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Version of Stalnaker’s Logic of Knowledge and Belief 

 
 Abstract.  The aim of this paper is to prove a topological completeness theorem for a weak 

version Stalnaker’s logic KB of knowledge and belief. In contrast to the strong version, the 

weak version of KB does not require that the belief operator B satisfies the contentious axiom 

(NI) of negative introspection. This has the consequence that B is not uniquely definable in 

terms of K. Rather, for the weak version, the knowledge operator K is compatible with a whole 

(partially ordered) family of belief operators B in the sense that all pairs of operators (K, B) 

satisfy the rules and axioms of Stalnaker’s logic KB (except (NI) of course). In other words, 

instead of a one-one-relation between knowledge and belief as in the strong version of KB, the 

weak version leads to a one-many-relation between these concepts. This has considerable 

philosophical advantages. The appropriate formal framework for this pluralistic logic of 

knowledge and belief heavily uses concepts of modern point-free topology. Particularly, the 

concept of a nucleus turns out to be useful for the formalization of a pluralist theory of belief 

operators B that (more or less closely) approximate a given knowledge operator K. Further, a 

canonical topological model for weak KB can be constructed. For this canonical topological 

model of (weak) KB a truth lemma holds for the operators K and B such that a topological 

completeness theorem can be proved in an analogous way as this has been done for the 

unimodal logic of knowledge S4.   
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1. Introduction. The aim of this paper is to prove a topological completeness theorem for a 

weak version of Stalnaker’s logic KB of knowledge and belief. In contrast to the strong version, 

the weak version of KB does not require that the belief operator B satisfies the contentious 
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axiom (NI) of negative introspection.1 Abandoning (NI) has the consequence that the operator 

B is no longer uniquely definable in terms of the knowledge operator K. Rather, for the weak 

version of KB, every knowledge operator K is compatible with a partially ordered family of 

belief operators B in the sense that all pairs (K, B) satisfy all rules and axioms of Stalnaker’s 

logic KB (except (NI) of course). In other words, instead of a one-one-relation between 

knowledge and belief that characterizes the strong version of KB, the weak version leads to a 

one-many-relation between K and B. From an epistemological perspective, this is considerably 

more realistic and plausible than a unique determination of belief by knowledge, or so I want 

to argue in this paper.  

The topological epistemology of this paper is a knowledge first epistemology: Knowledge is 

modeled by a topological interior kernel operator K operating on a set of possible worlds X 

endowed with a topological structure (X, OX) and a belief operator B. More precisely, if 

subsets A of X are conceived as propositions, then a proposition int(A) Í X is to be 

epistemologically interpreted as the proposition (denoted by K(A)) “A is known” or “A 

cognitive agent that relies on the epistemic operator int knows that A”, or similarly.  

The Kuratowski axioms of topology entail that the interior kernel operator int has several 

properties that are intuitively appealing for a knowledge operator. For instance, one 

immediately obtains from the Kuratowski axioms that knowledge is factive, i.e., that only facts 

can be known. Formally this is expressed as int(A) Í A. Similarly, a topological knowledge 

operator satisfies the famous (or notorious) “KK-principle”, asserting that knowing a 

proposition A entails that one knows that one knows A. This is expressed formally by the 

assertion that the interior kernel operator int satisfies the inclusion int(A) Í int(int(A)). Other 

 
1 The strong version of KB is, as it should be, a special case of the weak version. As is well known, a topological 
completeness theorem holds for the strong version of KB: Such a theorem is just the topological completeness 
theorem of S4.2 with respect to the class of extremally disconnected spaces (cf. Baltag et al. (2019, Theorem 2, 
p. 215)). 
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intuitively plausible results for a topological model of knowledge can be derived similarly from 

elementary properties of the Kuratowski axioms. In sum, topological epistemology seems to 

be promising starting point for a formal version of a knowledge first epistemology. Not so 

clear, however, is how the concept of belief fits into a topological framework. As will be shown 

in this paper, an appropriate formal framework for a pluralistic logic of knowledge and belief 

heavily uses concepts of modern point-free topology. In particular the concept of nuclei turns 

out to be essential for the formalization of a pluralist theory of belief operators that (more or 

less closely) deviate from a given knowledge operator (cf. Johnstone (1980), Borceux (1994), 

Picado and Pultr (2012)). Thereby, in a somewhat indirect way the doxastic concept of belief 

depends in epistemic concept of knowledge. That is to say, the topological epistemology 

presented in this paper is indeed a knowledge first epistemology. 

In the framework of point-free topology, a canonical topological model for weak KB logic can 

be constructed for which a truth lemma for the operators K and B holds such that a topological 

completeness theorem for weak Stalnaker logic KB can be proved in the familiar way.   

The plurality of belief operators B that are compatible with a given knowledge operator K has 

been virtually unobserved so far. There are different reasons for this blind spot. One reason is 

that for the familiar Kripke relational semantics this plurality is difficult to see. Another reason 

for neglecting this plurality may have been the fact that for Stalnaker’s original version of KB 

(that assumes the axiom (NI) of negative introspection to be valid) the belief operator B turns 

out to be uniquely defined by the knowledge operator K (Baltag et al. (2019), Stalnaker (2006)).  

