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AA
lbert Einstein once said, about ‘‘the world of our
sense experiences,’’ ‘‘the fact that it is comprehen-
sible is a miracle’’ (1936, p. 351). A few decades

later, another physicist, Eugene Wigner, wondered about
the unreasonable effectiveness of mathematics in the
natural sciences, concluding that ‘‘the miracle of the appro-
priateness of the language of mathematics for the formu-
lation of the laws of physics is a wonderful gift which we
neither understand nor deserve’’ (1960, p. 14). At least three
factors are involved in Einstein’s and Wigner’s miracles: the
physical world, mathematics, and human cognition. One
way to relate these factors is to ask how the universe could
possibly be structured in such a way that mathematics would
be applicable to it, and that we would be able to understand
that application. This is roughly Wigner’s question. Alterna-
tively, the way of the mathematical naturalist is to argue that
we abstract certain properties from the world, perhaps using
our bodies and physical tools, thereby articulating basic
mathematical concepts, which we continue building into the
complex formal structures of mathematics. John Stuart Mill,
Penelope Maddy, and Rafael Nuñez teach this strategy of
cognitive abstraction in very different manners. But what if
the very concepts and basic principles of mathematics were
built into our cognitive structure itself? Given such a cog-
nitive a priori mathematical endowment, would the miracles
of the link between world and cognition (Einstein) and
mathematics and world (Wigner) not vanish, or at least
significantly diminish? This is the stance of Stanislas Dehe-
ane’s and Elizabeth Brannon’s 2011 anthology, following a
venerable rationalist tradition including Plato and Immanuel
Kant.

Space, Time and Number in the Brain (henceforth:
STNB) searches for the foundations of mathematical
thought across an impressive collection of 21 articles. The
book is divided into five sections: (1) Mental Magnitudes
and Their Transformations, (2) Neural Codes for Space,

� 2015 Springer Science+Business Media New York, Volume 37, Number 2, 2015 93

DOI 10.1007/s00283-014-9515-8

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-014-9515-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-014-9515-8&amp;domain=pdf


Time and Number, (3) Shared Mechanisms for Space,
Time and Number?, (4) Origins of Proto-Mathematical
Intuitions, (5) Representational Change and Education.
The breadth of research and results represented in this
anthology are staggering. The primary thrust of the
empirical topics of the essays within is an exploration of
the subconscious, automatic, and prelinguistic neurologi-
cal and mental elements necessary for mathematical
cognition—that is, space, time, and number. Importantly,
these essays do not address either the data or the theories
behind conscious or reflective mathematical cognition,
such as basic arithmetical, algebraic, or geometrical
inferences, let alone proofs. Despite the empirical pro-
gress they describe, the challenge remains of developing
and testing predictive and explanatory models of the data.
Examples of such models and theories include Elizabeth
Spelke’s ‘‘core systems’’ of geometry and number (STNB,
Chapter 18), Vincent Walsh’s ATOM ‘‘A Theory Of Mag-
nitude,’’ which links space, time, and number through a
single underlying magnitude, and dual-process theories
segregating automatic, analogical systems from explicit,
rule-based systems.

Given the depth, complexity, and importance of many
ideas in this anthology, it is most effective to organize a
review of STNB not by chapter, but with respect to gen-
eral themes. The three general topics we address are:
Data: A Clean Consensus; Cognitive-Epistemic Founda-
tions of Mathematics (ceFOM): Coding, computability, and
cognition; and Representation: Language and Approxi-
mation. In the first section, we review robust empirical
findings, such as the SNARC effect, the ANS, and Weber’s
law. The second section addresses the relations between
mathematics, computation, and cognition, which we call
ceFOM. Given that investigations of these topics are
almost as old a topic in philosophy as the foundations of
mathematics itself (Hacking 2014), and given that many
philosophers have appealed in various ways to possible
epistemic, psychological, and neurological mechanisms
underlying mathematical cognition (e.g., Luitzen E. J.
Brouwer, William James, and Ludwig Wittgenstein), we
discuss it here even though it is only mentioned margin-
ally in the anthology. The third section turns to another
important area of inquiry: the role of linguistic represen-
tation in the cognition of mathematics. We conclude with
a summary of these broader themes of STNB, a brief
allusion to the history of mathematics, and a statement of
some outstanding problems.

