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THE PARADOX OF THE BAYESIAN EXPERTS

1 INTRODUCTION

Suppose that a group of experts are asked to express their preference rankings on
a set of uncertain prospects and that all of them satisfy the economist’s standard
requisite of Bayesian rationality. Suppose also that there is another individual who
attempts to summarize the experts’ preference judgments into a single ranking.
What conditions should the observer’s ranking normatively be expected to satisfy
? A natural requirement to impose is that it be Paretian, i.e., it should respect unan-
imously expressed preferences over pairs of prospects. Another condition which
appears to be desirable is that the observer’s and the experts’ rankings should con-
form to one and the same decision theory, i.e., the observer himself should be
Bayesian. The next question is then, are these seemingly compelling normative
assumptions compatible with each other ?

As a specific application, think of an insurer who considers selling a new insur-
ance policy and consults a panel of experts before deciding which specification of
the insurance policy, if any, should be marketed. Suppose that the insurer knows
little or nothing about how to elicit the experts’ subjective probabilities. The only
way in which he could take advantage of the panel’s expertise seems to be this:
he will require the experts to state their preferences between the logically possi-
ble specifications, and then aggregate these data to define his own ranking. If one
further assumes that the experts are Bayesian, the question naturally arises of how
the insurer could conform to the double consistency requirement just explained.
Notice that this question makes perfectly good sense even if one has assumed that
the insurer is not familiar with Bayesian elicitation methods. Writers in the tra-
dition of de Finetti (1974–75) have emphasized that to conform to the Bayesian
axioms is tantamount to being “coherent” in one’s betting behaviour, regardless of
whether or not one knows the probability calculus.

Several writers in the field of collective choice or decision-making have in-
vestigated aggregative problems that are formally similar to the Bayesian experts
problem. Their nearly unexceptional conclusion is that logical difficulties will re-
sult from the double imposition of Bayesianism and Paretianism on the observer’s
preference. In an earlier paper[Mongin, 1995], we provided an up-to-date analysis
of these difficulties, using the axiom system which enjoys the highest theoretical
status among Bayesians, i.e., Savage’s[1972]. Essentially, the imposition of rela-
tively weak Paretian conditions, such as Pareto Indifference or Weak Pareto, leads
to impossibility results in a quasi-Arrovian style, i.e., to dictatorial conclusions,
whereas the imposition of the Strong Pareto condition involves a sheer logical im-
possibility, unless the individuals have identical probabilities or utilities. In each
case, the inference depends on “technical” assumptions the role and relevance of



322 PHILIPPE MONGIN

which should carefully be ascertained; unexpected possibility results emerge when
they are relaxed. Our Savagean conclusions encompass most of the more partial
or elementary variants of the Bayesian experts paradox that have been discussed
thusfar. We refer the reader to this earlier paper for references and comparisons.

The logical difficulties of “consistent Bayesian aggregation” led some writ-
ers to relinquish the first consistency condition — Paretianism — while others
abandonned the second — Bayesianism. Either way out of the paradox involves
a diminutio capitis. We have just suggested that the two requirements seemed
equally natural. There are indeed serious arguments in favour of each, which
makes the choice of a weaker version of consistency very awkward. In the present
paper, we shall explore an altogether different potential solution to the paradox
of the Bayesian experts. It consists in retaining the double consistency condition
while varying the chosen notion of “Bayesianism”. The impossibility results de-
rived from applying Savage’s axioms suggest that one should take a fresh look at
them. A natural candidate to play the culprit’s part is the sure-thing principle; but
it is not our intention here to weaken it. If only for the purpose of theoretical ex-
perimentation, we want to remain within the confines of Bayesianism. There are
also significant and well-recognized problems connected with the use of Savage’s
divisibility axiom. The present paper will take notice of them, but its primary tar-
get is to investigate the role of those axioms which ensure that the utility value of
consequences is independent of what state of the world occurs.

Several writers in the Bayesian tradition, such as Karni[1985] and Drèze[1987],
have repeatedly emphasized that state-independence is an inappropriate assump-
tion to make in general. The standard example to support this claim involves the
partition of states into the events “the agent lives” and “the agent dies”. Insurance
economics is replete with examples of a less dramatic sort in which the assumption
of state-independence appears to be indefensible, both normatively and factually.
On the constructive side, Dr`eze, Karni and others have devised axiom systems
which deliverstate-dependentsubjective expected utility representations. They
provide the generalization of Bayesianism that we want to put to the test. The
general question of this paper is then, does state-dependent utility theory offer a
solution to the paradox of the Bayesian experts ?

For reasons of tractability rather than of substance, most of the work on state-
dependent utility does not employ Savage’s framework but the alternative, highly
accessible framework introduced by Anscombe and Aumann[1963]. We shall fol-
low the existing literature and rephrase both the paradox and its tentative solutions
accordingly. As is well-known, Anscombe and Aumann’s (AA) approach to un-
certainty involves a loss of generality with respect to Savage’s, in that it assumes
a lottery structure on the consequence set. On the other hand, it makes it possi-
ble to dispense with Savage’s divisibility axiom, and thus to deal with finite state
sets – a welcome extension of subjective expected utility (SEU) theory. As far as
technical derivations are concerned, the analysis of “consistent Bayesian aggrega-
tion” la Savage depended on the measure-theoretic properties of his construction,
in particular the nonatomicity of his derived subjective probability. The reader
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should expect the present analysis to revolve around the convexity properties of
theconsequence set, as conveniently assumed by AA.

The paper is organized as follows. Section 2 presents the definitions and axioms
from SEU theory that will be used throughout. We shall briefly contrast AA’s ini-
tial system – which is state-independent – with two later state-dependent variants.
It is easy enough to axiomatize acompletely state-dependentsystem of SEU. The
well-known difficulty with this construction is that it leaves the individual’s sub-
jective probability indeterminate. Most of the work by Dr`eze, Karni and others has
actually consisted in defining systems ofintermediary strength, which allow for a
state-dependent utility valuation of consequences but preserve the determination
(if perhaps not the uniqueness) of the individual’s subjective probability. Among
the variants of AA’s construction, only these intermediary systems can be claimed
by Bayesianism. To accept complete state-dependence is really to take off the edge
of the doctrine; this appears to be a well-recognized point. We have selected here
an influential intermediary system first introduced by Karni, Schmeidler and Vind
[1983].

Section 3 restates the initial paradox by applying AA’s own state-independent
system. As suggested, the results exactly parallel those reached in the Savage case
but are easier to derive. Section 4 makes a start with an easy possibility result:
the paradox disappears in the pure state-dependent generalization of AA’s system.
Then, we proceed to reexamine the paradox in the light of the relevant intermediary
system of Karni, Schmeidler and Vind (KSV). The general conclusion of section
4 is that impossibility results can be derived in the KSV framework too, but the
required technical assumptions are even stronger than those put to use in the state-
independent case. This is why we choose to impose these assumptions only on
a subset of the state space, and accordingly obtain onlylocal analogues of our
earlier dictatorial or logical impossibility theorems. Section 5 discusses a two-
individual illustration of our impossibility results and compares them with those
of Schervisch, Seidenfeld and Kadane (1991), who have also investigated a state-
dependent version of the Bayesian experts problem. Section 6 elaborates on the
implications of the present results for the theory of collective decision-making.
The proofs of all formal statements are in Appendix A.

2 DEFINITIONS AND AXIOMS FROM SUBJECTIVE EXPECTED
UTILITY THEORY

As in Anscombe and Aumann[1963], we assume that there is a finite setS of
states of the world, to be denoted bys = 1; � � � ; T , and there is a setX of final
outcomes, to be denoted byA;B;C; � � � Throughout, we require that there are at
least two distinct states and two distinct final outcomes. (A stronger cardinality
restriction will be introduced in section 3.) The consequence set isR = �F (X),
i.e., the set of all simple probabilities onX . The set of uncertain prospects, or (to
use Savage’s word) acts, is the setH of all functionsS ! R, to be denoted by
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f; g; h; � � � Then,f(s) is a simple probability onX ; denote byf(s; A) the value it
gives toA 2 X . Since the state set is finite, it is often convenient to denote acts as
vectors:

f = [R1; � � � ; Rs; � � � ; RT ];

whereRs stands forf(s). (Then, we rewritef(s; A) asRs(A).) Finally, consider
the setR� = �F (H), i.e., the set of all simple probabilities onH . A typical
element ofR� may be written as:

(�1f
1; � � � ; �kf

k) = (�1[R
1

1 ; � � � ; R
1

T ]; � � � ; �k [R
k
1 ; � � � ; R

k
T ]);

where� = (�1; � � � ; �k) is a probability vector and indexes1; � � � ; k refer to
particular acts inH .1 Now, following many writers in AA theory, we can identify
this element ofR� with the following, altogether different mathematical object:

�1f
1 + � � �+ �kf

k 2 H:

As is well-known, to identify these two mathematical entities with each other is
equivalent to assuming AA’s “reversal of order” axiom. The resulting simplifica-
tion has a price, because it then becomes impossible to discuss the extension of
AA’s approach to “moral hazard”, as promoted by Dr`eze[1987].

