=𝑓 𝛽 iff there is no 𝑣 ∈ SEM such that, 𝑣(𝛼) /∈ ℛ and 𝑣(𝛽) ∈ ℛ

∙ 𝛼 |=𝑞 𝛿 iff there is no 𝑣 ∈ SEM such that, 𝑣(𝛼) /∈ ℛ and 𝑣(𝛿) /∈ 𝒟

∙ 𝛾 |=𝑝 𝛽 iff there is no 𝑣 ∈ SEM such that, 𝑣(𝛾) ∈ 𝒟 and 𝑣(𝛽) ∈ ℛ

Each of these are expressed in one point of the relation:

∙ .
𝛾 |
𝛿
. - 𝑡-entailment.

∙ 𝛼
. |
.
𝛽 - 𝑓 -entailment.

∙ 𝛼
. |
𝛿
. - 𝑞-entailment.

∙ .
𝛾 |

.
𝛽 - 𝑝-entailment.

Thus, the corresponding notion of consequence relation shall have the properties
defined for each direction of the relation. 𝐵-entailment has been proposed by
[Blasio and Marcos, 2013] as a logically four-valued notion of entailment. Moreover, in
[Blasio and Marcos, 2013], it is shown how it may serve as an useful tool to reconstruct
Belnap’s four-valued logic.
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4 Final remarks

4.1 What, then, should we expect from a logical system?

In introductory logic manuals it is not rare to find the claim that logic is the study
of “what logically follows from what” 1. Let us call this position as the folk view on logic.
According to such view, the fundamental role of logic is to line off what conclusions should
we accept from a given set of premises. Thus, logic is concerned with argument validity,
i.e, with being able to distinguish valid arguments from invalid ones. For [Hofweber, 2014],
this feature of logic is linked to one notion of logic, as the study of formally valid inferences
and logical consequence. In the previous chapters, we have seen different conceptions of
logical consequence, each of them formulated with different motivations and purposes.
That amounts to saying there are several ways of understanding the “follows from” in the
folk view.

Another common feature related to the idea that logic is the study of formally
invalid inference is that logic is about “the structure of arguments, not the content”. This
thesis has been addressed as the form versus matter distinction. It has its roots in Aristotle
and, in modern formal logic, has been understood in different forms. According to Novaes
[Novaes, 2012], “the form versus matter distinction is to be applied to objects such as
arguments so as to outline what is distinctively logical about them – which is associated
to their formal aspects – as opposed to their merely material aspects. Thus seen, the form
versus matter distinction has the responsibility of demarcating what is logical from what
is not logical (...), and of grounding the validity of valid arguments.”

If we restrict our look to the consequence operator associated to a given logic, to
explore the ‘form’ means to explore the so-called structural properties and its relation to
substitution-invariance. Despite the Tarskian consequence operator has been extensively
studied in the literature, there is still little consensus on what properties a consequence
operator should have in order to its associated structure deserve the name logic. In the
present study, we have shown motivations for the development of non-reflexive and non-
transitive logics. However, the question of whether they should be called logics was not
adressed in full detail here, the motivation for such logics was studied in the scope of the
problem of logical many-valuedness and its meaning within Suszko’s work.

On what regards the “matter” of arguments, the challenge of studying it also led to
what is nowadays called defeasible reasoning. Reasoning is called defeasible when the cor-

1 Cf. [Barwise et al., 2000], [Gensler, 2002].
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responding argument is rationally compelling but not deductively valid2. It is well-known
that the class of non-monotonic logics is related to defeasible reasoning and its formal
study. Therefore this class of non-Tarskian logics has found a good motivation for its role,
and challenged the claim that logic is about the structure and not the content. Therefore,
the question of what grounds the validity of arguments deserves further investigation in
view of the proliferation of non-Tarskian systems.