Data: A Clean Consensus
As the book demonstrates, a vast number of experi-
ments confirm the existence of a system of fundamental
magnitude representations for space, time, and number
that allow human and nonhuman animals to navigate
and make perceptual calculations. We highlight two of
the most robust, without implying either that they
are the only relevant data about such system or that
there is a uniform theoretical account of the cogni-
tive mechanisms underlying a fundamental magnitude
system.

1. The Spatial Numerical Association of Response

Codes (SNARC) Effect

The Spatial Numerical Association of Response Codes
Effect is well confirmed and its prominence in the anthol-
ogy is entirely justified. In his introduction to Section 3
(STNB, Chapters 9-12), the book’s coeditor and the dis-
coverer of the effect, Stanislas Deheane, describes the
SNARC effect thus:

My research [in the early 1990s] concerned how quickly
human participants could decide whether a digit was
odd or even. The central issue was whether they could
do this digitally, like a computer, by simply looking at
the last bit or the last digit, or whether they would be
influenced by conceptual variables such as the magni-
tude of the number. Unexpectedly, the latter effect
turned out to be massive. Independently of whether the
digit was odd or even, number magnitude biased the
subject’s responses in such a way that large numbers led
to faster key presses on the right-hand side of space, and
small numbers to faster key presses on the left-hand side
of space. …number and space are intimately related
concepts… (STNB, p. 119)

This effect indicates that there is a behavioral and cognitive
correlation between the estimation of numeric size and
spatial representations concerning length. Such correlation
is not only systematic, but also analogical-continuous, in
the sense that spatial lengths and numerical values are
associated in terms of the ‘‘number line.’’ Besides the
preponderance of this effect in many conditions and
cognitive tasks, its implications for acquiring basic knowl-
edge of the mapping between numbers and geometric
figures is quite remarkable because it could serve as basis
for the analogical reasoning involved in the visualization of
geometric axioms. In all of this, however, it is important to
keep in mind that SNARC is an effect—a behavioral
symptom—indicating and pointing to the workings of
underlying cognitive structures and processes about which
we continue theorizing.

The evidence for SNARC includes behavioral measures
(responses with the left or the right arm); perceptual illu-
sions concerning compression of spatial, temporal, and
numeric values that could, in principle, be modal specific
properties of the visual system; and neurological data
concerning brain lesions. The book, notably, also includes
a chapter on synesthesia (STNB, Chapter 9), which adds to
the quite significant number of experiments confirming
SNARC. The findings on synesthesia highlight the variety of
cognitive processes involved in SNARC and the theoretical
challenges they raise.

Unlike most of the chapters in the anthology, the dis-
cussion on synesthesia makes explicit reference to
conscious awareness—what Ned Block (1995) calls phe-
nomenal consciousness. Although this is not surprising
because synesthesia necessitates experiences with phe-
nomenal qualitative character, the theoretical implication of
having such experiences remains unclear. Many of the
mechanisms responsible for the representation of numbers
in humans and other animals seem to be innate, and deeply
embedded in the navigational system, as interfaced with
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space and time (STNB, Chapters 4, 17-19). A plausible way
of characterizing all these cognitive processes is in terms of
either unconscious cognitive processing for motor control
or as precursors to experiences of space and number,
which cannot play an equally fundamental role in the
motor-control system (for discussion about this issue, see
Gallistel 1990, Rosenbaum 2002, and Montemayor 2013).
So the specific role of having such experiences about space
and number remains unclear, as is the interaction between
these experiences and the well-confirmed unconscious
processes that combine numeric, temporal, and spatial
information in navigation (e.g., the computation of the
solar ephemeris function in insect navigation).

Although the data confirming the SNARC effect are
abundant, the findings corroborating them concern very
different cognitive processes. This may be considered a
consequence of the robustness of such an effect, but it could
also be interpreted as a potential source of confounding
factors. In other words, the data require careful theoretical
unpacking that remains undone. Outstanding questions vis-
à-vis the SNARC effect include: Is SNARC a symptom of the
primitive approximate system or is it the result of the
interface of this system with conceptual and linguistic
capacities? Which of these processes occur at a personal
level and which are related to subpersonal processes? What
is the interaction between conscious and unconscious
processing? Could the unconscious SNARC findings be
analog or magnitude-like and the conscious ones linguisti-
cally and introspectively mediated? What are the exact
neurological bases for SNARC, and how could SNARC be
computationally and mechanistically reconstructed?