Granting the identificationR� ' H , H becomes the decision-maker’s choice
set. The preference relation� on H can then be subjected to all or part of the
following axioms.

AXIOM 1 (VNM axiom) � satisfies the von Neumann-Morgenstern axioms.

Any axiomatic version of VNM theory will do (see[Fishburn, 1982], for details).

AXIOM 2 (Nontriviality) There are two outcomesA�; A� such that

[A�; � � � ; A�] � [A�; � � � ; A�]:

The axiom below relies on the derived concept of a conditional preference. For
anys 2 S, define�s (“the preference conditional ons”) by2:

f �s g iff [8f 0; g0 2 H : f 0�s = g0�s; f(s) = f 0(s); g(s) = g0(s)] f 0 � g0:

Define a states to be null if its conditional preference�s is trivial, i.e., �s=
H �H .

1We shall adopt the convention of using square brackets for uncertain prospects and curved ones for
risky prospects (i.e., prospects with preassigned probabilities).

2We use the game-theoretic notationf 0
�s

; g0
�s

to refer to the subvectors obtained fromf 0; g0 by
deleting theirs-component.
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AXIOM 3 (State-Independence) For all non-null statess; t, and all constant
f; g 2 H , f �s g iff f �t g.

Under state-independence it becomes meaningful to identify the constant act[R;
� � � ; R] with its valueR 2 R, so that� induces a preference relation onR. In this
context Axiom 2 states that there areA�; A� 2 X such thatA� � A�. Another
version of Axiom 2 will also be used at a later stage in this paper:

AXIOM 2 0. There is a non-null states.

PROPOSITION 1 ([Anscombe and Aumann, 1963]). If � satisfies Axioms 1, 2
and 3, there exist a nonconstant VNM functionu on R and a probabilityp =
(p1; � � � ; pT ) onS such that for allf; g 2 H :

(�) f � g iff
X
s2S

psu(f(s)) �
X
s2S

psu(g(s)):

States is null iff ps = 0. Any other pair(u0; p0) that satisfies the same properties
as(u; p) is such thatp0 = p andu0 is a positive affine transform ofu.

PROPOSITION 2 ([Fishburn, 1970]). If � satisfies Axiom 1, there exist VNM
functionsu1; � � � ; uT onR such that for allf; g 2 H :

(��) f � g iff
X
s2S

us(f(s)) �
X
s2S

us(g(s)):

The functionus represents the conditional preference�s, and is constant iffs is
null. Any other T -tuple (u01; � � � ;
u0T ) satisfying the same properties as(u1; � � � ; uT ) is a positive affine transform
of the latter vector.

By a VNM function u on R we mean a function which has the following,
mixture-preserving property: for any� 2 [0; 1] and anyR;R0,

u((�R; (1� �)R0)) = �u(R) + (1� �)u(R0);

or equivalently (since we are considering here only simple probabilitiesR;R0), a
function which has the expected-utility form:

u(R) =
X
A2X

R(A)u(A):

The fact that the utility representations defined on theconsequence set, i.e.,u in
Proposition 1 and theui in Proposition 2, are VNM is a characteristic feature of the
Anscombe-Aumann approach as a whole. Conceptually, this feature is irrelevant



326 PHILIPPE MONGIN

to the aim of the construction; technically, it is an ingenious device – actually,
comparable with Savage’s(P6)— to facilitate the derivation of the SEU formula.3

OBSERVATION. If� satisfies not only Axiom 1, but also Axiom 2, there are
VNM functionsv1; � � � ; vT onR and a probabilityp = (p1; � � � ; pT ) onS such
that for allf; g;2 H :

(� � �) f � g iff
X
s2S

psvs(f(s)) �
X
s2S

psvs(g(s)):

Any (T + 1)-tuple(q; v01; � � � ; v
0
T ) such thatq is a probability onS and:

ps = 0 , qs = 0;
v0s =

ps
qs
vs if qs 6= 0; v0s arbitrary otherwise;

can be substituted for(p; v1; � � � ; vT ) in (***).

Notation. We defineU(f) =
P

s2S psu(f(s)) andV (f) =
P

s2S psvs(f(s))
when the suitable assumptions hold. As a rule,U; V;W will refer to representa-
tions of preferences over acts, andu; v; w to representations of preferences over
consequences.

The comparison between Proposition 1, Proposition 2, and the ensuing well-
known observation, brings out the classic difficulty of state-dependent utility the-
ory. The system consisting of only Axioms 1 and 2 is not rich enough to determine
the decision-maker’s subjective probability. To add Axiom 3 makes it possible to
uniquely determinep if one selects a state-independent representationu onR, as
do AA in their seminal article. However, Axiom 3 is too restrictive; it amounts
to excluding the relevant complication of state-dependent preferences. Hence a
dilemma of determination and relevance; see, among others,[Fishburn, 1970;
Drèze, 1987; Karni, 1985; Karni, 1993; Schervishet al., 1990].4

Various methods have been put forward to escape from the dilemma just sug-
gested. Most (but not all) of them consist in assuming Axioms 1 and 2, and then
introducing further axioms to determine the state-dependent functionsv1; � � � ; vT
that underlie the uninformative representationsu1; � � � ; uT of Proposition 2. Once

3We made another assumption on the consequence setR which — by contrast to the VNM as-
sumption — is dispensable within the AA approach. To save notation, we assumed a state-independent
consequence setR. Some expositions of state-dependent utility theory, such as Fishburn’s[1970], and
actually the original paper by Karni, Schmeidler and Vind[1983], adopt a more general framework in
which not only the evaluations but also the availability of consequences vary from one state to another.
As far as we can judge, the results of the present paper can be extended unproblematically to this more
general framework. On the issue of state-dependent consequences in expected utility theory, see also
[Hammond, 1996].

4The last paper usefully emphasizes that Anscombe and Aumann’s choice of a state-independentu

onR is to some extent question-begging. Even when Axiom 3 holds, it is trivially possible to replace
(*) with infinitely many equivalentstate-dependentrepresentations, each of which corresponds to one
particular subjective probability.
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the vector(v1; � � � ; vT ) is known (up to a positive affine transformation, PAT),5

it becomes possible to writeus = psvs, where theps are well-determined (and
ideally unique) probability values. We shall not attempt at covering all the variants
of this axiomatization strategy. A representative system will be enough for the
purpose of this paper.

As in Karni, Schmeidler and Vind[1983], we introduce an auxiliary binary re-
lation ~�. It is meant to describe the preference that the decision-maker would ex-
press between actsif his subjective probability were some givenq = (q1; � � � ; qT ).
KSV’s strategy is to infer the agent’s actual state-dependent utilities from the (sup-
posedly meaningful and even observable) hypothetical preference~�, and then de-
termine his actual, unknown subjective probabilityp by using this utility-relative
information.

Formally, fix a probabilityq = (q1; � � � ; qT ) on S with qs > 0 for all s and
associate with eachf 2 H an hypothetical actf 0 defined as follows:f 0 is on
S, and for eachs, f 0(s) = f(s)qs, that is to say,f 0(s) is that function onX
which satisfiesf 0(s; A) = f(s; A)qs for all A 2 X . Note thatf 0(s) is not a
probability onX , unlike f(s), but f 0 can be viewed as a probability onS � X
unlikef . (The computation is obvious.) Given the positivity assumption made on
q, the setH 0 of all hypothetical acts is clearly in a one-to-one relationship toH ;
this makes the notationf; f 0 unambiguous. The elementf 0 describes the effect
of compounding the given probabilityq on S with each of the lotteries thatf
assigns tos = 1; � � � ; T . Define thehypothetical preference(~�) to be a preference
relation on the set of hypothetical acts. This formal construct is meant to capture
the modification in the individual’s preferences “if his subjective probability were
q”.6

It is consistent to impose the same decision-theoretic constraints on both~� and
�, i.e., to subject hypothetical preference to the VNM axioms. Beyond this, some
coordinating condition should relate� to ~�. In effect, KSV impose the (“consis-
tency”) axiom that conditional preferences~�s and�s are the same whenevers is
non-null for�. The point of this axiom is to ensure that hypothetical preference
data deliver usable information on the individuals’ state-dependent utilities.7

AXIOM 4 (Hypothetical Preference). For alls 2 S that are non-null with respect
to�, and for allf; g 2 H ,

f �s g , f 0 ~�sg
0;

wheref 0 andg0 are the elements inH 0 associated withf andg respectively.