Non-reflexive logics as those proposed by Malinowski and presented in Chapter 3
leave open the question of what other philosophical motivations could be given to them.
The notion of 𝑞-consequence was a result of the search for generalizing Suszko’s Thesis
and exploring it beyond logical two-valuedness. Despite Malinowski’s methodological mo-
tivation for 𝑞-logics as expressing the modus operandi underlying scientific reasoning, it
is not clear what specific kind of phenomena would 𝑞-logics prove to be helpful in ex-
plaining/modelling. Moreover, other logics have been presented as modelling the process
of construction of scientific knowledge. Thus, the relation among such logics and 𝑞-logics
remains as a topic for future exploration.

Shramko & Wansing’s 𝑘-dimensional logics, as well as Marcos & Blasio’s presen-
tation of 𝑏-logics, raises the question of what should be recognized as an abstract logical
system. To put it short, should logic be a set of formulas endowed with a single consequence
relation, or with several consequence relations? Or, maybe, with a many-dimensional con-
sequence relation? In this regard, we may say that we can sharpen the folk view by saying
that logic is about what follows from what (in a given dimension/perspective).

A further development of the aforementioned sharpened view depends on ap-
proaching the issue not only inside the context of logical many-valuedness, but also facing
it in the context of pluralism regarding logical consequence. The intimate connection be-
tween logical many-valuedness and the notions of entailment related to them proved in
the present study to be a good motivation for a logical pluralism that not only considers
the plurality emerging from different logical systems and their underlying language 3, but
also emerging from different notions of entailment. From such a point of view, the ques-
tion of what happens beyond the Tarskian truth-preserving realm of entailment deserves
closer inspection.

2 Cf. [Koons, 2014].
3 In [Cook, 2010], the author presents several types of pluralism of this kind and discusses how they

relate to relativism.
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4.2 If truth-preservation is dethroned, what role is left for it?

“Never accept a dogma that
cannot withstand a good joke.”

— Gabriela Mistral

It is well-known that some arguments that may be valid in one logic could be re-
jected in another one. One example is disjunctive syllogism in classical and paraconsistent
logics. For some logical pluralists, the classical and paraconsistent logicians has different
views on logical consequence. Pluralism about logical consequence is the view that there
is more than one way of defining logical consequence. One of the reasons for such is the
fact that terms like ‘valid’ or ‘follows from’ may be defined in more than one way, as it
was done during the development of this thesis. A famous defense of logical pluralism
regarding logical consequence is made in [Beall and Restall, 2006].

Beall & Restall’s logical pluralism, intended as a pluralism regarding logical con-
sequence, lies in defending a plurality of logical consequences as long as they can be
expressed/fit into the following schema:

Generalized Tarski Thesis (GTT):
An argument is valid𝑥 if and only if in every case𝑥 in which the premises are true, so is

the conclusion.

where each expression case𝑥 in the (GTT) can be made more precise in at least three
ways which result in different extensions for ‘valid’. For example, by case one might mean
a first-order interpretation of a Tarskian model or even a situation or a possible-world.
Other alternatives include consistent or incomplete interpretations of the sort used in
the models theories for intuitionistic and paraconsistent logic. Different choices for the
interpretation of ‘case’ will result different precisifications of the (GTT) analysis of log-
ical consequence, which may result in different relations of logical consequence. Beall &
Restall’s defense of (GTT) rests on the idea that logical consequence is determined by
three main features: necessity (the truth of the premises in a valid argument necessitates
the truth of the conclusion), formality (valid arguments are so in virtue of their logical
form), and normativity (it is irrational to reject a valid argument). According to them,
those features imply the fact that logical consequence should be truth-preserving and,
therefore, is a reflexive, monotonic and transitive relation.

