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A Quasi-analytical Constitution of
Physical Space

Thomas Mormann

I.Attacks on Carnap’s Constitutional Theory

Carnap’s quasi-analytical constitution theory of the Aufbax has been subjected
to many eriticisms on quite different levels. Let us mention just three: (i)
Goodman attacked the roots of Carnap’s account claiming that the constitutio-
nal method of the Aufbau is doomed to fail from its very beginning, since the
constitution of qualities from elementary experiences is fatally flawed
(Goodman 1951); (ii} Quine artacked the constittional theory of the Aufbau on
an intermediate level contending that, when it came to spacetime, Carnap was
not able to constitute it. Instead, Quine objected, Carnap changed ihe method
of constitution without clearly announcing it, introducing a new undefined
connective “is at” (Quine 1951}; (iii) recently Friedman contended that even if
the quasi-analytical method of constitutions worked properly throughout, it
would not deliver what Carnap expected from it, to wit, a complete structural-
ization of empirical knowledge (Friedman 1999).

I think there are good reasons to assume that Goodman’s criticisms can be
defused (cf. Proust 1989, Mormann 2003). Thus, I'will say nothing about them,
nor will I treat Friedman’s objections dealing with difficulties concerning
Carnap’s notion of foundedness {cf. Aufban §154-55, Friedman 1999). In this
paper I only want to deal with Quine’s criticism concerning the constitution of
spacetime. Quine maintained that the dufbau’s account of the constitution of
the physical world is principally flawed:

Statements of the form “Quality qis at point-instant x;y;z;t” were,
according to [Carnap’s] canons, to be apportioned truth values in
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such a way as to maximize and minimize certain over-all features,
and with growth of experience the truth values were to be progres-
sively revised in the same spirit. I think this is a good schematization
- . of what science really does; but it provides no indication, not
even the sketchiest, of how a statement of the form “Quality qis at
x;¥.2;t” could ever be translated into Carnap’s initial language of
sense data and logic. The connective “is at” remains an added un-
defined connective; the canons counsel us iu its use but not inits
elimination. (Quine 1951, p. 40)

In this paper I'd like to provide such a sketch. Admittedly, something like
this cannot be found in Carnap’s original account, at least not explicitly.
Nevertheless, I claim that my coustitution of the “is at”-connective is folly in
line with the spirit of Carnap’s approach. Thatis to say, Carnap could have con-
stituted physical space by quasi-analytical methods alone. He wasn’t forced to
fall back on other, conventionalist constitntional methods, Although Quine’s
empiricist interpretation of the 4ufbax has recently been critized from many
quarters, his thesis of the alleged break in the methodology of the Aufbaw and
the resulting unreducibility of the coordinating connective “is at” has remained
unchallenged up to now (cf. Richardson 1998). Against this common wisdonz,
I'd like to show how the notorious connective “is at” may indeed be elimi-
nated.' The ouiline of this paper is as follows:

In section 2 we sketch the geometric background of the constitutional
theory of the dufbau. Relying on the rather neglected relationship between
Aufbau and Der Raum (Carnap 1922) it is shown that the basic intuition for
the constitutional theory is to be found in the realm of synthetic geometry. In
section 3 it is argued that the constitutional method of quasi-analysis may be
interpreted as a genuine geometric method designed to treat appropriate
relational structures (similarity siructures) by the methods of synthetic geom-
etry. The aim of section 4 is to show that the affine Euclidean plane may be
conceived as a similarity structure for which a quasi-analysis may be set up
thatyields the original affine incidence relation, Applying a fundamental the-
orem of synthetic' geometry, the so-called coordinatization theorem, this
implies that an appropriate quasi-analysis of an affine similarity structure
yields a sort of auto-coordinatization of this structure. In section 5 itis argued
that this auto-coordinatization may be interpreted in Carnapian terms as the
desired constitution of physical space. We close with some remarks on the
general relevance of this result in section 6.

1. In order not to overburden the paper with mathematicel techmicalities I will prove
only a simplified version of this contention, to wit, how a statement of the form
“Quality q is at (x,¥)” (x,¥) ¢ R2, can be translated into a statement using only the
basic terms of a constitutional system. Here, of course, B2 is the 2-dimensjonal vector
space over the real numbers B. The generalization to 4-dimensional spacetime is not
too difficult.
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2.The Geometric Background of the Aufbau

As has been shown in (Mormann 2003), geometry was an important source of
inspiration of Carnap’s philosophical thought. To a large extent, the constitut-
ional theory of the Aufbau was inspired by the relational systems of synthetie
geometry. The first traces of a constitutional theory of conceptual systems can
already be found in Der Raum. Since the Aufbau program may be said to have
been decisive for Carnap’s philosophy iberkaupt, one may say that geometry
had a substantial influence on his philosophy in its entirety. In this paper I do
not want to dwell upon the historical details of this “geometric” interpretation
of the Aufbau, rather I'dlike to recall with as little fuss as possible the basic con-
ceptual ideas of synthetic geometry necessary to understand the quasi-analyti-
cal constitution of physical space that Carnap could have carried out, if only he
had paid more attention to the expressive power of geometry.>

The leitmorif of synthetic geometry is order. As Carnap putit, geometryis
a general theory of Ordnungsgefiige (complexes of order stipulations). Carnap
understood Ordnungsgefiige in a semi-techmical sense intended to mean some-
thing like “relational structure” or “structured set.” By conceiving a domain as
a possible application for the theory of Ordnungsgefiige one imposes some
order on it. This is achieved by certain Ordnungssetzungen (stipulations of
order). Hence, as a theory of Ordrungsgefiige, synthetic geometry has a strong
applicative dimension. In Der Raum Carnap explains this fact for projective ge-
ometries at great length. According to him, synthetic geometry is designed to
offer an arsenal of possible conceptual schemes applicable to many domains.
This leads to the following two characteristic features of geometry:

(1) Space (and other geometric notions such as points and lines) are conceived
as general notions having many different instantiations. Geometry studies
them all without blinders. It does not aim to single out one geometric sys-
tem as the “true” one.

(2) Synthetic geometry is relational: the objects of geometric systems are
determined by a net of implicit relational definitions. The ontological sta-
tus of a geometric object is determined by its relational position within a
certain relational system.