This determination of belief by knowledge has been considered by Stalnaker, Baltag and al. 

and other authors as a particular virtue of KB, since thereby the bimodal logic KB of knowledge 

K and belief B is actually shown to be a unimodal logic of knowledge K, since B turns out to 
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be uniquely definable by K.2 One may doubt, however, whether conceptual economy is the 

only criterion for a “good” comprehensive epistemological logic.  

Thus, from the perspective of weak KB, the widely discussed issue whether belief can be 

(uniquely) defined in terms of knowledge or, the other way round, whether a knowledge first 

approach is preferable, is too simple. A more flexible formalism should be pursued according 

to which the operator int defines a topological structure (X, OX) which gives rise to variety of 

belief operators. 

In sum, the topological approach of this paper is a “knowledge first” epistemology, but in a 

novel flexible sense: belief operators are defined in terms of knowledge, but in an open, not 

fully determined in form. Thus, the maxim “knowledge first” in epistemology need not mean 

that other epistemic concepts are to be defined uniquely in terms of knowledge. It may be that 

knowledge only provides a framework that can be filled in various ways. 

The organization of this paper is as follows. To set the stage, in the next section we recapitulate 

the rules and axioms of Stalnaker’s combined logic KB of knowledge and belief (cf. Stalnaker 

(2006)). In section 3 a topological semantics for KB is defined. The semantics of the knowledge 

operator K is the familiar topological semantics that conceives the knowledge operator as the 

interior kernel operator K of a topological space (X, OX). The topological semantics for the 

belief operators is defined with the concept of dense nuclei B of the Heyting algebra OX. Nuclei 

may be understood as a kind of derivation of the topological structure that is encapsulated in 

the interior kernel operator that defines the of topology. More precisely, a nucleus is a map of 

OX into OX with certain structural properties such that it gives rise to a uniquely defined belief 

 
2 In the terminology of Baltag et alii (2019) this unique determination is given by Bj ¬® ¬ K¬ Kj, i.e., belief 
is just the possibility of knowledge (ibid., Proposition 5, p. 221). Topologically, for extremally disconnected 
spaces this is rendered Bj¬®clint(j). For these spaces, however, clintj is equivalent to intclint(j). In this paper, 
we will show that for all topological spaces the pair of operators (int, intclint) satisfies all rules and axioms of 
Stalnaker’s logic KB except (NI). Hence, it seems appropriate to call the operator intclint Stalnaker’s belief 
operator. It will be denoted by BS. In contrast to the strong version of KB, there are many other belief operators 
B that in tandem with int satisfy the axioms of weak KB. Hence, for the weak version of KB, the knowledge 
operator K no longer determines B. 
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operator, also denoted by B, such that the pair (K, B) satisfies all the rules and axioms of 

Stalnaker’s logic KB.  It is easily shown that the logic KB is sound with respect to the class of 

topological models (X, OX, B) of topological space (X, OX) endowed with a dense nucleus B. 

Nuclei can be conceived as generalized subspaces (“sublocales”) of the topological spaces (X, 

OX). The bijection between nuclei and sublocales is used in section 4 to construct a canonical 

topological model of KB that is endowed with a canonical nucleus B such that for K and B a 

truth lemma holds. Thereby a topological completeness theorem for KB is proved in the usual 

way. Some concluding remarks are offered in section 5. 

 
  

2. Stalnaker’s Logic KB of Knowledge and Belief. Now let us recall the basics of the 

grammar and syntax of the bimodal logic KB of knowledge and belief put forward by Stalnaker 

(2006). In recent years Baltag, Bezhanishvili, Özgün, and Smets in various recent publications 

proposed a topological semantics for KB (cf. Baltag et al. (2014, 2019)). This semantics will 

be also be the basis of the used in this paper. The main formal novelty of this paper is the 

extension of this semantics to a semantics for belief operators B of KB. This is necessary, since, 

in contrast to Stalnaker’s original version of strong KB the belief operators B are no longer 

uniquely definable in terms of the knowledge operator K. The main ingredient for the more 

flexible semantics of B is the concept of a nucleus, introduced in the 1980s in modern point-

free topology (cf. Johnstone (1982), Picado and Pultr (2012)). 

We start with a standard unimodal language LK with a countable set PROP of propositional 

letters, Boolean operators ¬, Ù, and a modal operator K to be interpreted as a knowledge 

operator. The formulas of LK are defined as usual by the grammar 

j::= p½¬p½fÙy½Kj      ,          p Î PROP. 
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The abbreviations for the Boolean connectives Ú, ®, and ¬® are standard. Then, analogously 

to LK, a bimodal epistemological language LKB for operators K and B is defined accepting Bj 

as another type of well-formed formula, to be interpreted as “j  is believed” or similarly.3  

Now, for the sake of definiteness, let us recall the axioms and the inference rules of Stalnaker’s 

KB-systems (cf. Stalnaker (2006), Baltag et al. (2014, 2019)): The language of the KB-systems 

is an extension of classical (Boolean) propositional language by two modal operators K and B 

that have to fulfil the following axioms and rules: 

 
(2.1) Definition (Stalnaker’s axioms and inference rules for knowledge and belief).  

(CL)  All tautologies of classical propositional logic CLP. 

(K)   K(ϕ → ψ) → (Kϕ → Kψ)   (Knowledge is additive). 

(T)   Kϕ → ϕ      (Knowledge implies truth). 

(KK)   Kϕ → KKϕ      (Positive introspection for K) . 