2. The Approximate Number System (ANS) and

Weber’s Law

The approximate nature of magnitude-based cognition and
its compliance with Weber’s law is arguably one of the
most robust findings in psychophysics (STNB, Chapters 1,
8, 12, 14-17). Weber’s law is a ubiquitous feature of the
comparison of magnitude representations in animals and
humans. Indeed, conformity to Weber’s law has been
found in adult humans, infants, and animals both in the
temporal and number domains (see Montemayor 2013 for
review). Weber’s law captures the scalar factor of interval
timing, and it is expressed by the formula DI/I = k. The
difference threshold (DI)—the minimal change required for
discrimination—, divided by the value of the initial stimulus
or magnitude, is constant (k). The value of (k)—the con-
stant—has to be found through experiment (see especially
Chapters 16 and 17). Any changes in value that occur within
the difference threshold are not noticeable by the cognitive
organism. Weber’s law explicitly captures the approximate
nature of magnitude representations and it applies generally
and at different levels of processing (similar to the SNARC
effect) with respect to these magnitude-based representa-
tions. Thus, the interrelation between the number line and
the magnitude representation of time seems as strong as the
analog between the number line and the magnitude repre-
sentation of space.

In time cognition, this systematic ratio effect inspired the
accumulator model and the scalar expectancy theory—to

date, one of the main models for time cognition (con-
sult Church and Gibbon 1982). Because time cognition
seems also to be fundamentally related to numerical
cognition, this model could explain the mechanisms
(presumably innate and part of the cognitive a priori)
for approximate number cognition that also comply
with Weber’s law.

The scalar factor associated with Weber’s law is a basic
and systematic feature of time estimation, as corroborated
by many experiments, in humans and nonhumans. Weber’s
law also governs other kinds of magnitude-based repre-
sentations, such as number and ratio. (STNB, Chapter 1,
Gallistel 1990) An important theoretical issue is whether
time representation is in some sense more fundamental than
other magnitude-based representations. Time seems to be a
primitive magnitude in the sense that it cannot be decom-
posed into other magnitudes. (But see STNB, Chapter 20, for
an analysis of time in terms of social dynamics and meta-
phor, comparing English and Mandarin speakers.) For
example, preserving temporal metric relations (temporal
order and simultaneity) is fundamental for computing other
magnitudes. The case of the computation of the solar
ephemeris function in which insects identify their location
by mapping readings from their circadian clocks to spatial
representations is one example, but computations of rate
and speed are other, equally relevant examples (see
Montemayor 2013 for a review of these findings).

Because of this intimate relation between time cognition
and number, one finds an interesting tension in the inter-
pretations of the remarkably consistent data supporting the
Approximate Number System (ANS). First, there is the ten-
sion between the approximate analog system and the
culturally mediated discrete or symbolic one, mentioned
previously. Second, there is the philosophical problem of
the cognitive origins of mathematical cognition, and the
distinction between geometry and arithmetic. Is spatial
cognition more fundamentally related to the number line, or
is time more fundamentally related to numbers and arith-
metic? In the philosophical tradition, theorists have thought
that whereas one need not have spatial representations to
represent successive numbers, temporal representations are
essential (Kant, Arthur Schopenhauer, and L. E. J. Brouwer
held such a view). These are important issues to consider in
future analyses on the SNARC effect and ANS data.

Cognitive-Epistemic Foundations of Mathematics
(ceFOM): Coding, Computability, and Cognition
This evidence provides new vistas into the area of cogni-
tive-epistemic Foundations of Mathematics (ceFOM).
Questions about how we can know numbers, shapes, and
rules, and how it is even possible to prove necessary
arithmetical, algebraic, and geometric relations; about
whether mathematics is an internal cognitive structure (that
evolved), a learned one and/or one existing in an inde-
pendent realm; and about whether we can build a machine
or a computer simulation that emulates our knowledge
structures and conscious experience, are quite old. That is,
questions about the nature and sources of mathematical
knowledge and proof, and the uses of mathematics in the
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emulation of consciousness itself, remain very much with
us (e.g., Hacking 2014).