Understanding geometry as a general theory of Ordnungsgefiige gives
Ordnungssetzungen a crucial role. The most important Ordnungssetzungen are
lines. To put it bluntly, lines are the entities that establish geometric order. Itis
surprising that this simple idea, the imposition of order by lines, is sufficient to
constitute a// concepts of geometry. That is to say, points and lines are the basic
building blocks for all other geometrical concepts. Of course, one has to sub-
scribe to a general concept of line in order that lines can play this almost uni-

2. For a fuller account, see (Mormann 2003).
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versal role of Ordnungssetzungen. Lines in the sense of synthetic geometry need
not look like the lines we are accnstumed to. For instance, in projective geome-
try “lines” have the structure of “circles.” The point is that the “lines” of geo-
metric systems fiunction as lines.

The upshot of this is the following: a geometzic system in the sense of syn-
thetic geometry may be defined as a triple (V, L, I): Vis the set of points, L the
setoflines and Iis the so-called incidence relation I < Vx L. Obviously, the inci-
dence relation I fully characterizes the geometric system (V, L, I). Synthetic
geometry, then, is the theory of incidence relations (cf. Buekenhout 1995 ).
More specifically, the incidence relation I determines which points are related
to which lines. Intuitively stated, it determines which points are on which lines:
(x,m) € Lis to be interpreted as the fact that in the geometric system defined by
the incidence relation I “the peoint x is on the line m.” In the same vein, two
lines m and k are said to intersect if and only if there is a point x that belongs to
both of them, i.e., there are ordered pairs (x, m), (x, k) € I; two lines m and k are
parallel (m || k) if and only if they do not have a common point; two points x and
y are collinear if and only if there is a line m such that (x, m), (y,m) e L
Depending on the axioms imposed on I, different types of geometric systems are
obtained. Traditionally, the most important ones are gffine and projective Sys-
tems, but in contemporary geometry many other systems are studied as well (cf.
ibid.).

For Jater use let us note that the systems (V, L, I) of synthetic geometry are
extensional in the following sense:

(2.1) Definition (FExtensional Geometric Systerns). LetS=(V,L, ) bea system of
synthetic geometry. Form € L denote by V(m): = {x; (x, m) & I} the set of points
of the line m. Then S is an ezzensional system iff two lines m and n are equal iff
their point sets V(m) and V(n) coincide.

Extensional systems (V, L, I) may be cast in a canonical form that elimi-
nates lines as primitive: denote the power set of V by PV. Then an extensional
geometric system is isomorphic to a system of the form (V, L, I) where L =% 4%
by identifying lines with their sets of points. In the following it is assumed
throughout that all geometric systems are extensional, although we do not
always explicitly denote this. ‘

Now let us begin to connect synthetic geometry as the theory of incidence
structures with the constitutional theory of the Aufbaw. First let us note a rather
curious piece of evidence for such a connection. In Der Raum Carnap considers
some geometric systems (P, C, I} that may be considered as primitive forerun-
ners of the coustitutional systems of the Aufbau (for details see Mormann
[20031): P is a set of objects (Gegenstinde), C a set of concepts {Begriffe} such
that (p, ¢) € Tiff the object p can be subsumed under c. Or, in other words, (p, ¢)
€ Iifand onlyif p is a case of ¢ or p can be subsumed under ¢. For systems of this
kind, which he calls “conceptual geometries,” Carnap requires the following
axioms to hold:
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(2.2) Conceptual Geometries (Der Raum, p. 14). “Let us assume that the objects
Py, Py, ... fall under the concept P such that the following conditions are satis-
fied: there is a concept G, under which not objects are subsumed but concepts
81> 835 3- - - - such that the following requirements are satisfied:

(1) Atleast three P-objects fall under any g-concept, but not all P-objects can
be subsumed under one g-concept.

(2) For two different P-objects there is always one and only one g-concept
under which they fall, their “common” concept.

(3) If P, P,, P, fall under 8;s Py, Py, P’ under g,. and g; and g, are different,
then there exists an object P, that falls under the common concept of P, and
P’, and under the common concept of P, and P’,; moreover there is a con-
cept g, which subsumes P, , but no object of g,

The first two axioms of this system of conceptual geometry are easily
understood, even if they may not appear very plausible for concepts. The third,
as it stands appears hopelessly abstruse. In geometric terms it essentially tells
us that the space of the conceptual geometry has (at least) three dimensions. In
sum, what Carnap is doing here is just taking the familiar axiom system of
3-dimensional projective space and replacing the standard geometric interpre-
tations “point,” “line,” and “is incident with™ by the expressions “object,”
“concept,” and “falls under” {“is subsumed”), respectively. At first glance, the
“projective conceptual geometry” obtained by this procedure may appear to be

nothing but an amusing idea devoid of any deeper meaning. This, however, *

would be a misunderstanding. As is shown in (Mormann 2003), the conceptual
geometries are the primitive precursors of the constitutional systems of the
Aufbau. They may be considered as powerful intnition pumps for the constitu-
tional theory of the Aufbau (cf. §70, 72). One may say that Carnap took the con-
stitutional systems of the dufbar and the conceptual geometries of Der Raum
as being of the same ilk.

In this paper I want to show that synthetic geometry not only belongs to
the Aufbau’s prehistory, but should also be regarded as its conceptual core.
This helps elucidate the true nature of the Aufban program. In order to render
plausible this contention, we have to recall an important result of 19th-century
mathematics, to wit, the coordinatization theorem of affine geometries. We
will use this theorem to show that the real number space R? can be constituted
from a purely qualitative base, or, to use Quine’s wording, from Carnap’s ini-
tial language of sense data and logic. In the context of the present paper, this
base will be a relational structure defined by a set of Elementareriebnisse en-
dowed with a purely qualitative similarity relation (ef. Aufbau §1081f). In other
words, we may consider qualitative, non-metrical geometry as a foundational
theory for number systems. Today, philosophers of mathematics do not attri-
bute any philosophical relevance to this fact. Rather unanimously they con-
stder geometry as reducible to linear algebra in such a way that geometry as a
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mathematical discipline loses any genuine philosophical interest. It is re-
markable, and mathematically non-trivial, that the direction. of reduction may
be reversed. The proof of this crucial result is long and involved, and need not
concern us here. It may suffice to present an axiom system which shows, at least
in principle, how number systems such as the real numbers R can be recon-
structed in the framework of synthetic geometry:

(2.3) Affine Incidence Structures. Let A = (V, L, T) be a system of synthetic geom-
etry. A is called an agffine Pappus incidence structure (AP-structure) iff the fol-
lowing conditions ave satisfied:

(PA1) There exist at least three non-collinear points. (Nontriviality)

(PA2) Any two distinct points x and ylie on exactly one line. Hence, we may de-
note the line determined by x and y with xy. (Linearity)

(PA3) Given a point x and a line m, there is exactly one line k that passes
through x and is parallel to m. (Parallel axiom)

(PA4} Ifx, v, zis atwiple of points on m, and x', y’, 2’ points of m’ such that
xy' [|x'y and xz' || x'z then yz' || y'z. (Pappus’s axiom)

The axioms {PA1)-(PA4) suffice to ensure that the lines of an AP-incidence
structure have a quite rich algebraic structure; they are fields in the sense of ma-
thematies (cf. Goldblatt 1987). Thatis, for the points of aline n & L, operations
of addition and multiplication can be defined which obey the laws of associativ-
ity, commutativity, distributivity etc., thereby rendering n a field K. We need
not study these operations in detail; their definition can be found in any text-
book of synthetic geometry (cf. Buekenhout 1995, Coppel 1998). Rather, we
are content to recall the addition of collinear points in the special case of the
Euclidean plane for which the field K is the familiar field R of real numbers:

Wi 1 ¥ on
yf zf
m
o7 7 x Iy 7"

Choose two distinct lines m and n which intersect in a point 0. Fix some
point w on m different from 0. The line through w parallel to n is denoted by n'.
Letx,y e n. Let the line through y parallel to m meet n’ aty’, and then let the
line through x parallel to Oy meet n’ at z'. Then the line parallel to m through

SR et penmmmr e, i i
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z’ meets n at z. Declare x + y = z. It can be shown that this operation + renders
1 a commutative group, i.e., addition on n is associative, commutative, has
a neutral element 0, etc. In a similar way one can define a commutative
multiplication © on n and show that it obeys the laws a multiplication of a field
has to satisfy. In sum, these geometrically defined operations + and ¢ render
(m, +, 2} a field. This construction may be expanded to a coordinatization of the
AP-structure A as follows:

m
5
a'(m)

b(m)

e(m)

ol e(n) " b(n) ~a(m) ~ Ta(n)

Choose distinet points e(m)} and e(n) on m and n respectively, both differ-
ent from 0. The assignment of b(m) to b(n) (defined by the line b(m)b(n) paral-
lel to e{m}e(n)) establishes a bijective correspondence between the points of n
and of m. Then, given a point ain the plane, let the lines through a parallel to n
and m meet m at a'(m) and n at a(n). Let a{m} on n correspond to a’(m} on m.
Then the ordered pair (a{n), a(m)) are the coordinates of a in the coordinatiza-
tion of A defined by the lines n, m, and the points e{m), e(n). Of course, choos-
ing different basic lines and points, one obtains a different coordinatization.
Buat, as is well known, all coordinatizations obtained in this way are isomorphic
(cf. Goldblact 1987, ch. 2).

In the rest of this paper, I intend to show that this coordinatization pro-
vides the base for a quasi-analytical constitution of spacetime in the sense of the
Aufbau. A first bit of evidence that the constitutional theory of the Aufbau is
related to the systems of synthetic geometry are the “conceptual geometries” of
Der Rawim. In order to substantiate this relation we have to delve deeper into the
technicalities of the Aufbau.

The result will be that in the constitutional theory, incidence structures

(E, Q, I) will play an important role. Here, E is an already constituted domain,
and the next higher level of constitution can be described in terms of the system
(B, Q, I). This is strong evidence that something like a coordinatization of
AP-planes may be carried outin the conceptual framework of the constitutional
theory of the Aufbaun. The aim of the following sections is to do exactly this.
More precisely, it will be shown that Carnap’s quasi-analysis may be interpreted
as a method whose task is to construct appropriate incidence structures (£, Q,
I) for certain “inhomogeneous” sets E, as Carnap called them.
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3. Quasi-analysis and Synthetic Geometry

The Aufbau is a complex work that has been interpreted in many different,
sometimes incompatible ways. In this article I assume that the main aim of the
Aufbau is noz to present a full-fledged constitutional system based on
Elementarerlebnisse. Rather I assume that the Aufbau was intended to exem-
plify a new general philosophical discipline, called Konssitutionstheorie (consti-
tutional theory), which had the task of “investigating all possible forms of
stepwise definitional systems of concepts™ (Friedman 1999, p. 115, Aufbau
§46). Carnap invended to create a scientific suceessor to traditional epistemol-
ogy and philosophy of science that remained neutral with respect to the futile
metaphysical quarrels that had plagued the traditional accounts.® As the core of
this new kind of philosophy of science, Carnap considered not the constitu-
tional system he had sketched in the Au/bau but the method by which it was con-
stituted. This constitutional method is the method of quasi-analysis. Hence, if
the thesis of the geometric origins of the Aufdauw is to be taken seriously, quasi-
analysis should fit into the conceptual framework of synthetic geometry. In this
section I want to show that this is indeed the case. More precisely I contend the
following:

(3.1} Quasi-analysis in the Framework of Synthetic Geomerry. Let E be an inho-
mogeneous set. Quasi-analyzing E is taking the elements of E as points of a geo-
metric system (E, Q, I). The system (E, Q, I) may be considered as a comnplex of
Ordnungssetzungen, i.e., as a geometrical Ordnungsgefiige. The Ord-
nungsgefiige set up by (E, Q, I) may be interpreted as an externalisation of the
inhomogeneities of E.