5Formally, two vectors(v0
1
; � � � ; v0

T
) and (v1; � � � ; vT ) are identical up to a PAT if there are a

number� > 0 and a vector(�1; � � � ; �T ) such that(v0
1
; � � � ; v0

T
) = �(v1; � � � ; vT )+(�1 ; � � � ; �T ).

6Notice carefully that although hypothetical acts carry preassigned probabilities with them, they do
not reduce to VNM lotteries. States of the world matter in the construction of hypothetical acts.

7KSV’s exposition is considerably more complex, due to their detailed analysis of null states.
Wakker [1987], and Schervish, Seidenfeld and Kadane[1990], provide alternative restatements; we
do not follow them here.
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PROPOSITION 3 ([Karni et al., 1983]). Assume that� satisfies Axioms 1 and 20.
Take any probabilityq onS with qs > 0 for all s 2 S. Assume that the induced
hypothetical preference~� also satisfies Axioms 1 and 20, and that� and ~� jointly
satisfy Axiom 4. Then, there are VNM functionsv1; � � � ; vT onR and a probability
p = (p1; � � � ; pT ) onS such that for allf; g 2 H :

(i) f � g iff
P

s2S psvs(f(s)) �
P

s2S psvs(g(s))

(ii) f 0 ~�g0 iff
P

s2S qsvs(f(s)) �
P

s2S qsvs(g(s)).

If s is non-null for�, thenps > 0. Any other(T + 1)-tuple(v01; � � � ; v
0
T ; p

0) that
satisfies conditions (i) and (ii) is such that the vector(v01; � � � ; v

0
T ) is a PAT of

(v1; � � � ; vT ) andp0s=p
0
t = ps=pt for all s; t non-null for�.

Notice that the theorem does not entirely determine the agent’s probability on
null states: ifs is null for� and not for~�, then comparison of (i) and (ii) leads to
the conclusion thatps = 0; if s is null for both� and~�, nothing can be said about
ps (but necessarily,vs = constant).

Although the conclusions of the theorem are stated atemporally, they might be
interpreted in terms of the two step-experiment mentioned at the outset. Irrespec-
tive of whether Axiom 4 provides a satisfactory formal rendering, the experiment
itself raises a conceptual problem: the agent might well attach no sense to the
expression of his preferences conditionally on the use of a subjective probability
which is not his own.8

At least, the KSV procedure has a significant negative argument to recommend
itself: to the best of our knowledge, existing alternativeseitherentail only a partial
solution to the indeterminacy-of-probability issue,or involve the same operational
difficulties as the KSV procedure,or imply an even more radical departure from
standard Bayesian assumptions. Karni and Schmeidler’s[1993] state-dependent
variant of Savage’s axiomatization exemplifies the first problem. In the AA frame-
work, Karni’s [1993] assumption ofgiven transformations between thevs(�) il-
lustrates the second problem, while Dr`eze’s[1987] use of a “moral hazard” as-
sumption illustrates the third. For all its shortcomings, KSV’s article is a serious
representative of the work done in the field of state-dependent utility theory. This
is sufficient to make it relevant to a paper which is primarily concerned with theo-
retical experimentation.

3 IMPOSSIBILITY RESULTS IN THE STATE-INDEPENDENT CASE

The present section will first introduce a multi-individual extension of the AA
approach broadly speaking, and then restrict attention to the state-independent case

8[Drèze, 1987] expresses his critique of the KSV approach differently. He claims that it relies on
information obtained fromverbal behaviour, which he says is unreliable in principle and should be
ignored. In essence, Dr`eze disqualifies KSV’s contribution on the grounds that they do not follow the
methodology of revealed preference theory. The critical point in the text does not depend on one’s
adhering to a revealed preference methodology.
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with a view of deriving the AA variant of the Bayesian experts paradox.
Let us assume that there are individuals, to be represented by indexesi =

1; � � � ; n, and an observer, to be represented by indexi = 0, who express their
subjective probabilities indirectly, i.e., by stating their preferences�i over uncer-
tain prospects. Throughout, we shall require�i to satisfy some subset of the ax-
ioms of section 2, for alli = 0; 1; � � � ; n. This requirement reflects the assumption
that both the individual experts and the observer are Bayesian; it encompasses one
of the two consistency conditions discussed in the introduction. The remaining,
Paretian condition can be made precise in terms of one of the following standard
requirements: for allf; g 2 H ,

f �i g; i = 1; � � � ; n ) f �0 g: (C)
f �i g; i = 1; � � � ; n ) f �0 g: (C1)
f �i g; i = 1; � � � ; n ) f �0 g: (C2)
f �i g; i = 1; � � � ; n and 9j 2 f1; � � � ; ng : f �j g ) f �0 g: (C3)

In social choice theory, these are the conditions of Pareto-Indifference, Pareto-
Weak Preference, Weak Pareto, Strict Pareto, respectively. We also introduce the
Strong Pareto condition:

(C+) = (C) & (C3):

Obviously,(C1) ) (C) and (C3) ) (C2). Given the rich structure of the
consequence set in the AA approach, more can be said on the logical relations
between the Pareto conditions. It will shortly be seen that under a minor restric-
tion on preferences,(C1), hence(C) are implied by any other condition. Let us
introduce the following restriction of Minimum Agreement on Acts:

(MAA) 9f�; f�� 2 H; 8i = 1; � � � ; n; f� �
i f��:

Notice the difference with the requirement of Minimum Agreement on Conse-
quences used in Mongin[1995, Section 3]. In the present context the latter would
state that:

(MAC) 9R�; R�� 2 R; 8i = 1; � � � ; n; R� � R��:

In a pure state-independent context such as that of the earlier article, (MAC)
provided an appropriate notion of minimum agreement among the individuals.
We want a weaker condition here since it should also be applicable to the state-
dependent context of the following sections.

For i = 0; 1; � � � ; n denote byU i the SEU representation of�i when this
relation satisfies all of the assumptions of Proposition 1, andV i the more gen-
eral additive representation of�i that satisfies the unique assumption of Propo-
sition 2. Then,U i(f) =

P
s2S p

i
su

i(f(s)) andV i(f) =
P

s2S u
i
s(f(s)). For
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any vector-valued function('1; � � � ; 'k), denote its range (i.e., set of values) by
Rge('1; � � � ; 'k). A basic consequence of imposingany of the AA systems of
section 2 on the observer’s and individual preferences�0;�1; � � � ;�n is that the
vector of corresponding utility representations has a convex range. Lemmas 4, 5
and 6 spell out this fact and its important consequences in terms of theV i repre-
sentations. The same results obviously apply to theU i since they are restricted
forms of theV i.

LEMMA 4. If �0;�1; � � � ;�n satisfy the assumption of Proposition 2 (= Axiom
1), thenRge(V 0; V 1; � � � ; V n) is convex.

De Meyer and Mongin[1995] have investigated the aggregative properties of a
real function'0 which is related to given real functions'1; � � � ; 'n by unanimity
conditions analogous to(C); (C1); � � � and by the assumption that('0; '1; � � � ; 'n)
has convex range. These aggregative results are applicable here because of Lemma
4 and will be used throughout the paper. Here is the first application:9

LEMMA 5. If �0;�1; � � � ;�n satisfy Axiom 1, then(C) holds if and only if there
are real numbersa1; � � � ; an; b such thatV 0 =

Pn
i=1 aiV

i+b. (C1) [resp. (C+)]
holds if and only if this equation is satisfied for some choice of non-negative [resp.
positive] numbersa1; � � � ; an.

Another consequence of Lemma 4 is the following tightening of the logical
implications between unanimity conditions:

LEMMA 6. If �0;�1; � � � ;�n satisfy the assumptions of Proposition 1, and if
(MAA) holds, then

(C2) ) (C1) and (C3) , (C+):

Thus, the list of conditions becomes simplified under (MAA). Returning now to
the conclusion of Lemma 5, we know that it can be applied to the state-independent
representationsU i. Hence, it seems as if this lemma delivered an aggregative
rule of the familiar sort — what social choice theorists call generalized utilitar-
ianism (e.g.,[d’Aspremont, 1985]). A simple algebraic argument adapted from
Mongin [1995, Section 4]) will demonstrate that this isnot the case in general.
Impossibility results lurk behind the apparently well-behaved affine decomposi-
tion U0 =

Pn
i=1 aiU

i + b. Dictatorial rules will emerge from the analysis of the
weaker unanimity conditions(C); (C1); (C2), while sheer logical impossibility
will result from imposing the stronger conditions(C3) or (C+).

