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The Carter-Leslie Doomsday argument can be given in a situation where you do not know your

birth rank, even approximately. This gives support to the refutation of the Doomsday argument

based on the Self-Indication Assumption: ‘finding that you exist gives you reason to think that

there are many observers’.

I. THE DOOMSDAY ARGUMENT

The Carter-Leslie Doomsday argument,1 as standardly presented, relies on the assumption that you

have knowledge of your approximate birth rank. I will demonstrate that the Doomsday argument can

still be given in a situation where you have no knowledge of your birth rank. As I will show, this allows

one to reply to Bostrom’s2 defense of the Doomsday argument against the refutation given by Dieks,3
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Kopf et. al.,4 Bartha and Hitchcock,5 and Olum.6 (I will call this refutation ‘Dieks’s reply’ for short.)

The Doomsday argument runs as follows. Suppose that you have narrowed the possibilities for

doom down to two:

H1: ‘there will have been a total of 200 billion humans.’

H2: ‘there will have been a total of 200 trillion humans.’

Let us suppose that these hypotheses agree on the number of humans that exist on Earth from 20:41 to

20:42 GMT on April 9, 2002. This supposition is not a standard part of the Doomsday argument, but it

does not affect the Doomsday argument, and it is needed for my argument below. There are two

reasons this supposition is reasonable. First, if the hypotheses disagreed on the number of humans that

exist during that time period, then in principle it would be easy to falsify one of them, by checking

population figures.7 Second, since the hypotheses are meant to represent the possibilities that doom will

come soon and that doom will come late, the hypotheses should be understood as agreeing on the

number of humans that exist up to now and into the short-term future; they disagree only about how

many humans will exist in the long-term future. 
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After considering the various ways in which human life might end, you might assign the following

probabilities:

Pr(H1) = 0.05

Pr(H2) = 0.95.

Suppose you also know proposition R: ‘I am the 60 billionth human to have been born’. Reasoning with

the Self-Sampling Assumption:

(SSA) Observers should reason as if they were a random sample from the set of all observers

in their reference class,

you have the following conditional probabilities:

Pr(R | H1) = 1/200 billions

Pr(R | H2) = 1/200 trillions.

Bayes’ theorem then gives the result that Pr(H1 | R) = 0.98. Since you know R, your posterior

probability for H1 is 0.98 – doom is likely to come soon.

Suppose that you have no knowledge of your birth rank. How could the Doomsday argument

still be given? What is needed is a property p such you know you have p, and the total number of

observers expected to have p would be the same regardless of whether H1 or H2 is true. (In the

previous paragraph, ‘having a birth rank of 60 billion’ played the role of property p.) We each possess

such properties, and thus the Doomsday argument does apply. For me, one such property would be the

property of being alone in 323 Main Street in Lexington, Kentucky, from 20:41 to 20:42 GMT on April

9, 2002. Call that property k, and let K be the proposition that someone has property k. Before 20:42

I did not know that K is true, but now I do. I can model this learning that K by conditionalization using
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my prior probability function Pr*: for any proposition A, 

Pr(A) = Pr*(A | K)

Note that it is reasonable for Pr* to be such that the probability of K does not depend on whether H1

or H2 is true:

Pr*(K | H1) = Pr*(K | H2) = Pr*(K)

If this were not the case, then conditionalization on K would shift my probabilities for H1 and H2. The

reason it is reasonable for Pr* to be such that K does not depend on H1 or H2 is that H1 and H2 agree

on the number of humans existing on Earth from 20:41 to 20:42 GMT on April 9, 2002. It follows that

Pr(H1) = Pr*(H1) and Pr(H2) = Pr*(H2). 

Now, let M be the proposition that I have property k. Reasoning using the SSA,

Pr(M | H1) = 1/200 billions

Pr(M | H2) = 1/200 trillions.

Bayes’s theorem then gives the result that Pr(H1 | M) = 0.98. Since I know M, my posterior probability

for H1 is again 0.98. Thus, one can get the Bayesian shift in favor of the few-observers hypothesis,

regardless of whether one has any knowledge of one’s birth rank. 

II. DEFENDING DIEKS’S REPLY

Dieks’s reply to the Doomsday argument relies on what Bostrom calls ‘the Self-Indication Assumption’

(SIA): roughly, ‘finding that you exist gives you reason to think that there are many observers’. The idea

behind Dieks’s reply is that conditionalizing on your existence shifts probabilities in favor of H2, and the

Doomsday argument shifts probabilities in favor of H1, and these two shifts cancel each other out.
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Bostrom has recently argued against this reply to the Doomsday argument by presenting a scenario for

which he claims that the SIA leads to unintuitive results. I will defend the SIA and Dieks’s reply.

Bostrom’s scenario is as follows. It is the year 2100, and physicists assign probability 0.5 each

to theories T1 and T2. T1 entails that the universe is very large, and there are a total of a trillion trillion

observers, while T2 entails that the universe is very very large, and there are a total of a trillion trillion

trillion observers. We do not know our birth ranks, even approximately. Physicists are going to do an

experiment to decide between T1 and T2, but before they do a presumptuous philosopher explains that

there is no need for the physicists to do the experiment. The presumptuous philosopher says that since

he exists, that makes it more likely that there are more observers – T2 is a trillion times more likely than

T1. 

Olum (p. 181) responds to this scenario by granting that the presumptuous philosopher is

correct, ‘as long as we feel that the likelihoods of the two theories are roughly equal before one

considers the effect on the number of observers’. Olum suggests, however, that ‘it is possible one

should think that a theory involving a very large universe is unlikely in proportion to the size of the

universe it proposes’ (p. 182). In that case, T2 would start out with a very low prior probability, and

taking into account the SIA would raise the probability to around 0.5. 

The problem with this latter reply is that it rejects one of the assumptions of Bostrom’s scenario,

that the physicists (who have not yet taken into account the SIA) are indifferent between T1 and T2.

Olum’s only response to Bostrom’s scenario itself is to bite the bullet. I side with Bostrom in thinking

that the position of the presumptuous philosopher is completely unreasonable, but, pace Bostrom, this

does not show that the SIA should be rejected.
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Bostrom’s basic idea is that, since we have no knowledge of our birth ranks in his scenario, we

can only get the first probability shift via the SIA in favor of more observers; we cannot get the second

Doomsday shift in favor of fewer observers. But as I have shown, the Doomsday argument can be

given even when we have no knowledge of our birth rank. We would have to specify that T1 and T2

agree on the number of observers existing in some appropriate spacetime region, but this is a legitimate

assumption to make. (We can pick the region such that, if the theories disagreed, then in principle it

would be easy to falsify one of them, by checking population figures.) Thus, the Doomsday argument

can be given in Bostrom’s scenario, and the combination of the SIA and the Doomsday argument

leaves the physicists’ probabilities for T1 and T2 unchanged. Bostrom’s scenario does not show the

unreasonableness of the SIA, and Dieks’s reply to the Doomsday argument is unrefuted.8 
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