In order to unfold this succinet characterization of quasi-analysis, the fol-
lowing remarks may be in order. The key term of (3.1) is “non-homogeneous
set.” Hence, first we have to explain what is to be understood by that term. Then
we will explain what is meant by embedding an inhomogeneous set E in a geo-
metric frame (E, Q, I). For Carnap, the foremost examples of non-homo-
geneous sets E are similarity structures. A similarity structure, denoted by
(E, ~},is a set E endowed with a binary similarity relation ~. Two elements e and
¢’of E related by the relation ~ are said to be similar to each other (e ~ €'). The
relation ~ is assumed to be reflexive and symmetric, ie. each element is
assumed to be similar to itself (e~ e) and e ~ &’ implies e’ ~ e. The relation need
not be transitive, however. This is plausible, since if e is similar to ¢, and e’ is
similar to e” then e need not be similarto e”. A non-homogeneous set (E, ~} may
be represented more perspicuously as a graph:

3. In this paper, I do not want to argue for this sweeping claim, rather I°d like to rely on
the interpretative efforts of authors such as Friedman, Proust, and Richardson who have
supplied ample evidence for this contention {ef. Friedman 1999, Proust 1989,
Richardsen 1998). According to their interpretations, the topics of phenomenalism,
gestalt theory, or reductionism deo 2ot lie at the heart of the dufbau.
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Here, two distinet similar elements of E are connected by a straight line,

and two elements that are not similar are not directly connected by a straight
line. Actually, the concepts of simple graph and similarity structure are

sirictly equivalent. Hence, according to the 4ufbau, the world (or some part
of it} may be conceived of as a huge graph: the vertices of this graph are the
“elementary experiences” and the edges are formed by the pairs of similar
elements.

In an unpublished manuscript with the programmatic title Quasizerie-
gung- Ein Verfahren zur Ordnung nichthomogener Mengen mit den Mitteln der
Bezichungslehre (Quasi-analysis — A Method to Order Non-Homogeneous Sets
by Means of the Theory of Relations [Carnap 1922/23]), the task of Quasizer-
legung, i.e., quasi-analysis for similarity structures, is described as follows:

Suppose there is given a set of elements, and for each element the
specification to which it is similar. We aim at a description of the set
which only uses this information but ascribes to these elements qua-
sicomponents or quasiproperties in such a way that it is possible to
deal with each element separately using only the quasiproperties,
without reference to other elements. {Quasizerlegung, p. 4)

As Quasizerlegung makes clear, the method of quasi-analysis is a purely
formal method. It may be applied to any nonhomogeneous set (E, ~), not just
to Elementarericbnisse as in the Ayfbau. Submitting (E, ~) to quasi-analysis
means imposing certain Ordnungssetzungen on it in order to unfold its struc-
ture. Thereby appropriate invariants may be found which characterize its
structure 1n a succinet manner. As modern mathematics teaches us, the find-
ing of characteristic invariants is an unending task. Even apparently simple
structures give rise to a profusion of invariants. Although Carnap concen-
trates on the quasi-analysis of similarity structures, he mentions the possibil-
ity of submitting «// kinds of relational structures to a guasi-analytical

constitution process {(Aufbau §104). Hence, 1 think it would not be totally off
to interpret quasi-analysis in a generalized sense as mathematical constitu-
tion éberhaupt. Be that as it may, in the following we will concentrate on the
quasi-analysis of similarity structures. In Quasizerlegung (p. 4) Carnap
describes this kind of quasi-analysis axiomatically as the assignation of quasi-
properties to the objects to be quasi-analysed, whereby these quasiproperties
function as Ordnungssetzungen such that the similarity structure of Eis taken

into accounnt:
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(3.2} Definition. Let (E, ~) be a non-homogeneous set. A set of quasiproperties
of the elements of Eis a set of entities which satisfy the following requirements*:

(C1) If two elements are similar they share at least one quasiproperty.
(CG2) Iftwo elements are not similar they do not share any quasiproperty.

{(C3) If two elements are similar to exactly the same elements they have the
same quasiproperties.

(C4) No quasiproperty can be removed without violating (C1)-(C3).

The general intention of these requirements is to regulate the relation
between “being similar” on the one hand and “sharing a property” on the
other. (C1)-(C3} express characteristics of this relation that may be considered
as more or less common sensical asserting that similarity and properties co-
vary. The requirement (C4) is a principle of parsimony which intends o bar
superfluous properties not needed for an economic description of the similar-
ity relation.

Let us postpone for the moment the question of what quasiproperties
“really are,” simply assuming that there is a set Q := {q; q quasiproperty of
(E, ~}}. With the help of Q we may define an incidence relation Ic Ex Q by

(3.3} (e, @) € I:=the clement e has the quasiproperty q.

In this way the relation between elements of E and their quasiproperties q
may be succinctly described by the incidence relation I. If the resulting system
(E, Q, I} of incidence geometry satisfies (C1)-{C4) it is called a quasi-analysis
of the non-homogeneous set (E, ~). This construction of a geometric system
is analogous to that of conceptual geometries Carnap discussed in Der Raum.
In contrast to the axioms for “conceptual geometries™ in Der Raum (which
are simply copied from the axioms for projective spaces) the requirements
(C1)-(C4) for (E, Q, I) are much better adapted to the intuitive requirements
one entertains for property distributions. Hence, we are still in the realm of
incidence structure, although Carnap no longer maintains the rather absurd
thesis that conceptual geometries are to be modelled after the patterns of pro-
jective geometry.

Tewill be expedient to define a quasi-analysis in still another but equivalent
way. As is evident, every relation I ¢ E x Q gives rise to a mapping

(3.4)  rpE->PQdefinedbyr,(e):={g; (e, q) e I}

Obviously, 1 and r; determine each other uniquely. Hence we may characterize
a quasi-analysis either by (3.3) as an incidence relation, or by (3.4) as a suitable
map (cf. Mormann 19%94}. The version (3.4) is particularly convenient if one
wants to check if conditions such as (C1)-(C4) are satisfied. Summarizing we

4. Asis shown in Mormann (1994) there are indeed similarity structures that have essen-
tially different sets of quasiproperties.
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end up with the following characterization of a quasi-analysis of similarity struc-
tures (or, in terms of Quasizerlegung, “non-homogeneous sets™):

(3.5} Definition of Quasi-analysis. Let (E, ~) be a similarity structure. A guasi-
analysis for B is an incidence structure (B, Q, I) as defined in (3.3), or equiva-
lently, as a representation r;: E — PQ satisfying the requirements (C1)-(C4}) as
defined in (3.3).