Regarding the problem as to whether non-reflexive or non-transitive accounts of
logical consequence should be taken as legitimate, Beall & Restall explain their view with
the following remark:
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“The given kinds of non-transitive or irreflexive systems of ‘logical conse-
quence’ are logics by courtesy and by family resemblance, where the courtesy
is granted via analogy with logics properly so called. Non-transitive or non-
reflexive systems of ‘entailment’ may well model interesting phenomena, but
they are not accounts of logical consequence. One must draw the line some-
where and, pending further argument, we (defeasibly) draw it where we have.
We require transitivity and reflexivity in logical consequence. We are plural-
ists. It does not follow that absolutely anything goes.” [Beall and Restall, 2006,
p. 91]

Beall & Restall’s defense of reflexive and transitive accounts of logical consequence
seems legitimate insofar as they match their requirement for necessity. However, it is not
at all clear that “[absolutely] anything goes” beyond the Tarskian account. Section 3.1 of
the present thesis has shown that non-reflexive logics are constructed through a natural
generalization of Tarskian logics. Moreover, since every 𝑞-logic can be characterized by a
three-valued model (see Theorem 3.1.4), thus having the two-valued models as its subclass,
a question that seems reasonable is to know whether it is possible to have a generalized
version of (GTT) (a Malinowskian version of it), thus extending its range of precisifications
and making Beall & Restall’s logical pluralism even more plural and able to encompass
non-reflexive logics. Of course, such a move may imply the demise/weakening of some of
the conditions required by Beall & Restall, but it remains to be investigated whether that
is enough to claim the non-legitimacy of non-reflexive accounts of logical consequence.

A very recent attack made to Beall & Restall’s logical pluralism can be found at
[Beziau, 2014]. According to the author, “logical pluralism is the defense that there are
various logics, it is not a general theory of logics. The logical pluralist does not make
the distinction between reasoning and the theory of reasoning; both are put in the same
bag. Beall and Restall uses the distinction between Logic and logic in the following way:
Logic names the discipline, and logic names a logical system. According to this
view there is no clear distinction between a logic system and the reasoning it is describing.
Futhermore, logic as a discipline does not explicitly appear as a systematic study of logical
systems.”

According to Béziau, logical pluralism as proposed by Beall & Restall is not in-
terested in understanding the relation between different logical systems by combining,
translating and comparing them, but to defend that each one has its legitimacy and that
one is not necessarily better than the other. Thus the view defended by Beall & Restall is
quite distant from reality since some of the logics accepted by the (GTT) schema might
disagree between them. Therefore, the peaceful view promoted by Beall & Restall’s logical
pluralism is inaccurate.
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Béziau’s project of Universal Logic has the goal of promoting a general framework
capable of studying the reasoning behind each logic. From such a point of view, there
seems to be no reason why not to accept non-Tarskian notions of logical consequence as
formal tools able to express specific kinds of reasoning. In [Estrada-Gonzalez, 2014], the
author summarizes Béziau’s view found in some of its papers in the following way:

P1 Virtually every theorem, principle for connectives, principle for the consequence
relation, etc, let us call them collectively ‘properties of a logic’, has been thrown out
or, at least, challenged.

P2 The outcome of such droppings and challenges have been regarded as logics.

P3 If the properties 𝑃1, ..., 𝑃𝑛 of a logic can be dropped or challenged, an additional
property 𝑃𝑚 also can be dropped or challenged and the result will still count as
logic.

P4 The situation is analogous to the case of algebra, where an algebraic structure needs
not to satisfy any property in particular.

P5 Hence, a relation of logical consequence can be defined with no reference to a par-
ticular property of a logic.

So, differently of Beall & Restall’s pluralism, Béziau’s view is that logic need not be
reflexive or transitive since it is not grounded on any particular principle or law. Therefore,
the kind of pluralism entailed by Universal Logic does not commit one to any particular
notion of logical consequence. All the requirements postulated by Beall & Restall, such as
necessity, normativity and formality, are ruled out in Béziau’s account. Regardless of such
matters, a problem that deserves to be adressed is to know whether any structure with a
non-trivial relation between formulas deserves to be called a logic. From such a point of
view, Béziau’s account seems closer to a form of relativism than Beall & Restall’s.





