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1. Introduction

According to general wisdom, quasianalysis belongs to the large family of
Carnap’s ingemious, but finally failed contributions to epistemology and philosophy of
science. In this paper I want to show that this is not the case. Rather, Carnapian quasi-
analysis is to be considered as a promising theory of a representational constitution of
scientific objects. That is to say, 1 intend to embed Carnap’s approach of quasianalyti-
cal constitution in the framework of a general theory of meaningful representation (ci.
Mundy (1986)).

The outline of this paper is as follows: In section 2 I recall the basics of the quasi~
analytical approach, taking into consideration not only the well-known account in
“Der Logische Aufbau der Welt” (Aufbaw) but also a rather unknown first version of
quasianalysis (“Quasizerlegung’™) which Carnap developed in an unpublished
manuscript written in 1923. This paper deserves attention not only for philosophica-
historical Teasons, rather it contains quite a lot of interesting features of the quasiana-
lytical approach which do not appear in the Aufbau account. In section 3 I reformulate
Camap’s account of quasianalysis in the framework of a representational theory of
similarity measurement. This allows us to consider the theory of quasianalysis as a
special case of a general theory of structural representation. In section 4 it is shown
how Goodman’s objections against the feasibility of any quasianalytical account may
be defused in the new framework. As an application of representational quasianalysis,
in section 5 [ sketch how Quine’s thesis of empirical underdetermination of theories
may be elucidated in the framework of a representational quasianalysis.

2. Camap’s Quasianalysis of 1923

Camap distinguishes that there are two essentjally different ways of describing a
set of elements. The first way is to say what are the properties or parts every element
has. This method he cails the method of individual Gescription. The second way is to
tell what are the relations between the elements. It might be called the method of re-
lational description. The relational description has the advantage of being an internal
description, it does not go beyond the set 1t intends to describe: the elements of the set
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in question are not decomposed in parts that (usually} do not belong to that set.

Rather, the relational description characterizes them by appropriate subsets of
Cartesian products of the basic set itself. On the other hand, the method of relational
description has the drawback of being rather clumsy. Thus it would be desirable to
have a method which transforms a relational description in a handier individual one
but keeping the virtue of being an immanent description thereby joining the advan-
tages of both. This is the method of quasianalysis. The term “quasianalysis™
(“Quasizerlegung™) appears for the first time in an unpublished manuscript of 1923
which has the programmatic title “Quasi-Analysis - A Method to order non-homoge-
ous sets by means of the theory of relations”. Itis a purely formal theory that might
be considered as a generalization of the well-known Russell-Whitehead theory of
equivalence classes. Carnap describes the task of quasianalysis as follows:

Suppose there is given a set of elements, and for each element the specification
to which it is simjlar. We aim at a description of the set which only uses this in-
formation but ascribes to these elements quasicomponents or quasiproperties in
such a way that it is possible to deal with each element separately using only
the quasiproperties, without reference to other elements, Carnap (1923, 4)

The ascription of quasiproperties is not arbifrary, of course, but should obey four
basic conditions (cf. Carnap (1923, 4-5):

(C1) If two elements are similar they coincide in at least one quasiproperty,

(C2) If two elements are not similar they do not coincide in any quasiproperty.

(C3} If two elements a and b are similar to exactly the same elements, i.e., if they
have the same similarity neigborhood, they have the same quasiproperties,

{C4) There is no quasiproperty which can be removed such that the cenditions
(CI) - (C3) are still satisfied.

As Carnap observes, these axioms are congsistent and independent of each other. In the
Aufbay only the conditions (C1) and (C2) appear. It is useful to have formal definitions
of the concepts used in the following. A similarity structure, denoted by (8,~), is to be
a set S endowed with & similarity relation. A similarity relation is a refiexive and sym-
metric, but not necessarily wansitive, relation ~S x S. The similarity neighborhood of x
€ S is denoted by co(x) := { y!x~ y}. Most often our examples are finite similarity
structares, i.e., the underlying set S is a finite set, Then it can be convepiently repre-
sented by a finite numbered graph such that two elements define an edge if and only if
they are similar as displayed in the following example (cf. Carnap (1923, 5):

3.
4

Figure 2.1

This graph is to be interpreted as a similarity structure with underlying set S =
{1,2,3,4} where 1 and 2 are similar, 2,34 are similar to each other, and no other pairs
of (different) elements are similar to each other. A quasianalysis of a finite stmilarity
structure (S,~) can be succinctly described by a list (cf. Goodman 1954, Ch. VI): as
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above denote the elements of § by natural nurmnbers 1,2, ..., n. The quasipropexties are
denoted by a,b,c,... Then a quasianalysis of (2.1) can be given as a list of the follow-
ing kind: {1.a, 2.3b, 3.bc, 4.bc}§ to be read in the obvious way, to wit, 1 has the

quasiproperty a, 2 has the quasiproperties a and b efc. Sometimes it’s convenient
combine lists and graphs in the following way:

Figure 2.2

For later purposes let us mention one famous example, which may be called
“Goodman’s triangle”

Fgure 2.3
It is 2 quasianalysis in the sense of the simplified definition of the Aufbau, i.e., it satis-

fies {C1) and {C2). However, it is not a quasianalysis according to the original defini-
tion since it does not satisfy (C3).