Now let us come back to the question of what quasiproperties “really
are.” Since the constitutional theory of the dufbau is extensional, we may
assume that the quasi-analytical systems (E, Q, I) are extensional systems in
the sense of (2.1) where the quasiproperty q is identified with the set {e; (e, g)
&€ I}. Aset Q of quasiproperties may thus be considered as a subset Q = PE of
subsets of E. Hence the general format of a quasi-analysis of a similarity struc-
ture (E, ~) is

(3.6) IcExPEorr;E—PPE

such that (C1)~(C4) are satisfied. This description of quasiproperties is still
rather vague. In the following we will give a more specific characterization of
quasiproperties for the so called quasi-analysis of the first kind, i.e., we will
characterize quasiproperties of (E, ~) as special subsets of E by taking into
account the similiarity structure of (E, ~). For this purpose we need the follow-
ing preparatory definition:

(3.7) Definition. Let (E, ~) bea similarity structure. A similarity circle T (Ahn-
lichkeitskreis) is a subset T' ¢ E which satisfies the requirements

&) (x) y) xye T—>x~y)
{ii) (x)Iy(x¢ T—ye Tand NOT(x~y))

Denote the set of similarity circles of (E, ~) by SCE. Conceiving a similarity
structure (E, ~) as a graph, similiarity circles T may be characterized as maximal
subgraphs of (E, ~) all of whose elements are similar to each other. Hence, for
all elements x not belonging to T there is a y of T such that Not (x ~y) obtains.
The concept of similarity circles gives rise to the following definition:

(3.8) Definition (Aufbau §69, Mormann 1994). A quasi-analysis (E, Q, I} of the
similarity structuve (E, ~) is of the first kind if and only if all its quasiproperties
are elements of SCE, i.e. Q c PSCE. In mapping form this is expressed by the
requirement that a quasi-analysis of the first kind has the form

ry: E = PSCE rather thanr;: E — PPE

In the following we will only consider quasi-analysis of the first kind 5 Similarity cir-
cles may be used to define a “standard pseudo-quasi-analysis” in the following way:

5. In the dufbau, Carnap also considers a quasianalysis of the second kind which has for-
mally less satisfying properties.
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(3.9) Proposition. Let (E, ~) be a similarity structure. Define a map 1;: E —
PSCEbyr{x) : ={T: T e SCS(E} and x € T}. Then r, satisfies the conditions
(C1}-(C3).5

In order to make the preceding chain of abstract definitions more vivid, let
us consider the following elementary example (Goodman 1951):

2 5

3 4

The similarity structure defined by this graph has four similarity circles:
a={1,2,3}b=1{2,3, 5}, ¢~ {3, 4, 5},and d = {5, 6}. Thus for this graph we get
the following property list:

1. a 4. ¢
(3.10) 2. ab 5 bed
3. abe 6. 4

Alist of this kind is to be read as “1 has the properiy a,” “2 has the properties 2
and b,” etc. In this way we see that 1 and 2 share the property a, 2 and 3 share
the properties a and b etc. As is easily seen the properiy distribution provided
by the list (3.11) satisfies Carnap’s requirements (C1)-(C4).

In the tradition of Carnap and Goodman, the virtues and vices of the quasi-
analytical approach have been discussed almost exclusively in terms of small
examples such as (3.10) (cf. Goodman 1951, Mormann 1994). The geometric
reinterpretation of this method shows that the domain of applications of the
quasi-analytic approach is not exhausted by these rather elementary cases. This
will be shown in the following section.

4.The Affine Plane as a Similarity Structure

A new field of applications for quasi-analytical constitutional theory is opened
when we take seriously the fact that quasi-analysis of similarity structures are inci-
dence structures (E, Q, I) of synthetic geometry. A particularly important exam-
ple is the incidence structure of the familiar plane of Euclidean geometry. This

6. It may be called “pseudo-quasianalysis,” since, as is shown in (Mormann 1994) it does
not necessarily satisfy (C4).
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exampie will bring us close to our ultimate destination, the quasi-analytical con-
stitution of physical space time. The details are as follows. Let A be the Euclidean
plane. Denote its points byx,y, z, and its lines by k, m, n, etc. As iswell known, the
geometric structure of A may be codified in terms of an incidence relation I Ax
PA. Sincein A any two different points x and y determine exactly one line, a line m
may be denoted by xy, x and y being two different points of m.

Now, our task is to characterize the Euclidean plane A (endowed with its
standard incidence structure) as a similarity structure (A, ~). First, let us define
an appropriate similarity relation. For this purpose, choose a class B of parallel
lines of A. Depending on B we will define a similarity relation ~ B on A. Hence,
the resulting similarity structure should be denoted by (A, ~ B). In order not to
overload denotation, however, we will denote it simply by (A, ~). This is justified
since for different B the resulting similarity structures turn out to be canorni-
cally isomorphic. For reasons of intuitive vividness we may refer to the lines of
B as horizontal lines. Having chosen B two points x and y are defined to be sim-
ilar iff they are equal or are on a line m 720z belonging to B:

{4.1) x~y=(x#yandxye B)orx=y
The following diagram exhibits the geometrical meaning of this definition:

B

’q FN

Obviously, the relation ~ is reflexive and symmetric, but not transitive.
Hence, (A, ~) is a similarity structure. Define the complementary similarity
structure (A, ~*} by x~* y:= (xye Borx=y)). (A, ~*) isavery special similar-
ity structure, to wit, it is an equivalence structure, whose equivalenice classes
are just the lines of B. Obviously, (A, ~) and {A, ~*) determine each other, and
all considerations dealing with ~* could be formulated in terms of ~, and vice
versa. Hence, dealingwith (A, ~) and (A, ~*) (instead of (A, ~} or (A, ~*) alone)
does not add anything new. After these preparations we are able to construct the
following quasi-analysis of A:

(4.2} Lemma. Let (A, ~) be the similarity structure defined by (4.1). Then define
Q: A — PPA Dby Q(x) := {xy; xy ¢ B}. Then the map Q is a quasi-analysis of A of
the first kind.