99

Bibliography

[Barwise et al., 2000] Barwise, J., Etchemendy, J., Allwein, G., Barker-Plummer, D., and
Liu, A. (2000). Language, proof and logic. CSLI publications. Cited on page 93.

[Beall and Restall, 2006] Beall, J. C. and Restall, G. (2006). Logical pluralism. Clarendon
Press Oxford. Cited 2 times on pages 95 and 96.

[Betti, 2011] Betti, A. (2011). Kazimierz twardowski. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy. Summer 2011 edition. Cited on page 23.

[Béziau, 1998] Béziau, J.-Y. (1998). Recherches sur la logique abstraite: les logiques nor-
males. Acta Universitatis Wratislaviensis, 18:105–114. Cited on page 52.

[Beziau, 2005] Beziau, J.-Y. (2005). From consequence operator to universal logic: a
survey of general abstract logic. In Logica Universalis, pages 3–17. Springer. Cited on
page 41.

[Béziau, 2012] Béziau, J.-Y. (2012). A history of truth values. Logic: A History of its
Central Concepts, 11:235. Cited 2 times on pages 26 and 30.

[Beziau, 2014] Beziau, J.-Y. (2014). The relativity and universality of logic. Synthese,
pages 1–16. Cited on page 96.

[Blasio et al., 2014] Blasio, C., Caleiro, C., and Marcos, J. (2014). On b-entailment. Bul-
letin of Symbolic Logic, 20(2):223–224. Cited 2 times on pages 67 and 91.

[Blasio and Marcos, 2013] Blasio, C. and Marcos, J. (2013). Do not be afraid of the
unknown. In 3rd UNILOG. Cited on page 92.

[Bloom and Suszko, 1971] Bloom, S. L. and Suszko, R. (1971). Semantics for the sen-
tential calculus with identity. Studia Logica, 28(1):77–81. Cited 2 times on pages 27
and 32.

[Bloom et al., 1972] Bloom, S. L., Suszko, R., et al. (1972). Investigations into the sen-
tential calculus with identity. Notre Dame Journal of Formal Logic, 13(3):289–308.
Cited 2 times on pages 27 and 32.

[Bochman et al., 1998] Bochman, A. et al. (1998). Biconsequence relations: A four-valued
formalism of reasoning with inconsistency and incompleteness. Notre Dame Journal of
Formal Logic, 39(1):47–73. Cited 2 times on pages 67 and 91.

[Brown et al., 1973] Brown, D. J., Suszko, R., and Bloom, S. L. (1973). Abstract logics,
volume 102. Państwowe Wydawn. Naukowe. Cited 2 times on pages 41 and 43.



100 Bibliography

[Caleiro et al., 2007] Caleiro, C., Carnielli, W., Coniglio, M. E., and Marcos, J. (2007).
Two’s company: “the humbug of many logical values”. In Logica Universalis, pages
175–194. Springer. Cited 10 times on pages 29, 32, 47, 50, 54, 56, 58, 63, 75, and 76.

[Caleiro et al., 2003] Caleiro, C., Carnielli, W. A., Coniglio, M. E., and Marcos, J. (2003).
Suszko’s thesis and dyadic semantics. Preprint available at: http://wslc. math. ist. utl.
pt/ftp/pub/CaleiroC/03-CCCM-dyadic1. pdf. Cited 4 times on pages 29, 33, 54, and 55.

[Caleiro et al., 2013] Caleiro, C., Marcos, J., and Volpe, M. (2013). Bivalent semantics,
generalized compositionality and analytic classic-like tableaux for finite-valued logics.
Theoretical Computer Science. Cited on page 55.

[Cook, 2009] Cook, R. T. (2009). What is a truth value and how many are there? Studia
Logica, 92(2):183–201. Cited on page 19.

[Cook, 2010] Cook, R. T. (2010). Let a thousand flowers bloom: A tour of logical plural-
ism. Philosophy Compass, 5(6):492–504. Cited on page 94.