Given a preference profile�0;�1; � � � ;�n satisfying the assumptions of Propo-
sition 1, hence representable by

U0(�) =
X
s

p0su
0(�); U1(�) =

X
s

p1su
1(�); � � � ; Un(�) =

X
s

pnsu
n(�);

9Lemma 5 is an encompassing version of a famous social aggregation theorem first stated by
Harsanyi[1955].
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we say thati is a probability dictator if p0 = pi, that i is a utility dictator if
u0 = ui (up to a PAT), and thati is anoverall dictatorif he is both a probability
and a utility dictator. We definei to be aninverseutility dictator or aninverse
overall dictator by changing the clause thatu0 = ui into u0 = �ui. We shall
also say thatprobability agreementprevails if p1 = � � � = pn and thatpairwise
utility dependence(p.u.d.) prevails if for alli; j � 1; ui = uj (up to an affine
transformation of any sign). Probability agreement and p.u.d. are two degenerate
cases of individual profiles; in general, both probabilities and utilities should be
expected to vary from one individual to another.

How to capture individual diversity in the language of formal choice theories
is a difficult problem. As in Coulhon and Mongin[1989], or Mongin [1995],
we shall use the convenient shortcut of defining diversity in terms of algebraic
independence. Recall that a set of elementsf'1; � � � ; 'kg of a vector space is
affinely independentif for any set of real numbersa1; � � � ; ak; b;

a1'1 + � � �+ ak'k + b = 0 ) a1 = � � � = ak = b = 0:

This concept, rather than the weaker one of linear independence, provides the rel-
evant notion of algebraic independence in the case of utility functions. Plainly,
affine and linear independence become equivalent in the case of probabilities. A
relevant fact to report here is that a set of VNM functionsu1; � � � ; un is affinely in-
dependent if and only if these functions are “separated” from each other by suitable
lotteries. This equivalence can be immediately extended to AA representations:

LEMMA 7. Suppose thatu1; � � � ; un are VNM utility functions onR. They are
affinely independent if and only if for everyi = 1; � � � ; n, there areRi

�; R
i
�� 2 R

such that:

ui(Ri
�) > ui(Ri

��) and uj(Ri
�) = uj(Ri

��) for j 6= i:

Similarly, theV 1; � � � ; V n derived in Proposition 2 are affinely independent if
and only if for everyi = 1; � � � ; n, there aref i�; f

i
�� such that:

V i(f i�) > V i(f i��) and V j(f i�) = V j(f i��):

If affine independence assumptions formalize individual diversity in an obvious
sense, it is also the case that in a VNM context, they imply some form of min-
imum agreement between individuals. This rather curious consequence deserves
emphasis here since it means that in some algebraic contexts (MAA) and (MAC)
are given for free:10

LEMMA 8. Suppose thatu1; � � � ; un are affinely independent VNM functions.
Then, (MAC) holds. Similarly, if theV 1; � � � ; V n of Proposition 2 are affinely
independent, (MAA) holds.

10Compare with the related statements in[Weymark, 1993, Proposition 3] and[Mongin, 1995, Corol-
lary 4.3].
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We are now in a position to state the two impossibility theorems which formal-
ize the paradox of the Bayesian experts. In part (*) of both Propositions 9 and
10 we introduce a linear independence restriction on individual probabilities. To
ensure that this restriction applies, we shall assume in part (*) that the state space
S has cardinality at leastn.

PROPOSITION 9.Assume that�0;�1; � � � ;�n satisfy Anscombe and Aumann’s
axioms of state-independent utility, i.e., the assumptions of Proposition 1. De-
noting byp1; � � � ; pn the probabilities and byu1; � � � ; un the utility functions on
consequences provided by Proposition 1, assume that either:

(*) p1; � � � ; pn are linearly independent,
or
(**) u1; � � � ; un are affinely independent.

Then, if (C) holds, there is either a utility or an inverse utility dictator in case (*),
and there is a probability dictator in case (**). There is an overall or an inverse
overall dictator when both (*) and (**) apply. If either(C1) or (C2) holds, the
same results follow, except that there is always a utility dictator in case (*).

When there is an overall dictator, all of the unanimity conditions are obviously
satisfied, so that we could have stated part of Proposition 4 in terms of “if and
only if” conditions.11 This observation also implies that the problem of Consistent
Bayesian Aggregation does not involve anylogical impossibility in the case of
conditions (C),(C1) and(C2). The stronger conditions(C3) and (C+) lead to
altogether different conclusions.

PROPOSITION 10.The assumptions are as in Proposition 4. Then, if(C3) or
(C+) holds, case (*) implies that pairwise utility dependence prevails and that
there is a utility dictator; case (**) implies that probability agreement prevails
and that there is a probability dictator.

Notice that in both Proposition 9 and 10, (MAA) is an inference, not an as-
sumption. A modest strengthening of the first part of Proposition 5 would follow
from assuming (MAC). Then,positivep.u.d. prevails (i.e., all individual utilities
are identical up to a positive scale factor).

Proposition 10 can be restated as follows: under the assumptions of Proposition
9, (MAA) and (C3), if either then probabilities are linearly independent and (at
least) two utility functions are affinely independent, or then utility functions are
affinely independent and (at least) two probabilities are distinct, then there is no
solution to the Bayesian experts problem. This wording makes it clear that under
appropriate distinctiveness restrictions, (C3) is a logical impossibility; given these
restrictions,even dictatorshipfails to deliver a solution.

11Note also that inverse utility dictatorship is impossible when (C2) and (MAA) hold. Utility dicta-
torship and inverse utility dictatorship can coexist with each other under the weaker assumption (C1),
as the following shows: taken = 2; U0 = U1 andU2 = �U1.
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A word of comparison with the Savagean formulation of the paradox is in order.
The main technical step in Mongin[1995] was to derive a version of Lemma 5.
Since Savage does not assume anything on the consequence set, this had to be done
by a special construction based on his divisibility-of-events axiom (P6). Once the
affine decomposition of Lemma 5 is obtained, the algebra of impossibility results
follows similar paths in the Savage and the Anscombe-Aumann variants.12

4 THE STATE-DEPENDENT CASE

Suppose that we just impose Axiom 1 on the preference relations�0;�1; � � � ;�n.
This is the pure state-dependent case, as characterized by Proposition 2; each�i is
represented byV i(f) =

P
s2S u

i
s(f(s)). It is easy to check that nontrivial solu-

tions to the aggregation problem now exist, whatever individual preferences might
be. To see that, take any profile�1; � � � ;�n that satisfies Axiom 1 and consider
the added preference relation�0 defined by means of the following representation:

(+) V 0(f) =

nX
i=1

ai(
X
s2S

uis(f(s));

whereai > 0 for all i. Obviously,�0 satisfies the whole list of Pareto condi-
tions (C),� � � , (C+). It is also clear that�0 satisfies Axiom 1 (since a sum of
VNM functions is also VNM, and Axiom 1 does not require anything beyond that
property). A little more explicitly, (+) can be rearranged as:

(++) V 0(f) =
X
s2S

u0s(f(s));

by definingu0s =
P

aiu
i
s for all s 2 S. This rewriting makes it plain that�0 and

the�i obey the same (weak) decision theory.
Hence, in the pure state-dependent case, the paradox of the Bayesian experts

vanishes. This mathematically trivial resolution can strike one as conceptually
relevant only if one regards Axiom 1 as a sufficient foundation for Bayesianism.
We have already suggested that this isnot a sensible position to take. Without
some restriction on the many subjective probabilities that are compatible with
state-dependent utilities, Bayesianism vanishes at the same time as the paradox.

Before we proceed to axiomatic systems of intermediary strength, we should
complete the analysis of the first paragraph. What is not so trivial as the “reso-
lution” just sketched is the fact that equation (+) delivers anecessarysolution to

12A two-person version of Propositions 4 and 5 was obtained by[Seidenfeldet al., 1989], using an
expected utility framework in the style of Anscombe and Aumann. Schervish, Seidenfeld and Kadane
[1991, Theorem 2] state this result more formally. We defer comparison to section 5.
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the aggregation problem. This fact follows from Lemma 2 above, when condi-
tions (C),(C1) or (C+) hold, and from Lemmas 5 and 6 when(C2) and(C3) hold
(assuming (MAA)). Let us take stock of the characterization just obtained:

PROPOSITION 11.Assume that�0;�1; � � � ;�n satisfy the unique assumption
of Proposition 2, i.e., axiom 1, and thatV i(f) =

P
s2S u

i
s(f(s)); i = 0; 1; � � � ; n

are the state-dependent representations derived in Proposition 2. Then, (C) holds
if and only if there are real numbersa1; � � � ; an; b such that:

8s 2 S; u0s =

nX
i=1

aiu
i
s + b:

Similarly, (C1) [or (C2), if one assumes (MAA)] holds if and only if there are
ai � 0; i = 1; � � � ; n, andb such that this equation holds; and assuming (MAA),
(C3) holds if and only if there areai > 0; i = 1; � � � ; n; and b such that the
equation holds.