Proof: Geometrically, the quasiproperties attributed to x by Q are just the lines
of A through x not belonging to B. First we show that Q satisfies (C1) and (C2).
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Forx#ywehavex~yiffxy¢ B. Hencexye Q{x) N Q(y) # @. Onthe other hand,
ifme Q(x) N Q(y) we have m & B. Since x and y are on m we may write m = xy,
hence x ~ y. Moreover, since any non-horizontal line m may be characierized as
m = xy for some points x and y satisfying x ~ y, removing m would amount to a
violation of C1. Hence, Q satisfies (C2). The conditions (C3) and (C4) are obvi-
ous. In order to prove that Q is of the first kind we have to show that any line
q not belonging to B is a similarity circle of the similarity structure (A, ~).
Letm e Q(x). For anyye m and x #y we have xy = m. Hence, all points of m are
similar to X. Suppose z € m and z ~ x. Then there is 2 unique horizontal line
k through z which meets m at, say, z'. Hence, by definition, z ~* z’. Hence
me SCG(A, ~) and Q is of the first kind.

The representation Q has some properties which deserve to be singled out,
since they will be crucial for the following (cf. (2.3)):

{4.3) Lemma. Let (A, ~) be the Euclidean plane endowed with the similarity
relation defined by (4.1) endowed with the quasi-analysis defined by {4.2). Then
the following holds:

(PA1)" There exist at least three non-collinear points.

(PA2)" Any two distinct similar points x and y lie on exactly one line. Hence, we
may denote the line determined by x and y with xy. '

(PA3)" Given a pointxand aline m, there is exactly one line k that passes x and
is parallel to m.

(PA4} Suppose thatx, ¥, 2 is a triple of points on m, and x', ¥/, z' a triple of
points of m’ such thatx~y',x" ~y,x~2',x ~2,y~z', ¥ ~ 2. ifxy’ | X'y
and xz'|| x'z then yz'| y'z.

Lemma (4.3) asserts that the quasi-analysis Q of (A, ~) renders (A, ~) essentially
an AP-plane in the sense of (2.3) changing (P1)-(P4) to (P1)'~{P4)’ since the
lines of B have to be left out.

The incidence relation I defined by Q is not quite the incidence relation of
the affine Euclidean plane we are looking for, since the lines of B are missing. In
order to include them we proceed as follows. First note that the complementary
similarity relation ~* is an equivalence relation whose equivalence classes are
just the lines of B. Hence, for the complement similarity structure (A, ~*) we
have a canonical mapping Q*: A — PPA which maps x to the singleton {q}, q
being the unique line of Bwith x € q. Q* satisfies the condition (C1), (C2), and
(C4). Denote the incidence relation defined by Q* by ly*. Then we define the
set theoretical union IQQ* c AxPAof IQ and Io* by

{4.4) (X, m)e IQQ* ={x,m)e ljor(x,m)e io*

This is the relation we need for the construction of a coordination mapping
Too*: A—> R Asis easily seen, Igo* indeed defines an AP-plane in the sense of



A Quasi-analytical Constitution of Physical Space 93

(2.3}. Imposing some further axioms on Ioo* as we will do in the next section,
one can ensure that the affine plane defined by Ioo* is an Euclidean plane. Then
the coordinatization procedure sketched in section 2 ensures that A can be
mapped onto R in such a way that the incidence structure Ioo® on Ajis isomor-
phically mapped onto the standard real affine structure I c R2x PR2.

Before we come to this task let us observe that the gnasi-analytical con-
struction of an affine plane achieved so faris unique up to isomorphism. This is
seen as follows: if we had chosen another family B’ of parallels, we would have
obtained a different similarity structure (A, ~'). But then the similarity struc-
tures (A, ~) and (A, ~') are isomorphic, since for any pair B and B’ of parallels
one can find an affine map which maps B onto B’ preserving the affine struc-
ture, to wit, incidence relation and parallelism. This map defines an isomor-
phism between the similarity structures (A, ~) and (A, ~').

The last step to get the real numbers is to impose some further axioms on
the incidence relation Iin order to ensure that the field is indeed R. The crucial
pointin the proof that the field of the plane A is indeed R is the observation that
R is distinguished from other fields in that it is a Dedekind complete ordered
field. Thatis to say, the elements of a line of the real affine plane can be ordered
in such a way that we may talk about positive and negative elements in a sense
to be specified. In particular, this order allows us to define a triadic relation of
betweenness for collinear points x, ¥, 2. Thus, in order to construct the real af-
fine plane from a similarity structure (S, ~) one has to assume the existence of
an order on the similarity circles T € Q(SC(A,~)) U QF(SC(A, ~*)). This leads
to the following definition:

{4.5) Definition. Let (E, ~) be a similarity structure. A quasi-analysis Q: E =
PSCE is an ordered quasi-analysis if and only if the similarity circles T € Q(E) ¢
SCE are endowed with a linear order.

It can be shown that the real plane B2 (conceived as a similarity structure
(A, ~) via its standard affine structure) has an ordered quasi-analysis that is
compatible with the field structure defined on the lines m. On every m we may
distinguish between positive elements (0 < x) and negative elements (x <0) in
such a way that addition and multiplication are compatible with the relation <.
Hence we may assume that the similarity circles of a similarity structure (E, ~}
having an ordered quasi-analysis in the sense of (4.1) are ordered fields. Now we
are almost done. The last requirement we need to obtain the real affine plane is
to stipulate that the ordered fields of our lines are Dedekind complete in the
standard sense (e.g. Goldblatt 1987, pp. 69, 70):

(4.6} Definition. Let K be an ordered field. Assume that K is the union of two
non-empty sets G and D such thatx <y for allx ¢ C andy € D. K is Dedekind
complete if and only if there is some z ¢ K suchthatx<z<y.

As is well known, the structure of a Dedekind ordered complete field is
categorical, L.e., up to isomorphism, there is only one Dedekind complete
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ordered field, to wit, the field of real numbers R. Summarizing we have
obtained the result that we may describe the affine Euclidean plane as a simi-
larity structure (E, ~), which has a Dedekind complete ordered AP-quasi-analy-
sis as defined by (4.2)-(4.6). In the next section we will show that this result may
be “read backwards” leading to a quasi-analytical coordinatization of a physical
domain P that may be interpreted as physical space in the sense of Carnap.