[da Costa and Béziau, 1994] da Costa, N. C. and Béziau, J.-Y. (1994). La théorie de
la valuation en question. In Proceedings of the XI Latin American Symposium on
Mathematical Logic (Part 2), Universidad Nacional del Sur, Bahia Blanca, pages 95–
104. Cited on page 41.

[Davidson, 1969] Davidson, D. (1969). True to the facts. The Journal of Philosophy,
pages 748–764. Cited on page 21.

[Dummett, 1978] Dummett, M. (1978). Truth and other enigmas. Harvard University
Press. Cited 4 times on pages 20, 34, 35, and 36.

[Dummett, 1981] Dummett, M. (1981). Frege: Philosophy of language, volume 2. Cam-
bridge Univ Press. Cited on page 20.

[Dummett, 1991] Dummett, M. (1991). The logical basis of metaphysics, volume 5. Har-
vard university press. Cited 2 times on pages 34 and 36.

[Dummett, 2014] Dummett, M. (2014). Origins of analytical philosophy. Bloomsbury
Publishing. Cited on page 23.

[Estrada-Gonzalez, 2014] Estrada-Gonzalez, L. (2014). Fifty (more or less) shades of
logical consequence. Cited on page 97.

[Font, 2009] Font, J. M. (2009). Taking degrees of truth seriously. Studia Logica,
91(3):383–406. Cited 3 times on pages 33, 50, and 51.

[Frankowski, 2004] Frankowski, S. (2004). Formalization of a plausible inference. Cited
3 times on pages 67, 82, and 83.



Bibliography 101

[Frege, 1892] Frege, G. (1892). Ueber sinn und bedeutung. translated as‘on sense and ref-
erence’in geach and black (eds.), translations from the philosophical writings of gottlob
frege. Cited on page 20.

[Frege, 1956] Frege, G. (1956). The thought: A logical inquiry. Mind, pages 289–311.
Cited on page 21.

[Gabriel, 1984] Gabriel, G. (1984). Fregean connection: Bedeutung, value and truth-value.
The Philosophical Quarterly, pages 372–376. Cited on page 21.

[Gabriel, 2001] Gabriel, G. (2001). Frege, lotze, and the continental roots of early analytic
philosophy. From Frege to Wittgenstein, pages 39–52. Cited 2 times on pages 21 and 22.

[Gensler, 2002] Gensler, H. (2002). Introduction to logic. Routledge. Cited on page 93.

[Hofweber, 2014] Hofweber, T. (2014). Logic and ontology. In Zalta, E. N., editor, The
Stanford Encyclopedia of Philosophy. Fall 2014 edition. Cited on page 93.

[Humberstone, 1998] Humberstone, L. (1998). Many-valued logics, philosophical issues
in. Craig (1998, ed.: 84-91). Cited 2 times on pages 36 and 50.

[Humberstone, 2012] Humberstone, L. (2012). Dana scott work with generalized conse-
quence relations. Universal Logic: An anthology, pages 263–279. Cited on page 38.

[Jansana, 2011] Jansana, R. (2011). Propositional consequence relations and algebraic
logic. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Spring 2011
edition. Cited on page 43.

[Koons, 2014] Koons, R. (2014). Defeasible reasoning. In Zalta, E. N., editor, The Stan-
ford Encyclopedia of Philosophy. Spring 2014 edition. Cited on page 94.

[Loparic and da Costa, 1984] Loparic, A. and da Costa, N. C. (1984). Paraconsistency,
paracompleteness, and valuations. Logique et analyse, 27(106):119–131. Cited 2 times
on pages 41 and 52.

[Łukasiewicz, 1968] Łukasiewicz, J. (1968). On three-valued logic. The Polish Review,
pages 43–44. Cited on page 24.

[Malinowski, 1990a] Malinowski, G. (1990a). Q-consequence operation. Reports on Math-
ematical Logic, 24(1):49–59. Cited 8 times on pages 32, 33, 67, 68, 69, 70, 72, and 73.