3. Quasianalysis (QA) in the framework of a representational theory of similarity
measurement

Now I embark on the task of reformulating QA in the framework of a representa-
tional theory of similarity measurement. This will enable us to exploit some interest-
ing analogies of QA with the representational theory of measurement. The starting
point is the following representational reformulation of quasianalysis:

(3.1) Definition.

() A weak quasianalysis of (8,~}isamap £: 5 — 2Q which satisfies the
following properties:

() s~s=IENTE)=0
2y fENfEN£P=s5~5%

Gi) A strong quasianalysis is a weak guasianalysis which satisfies the following
two further conditions:
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3) coy=co=f@=f{y

{4) No elements of Q can be removed, unless the resulting f does not satisfy
at least one of the conditions (1}~ (3).

In (3.1) I apparently have introduced the set Q of quasiproperties as independent
of the set S. As the reader will remember, according to Carnap one of the main virtues
of quasianalysis is that it does allow us to consider the quasiproperties as derived, i.e.,
set theoretically constructed entities. Quasianalysis in the sense of (3.1) can be con-
sidered as an immanent description in the following way:

(3.2) Lemma

Let £ S — 2Q be a (weak or strong) guasianalysis. Denote the power set of S by
Po(S). Define £*: $ — 2P0(S) by P(s) 1= {q* g & £ (s)}. Then f* is a (weak or strong)
quasianalysis.

(3.2 gives rise to the equivalence relation of extensional equivalence: two quasi-
analysis £: S — 2Q and S — 2Q are extensionally equivalent iff * = £*. In the fol-
Jowing I’l} consider quasianalysis only “up to exiensional equivalence”. This means,
essentially work with “immanent” quasianalysis in Carnap’s sense. In the Afbau
Carnap introduced the distinction between quasianalysis of the first and the second
kind which can be rendered precise as follows:

(3.3) Definition

A (weak, strong) quasianalysis of the first kind is a (weak, sirong) quasianalysis
£: S - 2Q for which £*(q) for each q € Q satisfies the following two requirements:

0 ®@ kyef*@=>x~y
() x) (xg £* (@) =>3y (ye f*{(q} andx#y)

If these conditions are not satisfied f is said to be of the second kind. A subset of 8
satisfying (i) and (i} is a called a similarity circle. The set of similarity circles is de-
noted by SC(S).

Stated informally the condition of (3.3) requires that an element X which is similar
to ail y having the quasiproperty q also has the quasiproperty g, of, in Carnap’s own
terms it requires that the extension of each quasiproperty is a similarity circle (see
Carnap (1928, § 70 £). As can easily be verified, Goodman’s triangle is a weak quasi-
analysis of the second kind.

We may consider the set f(s) of quasiproperties of s as a model of s, l.e., a quasi-
analysis is a kind of theoretical representation: the ¢lements § of the similarity stucture
are represented by their inodels £(s), and the similarity relation “~” is represented by
the set theoretical relation of intersection. Of course, this representation is not arbitrary

but has to satisfy certain conditions of adequacy, to wit, the conditions (3.1) (1) - (4).

Considering the quasianalysis of a similarity structure as a representation immedi- |
ately leads us to ask the following questions: Does a Representation Theorem hold, i.e.,
given a similarity structure (S,~}, is there a quasianalytical representation f: 5 — 2Q?
This question was already positively answered by Carnap in 1923.
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More interesting is whether an Unigueness Theorem holds: having established the
existence of a quasianalytical representation for all similarity structures, the natural
question arises whether it is “essentially” unique? Carnap knew very well that weak
quasianalysis usually are not unique. All the aunthors who criticized the guasianalytical
approach only treated weak quasianalysis, and usually they considered its non-unique-
ness as a fatal blow. As far as I know nobody has ever treated the uniqueness question
ior quasianalysis which safisfy something like (C1) - (C4) except Brockhaus (1963).
To show that in general a strong quasianalysis of the first kind is not unique it suffices
to give a counter-example. The smallest I've been able to find is the following one:

Figure 3.4

As one easily verifies this similarity structure has swo essendially different quasianalyt-
ical representations satisfying (C1) - (C4): one has the quasiproperties a,b,¢,d, and %,
while the other has a,b,c,d, and y. A quasianalysis with fewer properties does not exist.