The remainder of this section investigates a multi-agent application of the KSV
approach. We shall assume that hypothetical probabilitiesq are used to determine
the observer’s and individuals’ state-dependent utilities, following the procedure
implicitly described in Proposition 3. More precisely, each ofi = 0; 1; � � � ; n
is endowed with a preference relation�i, as well as an hypothetical preference

relation~�
i
, to be thought of here asi’s preference over acts conditionally on some

given, strictly positiveqi. We know from section 2 that if�i and ~�
i

conform to
axioms 1, 20 and 4, fori = 0; 1; � � � ; n, there are VNM functionsvi1; � � � ; v

i
T onR

and subjective probabilitiespi onS such that:

(i) f �i g iff
P

s2S p
i
sv

i
s(f(s)) �

P
s2S p

i
sv

i
s(g(s))

(ii) f 0 ~�
i
g0 iff

P
s2S q

i
sv

i
s(f

0(s)) �
P

s2S q
i
sv

i
s(g

0(s)):

These equivalences and the accompanying uniqueness properties will lead to the
negative results below. We shall make full use of the flexibility implied by the
KSV approach, and take the auxiliary probabilitiesqi to be sometimes identical,
sometimes different from one individual to another. The upshot of this analysis
is that if there is sufficient diversity among the individuals’ state-dependent utility
functions, a variant of the earlier probability dictatorship and probability agree-
ment theorems holds. Correspondingly, a variant of the earlier utility dictatorship
and dependence theorem holds, but as will be explained, the symmetry between
probability and utility breaks down in the state-dependent case.

To state these negative results, some further terminology is required. For any
S0 � S; S0 6= �, we shall say thati is a probability dictator forS0 if either
p0(S0) = pi(S0) = 0, or p0(S0) 6= 0 6= pi(S0) and for alls 2 S0,

p0(sjS0) = pi(sjS0);

and thatprobability agreement prevails onS0 if for all i; j = 1; � � � ; n, either
pi(S0) = pj(S0) = 0, or pi(S0) 6= 0 6= pj(S0) and for alls 2 S0, pi(sjS0) =
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pj(sjS0). Similarly, we shall say thati is a utility dictator onS0 if for all s 2
S0; v0s = vis (up to a PAT (which might depend on the particulars); and that
pairwise utility dependence(p.u.d.) prevails onS0 if for all s 2 S0 and for all
i; j = 1; � � � ; n; vis = �vjs, up to PATs (which might depend ons).

The exposition of impossibility results in this section does not follow the order
of last section. We first analyze the probabilistic variant of paradox, and then move
to its variant in terms of utility functions.

PROPOSITION 12.Assume that�0; � � � ;�n and (for some commonq) ~�
0
; � � � ;

~�
n

satisfy Axioms 1, 20 and 4. Denote byp1; � � � ; pn the individuals’ subjective
probabilities, and byv11 ; � � � ; v

1
T ; � � � ; v

n
1 ; � � � ; v

n
T the individuals’ state-dependent

utilities, which are provided by Proposition 3. Assume that (C) applies to both
sets of preferences. Then, ifS0 is some nonempty subset ofS such that for all
s 2 S0; v1s ; � � � ; v

n
s are affinely independent, there is a probability dictator onS0.

If (C) is replaced by either (C1), or (C2) together with (MAA), the same results
hold; if (C) is replaced with (C3) and (MAA), probability agreement prevails, and
there is a probability dictator, onS0.

As a particular application of Proposition 12, takeS0 to be the whole subset of
those states which are non-null for at least onei = 1; � � � ; n. Then, depending
on the Pareto conditions, either the dictator imposes hisabsoluteprobability, or
absoluteprobability agreement prevails, exactly as in the state-independent case.
In order to obtain this conclusion, one should resort to the strong assumption that
for every relevant states, thev1s ; � � � ; v

n
s are affinely independent. As explained in

section 3, the significance of this assumption can be appreciated using its equiv-
alent reformulation: for every relevant state, and every individuali, there are lot-
teriesRi

�; R
i
�� that “separate”vis from the others’ utilitiesvjs . One would hesitate

to impose such a strong assumption uniformly across states. To take an example
in the style of Savage’s, suppose thats0 is good weather ands00 bad weather, and
that individualsi and j have the following preferences: whens0 prevails,i —
the adventurous vacationer — prefers rockclimbing to canooing and is indifferent
between going to a picnic or taking a swim, whilej – the quiet vacationer – is in-
different between the first two lotteries but strictly prefers one of the last two to the
other; whens00 prevails, bothi andj are indifferent between the four lotteries. Or,
to take an economic example, suppose that final outcomes are money amounts and
that in some states, widely different amounts are available, whereas in others, only
trivial increments around a given money amount are.13 The “separation” property
might well be satisfied in the former case but fail in the latter (since this case might
be formalized in terms of linear, hence identical utility functions for money). This
discussion suggests that the case in whichS0 is maximal might be irrelevant. It
explains why we chose to emphasize local (i.e., event-relative) properties as in
Proposition 12.

13Admittedly, this example does not quite fit in the formalism of this paper since it involves not only
state-dependent utilities but also state-dependent consequences.
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The next proposition deals with a utility variant of the paradox. It is concerned
with the special case of an admixture of state-dependence and state-independence.
To deal with this case appropriately, we determine the KSV procedure beyond
what was done by these authors. Suppose that there is a subsetS0 of states —
all of which we take to be non-null — having the following property: conditional
preferences on constant acts do not vary across states inS, whereas they vary
across any twos 2 S; t =2 S0. Thus, as far asS0 is concerned, event-, rather
than state-dependence, prevails. Restricting attention to acts taking some fixed
value on eacht =2 S0, it can be seen that the standard Anscombe–Aumann theorem
(Proposition 1) applies. Thus, using the AA representation, we have a probability
� onS0. The assumptions underlying the KSV procedure in Proposition 3 do not
ensure that the conditional of the derived probabilityp onS0 will coincide with�.
Since� can be revealed by standard betting techniques, it seems natural to require
that the two probabilities be equal. The way of obtaining this result while applying
the KSV procedure is to impose that the conditional of the hypothetical probability
q onS0 be equal to the (independently revealed)�.

Formally (in the notation of section 2):

ASSUMPTION 13. Suppose that there isS0 � S; jS0j � 2 such that everys 2 S0

is non-null, and for every pair of constant actsf; g 2 H :

8s; t 2 S0; f �s g iff f �t g:

Then, we requireq in the KSV system to satisfy:

8s 2 S0;
q(s)

q(S0)
= �(s);

where� is the probability onS0 derived by applying the assumptions of Proposi-
tion 1 to the restriction of� to those acts inH which take some fixed set of values
onS n S0.

Now, we are ready for the last variant of the paradox.

PROPOSITION 14.Assume that�0; � � � ;�n and ~�
0
; � � � ; ~�

n
obey the KSV sys-

tem, i.e., they satisfy Axioms 1, 2’ and 4. Suppose that there isS0 � S; jS0j � 2
such that:

for all i = 0; 1; � � � ; n; everys 2 S0 is non-null; (�)

for all i = 0; 1; � � � ; n; all s; t 2 S0; (��)
and all pairs of constant actsf; g 2 H; f �i

s iff f �i
t g:

Denote byp0; � � � ; pn the subjective probabilities given by Proposition 3 for some
set of hypothetical probabilities satisfying Assumption 1, and suppose that:

(� � �) (p1s)s2S0 ; � � � ; (pns )s2S0 are linearly independent vectors.
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Then, if (C) applies to both sets of preferences, there is a utility dictator onS0.

If (C) is replaced with either (C1) or (C2), the same result holds. If (C3) is used
instead, positive pairwise utility dependence prevails, and there is a utility dictator,
onS0.14

Supposing that for alli ands, s is non-null, Proposition 14 can be applied to
S0 = S as a particular case, but this would be an uninteresting application. The
conclusions would just repeat the utility-relative impossibility results already ob-
tained in Propositions 9 and 10. The point of Proposition 14 is to extend these re-
sults slightly by emphasizing event-relative properties. Condition (**) is a limited
state-independence assumption. It is compatible with a generally state-dependent
framework. Notice also that it does not involve any uniformity from onei to an-
other beyond the mere fact that the preferences of each just depend onS0 (rather
than on the particular state inS0). Going back to one of the previous examples,
takeS0 = fexcellent weather, fair weatherg. It can no doubt happen that the two
vacationers’ and the observer’s preferences are non-trivial and uniform acrossS0,
as required by (*) and (**), respectively. As far as condition (***) is concerned,
it is perhaps no more problematic here than it was in the state-independent frame-
work. Take again the vacationers’ example: for (***) to be met, it is enough that
they entertain different probabilities of the weather turning fair or excellent. No-
tice however that there is a rough trade-off in plausibility between (**) and (***):
the smallerS0 is, the more plausible is (**) but thelessplausible (***).