[Malinowski, 1990b] Malinowski, G. (1990b). Towards the concept of logical many-
valuedness. Folia Philosophica, 7:97–103. Cited on page 68.

[Malinowski, 1993] Malinowski, G. (1993). Many-Valued Logics. Oxford University Press.
Cited on page 53.



102 Bibliography

[Malinowski, 1994] Malinowski, G. (1994). Inferential many-valuedness. In Philosophical
logic in Poland, pages 75–84. Springer. Cited 2 times on pages 74 and 75.

[Malinowski, 2007] Malinowski, G. (2007). That p+ q= c(onsequence). Bulletin of the
Section of Logic, 36(1/2):7–19. Cited on page 70.

[Malinowski, 2009] Malinowski, G. (2009). A philosophy of many-valued logic. the third
logical value and beyond. In The Golden Age of Polish Philosophy, pages 81–92.
Springer. Cited 2 times on pages 24 and 30.

[Malinowski, 2011] Malinowski, G. (2011). Multiplying logical values. 7th Smirnov Read-
ing in Logic. Cited 3 times on pages 68, 75, and 83.

[Malinowski and Zygmunt, 1978] Malinowski, G. and Zygmunt, J. (1978). Review of:
Roman suszko - abolition of the fregean axiom. Erkenntnis, 12:369–380. Cited on page
27.

[Marcelino et al., 2014] Marcelino, S., Caleiro, C., and Marcos, J. (2014). On the charac-
terization of broadly truth-functional logics. In GeTFuN 2.0, Vienna Summer of Logic.
Cited on page 63.

[Marcos, 2004] Marcos, J. (2004). Possible-translations semantics. In Workshop on Com-
bination of Logics: Theory and applications (CombLog’04), pages 119–128. Cited 2
times on pages 47 and 50.

[Marcos, 2009] Marcos, J. (2009). What is a non-truth-functional logic? Studia Logica,
92(2):215–240. Cited on page 50.

[Muskens et al., 1999] Muskens, R. et al. (1999). On partial and paraconsistent logics.
Notre Dame Journal of Formal Logic, 40(3):352–374. Cited on page 91.

[Novaes, 2012] Novaes, C. D. (2012). Reassessing logical hylomorphism and the demar-
cation of logical constants. Synthese, 185(3):387–410. Cited on page 93.

[Omyla, ] Omyla, M. An overview of suszko’s thought. Cited 2 times on pages 33 and 34.

[Perzanowski, ] Perzanowski, J. Review of logic and philosophy in the lvov-warsaw school.
Cited on page 23.

[Pogorzelski and Pogorzelski, 1994] Pogorzelski, W. A. and Pogorzelski, A. W. (1994).
Notions and theorems of elementary formal logic. Warsaw University-Białystok Branch.
Cited 2 times on pages 30 and 31.

[Rescher, 1968] Rescher, N. (1968). Many-valued logic. Springer. Cited on page 24.



Bibliography 103

[Scott, 1973] Scott, D. (1973). Background to formalization. Studies in Logic and the
Foundations of Mathematics, 68:244–273. Cited 2 times on pages 34 and 36.

[Scott, 1974] Scott, D. (1974). Completeness and axiomatizability in many-valued logic.
In Proceedings of the Tarski Symposium, volume 25, pages 411–436. American Mathe-
matical Society, Providence. Cited 3 times on pages 34, 36, and 52.

[Shoesmith and Smiley, 1971] Shoesmith, D. and Smiley, T. J. (1971). Deducibility and
many-valuedness. The Journal of Symbolic Logic, 36(04):610–622. Cited on page 49.

[Shramko and Wansing, 2007] Shramko, Y. and Wansing, H. (2007). Entailment relations
and/as truth values. Bulletin of the Section of Logic, 36(3-4):131–144. Cited 2 times
on pages 86 and 87.