The data presented in STNB pertain to discussions
regarding cognition and computation, and mathematics
and computation. These complex discussions originate in
Kurt Gödel’s work on incompleteness (or undecidability),
Alan Turing’s finite-state machines, and Roger Penrose’s
physicalist and physics-oriented antimechanism. If it had
turned out that humans and other animals acquired various
mathematical concepts solely from the environment, that
there were no cognitive universals (or near universals)
regarding mathematics, and/or that diverse mathematical
structures are in no way internally correlated or structured,
then the analogy between computer and mind would have
been much less powerful and would have had much less
justification. We would also have had to worry less about
the exact relations between proof and algorithm, and
between mathematical structures and algorithms, at least
vis-à-vis the relevance of those concerns to (and from)
cognitive structures and processes. However, the data
STNB reviews suggest that significant amounts of internal
cognitive mathematical content exist. As fully explanatory
research programs, naturalism in mathematics and embodi-
ment of consciousness are thus no longer viable options.
Perhaps they will remain part of the story. (See Winther
2011 for discussion of how a plurality of research programs
on consciousness could potentially be integrated, thereby
avoiding the pernicious reification of any one of them.) A
central lesson STNB teaches is that we must continue
wrestling with whether the mind is a computer (Turing),
and with how effective the algorithms of that computer are,
given the limitations of arithmetic and set theory (Gödel).
In all of this, Penrose’s work remains powerful and inter-
esting (consult Solomon Feferman’s clear and tireless
analyses, e.g., Feferman 1995, 2009).

Here is the section on ‘‘Human Turing Machine’’ from
Dehaene and Brannon’s foreword:

In humans at least, quantities enter into sophisticated
multi-step calculation and decision algorithms which can
be likened to computer programs. Do these computa-
tions imply specifically human brain mechanisms that
grant us the computational power of a Turing machine?
Does the human brain contain dedicated mechanisms for
the necessary operations of ‘‘routing’’ (selecting one out
of many input-output mappings), ‘‘chaining’’ (re-using
the output of a process as the input to another), ‘‘if-then’’
branching, or ‘‘for’’ and ‘‘while’’ loops? Can multi-step
operations unfold automatically or are they necessarily
under conscious control? (STNB, p. xi, citations suppressed)

With respect to the cognitive-epistemic Foundations of
Mathematics, the editors of STNB clearly understand that
the empirical results of their volume have ramifications for
how psychologists and cognitive scientists, mathemati-
cians, and computer scientists interpret and model the
mind/brain, with respect to (i) neuronal activity, (ii)
reasoning in general, and (iii) mathematical reasoning,
and mathematical proofs in particular.

To investigate further what is at stake in ceFOM, it
would be useful to turn to Penrose’s framings of some of
the questions. Penrose (1994, p. 12, 2000, p. 101) presents

the following table ‘‘about the relationship between con-
scious thinking and computation’’:

A. All thinking is computation; in particular, feelings of
conscious awareness are evoked merely by the carrying
out of appropriate computations.

B. Awareness is a feature of the brain’s physical action;
and, whereas any physical action can be simulated
computationally, computational simulation cannot by
itself evoke awareness.

C. Appropriate physical action of the brain evokes aware-
ness, but this physical action cannot even be properly
simulated computationally.

D. Awareness cannot be explained by physical, computa-
tional, or any other scientific terms.

As is well known, Penrose is an advocate of C. (We here set
aside his distinction between strong vs. weak C.) Together
with Stuart Hameroff, Penrose has argued that there are
quantum-mechanical processes occurring in cellular
microtubules and that these give rise to consciousness.
Such processes cannot be simulated computationally, but
they are physical and physics-based, a fact that Nancy
Cartwright takes Penrose to task for in Penrose (2000)—
‘‘What are Roger’s [Penrose] reasons for thinking answers to
questions about the mind and consciousness are to be
found in physics rather than in biology?’’ she asks (p. 161).
To provide perspective on the table, Daniel Dennett would
be an advocate of A, David Chalmers of D. You can decide
where you find yourself along the spectrum. Interestingly,
at least options A and B are consistent with the empirical
results reviewed in STNB. Option D seems out of the
question vis-à-vis STNB, but what about option C? Again,
open questions remain, and STNB advances our empirical
knowledge significantly. Although it leaves theory under-
determined, the evidence found in STNB strongly suggests
that theoreticians must revisit and rethink the computa-
tional theory of mind, and the role of Gödel, Turing, and
Penrose in that terrain. (For a related framing, see Chalmers
1995, who distinguishes three questions: ‘‘What does it take
to simulate our physical action?’’ ‘‘What does it take to
evoke conscious awareness?,’’ and ‘‘What does it take to
explain conscious awareness?’’.)