(CB)   Bϕ →  ¬ B ¬ ϕ     (Consistency of B). 

(PI)   Bϕ → KBϕ      (Positive introspection of B). 

(NI)  ¬ Bϕ → K¬ Bϕ    (Negative introspection of B). 

(KB)   Kϕ → Bϕ     (Knowledge implies belief). 

(FB)   Bϕ → BKϕ     (Full belief). 

Inference Rules: 

(MP)   From ϕ and ϕ → ψ, infer ψ.   (Modus Ponens). 

(NEC)  From ϕ, infer Kϕ.    (Necessitation).¨ 

 
For the topological approach to knowledge and belief, the axiom (NI) plays a special role. It is 

easily shown that (NI) holds only for topological models of a very special kind, namely, models 

 
3 For a more detailed presentation of topological semantics, the reader may consult the recent papers of Baltag et 
alii mentioned above. 
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that are based on extremally disconnected spaces. For the systems of knowledge and belief 

considered in this paper we will only require that they are weak Stalnaker systems in the 

following sense:   

 
(2.2) Definition. A bimodal system based on the bimodal language LKB is a weak Stalnaker 

system iff it satisfies all of Stalnaker’s axioms and rules given in (2.1) except possibly the 

axiom (NI) of negative introspection.¨ 

There are various reasons for abandoning (NI): first, (NI) is an intuitively a rather implausible 

requirement for belief. Second, from a topological perspective, the axiom (NI) is very 

restrictive. Only the topological models based on the restricted class of extremally 

disconnected spaces (X; OX) satisfy (NI). Most spaces that “occur in nature”, do not belong to 

this class. For instance, the familiar Euclidean spaces and their relatives are far from being 

extremally disconnected. Finally, the axiom (NI) leads to a 1-1-relation between knowledge K 

and belief B. This is an implausible and too simplistic understanding of the complex relation 

between knowledge and belief. If one conceives a belief system as a kind of extension of a 

knowledge system it is not very plausible to assume that only one such extension exists. Rather, 

a variety of belief systems should be compatible with one knowledge system. This idea of a 

one-many-relation between knowledge and belief is rendered precise by the concept of a weak 

Stalnaker logic KB.   

More precisely, the situation is as follows: If all rules and axioms of KB are assumed to be 

valid (included (NI)), then the belief operator B is uniquely determined by K (cf. Stalnaker 

(2006), Baltag et al. (2014, 2019). This implies that KB can actually be interpreted as a 

unimodal logic defined as the extension of classical Boolean propositional logic CL by the 

modal operator K.  As is well known, Aiello et al. (2003) proved a topological completeness 

theorem for this logic relying on the classical work of McKinsey and Tarski (1944). Further, 
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the validity of (NI) entails that the topological spaces underlying the models of strong KB are 

extremally disconnected spaces (cf. Baltag et al. (2014, 2019)).  

If (NI) is no longer assumed to be valid the belief operator B is no longer uniquely determined 

by K. Instead, for a given K a whole family of belief operators B exists that are compatible 

with K in the sense that the pairs (K, B) satisfy the axioms of KB (except (NI) of course). 

Nevertheless, this weak Stalnaker logic of K and B is also topologically complete (and sound, 

of course). This topological completeness theorem will be proved by constructing a canonical 

topological model for the bimodal language of KB for which a truth lemma holds. Abandoning 

(NI) has two advantages:  

 
(i)  The strict determination of belief B by knowledge K is replaced in the weak version of 

KB by a more flexible relation. K defines a kind of conceptual space, namely, its family 

of dense nuclei where the belief operators B live that are compatible with K. 

 
(ii)  The restriction of the topological universes of possibilities to extremally disconnected 

spaces is given up in favor of a more flexible account that allows all kinds of topological 

spaces for the construction of universes of possibilities. 

  

 

3. The topological Semantics of Knowledge and Belief Operators. Now let us recall the 

basics of the interior semantics for epistemic logic of knowledge and belief as presented by 

Baltag et al. (2014, 2019)). This semantics will be used throughout the rest of this paper. In the 

second part of this section this semantics will be extended to a topological semantics of the 

belief operator B. First of all, recall the definition of a topological space: 

 
(3.1) Definition. Let X be a set with power set PX. A topological space is an ordered pair (X, 

OX) with OX Í PX that satisfies the following conditions: 
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(i)      Ø, X Î OX. 

(ii)     OX is closed under finite set-theoretical intersections Ç and arbitrary unions È.¨ 

 
The elements of OX are called the open sets of the topological space (X, OX). The set-

theoretical complement CA of an open set A is called a closed set. The set of closed subsets of 

(X, OX) is denoted by CX. The interior kernel operator int and the closure operator cl of (X, 

OX) are defined as usual: The interior kernel int(A) of a set A Î PX is the largest open set that 

is contained in A; the closure cl(A) of A is the smallest closed set containing A. For details, 

see Willard (2004), Steen and Seebach Jr. (1982), or any other textbook on set-theoretical 

topology). The operators int and cl are well-known to satisfy the Kuratowski axioms:   

 
(3.2) Proposition (Kuratowski Axioms). Let (X, OX) be a topological space, A, B ÎPX. The 

interior kernel operator int and the closure operator of (X, OX) satisfy the following 

(in)equalities  

(i)                  int(A Ç B) = int(A) Ç int(B).                                    cl(A È B) = cl(A) È cl(B). 