5 THE TWO-INDIVIDUAL CASE

In the two-individual case, the impossibility conclusions of sections 3 and 4 can
be sharpened, as the following corollaries show.

COROLLARY 15. Assume that�0;�1;�2 satisfy Anscombe and Aumann’s ax-
ioms of state-independent utility. Assume thatp1 6= p2 and thatu1; u2 are not
identical up to an affine transformation. Then, (C) holds if and only if there is an
overall or an inverse overall dictator; (C1) or (C2) holds if and only if there is an
overall dictator; and it is impossible for either (C3) or (C+) to hold.

COROLLARY 16. Assume that�0;�1;�2 and~�
0
; ~�

1
; ~�

2
satisfy Karni, Schmei-

dler and Vind’s system of state-dependent utility as restated in section 2. If (C),
(C1), or (MAA) and (C2) hold, then for each states 2 S, eitherp0(s) = p1(s)
or p0(s) = p2(s) or v0(s; �) = v1(s; �) = v2(s; �) up to affine transformations.
If (MAA) and (C3) hold, for each states 2 S, eitherp0(s) = p1(s) = p2(s) or
v0(s; �) = v1(s; �) = v2(s; �) up to affine transformations.

These two corollaries are closely related to the results of Schervish, Seifenfeld
and Kadane[1991, Theorems 2 and 4], who formalize a version of the Bayesian

14We included Axiom 20 among the assumptions just for clarity, since condition (*) makes it redun-
dant.
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experts paradox in the two-individual case by assuming an AA framework of first
state-independent, and then state-dependent theory. In the state-dependent case,
they use a special variant of the KSV procedure.15 Like the main theorem of their
paper, our Corollary 2 comes close to predicting that under relevant assumptions,
for each states, either probability agreement or utility-dependence prevails onfsg.
The difference between this wording and their formal statement appears to come
mostly from the complication of the null states in the variant they adopt.

It should be clear that the analysis of “consistent Bayesian aggregation” cannot
be pursued just in the two-individual case. The conclusion corresponding to Corol-
lary 15 loses its elegant simplicity whenn � 3. The mild requirements thatp1; p2

should be distinct and thatu1; u2 should not be essentially identical or opposite
functions become the more technical, less interpretable restrictions thatp1; � � � ; pn

are linearly independent, and thatu1; � � � ; un are affinely independent. Earlier ex-
amples demonstrate that in the state-independent framework, nontrivial solutions
to the aggregation problem emerge in the absence of suitable independence as-
sumptions.16 As far as the state-dependent framework is concerned, Corollary 16
appears to derive a quasi-impossibility theorem without making technical restric-
tions. Again, the simplicity of this conclusion disappears whenn � 3. We shall
give a three-individual example to illustrate how easily nontrivial solutions to the
aggregation problem might emerge from the state-dependent case, when algebraic
independence restrictions are omitted.

TakeX = fx1; x2; x3g, so that�(X) isS13 , i.e., the unit simplex ofIR3. Denote
the elements ofR = �(X) asR = (R1; R2; R3). In the notation used throughout,
(C) implies that for allR 2 R:

(i)
X
s

p0sv
0
s(R) =

X
i

ai
X
s

pisv
i
s(R)

and (considering now hypothetical instead of actual preferences):

(ii)
X
s

q0sv
0
s (R) =

X
i

bi
X
s

qisv
i
s(R):

It is easy to find specific values such that the KSV assumptions and (C) hold, but
for someS0 � S, neither probability dictatorship nor any form of utility dictator-
ship holds. Take:

15See their other paper[Schervishet al., 1990] for a statement of this variant.
16See[Goodman, 1988] and[Mongin, 1995, Example 4]. We have belatedly heard of Goodman’s

contribution to then-person analysis. Thanks are due to Teddy Seidenfeld for bringing this and other
references to our attention.
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p1 =

0
@ 1
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1

2

0

1
A ; p2 =

0
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1

2
1

2

1
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0
@ 1

2

0
1

2

1
A ; p0 = q =

0
@1

3
1

3
1

3

1
A ;

u1s1 = R1; u
1
s2

= R3; u
1
s3

= 2R2 + 3R3;
u2s1 = R1 + 3R2; u

2
s2

= R1; u
2
s3

= R2;
u3s1 = R2; u

3
s2

= R3 + 2R1; u
3
s3

= R3;
u0s1 = 2R1 + 4R2; u

0
s2

= 2R3 + 3R1; u
0
s3

= 3R2 + 4R3:

The vectorsp0; p1; p2; p3 can be thought of as KSV probabilities. In the par-
ticular instance, the common hypothetical probabilityq is taken to be equal to the
observer’s. To see that the above data agree with (C), notice that equations (i) and
(ii) hold with:

a1 =
4

3
; a2 = 2; a3 =

8

3
; b1 = b2 = b3 = 1:

In contradistinction to the impossibility result stated in Proposition 12, probability
dictatorship does not hold onS0 = S. This fact can be traced to the failure of
only one assumption in Proposition 12 — i.e., affine independence. Indeed, the
individuals’ state-dependent utilities are linearly dependent in each state.

Notice that no form of utility dictatorship prevails either. This frustrates the
hope of extending the impossibility conclusion of Corollary 16 without adding
suitable technical assumptions.

We close the discussion of Corollary 16 by noting that it is a consequence of
Proposition 12alone. That is to say, the probability-relative impossibility result
implies a restriction on the observer’s utility whenever there are only two individ-
uals. This convenient property is lost in the general case.

6 FINAL COMMENTS: THEEX POSTSOLUTION TO THE PARADOX.

The present paper has offered a comprehensive treatment of the paradox of the
Bayesian experts within the framework of the Anscombe-Aumann approach, first
by assuming complete state-independence of utility, second by considering the op-
posite case of complete state-dependence, and third by applying the “intermediary”
system of Karni, Schmeidler and Vind[1983] in which utility is state-dependent
but the subjective probability is shown to be unique. Propositions 4 and 5 state
the paradox in its pure form. They are the AA counterparts of the impossibility
theorems recently proved within a state-independent, Savagean framework[Mon-
gin, 1995, Propositions 5 and 7]. Proposition 11 states an easy, but unimpressive
possibility result for the pure state-dependent case. By assuming the more infor-
mative KSV framework, Propositions 12 and 14 reinstate the paradox, although in
a significantly different variant from the initial one.
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One might perhaps have conjectured that the paradox would reappear in essen-
tially its original form, once the state-dependence assumption is compounded with
a procedure to determine subjective probabilities uniquely. This conjecture fails.
The state-by-state analysis uncovers novel and curious situations: combining the
assumptions of Propositions 12 and 14 on a sufficiently large state set, one might
end up with juxtaposing probability dictatorship or agreement on some events with
utility dictatorship or dependence on other events, and a nondescript state of af-
fairs elsewhere. More generally, if “consistent Bayesian aggregation” leads to any
paradoxical consequences in the state-dependent framework, these are bound to
be state- or at least event-relative. This is the most obvious difference between
the negative conclusions delivered by Propositions 9 and 10, on the one hand, and
Propositions 12 and 14, on the other.

For more than two experts, technical conditions must be employed to derive
dictatorship or uniformity conclusions. We argued that these conditions would be
too stringent if they were to apply to each and every subset of the state set. This
is why we selectedlocal formulations of both our technical conditions and im-
possibility results. Accordingly, it might be argued that the latter are not really
impossibility results, i.e., that the paradox of the Bayesian experts has not been
reproduced in the state-dependent framework of this paper. This would be an ex-
aggerate conclusion. It would be tantamount to abstracting from the important
differences between a completely unconstrained aggregative rule (Proposition 11)
and a relatively constrained one (Propositions 12 and 14). The correct interpreta-
tion probably lies half-way between the initial expectation that any sophisticated
theory of state-dependent utility would reinstate the original paradox, and the ex-
treme view now under discussion.