5.The Constitution of Physical Space

Now we have gathered all the pieces we need to tackle our main task, the con-
stitution of physical space along the lines of the quasi-analytical coustitution
theory of the Ayfbaw. To make clear what is going on, let us recall what, accord-
ing to the canons of the Awufdau, is to be constituted and what are the assump-
tions under which this constitution is carried out.

To begin with, let us note that Carnap had a rather peculiar conception of
physical space which essentially differs from that of common sense. Before one
can embark on the task of constituting it by a quasi-analysis it has to be
explained what we are after in the constitutional endeavor. For this purpose, we
have to begin with Carnap’s own constitution system.

Carnap started the constitution of physical space with the presupposition
that we already have the four-dimensional Minkowski vector spate R* as a
purely mathematical (or logical) object. He was entitled to do so, since the con-
stitution theory is based on the assumption that the Azufbauer has available for
his purposes the full resources of logic and mathematics (cf. also Quine 1951).
The mathematical object R cannot be regarded as physical space, of course,
and Carnap does not make this assertion. Rather, according to him, the math-
ematical object R* acquires its status as physical space through the coordinati-
zation of physical qualities such as colours by the points of this heretofore
purely logical object. So we may say that physical space is the physically inter-
preted mathematical space R This interpretation has to satisfy certain
requirements, for example, stability conditions, but this need not concern us
for the moment. Our question is whether this physical interpretation of the
purely mathematical object R? can be carried out in the constitutional system
of the Aufbau by using the method of quasi-analytical constitution only, with-
out the introduction of new undefined primitives such as the notorious “is at”
relation. Quine claimed that Carnap’s constitutional sketch failed to do this
and went on to contend that the guasi-analytical constitution of spacetime is
principally imzpossible. He took this as a conclusive argument against the fea-
sibility of empiricist reductionism. Up to this day, Quine’s verdict has been
accepted almost unanimously. That is to say, even those who maintain that
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Quine’s empiricist interpretation of the dufbau is untenable agree with him,
not only that Carnap did not provide a sketch of the constitution of spacetime,
but also that this is actually impossible to do in the framework of the quasi-ana-
lytical program. It is this second thesis that [ want to refute in the following. I
want to show that, although Carnap has failed to provide a quasi-analytical
constitution, he could have done it. A quasi-analytical constitution és feasible.
For this purpose it is expedient first to recall Quine’s full argument, in which
he spotted a change of method in Carnap’s constitutional enterprise. He
describes Carnap’s procedure as follows:

He [Carnap] explained spatio-temporal point-instants as quadruples
of real numbers and envisaged assignment of sense qualities to
point-instants according to certain canons. Roughly summarized,
the plan was that qualities should be assigned to point-instants in
such a way as to achieve the laziest world compatible with our experi-
ence. The principle of least action was to be our guide in constract-
ing a world from experience.

Carnap did not seem to recognize, however, that his treatment
of physical objects fell short of reduction not merely through
sketchiness, but in principle. Statements of the form “Quality q is at
point-instant X; y; z; t” were, according to his (Carnap’s) canons, to
be apportioned truth values in such a way as to maximize certain
over-all features, and with growth of experience the truth values
were 10 be progressively revised in the same spirit. I think thisis a
good schematization (deliberately oversimplified, to be sure) of
what science really does; but it provides no indication, not even the
sketchiest, of how a statement of the form “Quality qis at x; vz t”
could ever be translated into Carnap’s initial language of sense data
and logic. The connective “is at” remains an added undefined con-
nective; the canons counsel us in its nse but not in its elimination.
{Quine 1951, p.40)

As I'have said, even those who reject Quine’s empiricist interpretation of
the Aufbau concede him this point. I think, this is not necessary. Carnap canbe
saved from Quine’s attack, or so I want to argue. Strictly speaking, Quine does
not offer any argument why it may be impossible to provide a translation of the
desired kind. Rather, he is content to correctly point out that Carnap does not
provide such a translation. This, however, does not imply that such a translation
is impossible.

Bringing to bear the apparatus of synthetic geometry developed in the
preceding sections, this can be done as follows: The fatal flaw of Carnap’s at-
tempt to constitute physical space quasi-analytically resides in the fact that he
separates what should not be separated. Thatis to say, he starts with the ready-
made mathematical object R*, on the one hand, and the physical object, i.e.
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the quasi-analytically constituted domain of physical qualities P, onthe other.
Then, the problem is to bring together these two separated domains. This can,
obviously, be done only by fiat, i.e., one has to stipulate that there isan 1-1
assignment between quadruples of real numbers T & B! and physical qualities
q € P. Even if we grant that this is possible following certain acceptable
“canons” of empiricism, this assignment of number quadruples to qualities
cannot be considered as a quasi-analytical constitution. That is to say, we have
a fatal gap between the physical and the mathematical that cannot be bridged
by quasi-analytical constitution. Rather, as Quine correctly observes, one has
to rely on the un-quasi-analytical extra primitive relation “is at” to assert state-
ments of the type “Quality q Zs az (x,y,2;t).” So far, so good. The question is
whether Carnap’s deviation from the path of true quasi-analytical constitution
was unavoidable. Indeed, it is possible to save Carnap from himself and Quine
and his followers. It is not necessary to assume that the ready-made mathemat-
ical structure B? is already there, waiting to be related or interpreted empiri-
cally. Rather, we may constitute physical space, i.e., a physically interpreted
R*, in one fell swoop, so to speak. This amounts to a sort of auto-coordinatiza-
tion of the already constituted domain P of qualities along the lines sketched in
the previous section.