(ii)                 int(int(A)) = int(A).                                                   cl(cl(A)) = cl(A). 

(iii)                 int(A) Í  A.                                                              A  Í cl(A). 

(iv)                 int(X) = X.                                                                Ø = cl(Ø).¨ 

In the following these axioms and its elementary consequences are often used without 

mentioning them explicitly. Moreover, we will use freely the fact that the operators int and cl 

are inter-definable: int(A) = Ccl(CA)            and cl(A) = Cint(CA).  

Often it is expedient to conceive the operators int and cl as operating on PX. This is possible 

in two (slightly different, but equivalent) ways: One may conceive int either as an operator   

PX¾int¾>OX or as an operator PX¾int¾>PX (using implicitly the canonical inclusion OX 

¾i¾>PX).  An analogous assertion holds for the closure operator cl that may be conceived as 
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PX¾cl¾>CX or as an operator PX¾cl¾>PX. On the latter interpretation of int and cl the 

concatenation of these operators makes perfect sense. In the following, concatenations such as 

intcl, intclint will play an important role. In the following both interpretations of these operators 

will be used not distinguishing between them.  

For the definition of consistent belief operators B the concept of dense subsets of a topological 

space will play an important role:                                                                                                                                              

 
(3.3) Definition. Let (X, OX) be a topological space with interior operator int and closure 

operator cl, let Y, Z Î PX.  

(i) Y is a dense subset of X iff cl(Y) = X.       

(ii) Z is a nowhere dense in X iff int(cl(Z)) = Ø.¨ 

 
After these preparations, a topological semantics for the modal languages LK and LKB and LB 

can be defined. First, we recall the semantics for LK: 

 
(3.4) Definition. Given a topological space (X, OX), we define a topo(logical) model for LK as 

M = (X, OX, v), where PROP¾µ¾> PX is a valuation function from the set PROP of 

propositional letters into PX. The interior semantics for the Boolean connectives Ù and ¬ is 

defined as usual. If a formula j of L is interpreted as µ (j) = A Î PX, then the formula Kj of 

LK is interpreted as µ (Kj):= int(A). ¨ 

 
Usually, it is not necessary to explicitly mention the interpretation v of a model (X, OX, v). 

Hence, in order to simplify denotation we write A, K(A) or int(A), instead of µ(j), Kµ(j), for 

A = µ(j), µ(Kj) etc.   

Now we going to extend the topological semantics to formulas that contain belief operators B. 

For this purpose, we introduce the concept of (topological) nuclei (cf. Johnstone (1982), 

Borceux (1994), Picado and Pultr (2012). Nuclei are the essential ingredient for the definition 
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of  belief operators related to a topological knowledge operator K. The concept of a 

(topological) nucleus is basic for the rest of this paper.4 

 
(3.5) Definition. Let (X, OX) be a space, and let A Î OX. An operator OX¾¾B¾¾> OX is 

called a nucleus of (X, OX) if it satisfies the following properties: 

(i)  A Í B(A).                                     (Inflation) 

(ii)   B(B(A)) Í B(A).       (Idempotence) 

(iii)  B(A Ç D) = j(A) Ç j(D).      (Distributivity)
   
The set of nuclei of a topological space (X, OX) is denoted by NUC(OX).¨ 

 
(3.6) Definition. The set of nuclei NUC(OX) is partially ordered by the relation ≤ defined by 

 
                                     B ≤ B’:= B(A) Í B’(A) for all AÎ OX.¨  
 
 
As is easily proved, this partial order ≤ renders (NUC(OX), ≤) a complete lattice. Even more, 

(NUC(OX), ≤) can be shown to be a complete Heyting algebra (Johnstone (1982 (II, 2.4, 

Lemma), Borceux 1994 (Theorem 1.5.7)). 

 
(3.7) Definition. A nucleus B Î NUC(OX) is called a dense nucleus iff B(Ø) = Ø. The subset 

of dense nuclei of NUC(OX) is denoted by NUC(OX)d.5¨ 

 
Dense nuclei will play a central role for the definition of consistent belief operators compatible 

with the knowledge operator int. The following proposition shows that usually there are many 

different dense nuclei for a given knowledge operator:   

 

 
4 This paper does not aim to give a full-fledged introduction into the theory of nuclei. Instead, we intend to provide 
the basic definitions and facts so that the reader can understand that this theory has interesting applications 
regarding the modal theory of belief and knowledge. For a fuller account, the reader may consult Johnstone (1982), 
Borceux (1994), or Picado and Pultr (2012) and the extensive bibliographies mentioned there. 
5 It is not difficult to show that NUC(OX)d also has the structure of a complete Heyting algebra. 
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(3.8) Proposition. Let F Í X be a dense subset of a topological space (X, OX), D Î OX.  

(i) Define BF(D) := int(CF È D). Then BF is a dense nucleus. 

(ii)  The Stalnaker nucleus BS(D) := intcl(D) is a dense nucleus.6 

 
Proof. An elementary calculation using the Kuratowski axioms (3.2).¨ 

 
Almost all topological spaces (X, OX) have many dense subsets. For the purposes of the present 

paper the essential point of (3.8) is that it ensures the existence of many dense nuclei. This is 

equivalent with the existence of many consistent belief operators.  