Given that we cannot conclude that state-dependent utility theory is the way of
escape from the logical difficulties of collective Bayesianism, a more radical alter-
native must be sought. Within the province of decision theory at large, it remains
to investigate suitable relaxations of the sure-thing principle. Within the confines
of the present paper, which is restricted to Bayesianism, the remaining logical
possibilities are to relax either Paretian consistency or Bayesian consistency. The
former solution is illustrated in the field of welfare economics by those writers who
reject theex anteformulation of the Pareto principle (i.e., the version which was
investigated in this paper), while retaining anex post(i.e., consequence-relative)
version.17 By contrast, the latter solution consists in denying that the aggregate
should inherit the individuals’ method of decision.

We should like to indicate a (highly qualified) preference for the former over
the latter direction of analysis. Even more clearly than some earlier and formally
similar cases in welfare economics, the Bayesian experts problem implies that
Bayesian consistency should be taken seriously. In the present setting the aggre-
gate does not refer to a collective entity, but to some person acting as an observer.

17A leading exponent is Hammond[1982; 1983]. Among the recent applications of theex postpoint
of view, see in particular Zhou’s[1996] axiomatization of Bayesian utilitarianism.
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To go back to the example of section 1, the aggregate represents the insurer who
attempts to summarize the experts’ opinions. Given the nature of the observer
in this problem situation, it seems natural to subject his preferences to the same
choice-theoretic constraints as those prevailing on the (other) individuals’ prefer-
ences.18

Here is a scenario which is compatible with the relaxation of Paretian consis-
tency, whereas Bayesianism is preserved throughout. If,contrary to our initial
assumption, the insurer understands Bayesian elicitation methods, he will be able
to estimate the experts’ underlying probability and utility functions. In the state-
dependent case, we should then assume that hehimself, rather than the experi-
menter, applies the KSV procedure. Once in possession of individual probability
and utility data, he will process themseparatelyto construct a summary probabil-
ity and a summary vector of state-dependent utilities. These two items can then
be combined unproblematically in the way prescribed by SEU theory. The Pareto
principle will be used in the construction of the summary utility vector, but not
necessarily in the construction of the summary probability. When applied to the
individuals’ utilities in each state, it functions as anex postunanimity principle.

The previous paragraph shows that there is one (actually, well-known) way of
keeping Bayesian consistency intact while preserving some form of Paretianism.
We have just rephrased in terms of our decision-theoretic example the aggregation
procedure which has long been recommended by theex postschool of welfare
economics. In doing so, we have emphasized that there are definitive cognitive
assumptions underlying theex postapproach — a point which is rarely mentioned
in welfare theory. Before arguing that theex postmethod is a feasible solution to
the paradox of the Bayesian experts, one should check whether these assumptions
apply. A definitive advantage of theex antemethod examined throughout this
paper is that it does not require much knowledge on the observer’s part.

To claim that theex postapproach provides not only a feasible, but a good
resolution, a closer examination of the Pareto principle is needed. Implicitly,
the defence of the principle trades on a distinction betweenfactual andnorma-
tive considerations. The essence of Paretianism is to proclaim that individuals are
sovereign in normative matters; this means that their judgments in these matters
should never be scrutinized or criticized, but taken for granted. “Normative” here
can be diversely understood by reference to values, objectives, or even tastes, as in
the “consumer sovereignty” doctrine. These interpretations would correspond to
particular statements and defences of the Pareto principle. It is not our task here
to list and compare them. The crucial point is that the individuals’ sovereignty can
be, and has been, argued for in the context of various notions of “normative” judg-
ments, whilethere is no concept of factual judgment for which this principle makes
sense. Factual judgementsshouldbe scrutinized and criticized. Theoretically at

18There is a modelling alternative which would make it even clearer that the observer here is just
another individual. One could possibly endow him withtwo binary relations, one of which would
represent his preferencesqua ordinary person, the other his preferencesqua observer. The insurer
would then include his own private opinions among those which he tries to amalgamate.
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least, they are susceptible of ascertainable truth values; they can be justified or dis-
missed by logic and evidence. So the Pareto conditions can only hold of a special
class of unanimous judgments. Once all this is made clear, it seems as if theex
postvariant is automatically warranted, and theex antevariant automatically re-
jected. As it were, the former reaps all the benefits of the normative versus factual
distinction.

Let us first clarify the negative part of the argument. Assuming a standard
Bayesian framework, comparisons of prospects normally depend onbothhow the
agent assesses the values of consequences and how he estimates the likelihood of
events. Stochastic dominance, in which only the values of consequences matter,
is an exceptional case. Thus, the scope of theex antePareto principle exceeds the
province of normative judgments. This, in itself, would not make it invalid, just
dubious. What makes it invalid is that the excess content of theex anteprinciple —
its encroachment upon the province of factual judgments — leads to spurious rec-
ommendations. Here is one: under any state-independent variant of SEU theory,
whenever all individuals agree on the strict ranking of two particular consequences,
the principle implies that unanimousprobability judgments should be respected,
regardless of the evidence available to each individual. This is a spurious recom-
mendation: evidence should matter to the observer. It can be shown that when
conditioning partitions differ from one individual to another, a Bayesian observer
who knows what these partitions are will sometimes violate the probabilistic form
of the Pareto principle.19

Now, consider the positive argument in favour of theex postPareto principle. It
says that the latter is justified because it involves only normative judgments. But in
real life, judgments about consequences are infected with factual considerations.
A hole in the ozone layer strikes one as an undesirable consequence because of
certain scientific facts and laws. To own a large fortune becomes less desirable,
or might even become absolutely undesirable, to somebody who knows that he
will die tomorrow; and so on. All this suggests that theex postprinciple could
in turn fall a prey to the argument against theex anteprinciple. By itself, the
normative versus factual distinction does not provide the former with a sufficient
foundation.20

From the above discussion we might conclude that the factual versus normative
distinction cuts both ways, and that the foundations ofex postreasoning are shaky.
But they are at least solider than the foundations ofex antereasoning, which —
this paper has attempted to demonstrate — appears to be simply flawed. And in
the absence of a third alternative,21 theex postsolution has at least the advantage
of providing a feasible way out of the conundrum of collective Bayesianism.

19We are indebted here to Ed Green and David Schmeidler. Probabilistic unanimity is discussed at
grater length in Mongin[1997].

20For a similar argument, see[Broome, 1990].
21A paper by Levi[1990] appears to sketch a third alternative by defining restrictions on theex ante

principle. This is an interesting avenue to explore.
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APPENDIX

A PROOFS

Proof [of Lemma 4] Proposition 2 implies that fori = 0; 1; � � � ; n, V i preserves
convex combinations of acts. Hence the vector(V 0; V 1; � � � ; V n) has convex
range. �

Proof [of Lemma 5] See[De Meyer and Mongin, 1995, Proposition 1]. �

Proof [of Lemma 6] See[De Meyer and Mongin, 1995, Propositions 1 and 2]. �

Proof [of Lemma 7] The former conclusion is proved in Coulhon and Mongin
[Coulhon and Mongin, 1989]. In view of Axiom 1, the latter is an immediate
application of the former. �

Proof [of Lemma 8] TakeR1
�; R

1
��; � � � ; R

n
� ; R

n
�� as in the statement of Lemma 7

and construct the following elements ofR:

P� = (
1

n
R1
�; � � � ;

1

n
Rn
� ) andP�� = (

1

n
R1
��; � � � ;

1

n
Rn
��):

Then, from the mixture-preserving property ofu1; � � � ; un:

ui(P�) > ui(P��); i = 1; � � � ; n;

so that (MAC) holds. The case of affinely independentV1; � � � ; Vn can be dealt
with similarly. �

Proof [of Proposition 9] Suppose that(C) and (*) hold. Lemma 5 implies that
there area1; � � � ; an; b such that

(A1) U0 =

nX
i=1

aiU
i + b:

One of theai must be nonzero because of AA’s nontriviality assumption (Axiom
2). We may select anyR 2 R and putu0(R) = u1(R) = � � � = un(R) = 0;
there is no assumption of substance in this normalization. Let us now consider the
following class off 2 H : there ares 2 S andR 2 R, such that(

f(s) = R

f(t) = R for all t 6= s:

Applying AA’s representation theorem in equation (1), we get:

8f 2 H;
X
s2S

p0su
0(f(s)) =

nX
i=1

ai
X
s2S

pisu
i(f(s)):
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When we restrict attention to the class of acts just defined, this becomes:

8s 2 S;8R 2 R; p0su
0(R) =

nX
i=1

aip
i
su

i(R):

From now on in the proof, we shall use functional notation. The last equation
becomes:

(A2) p0u0 =

nX
i=1

aip
iui;

where the functions on the right- and the left-hand sides are defined onS �R.
Given that in the state-independent case, constant acts may be identified with

consequences, equation (A1) also implies that:

(A3) u0 =

nX
i=1

aiu
i:

Replacing (A3) into (A2) we get:

(A4)
nX
i=1

aiu
i[p0 � pi] = 0:

If the p0 � p1; � � � ; p0 � pn were linearly independent, one would have that:

aiu
i = 0 for all i = 1; � � � ; n;

which is impossible since Axiom 2 implies that theui are nonconstant and one
ai must be nonzero. Hence, there isj 2 f1; � � � ; ng such that for someb1; � � � ;
bj�1; bj+1; � � � ; bn:

(A5) p0 � pj =
X
i6=j

bi(p
0 � pi):

Now,
P

i6=j bi 6= 1 in view of (*). (Assume that
P

i6=j bi = 1; then (A5) leads to
the absurd equationpj =

P
i6=j bip

i.) We can rewrite (A5) as:

p0 = (1�
X
i6=j

bi)
�1pj �

X
i6=j

(1�
X
i6=j

bi)
�1bip

i;

which provides a linear decomposition ofp0 in terms ofp1; � � � ; pn. Changing the
notation, we have just derived:
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(A6) p0 =

nX
i=1

cip
i; for somec1; � � � ; cn such that

X
ci = 1;

so that at least oneci is positive.
Now, replacing (A6) into (A2) leads to:

nX
i=1

(ciu
0 � aiu

i)pi = 0:

Using (*) again, we conclude that for alli = 1; � � � ; n,

(A7) ciu
0 = aiu

i:

One of theai must be non-zero, and for anyi = 1; � � � ; n; ai 6= 0 if and only
if ci 6= 0 (becauseu0; u1; � � � ; un are nonconstant). Hence, there is a utility or
inverse utility dictator, as was required to show.

Consider the effect of assuming(C1) instead of (C), while still assuming that
(*) holds. The argument just made remains available, since(C1) trivially implies
(C). But there is now a sign restriction on theai (Lemma 5). This restriction,
together with the fact that oneci must be positive, implies that there is a utility
dictator.

To deal with (C2) in case (*) we first note that the latter property implies that:

(� � �) U1; � � � ; Un are affinely independent:

(Suppose not, and consider the special class of acts at the beginning of the proof;
then, for somej 2 f1; � � � ; ng, there are coefficientsdi; i 6= j, such thatpjuj =P

i 6=j dip
iui, a contradiction.) Then, Lemma 8 says that (MAA) holds, and from

Lemma 6 the results reached for (C1) apply to (C2).
When (C) and (**) hold, equations (A1) to (A4) remain unchanged. Then, the

affine independence property of theui implies that for alli,

(A8) ai(p
0 � pi) = 0;

whence we conclude that there is a probability dictator. This conclusion still holds
under either (C1) or (C2). The latter case is dealt with by noting that (**) also
implies (***). �

Proof [of Proposition 10] Using Lemmas 6 and 8 as in the previous proof, we
see that under either (*) or (**),(C3) becomes equivalent to(C+). Hence, from
Lemma 5 there is an affine decomposition:
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U0 =
nX
i=1

aiU
i + b

with positiveai for i = 1; � � � ; n. Now, assuming that (*) is the case, we can
reproduce the reasoning of the previous proof and conclude, as in (A7) above, that
for all i = 1; � � � ; n,

ciu
0 = aiu

i:

Since all of theai are positive, andai 6= 0 if and only if ci 6= 0, we conclude
that for i = 1; � � � ; n, there are�i 6= 0 such thatu0 = �iu

i, and pairwise utility
dependence prevails amongu1; � � � ; un. Remember that one of theci must be
positive; this implies that there is a utility dictator. To analyze case (**), we revert
to equation (A8) in the proof above:

ai(p
0 � pi) = 0;

and now conclude that probability agreement prevails and that there is a probability
dictator. �

Proof [of Proposition 12] Throughout the proof, we writevi(s;R) instead of
vis(R) andpi(s) instead ofpis, and assume that for someR� 2 R,

vi(s;R�) = 0 for all s 2 S and alli = 0; 1; � � � ; n:

(This normalization is permitted by the uniqueness part of Proposition 3.)
From Proposition 3 we know that if (C) holds,�i is represented by:

V i(f) =
X
s2S

pi(s)vi(s; f(s)); i = 0; 1; � � � ; n:

Lemma 2 and the chosen normalization imply that:

V 0(f) =

nX
i=1

aiV
i(f)

for somea1; � � � ; an. By identifying the two expressions forV 0(f), and restricting
them to those acts which have valuesR ons andR� elsewhere, we conclude that:

(A9) p0(s)v0(s;R) =
nX
i=1

aip
i(s)vi(s;R) 8s 2 S;8R 2 R

Repeating the argument for the auxiliary preferences~�
0
; � � � ; ~�

n
and their

functional representations leads to:
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q(s)v0(s;R) =

nX
i=1

biq(s)v
i(s;R) 8s 2 S;8R 2 R;

for someb1; � � � ; bn. Sinceq(s) > 0 for all s,

(A10) v0(s;R) =

nX
i=1

biv
i(s;R) 8s 2 S;8R 2 R:

Replacing (A10) into (A9) we have that:

(A11)

nX
i=1

[bip
0(s)� aip

i(s)]vi(s;R) = 0 8s 2 S;8R 2 R:

Now, considerS0 as in the first part of the Proposition. For any fixeds 2 S0, since
thevi(s; �) are linearly independent, the equation inR:

(A12)

nX
i=1

[bip
0(s)� aip

i(s)]vi(s; �) = 0

implies that:

(A13) bip
0(s) = aip

i(s); i = 1; � � � ; n:

Consider the sets of indexes:

I = fi = 1; � � � ; nj ai 6= 0g andJ = fi = 1; � � � ; nj bi 6= 0g:

From Axiom 20, as applied to�0 and ~�0 respectively, we know thatI 6= � 6= J .
Suppose thatI \ J = �. Then, (A13) implies that:

p0(s) = 0; and for at least onei 2 I; pi(s) = 0:

If we repeat the reasoning fors0 2 S; s 6= s0, we find thatpi(s0) = 0 for the same
i. Hence, in the case in whichI \J = �, there isi such thatp0(S0) = pi(S0) = 0,
a case of probability dictatorship.

Now, consider the case in whichI \ J 6= �. There isi such thatai 6= 0 6= bi,
and:

p0(s) = aib
�1
i pi(s); 8s 2 S0:

Eitherpi(S0) = 0 = p0(S0), or pi(S0) 6= 0 and



348 PHILIPPE MONGIN

p0(s)

p0(S0)
=

pi(s)

pi(S0)
; 8s 2 S0;

which again shows that probability dictatorship prevails. The analysis of the other
conditions than (C) makes use of Lemmas 6 and 7, as in the corresponding parts
of the proofs of Propositions 10 and 11. Details are left for the reader. �

Proof [of Proposition 14] We first spell out the implications of Assumption 13
for each KSV representation taken individually. Axiom 1 can be applied to the
restriction of�i to the setHs0 of acts having some fixed set of values outside
S0, and because of (*) and (**), Axiom 2 and a version of Axiom 3 hold for this
preference relation (which we also denote by�i). From Proposition 1 there is a
state-independent functionwi onR and a probability�i onS0 such that:

8f; g 2 HS0 ; f �i g iff
X
s2S0

�isw
i(f(s)) �

X
s2S0

�isw
i(g(s)):

Now, the conclusions of Proposition 3 also apply to the restricted preference. Us-
ing Assumption 1, the(jS0j+1)-tuple(wi; � � � ; wi; �i) is seen to satisfy conditions
(i) and (ii) in Proposition 3, as applied to acts inHS0 , so that by the uniqueness
part of this proposition:

(vis)s2S0 = (wi; � � � ; wi) up to a PAT;

and:

�i(s) =
pi(s)

pi(S0)
; 8s 2 S0:

Hence, fori = 0; 1; � � � ; n, we may replace the initial vector of KSV represen-
tations relative toHS0 by (wi; � � � ; wi), and use (C) and condition (***) to prove
impossibility results as if state-independence prevailed. The reader is referred to
the relevant parts of the proofs of Propositions 9 and 10. �

Proof [of Corollary 15] Immediate from Propositions 9 and 10. �

Proof [of Corollary 16] If v1(s; �); v2(s; �) are affinely independent, Proposition 12
implies that eitherp0(s) = p1(s) or p0(s) = p2(s) whenever (C), (C1), or (MAA)
and (C2) hold, a conclusion which is strengthened intop0(s) = p1(s) = p2(s)
whenever (MAA) and (C3) holds. If v1(s; �); v2(s; �) are affinely dependent, the
conclusion thatv0(s) = v1(s) = v2(s), up to relevant affine transformations,
follows from inspecting equation (A2) in the proof of Proposition 12. �
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