As already announced in the introduction, to avoid unnecessary techni-
calities let us replace B¢ by R2. Hence, the problem is to provide a quasi-ana-
lytically acceptable coordinatization of the already constituied domain P.
This can be done as follows: The system P is assumed to be a similarity struc-
ture (E, ~}. It does not matter whether the elements of E are intuitively inter-
preted as Elementarerlebnisse or qualities or whatever, since the “nature” of
the elements does not play a role in constitution theory. According to (3.5) a
quasi-analysis of (E, ~) is a geometric system (E, PE, ) which satisfies the
requirements (G1)-(C4). Using the results of section 4 we will construct a
quasi-analysis of the first kind that gives rise to a coordinatization of E in the
sense that each element e of E can be uniguely named by an ordered pair {a, b)
of elements of a similarity circle of E. Then the coordinatization theorem tells
us that E is the 2-dimensional real number space R2. That is to say, in contrast
to Carnap’s flawed coordinatization, which first separated the physical and
the mathematical, and later attempted to bring them together again by the
notorious “is at” relation, our approach constitutes the coordinating numer-
ical structure directly from the physical structure. Let us start from the fol-
lowing definition:

(5.1) Affine Pappian Similarity Structure. Let (E, ~) be a similarity structure.
E is called an affine Pappian similiarity structure (AP-similarity structure) iff
the following holds:

(1) Ehas a quasi-analysis (E, SCE, I} of the firstkind satisfying (C1)-(C4).

(2) The complementary similarity structure (E, ~*) is an equivalence relation.
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(3) Isatisfies the requirements (P1)'-(P4)’.
(4) ForJ:=TwI¥ the system (E, SCE U SCE*, ]) is an affine Pappian plane.”

As has been shown in the previous section, AP-similarity structures exist.
In particular, it should be noted that the definition of an AP-similarity structure
is defined fully in terms of what Quine called “Carnap’s initial language of sense
data and logic” (Quine 1951, p. 40).

Now a quasi-analytical coordinatization of P = (E, ~) is at hand: choose
three non-collinear points r,s, and t. With the help of the intersecting lines rs
and rt one may construct an internal coordinatization of E which renders it iso-
morphic to the 2-dimensional plane K? of some commutative field K. Thus, the
statement “quality point x is at (p,q)” has the meaning “with respect to the
coordinatization based on r, s, and t, the quality point a is represented by the
ordered pair of (p,q) of elements p and q of K.” This may not be a coordinatiza-
tion by real numbers, since we cannot be be sure that the field K is the field R of
real numbers. In order to ensure this some further axiomatic requirements has
to be imposed on E. This can be done in several ways. Perhaps the simplestisthe
following (cf. Goldblatt 1987}

(5.2) Definition. An ordered field K is a field with a distinguished subset K*
closed under addition and multiplication such that for each x € K, exactly one
of the conditions x € K, -xe K, x = §istrue. K7 is to be thought of as the set of
positive elements of K. With the help of K* one can define an order on K by
x<y:={y-x)e K*.

The last step to ensure that K is the real number field B is done by impos-
ing the further axiom on X that it also satisfies the Dedekind completeness
axiom (4.6). Noting that the Dedekind axiom can be expressed in “Carnap’s
initial language of sense data and logic,” we are done: it can be proved that K is
(up toisomorphism) just R. Hence, the coordinatization as described in section
2 yields that P can be identified with R2.®

Summarizing, we may say that for AP-similarity structures (E, ~) whose
lines are Dedekind-complete linearly ordered point sets, there exists a

7. Here, of course, SCE* is the class of similarity circles of the similarity structure (E, ~),
intuitively to be interpreted as the class of deleted parallels.

8. Another, possibly more elegant way to cope with the problem of endowing the lines
with an order structure would be to pursue the approach by Robb (1936) (cf. also
Goldbiatt 1987). Robb’s reconstruction of spacetime is based on a single primitive “yis
after z” which formally (but not intuitively} corresponds to Carnap’s Aknlichkeitserin-
rerung (cf. Aufbau § 110} whose symmetrization is the similarity relation ~. Robb’s
original presentation is difficult, and a more accessible modern aceount is to be found in
(Goldblatt 1987, Appendix B}. The constructions are still complicated and I cannot
go into the details. Nevertheless it should be said that the comstructions are quite
compatible with the spirit of quasianalytical constitution. As it seems Carnap did not
know Robb’s work. Although Robb’s account has been treated by some authors in recent
years, nobody seems to have studied more closely its possible relations with the Aufbau-
approach. -
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quasi-analytically constituted coordinatization, which assigns real number
coordinates to the elements of E. Of course, this coordinatization is not unique:
Given an AP-quasi-analysis (E, SCE, I) of E one may choose another triple of
non-collinear elements of ', s', t' yielding another coordinatization (E, SCE, I’}
related to the former by a unique linear isomorphism. Moreover, given (E, ~)
the choice of an AP-quasi-analysis (E, SCE, I) may not be unique. It may happen
that for a given (¥, ~) there exist several different quasi-analyses (E, SCE, I} and
(E, SCE, I'}.? This gives ample leeway for conventional choices. That is to say,
for some reason or other the Aufbauer may prefer one coordinatization over
another, since one allows maximizing certain desirable over-all features while
the other does not. Thereby the quasi-analytical constitution of physical space,
i.e. the constitution of a spatio-temporal coordinatization of the physical
domain P = {E, ~), is seen to follow, at least schematically, what s¢ience actually
does (cf. Aufbau §§135, 136, Richardson 1998, pp.70ff).

6. Conciuding Remarks

We conclude that the program of quasi-analytical constitution is not bound to
break down when it comes to the quasi-analytical constitution of physical space.
It may founder at other points, or may be considered to be unattractive for other
reasons, but there is no deep reason why it has to fail at the foundations of phys-
ical space, as Carnap understood this notion.

One may well wonder why Quine and so many philosophers following him
were confident that Carnap’s failure to provide a sketch of a quasi-analytical
comstitution of spacetime was tantamount to the impossibility of achieving this
task in general. Quine never gave any indication, even the sketchiest one, why
this constitution should be impossible in principle. A not unplausible answer
seems to be that he and many philosophers underestimated the expressive
power of synthetic geometry of the 19th century, to say nothing of its modern
achievements (cf. Buekenhout 1995, Coppel 1998). Itis nothing but a common-
sense prejudice that a qualitative language like Carnap’s initial language is
principally unable to cope with the quantitative as it crops up in the real num-
ber coordinatization of physical space.

In a general vein one may say that modern synthetic geometry, which in
this paper we used only in a very elementary way, may well have the potential to
support rational reconstruction programs such as the Aufbau’s. Hence, some

basic knowledge of synthetic geometry may still be useful also for philosephers
of the 21st century.

9. For an argument (contra Goodman) that the non-uniqueness of quasianalysis should
not be considered as a fatal flaw, see {Mormann 2003).

B e S e S G
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