Even for familiar spaces like Euclidean spaces the precise structure of NUC(OX)d is, however, 

extremally complicated and very often not completely known. This renders the logic of belief 

operators B that are compatible with K (encapsulated in NUC(OX)d), the more interesting.  

This issue cannot be pursued further in the present paper. Rather, we are content to state the 

following fact that is generally considered as the most important single fact of nuclei and 

related concepts. It will also play a central role in the topological epistemology of knowledge 

and belief and is encapsulated in the following mathematically highly non-trivial theorem: 

 
(3.9) Theorem (Isbell’s Density Theorem, (cf. Johnstone (1982), Picado and Pultr (2012)). For 

all topological spaces (X, OX) the Stalnaker nucleus BS (defined by (3.8)(ii)) is the largest 

dense nucleus of (X, OX), i.e., for all B Î NUC(OX)d one has B ≤ BS.¨ 

 
The proof of (3.9) goes well beyond the horizon of this paper and cannot be given here. The 

reader is recommended to consult the excellent references (Johnstone (1982), Picado and Pultr 

(2012)).7  

 
6 In the topological literature BS is usually called the regular nucleus, since BS(OX) Í OX are just the regular open 
sets of (X, OX).  
In the last decades, the investigation of NUC(OX) has turned out to be a fruitful research programme 
for studying topological problems of various kinds, particularly problems related to point-free topology 
(cf. Johnstone (1982), Borceux (1994), Picado and Pultr (2012)).  
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Now, we will show that dense nuclei define dense belief operators in the following canonical 

way. For a topological space (X, OX) let PX¾¾int¾¾>OX the interior kernel operator and 

OX¾¾i¾¾>PX the canonical inclusion. For a nucleus OX¾¾B¾¾>OX the 

concatenation PX¾¾int¾¾>OX¾¾B¾¾>OX¾¾i¾¾>PX is well defined. Clearly, B 

determines i B int uniquely. Thus, the following definition makes sense: 

 
(3.10) Definition. Let B Î NUC(OX)d. The concatenation PX¾¾iBint¾¾>PX is called the 

belief operator defined by the nucleus B (related to the knowledge operator int).¨ 

 
Since the nucleus B uniquely determines the belief operator iBint, the belief operator iBint may 

be also denoted by B. Thus, committing a harmless abuse of language we may say that a (dense) 

nucleus B Î NUC(OX)d is a belief operator. 

The definition (3.10) allows us makes to extend the familiar topological semantics of the 

unimodal language LK to a bimodal language LKB of modal operators K and B: 

 
(3.11) Definition. Let (X, OX) be a topological space with interior operator int and B a belief 

operator in the sense of (3.10). Then a topo(logical) model for the bimodal logic LKB is given 

by M = (X, OX, B, v), where PROP¾v¾> PX is a valuation function from the set PROP of 

propositional letters to PX. The interior semantics for the Boolean connectives Ù, ¬, and 

formulas Kj are interpreted as before for LK, formulas Bj are interpreted by v(Bj) := 

B(v(j)).¨ 

 
The following theorem shows that (3.11) is a reasonable and fruitful definition that defines a 

numerous family of well-behaved belief operators B for a knowledge operator K that enjoy all 

properties that one intuitively expects from “good” belief operators.    
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(3.12) Theorem. Let (X, OX) be a topological space with an interior kernel operator K, and  B 

be any dense belief operator BÎ NUC(OX)d. Then for any valuation PROP¾v¾>PX the 

model (X, OX, B, µ) defines a weak Stalnaker system for which all rules and axioms of (2.2) 

are valid.   

Proof. This is easily proved by checking the definitions using the Kuratowski axioms (3.2).¨ 

 
(3.13) Corollary. Let (X, OX, B, µ) be a topo-model of the weak Stalnaker logic KB (2.2). 

Then the belief operator B defines a KD4 logic8. 

Proof. This is easily calculated from the fact that K is a KT4-logic and K(A) ¾®B(A) for all 

A Î OX.¨ 

 
(3.14) Corollary. The weak KB logic (2.1) is sound with respect to the class of models (X, OX, 

B) of topological spaces (X, OX) endowed with a dense nucleus B Î NUC(OX)d.¨ 

 
Usually, the set NUC(OX)d has many elements. Succinctly, we have shown that a topological 

knowledge operator K is always accompanied by a multiplicity of compatible belief operators 

B in the sense that the all the pairs (K, B) satisfy the rules and axioms of a weak Stalnaker 

system (2.2).9 This pluralism of belief operators renders a combined topological logic of 

knowledge and belief more complex than one may have previously thought, but, on the other 

hand, this pluralist aspects render this logic more interesting. Moreover, the pluralism of 

different coexisting belief operators renders epistemological logic more realist and flexible. 

After all, it is simply not plausible to assume that different cognitive agents who rely on the 

 
8 A list of the most common normal modal logics can be found in Chagrov and Zakhayaschev (1997, Table 4.2., 
p. 116). 
9 The only exception are topological spaces (X, OX) for which OX is a Boolean algebra. This corresponds to the 
peculiar epistemic logic S5. In this case, the only belief operator compatible with int is int itself. 
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same knowledge operator, have to use the very same belief operator as well. Rather, conceiving 

beliefs as hypotheses or conjectures that go beyond established knowledge, it cannot be 

expected that all cognitive agents subscribe to the same hypotheses.  