[Shramko and Wansing, 2011] Shramko, Y. and Wansing, H. (2011). Truth and Falsehood:
An Inquiry Into Generalized Logical Values, volume 36. Springer. Cited 8 times on
pages 19, 22, 68, 84, 85, 86, 87, and 88.

[Simons, 1989] Simons, P. (1989). Łukasiewicz, Meinong and Many-Valued Logic.
Springer. Cited on page 25.

[Simons, 2014] Simons, P. (2014). Jan lukasiewicz. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy. Summer 2014 edition. Cited on page 25.

[Skurt, 2011] Skurt, D. (2011). Logik und relationale strukturen. Master thesis, Univer-
sitat Leipzig. Cited on page 57.

[Strawson, 1950] Strawson, P. F. (1950). On referring. Mind, pages 320–344. Cited on
page 21.

[Suszko, 1975a] Suszko, R. (1975a). Abolition of the fregean axiom. In Logic Colloquium,
pages 169–239. Springer. Cited 4 times on pages 27, 28, 29, and 30.

[Suszko, 1975b] Suszko, R. (1975b). Remarks on lukasiewicz’s three-valued logic. Bulletin
of the Section of Logic, 4(3):87–90. Cited 5 times on pages 29, 32, 33, 51, and 53.

[Suszko, 1977] Suszko, R. (1977). The fregean axiom and polish mathematical logic in
the 1920s. Studia Logica, 36(4):377–380. Cited 2 times on pages 30 and 32.

[Suszko, 1994] Suszko, R. (1994). The reification of situations. Springer. Cited on page
34.

[Suszko et al., 1968] Suszko, R. et al. (1968). Ontology in the tractatus of l. wittgenstein.
Notre Dame Journal of Formal Logic, 9(1):7–33. Cited on page 30.



104 Bibliography

[Tsuji, 1998] Tsuji, M. (1998). Many-valued logics and suszko’s thesis revisited. Studia
Logica, 60(2):299–309. Cited on page 53.

[Urquhart, 2001] Urquhart, A. (2001). Basic many-valued logic. In Handbook of philo-
sophical logic, pages 249–295. Springer. Nenhuma citação no texto.

[Wansing and Shramko, 2008] Wansing, H. and Shramko, Y. (2008). Suszko’s thesis, in-
ferential many-valuedness, and the notion of a logical system. Studia Logica, 88(3):405–
429. Cited on page 84.

[Wójcicki, 1970] Wójcicki, R. (1970). Some remarks on the consequence operation in
sentential logics. Cited on page 47.

[Wójcicki, 1984] Wójcicki, R. (1984). R. suszko’s situational semantics. Studia Logica,
43(4):323–340. Cited 2 times on pages 28 and 33.

[Wolenski, 1989] Wolenski, J. (1989). Logic and philosophy in the lvov-warsaw school.
Cited on page 24.

[Wolniewicz, 1968] Wolniewicz, B. (1968). Things and Facts. Polish States Publishers in
Science. Cited on page 30.


	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Contents
	Introduction
	On the role of truth values in logical consequence
	Truth-values and many-valuedness
	Gottlob Frege, truth-values as reference
	Łukasiewicz and The Possibles
	Roman Suszko on algebraic and logical values
	Suszko's Thesis and many-valuedness
	Michael Dummett and Dana Scott on many-valuedness


	Suszko's reduction: in the land of bivaluations
	Exploring Suszko's reduction
	On the meaning of Suszko's reduction
	Improving Suszko's reduction


	Beyond Suszko's Reduction
	Logical values
	G. Malinowski and inferential many-valuedness
	Reducing Q-logics
	Plausible entailment

	Shramko & Wansing beyond inferential many-valuedness
	Reducing Tarskian k-dimensional logics

	The bi-dimensional notion of entailment

	Final remarks
	What, then, should we expect from a logical system?
	If truth-preservation is dethroned, what role is left for it?


	Bibliography