Thus, in general, even for strong quasianalysis of the first kind, not to mention weak
quasianalysis, a Unigueness Theorem does not hold. Does this show that the quasiana-
lytical approach is doomed to fail, as many anthors maintained? I don’t think 50. One
way out Is to switch to a quasianalysis of the second kind thereby eventually reaching
uniqueness. This path is beset with certain difficulties which I cannot discuss in this
paper. Another more promising rout is trying to find a special ¢lass C of similarity
structures such that all members of C have a unigue quasianalysis. In this paper I deal
only with the second path starting with a theorem which we owe to Brockhaus {1963).

(3.3) Theorem

A similarity structure (S,~) has 2 unique quasianalysis £: § —» 2Q of the first kind iff
(8,~) has the following property: there is a set SC(S,2) < SC(S) satisfying the follow-
ing requirements:

i vSC((,2)=8
(if) for Tie SC(S,2) there are two (not necessarily different) elements % ¥iET;
such that coéxi) Mooy = Ty

The proof is lengthy but elementary, L.e., it does not use any new concepts or
methods that would not have been available to Carnap in 1923. Counter-examples
show that the condition that f is of the first kind cannot be removed. .

The content of this theorem can be formulated as the statement that a strong quasi-
analysis of the fixst kind 1s snique iff each of its guasiproperties is generared exten-
sionally by at most two elements. To get a fecling for this condition let us make the
following remarks:
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(1) If (8,~) is a transitive similaxity structure then, obviously its quasiproperties,
i.e., its equivalence classes, all are generated by one x,,. However, the reverse is not
true: there are a lot of similarity structures (S,~) which satisfy this condition but are
not equivalence structures. The smallest example is given by the following similarity
structure:

1, 2. 3.

(2) All examples of similarity structures encountered in the literature satisfy the
condition of (3.5). Hence they have a unique strong quasianalysis of the first kind.

(3) In the counter-example (3.4) either the quasiproperty x or y belongs to each
strong quasianalysis, and x and y have exactly three generators.

(3.5) gives the motivation to characterize similarity structures according to how
many generators are needed for their strong quasianalysis:

(3.6) Definition.

A similarity structure (S,~) is of the nth-order iff there is a set SC(S,n) < SC(S)
satisfying the following requirements:

(i) USCES.m) =5
(ii) for € T; SC(S,n) there are x;, ... xin€ T such that
co(x;1) M ... NCo (x3) =T

After this preparatory defirition we are able to succinctly express the main result
of this section as follows:

(3.7.) Theorem.

A similarity structure (S,~) has a unique strong quasianalysis of the first kind if
and only if it is of the fixst or second order.

Summarizing we may say that due to (3.7) similarity structures of the second kind
indeed provide a “natural” realm where the quasianalytical approach works even if we
rely on the most severe requirernent of uniqueness. This realm is strictly larger than
the class of transitive similarity structures which can be considered as the genuine
field of the Russell-Whitehead method of equivalence classes. Thus, Carnapian quasi-
analysis actually is a working generalization of the latter.

4. Criticism of Criticisms of Quasianalysis

Almost all the authors who have dealt with the formal aspects of Carnap’s quasi-
analysis have followed Goodman’s criticism launched against this approach in
Goodman (1954). The only exceptions known to me are Brockhaus (1963), Moulines
(1991) and Proust (1984). In our representational reconstruction of quasianalysis the
basic line of Goodman’s criticism can be reconstracted as follows: given a similarity *
structure {$,~), one singles out a certain distribution of properties f;: S ~» 2F as the
“real” one. The only conditions imposed on fg; are (C1) and (C2). G might be con-
sidered as God’s distribution chosen by Him for some reason we mortals don’t know.
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Then, according to Goodman, the task of quasianalysis is to reconstruct {g from rela-
tional information only, i.e., only from the information contained in the extensional
list of the similarity relation “~. Of course, this is in general not possible because for
weak quasianalysis a Unigueness Theorem does not hold. The simplest and most fa-
mous example is Goodman’s triangle mentioned above.

We would be better off if we’d required God’s property distribution to satisfy not
only (C1) and (€2) but to be 2 strong quasianalysis of the first kind. This plot would
allow us to get 1id of Goodman’s triangle (and a lot of other “counter-examples”) since
it does not satisfy (C3) and is not of the first kind. However, Goodman and his follow-
ers might try harder confronting us with similarity structures of the third or higher
order which definitively do not possess a uni¢ue strong quasianalysis (even of the first
kind). In this case, it would be mere Juck if our property distribution f coincided with
f. A first objection to this strategy of disavowing the quasianalytical approach could
claim that similarity structures of higher kind (n > 3) are too complicated s0 that they
might be found in nature. This contention is supported by the fact that tilt now in the
literature no similarity structure of the third or of higher order has been discussed.