This does not mean that all beliefs how extravagant they may be, are equally reasonable. The 

very minimum of reasonableness that a belief system should satisfy in order to be 

acknowledged as acceptable is that it is not inconsistent, i.e., that no contradictions are 

believed. In topological terms, non-contradictoriness of belief operators is expressed in terms 

of density: Only dense operators define consistent belief operators. Although usually a 

knowledge operator K is accompanied with many compatible belief operators B, Isbell’s 

density theorem guarantees that consistent belief operators B cannot deviate arbitrarily far from 

knowledge K. Rather, for all topological spaces Stalnaker’s operator BS is always the uniquely 

determined consistent belief operator that most diverges from knowledge and still being 

consistent. 

Different types of belief operators may be distinguished. For instance, Stalnaker’s operator BS 

differs topologically considerably from the profusion of operators BF that are defined with the 

help of dense subsets F of (X, OX).10 Still other types of operators exist, but we cannot treat 

this issue in this paper in any greater depth. Be it sufficient to say that for most spaces (X, OX), 

the determination of NUC(OX) is difficult and for many spaces NUC(OX) is only partially 

known. This holds even for familiar spaces such as Euclidean spaces. 

For the purposes of this paper, it sufficient to know that nuclei provide the appropriate 

formalism to deal with issues of the semantics of belief operators: 

 

 
10 Indeed, it can be shown that for most spaces the operator BS is not of the form BF for any dense subset F of 
(X, OX).  



 16 

(3.15) Definition. Let (X, OX, µ, B) a topological model for KB, i.e., (X, OX) a topological 

space, and B the belief operator i • B • int defined by a dense nucleus B ÎNUC(OX)d. A 

formula j of LKB is defined to be true at a point w of X by induction on the length of j: 

• w½= iff w Î µ(p); 

• w½= ¬ j iff not ½= j; 

• w½= j Ù y iff w½= j and w½= y; 

• w½= Kj iff ($U Î OX (wÎ U and ("v Î U)(v½= j);    

• w½= Bj iff ($U Î OX (wÎ B(U) and ("v (v Î U Þ (v½= intj). ¨ 

 
In this definition the only new clause is the last one. Thus, it may be expedient to give the 

following comment. Note, that the belief operator for the special case of the nucleus B = id 

boils down to i id int = int, i.e., the last clause of (3.16) coincides with the penultimate one, 

since the elements v Î U have open neighborhoods Uv where intj holds. In other words, the 

topological semantics for KB logic defined by (3.11) is a generalization of the familiar 

topological semantics of S4. 

For the proof of a topological completeness theorem for KB in section 5 we need an equivalent 

reformulation of the concept of nuclei in order to construct an adequate nucleus for the 

canonical topological model of KB. More precisely, we have to show that the nuclei of OX are 

equivalent to the sublocales of OX. For this purpose, we heavily rely on the more detailed 

presentations of Picado and Pultr (2012, Chapter III) and Johnstone (2002, Proposition 1.1.13, 

p. 481).  

 
(3.16) Definition. For a topological space (X, OX) a subset S Í OX is a sublocale of OX iff 

(i) S is closed under all meets; 

(ii) For every s Î S and every x Î OX, the Heyting implication x Þ s Î S.¨ 

(iii)  S is a dense sublocale of OX iff Ø Î OX.¨ 
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Probably the best-known example of a sublocale (not necessarily under this name) is the 

Boolean lattice of regular open sets O*X Í OX. Actually, O*X Í OX is a very special 

sublocale. According to Isbell’s theorem for every topological space O*X is the smallest dense 

sublocale of OX.  

Denote the set of sublocales of OX by SL(OX). Then SL(OX) is a complete lattice with respect 

to set-theoretical intersection Ç. Even more, SL(OX) is a complete co-Heyting algebra with 

the sublocale {X} as bottom element and the sublocale OX as top element (cf. Picado and Pultr 

(2012, 3.2.1. Theorem, p.28)). What we need for the proof of the completeness theorem in the 

next section, is that there is a bijection between nuclei and sublocales (cf. Johnstone (2002, 

Proposition 1.1. 13). This may be seen as follows: A nucleus OX¾B¾>OX is uniquely 

determined by its image B(OX)¾i¾>OX. Thus, a nucleus uniquely determines a sublocale. 

On the other hand, the inclusion map of a sublocale S¾i¾>OX has an adjoint frame map 

OX¾j¾>S such that the concatenation OX¾j¾>S¾i¾>OX is a nucleus. This 

correspondence is an order reversing bijection between nuclei and sublocales (cf. Johnstone 

(2002, Proposition 1.1.3., p. 486)), Picado and Pultr (2012, 5.3.2. Proposition. p. 32)). This 

bijection between nuclei and sublocales yields: 

 
(3.17) Proposition. For all A Í OX there is a (unique) smallest sublocale SA Î SL(OX) such 

that A Í SA, namely, the intersection of all sublocales that contain A.  

 
Proof. The class of sublocales that contain A is not empty, since A Í OX.  Since SL(OX) is 

complete with respect to arbitrary set-theoretical intersections there is a smallest sublocale SA 

that contains A, namely, the intersection of all sublocales that contain A.¨    
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In the next section, we will construct a canonical topological model (H, OH) for weak KB such 

that in OH a subset HB Í OH can be defined that uniquely determines a nucleus BH of OH that 

can be used to prove that the weak version of KB defined in (2.2) is complete with respect to 

the canonical model (H, OH, BH).   