Representation: Language and Approximation
In all of this, questions regarding the relationship between
language and the number-space-time system(s) lurk. These
concerns may be related to the issue of magnitude or digital
formats, but they need not be. In our discussion of synes-
thesia, we highlighted the contrast of approaches between
the analog approximate system (which is supposed to be
evolutionarily more ancient) and the linguistic-dependent
symbolic elements (which might even be culturally medi-
ated) that are supposedly related to synesthesia. The contrast
between language-based and nonlinguistic approaches is
most explicitly addressed in Chapters 18 (Spelke) and 20
(Lera Boroditsky). Although their views may not be incom-
patible with respect to some issues (e.g., Spelke grants
language the role of generalizing the core systems), there
seem to be important theoretical disagreements.
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On the one hand, Spelke defends the hypothesis that
there is a set of cognitive systems for core mathematical
knowledge of number, which is phylogenetically ancient
and innate. Similar to Noam Chomsky’s notion of Universal
Grammar (UG), this core knowledge is a universal and
necessary condition for the acquisition of numeric knowl-
edge. According to Spelke, one of the core systems (for
tracking small numbers) is discrete, whereas the other core
system is approximate (the system corroborated by the
findings on the SNARC effect and ANS). The role of lan-
guage with respect to these systems remains unclear. One
possibility is Brian Butterworth’s claim (Chapter 16) that the
discrete system seems to be more heavily involved in cal-
culations of arithmetic, but the ANS also is very accurate at
calculations of time and number, too. Another option is that
language helps generalize or functionalize the representa-
tions of these systems in recursive ways. Spelke argues that
there are two other systems for shapes and surfaces that
capture information in terms of Euclidean geometry. This
seems to be an endorsement of a view that Hans Rei-
chenbach (1958) criticized, which he named ‘‘the visual a
priori,’’ the Kantian claim that the axioms of Euclidean
geometry are basic principles of our visual system (Rei-
chenbach 1958, pp. 32-33). Reichenbach objects that in the
visualization of any geometric axioms ‘‘the normative
function of visualization is not of visual but of logical ori-
gin’’ (Reichenbach 1958, p. 91).

On the other hand, Boroditsky proposes that there are
very strong interactions between representations of space
and time, but that these representations are entirely
dependent on language and culture. Bluntly put, she
endorses the Sapir-Whorf hypothesis of linguistic relativity.
This claim, when contrasted with Spelke’s UG-type account
of core knowledge, presents the following problem. Even
assuming that language is indispensible for human capac-
ities to learn and know mathematics, there are Chomsky’s
(1986) related distinctions of competence versus perfor-
mance, and I-language versus E-language. I-language refers
to the set of mental representations that constitute our
linguistic competence. I-language (‘‘I’’ stands for ‘‘internal’’)
is an abstract set of computational principles that operate
without us being aware of them. Chomsky proposed that
given the poverty of linguistic stimuli, the acquisition of
language by humans shows that our linguistic competence
is innate. This means that our language faculty is the result
of our genetic makeup, and not of exposure to stimuli and
external guidance. In contrast, E-language is the external or
public manifestation of the internal representation of lan-
guage on which linguistic competence depends. Unlike
I-language, E-language is learned, and humans are aware
of the express principles and symbols that constitute
E-language. Thus, interpreted in terms of E-language,
Boroditsky’s claim would be in strong disagreement with
the findings on ANS, SNARC, and the core knowledge
systems, which suggest that these systems are implicit and
innate. Although there may be ways of making these claims
compatible (for instance by distinguishing conscious from
unconscious processing), these details need to be provided
by a comprehensive theory. Again, this is part of the work
remaining to be performed.

To conclude, STNB is an important contribution to the
literature on the psychology of space and time perception,
the foundations of mathematics, and the relation between
analogical-continuous representations of number and lan-
guage-based representations of mathematical relations.
Although STNB is an impressive collection of papers by
leading scholars in the field of mathematical cognition,
important theoretical difficulties remain unsolved. We
discussed three of these problems concerning the inter-
pretation of the findings about the SNARC effect and
Weber’s law, the nature of mathematical cognition in the
light of debates concerning mathematics and computation,
and the relation between mathematics and language.

Brouwer described the ‘‘first act of intuitionism’’ in terms
of: ‘‘Completely separating mathematics from mathematical
language and hence from the phenomena of language
described by theoretical logic, recognizing that intuitionis-
tic mathematics is an essentially languageless activity of the
mind having its origin in the perception of a move of time’’
(1951, p. 4). This idea, which finds philosophical expres-
sion in the work of Kant and Schopenhauer, remains at the
center of debates regarding the systems underlying math-
ematical cognition. Although Brouwer was probably wrong
in generalizing this claim, the role of time and space per-
ception in determining mathematical capacities remains a
subject of research possibilities going forward.
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