But [ think we can do better: Jet us grant that there might be “natural” similarity
structures of higher order. Even then the thesis that Carnap’s quasianalytical approach
is doomed to fail is drawn much too hastily. Tt is only justified as long as we accept
that the main goal of quasianalysis is to reconstruct a pre-given property representa-
tion fg. When we challenge this premiss the perspective of the guasianalytical ap-
proach doesn’t look that bleak anymeore. This objection has been put forward by
Proust (cf. Proust (1984). According to her, Goodman realistically misunderstands the
very intentions of the quasianalytical approach: “Goodman’s objections ... reestablish
in spite of him the ficdon of an ommiscient God capable of controlling through origi-
nary intuition, that is, without construction, what the constitution derives from its ex-
tensional data.” (Proust (1984, 299} Ina less picturesque language thistust amounts
to challenge the legitimacy of a “real” property distribution fg: S — 2F as the one and
only guiding star. Instead one should take seriously the quasianalytical perspective: if
we have no other means of constituting properties than through the quasianalysis of
our elementary experiences, it might very well happen that these experimental data
are not sufficient to single out a uniquely determined “objective” property distribu-
tion. This amounts to admitting the possibility of the empirical underdetermination of
a quasianalytical representation of a similarity structure as a theory of that structure,
or so | want to argue in the next section.

5. Appiication: The Thesis of Underdetermination in the Framework of Quasianalysis

The thesis of the empirical underdetermination of theories maintains that there are
incompatible theories which are empirically equivalent. Usually the underdetermina-
tion thesis has been studied in the standard approach which considers theories as sets of
sentences. Without arguing for it, I propose a structural approach which considers
quasianalysis of similarity structures as prototypes of empirical theories. This claim is
in line with Carnap’s contention, put forward in the Aufbaw, that we might conceive the
world as a huge similarity structure (cf. Aufbau § 27). More precisely, this can be spelt
out as follows: the theory’s domain of data is a similarity structure (S,~). A mz%p f: 5=
29 (not necessarily a quasianalysis) is 2 kind of theory of this structure in the ollowing
sense: The “theory-map” { represents the data s by conceptual models f(s) which are
bundles of quasiproperties, relations of data are represented by relations of their mod-
els. For example, suppose that for s, se S we have () N f(s")y #0. This is to say that
the theory f claims the following observation categorical to be true: “Whenever X =8
and y = §' then X and y are similar to each other”. Whether all universal sentences of
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this type are true depends on whether f is a structure preserving map, i.e., whether it
satisfies (s ~5' & f(s) N (8720 ), 1.e., (C1) and (C2). Considering a theory £ as ade-
quate iff ali the observation categoricals implied by it are true, we get that a quasianaly-
sis of the world’s similarity structure can be considered as an empirically adequate the-
ory of that world. Now the underdetermination thesis claims that a theory “is bound to
have empirically equivalent alternatives which, if we were to discover them, we would
$¢e no way of reconciling by reconstrual of predicates”, (Quine 1975. 327).
Empiricalty equivalent alternatives should be “equally good”, i.e., their theoretical
virtues such as simplicity, economy etc. should be roughly the same (cf. Bergstrom
(1993, 335). In the quasianalytical approach this is captured by the requirements (C3)
and (C4). Quine’s “reconstrual of predicates™ can be reconstructed as follows: Assume
we have two quasianalysis f: S ~» 2Q and £ § — 2Q of the same similarity structuye
(S,~). Then the %Jlasia.nalytical counterpart of a reconstrual of predicates is an appropri-
ate map g: 2Q 2Q which makes the following diagram commutative:

2Q
/
s g
\\

2Qr
Figure 5.1

Looking at the example (3.4) it is easy to see that there is no map from the set Q =
{ab,c,dx) to the set Q' = {a,b,c,d,y) of rival quasiproperties which renders (5.1) com-
mutative. This means the quasianalytical systems based on Q and Q', respectively, are
incompatible, Now, depending on the contingent structure of the world we are ready
to prove or to disprove the underdetermination thegis:

If the world (S,~) happens to be a similarity structure of the first or second order
the underdetermination thesis is WIong: according to (3.5) there is one and only one
empirically adequate quasianalytical theory of the world.

On the other hand, if the world happens to be a similarity structure of higher order
(at keast of order three) the underdetermination thesis is true. At Ieast this is the case
as long as we don't find other theoretical virtues which allow us to establish a ranking
between different strong quasianalysis of the first kind.
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