 

4. A Topological Completeness Theorem for weak KB.  The 1-1-relation between nuclei 

and sublocales explicated in the previous section will be used in the following to construct a 

canonical topological model (H, OH, BH) for Stalnaker’s combined logic KB of knowledge 

and belief that can be used to prove a completeness theorem for KB. This proof follows closely 

the lines of the analogous proof for the standard topological completeness proof of the 

epistemic logic for K as carried out in Aiello et alii (2003). The only novelty is the construction 

of an appropriate dense nucleus BH that takes care of the belief operators B that are compatible 

with K.  

We start with the construction of a topological space (H, OH) for the canonical topological 

model of KB. Let j be any well-formed formula of the bimodal extension LKB of classical 

Boolean propositional logic. Call a set G of formulas LKB-consistent if for no finite set {j1, …, 

jn}Í G we have KB |¾  ¬ ({j1 & …& jn). A consistent set G is called maximally consistent 

if there is no consistent set of formulas properly containing G. Sufficiently many maximally 

consistent sets of formulas exist due to Lindenbaum’s lemma (cf. Blackburn et al. (2001, 

Lemma 4.17, p. 197). It is well known that G is maximally consistent iff for any formula j of 

LKB, either j Î G or ¬j Î G, but not both. Now we can define a topological space of maximally 

consistent sets of formulas:  

 

(4. 1) Proposition.  The canonical topological space (H, OH) of LKB is defined by the following 

items:  
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(i) H is the set of all maximally consistent sets Gmax of formulas of LKB.  

(ii) OH is the set of subsets of H generated by arbitrary unions of the following basic sets SK: 

= {[Kj]; j is any formula of LKB}, where [j] := {Gmax ÎH; j Î Gmax}.   

 
Proof. In other words, the basic sets of the topology of H are the families of the form Uf = 

{{Gmax ÎH; Kj Î Gmax}. (H, OH) is a topological space, called the topological space of the 

canonical model of LKB. We have to show that SK is a basis for a topology of H. This is carried 

out exactly in the same way as is done for the analogous assertion for LK in Lemma (3.2) in 

Aiello et alii (2003) by replacing LK by LKB.¨ 

 
It follows that for the operator K of (H, OH) a truth lemma can be proved in the same way as 

is done in Aiello et al. (2003) for the interior operator of the canonical topological space of S4. 

The only missing ingredient for a completeness proof of KB is the construction of an 

appropriate belief operator for (H, OH). This will be carried out now. The key for this 

construction is the following observation:    

 
(4.2) Lemma. For all formulas j of LKB one has [Bj] = [BKj] = [KBj], i.e., the sets [Bj] are 

basic open sets of the topological space (H, OH).   

 
Proof. By the axiom (PI) of positive introspection and the fact that knowledge implies belief 

one obtains that Bj is equivalent to KBj and to BKj. Hence, by definition [Bj] = [KBj] is 

an open set of (H, OH).¨ 

 
Using the 1-1-relation between nuclei and sublocales proved in section 5 for the set {[Bj]} Í 

OH there exists a minimal sublocale that contains the open subsets [Bj] Î OH. This sublocale 

uniquely determines a nucleus that will also be denoted by B. The next step in proving the 
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completeness theorem is to prove that not only K, but also B satisfies a truth lemma for (H, 

OH). 

As explained in the last part of section 3 the set {[Bj]; j Î LKB}Í OH uniquely defines a 

sublocale and therefore a nucleus of OH that also is denoted as B, i.e., B Clearly, B Î 

NUC(OH)d, i.e., B is a dense nucleus, since [B(j Ù¬j)] = [B(Ø)] = [Ø] = Ø. We will show 

that B satisfies a truth lemma for the canonical space (H, OH). This is done by observing that 

due to the axioms (2.1) of KB one has Bj = BKj = KBj. Thus, in the class of basic open sets 

{[Kj]; j Î LKB} there is the subclass {[Bj]; j Î LKB} of basic open sets of the form [Bj].  

The lattice SL(OX) of sublocales of OX is closed with respect to arbitrary intersections. Hence 

the sublocale OBX of all sublocales that contain all elements of {[Bj]; j Î LKB} exists. As a 

sublocale, OBX uniquely determines a dense nucleus that may still be denoted by B. Finally, 

this nucleus B defines the belief operator i • B • int that is also denoted by B.  

After these preparations, we can define the canonical topological model of LKB as follows: 

 
(4.3) Proposition. The canonical topological model of KB is defined as M = (H, OH, B, µ)  

(i)  The elements of H are the maximally consistent sets of formulas Gmax.  

(ii) The topology OH is generated by the basis of open sets {[Kj]; j Î LKB}. 

(iii) The belief operator B is defined by the nucleus generated by {[Bj]; j Î LKB}. 

(iv) µ(j) := {{Gmax; Gmax is a maximally consistent set of formulas of LKB with j Î Gmax}. 

 
Proof. The proof that (H, OH) is a topological space is completely analogous to the proof of 

the analogous assertion for the canonical topological space for S4 proved in Aiello et al. 
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(2003).11 Since B Î NUC(OH)d is clearly a dense nucleus, the assertion that (K, B) satisfies 

the rules and axioms of a weak Stalnaker system follows from (3.13).¨  

 
(4.4) Theorem (Truth Lemma TL). Let (H, OH, B, µ) be the canonical topological model of 

KB. For all modal formulas j of LKB and w Î H one has:  

                                                              w½=LKB j iff wÎ[j]. 

Proof. Induction of the complexity of j. The base case follows from the definition from the 

first clause of (3.16). The case of the Booleans is also well known, see (Aiello et al. (2003, p. 

895). The interesting cases are the modal operators K and B. The proof for K is just a rehearsal 

of the well-known proof of the truth lemma for the unimodal case for K given in Aiello et al. 

(ibid.). Thus, it only remains to prove TL for B. The proof is naturally divided into two parts: 

(1) “From truth to membership” (If w½=LKB j then wÎ[j]) and (2) “From membership to truth” 

(If wÎ[j] then w½=LKB j). 

 
ad (1) From truth to membership: Assume w½= Bintj. That means that there is a UÎ OX such 

that w Î BU & "v(v ÎUÞv½= intj)). Since the TL holds for K one obtains that this is 

equivalent to that there is UÎ OX (x Î BU & "v(v Î U Þ v Î Kj). This means that U Í 

[Kj]. Due to the soundness of KB this entails that in S4 the implication U ® [intj] is valid. 

By (3.5)(i) a nucleus B is inflationary. Hence, a fortiori B(U ® [intj]). Since B is a normal 

operator (cf. (3.14)), this entails that B(U) ® B([intj])) is valid. Since KB is sound with respect 

to topological spaces cum nucleus, this entails [BU] Í [Bintj]. This implies that w Î [BU] 

implies w Î [Bintj]. In other words, „Truth implies membership“.    

 

 
11 This topology is more precisely described in Aiello et al. (2003, p. 896): The canonical topology on 
canonical space is the intersection of the Kripke and Stone topology. This entails that this space is 
compact and dense-in-itself. 
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ad (2) From Membership to Truth: Proof by induction on the complexity of formulas and 

reductio ad absurdum. Assume w Î [Bintj], and assume that the first part of TL “From 

membership to truth” has been proved for B. Suppose w½≠ Bintj. Then by definition of w½≠ 

Bintj one has 

(i)                                           NOT ($UÎ OX (w Î BU & "v(v Î U Þ v½= intj))    

 
This is equivalent to        

(ii)  "U Î OX (w Ï B(U) OR $v (v Î U & v½≠ intj)) 

In order to carry the reductio one has to find a U for which (ii) is false. Obviously, this is the 

case for U = intj, since we have assumed that w Î [Bintj]. One has [intj] Í [Bintj] since 

nuclei are inflationary by definition (3.5) and we can assume that v½= intj iff v Î [intj]. In 

other words, the reductio ad absurdum has been carried out and thereby the proof of the truth 

lemma for K and B is completed.   

 

(4.5) Completeness Theorem for a weak version of Stalnaker’s logic KB. For any consistent 

set of formulas G of LKB one has  

                                                             If  G½= j then  G½¾ KB j. 

 
Proof. Suppose that NOT(G½¾ KB j). For the proof of (4.6) we have to prove that this 

supposition entails NOT(G½= j). Then G È {¬ j}is consistent, and by a Lindenbaum Lemma 

it can be extended to a maximally consistent set Gmax Î H with {¬ j}Î Gmax, i.e., Gmax Î [¬ 

j]. According to the truth lemma (4.5) for (H, OH), this is equivalent to Gmax½= ¬j, whence 

NOT(Gmax½= j). and we have constructed the required counter-model.¨ 
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5. Concluding Remarks. The interpretation of topological nuclei B Î NUC(OX) as belief 

operators B not only gives us a natural proof of a topological completeness theorem for 

Stalnaker’s combined logic of knowledge and belief, more generally it shows that the 

framework of topology offers many more possibilities for formal epistemology and 

epistemological logic than one might have thought. Not all of these formal possibilities may 

be epistemologically and logically meaningful.12 To find out which ones are meaningful, is a 

matter of future empirical research, so to speak. In any case, taking into account nuclei leads 

to a pluralist conceptualization of the relation between knowledge and belief that is opposed to 

more traditional accounts that either characterize knowledge as a special kind of belief 

(knowledge as true justified belief) or belief as a kind of restricted knowledge (as is proposed, 

for instance, by Stalnaker who proposes to conceive belief as knowledge of the possibility of 

knowledge, i.e., B = intclint). The topological account sketched in this paper is more flexible: 

according to it, the knowledge operator K provides a framework for the definition of a 

numerous family of belief operators all of which fit K in the sense that all pairs (K, B) satisfy 

the rules and axioms of weak KB logic. This could be used to define multimodal systems 

KB1B2 …Bn with “competing” belief operators Bi Î NUC(OX)d that all share a common 

knowledge basis defined by K. 

The topological epistemology sketched in this paper may be characterized as a hierarchical 

knowledge first epistemology: Its basic level is given by a topological structure (X, OX) 

defined by the knowledge operator K itself. The next level of topological epistemology is given 

by a “derivation” of the topological structure (X, OX), namely, the complete Heyting algebra 

 
12 A case in question is the following: Nuclei can be defined not only for topological Heyting algebras 
OX but for all complete Heyting algebras H whatsoever, for instance for NUC(OX). Hence, one can 
define a tower NUC(OX)), (NUC(NUC(OX))), … . Thereby, the higher floors of this tower can be 
interpreted as beliefs about beliefs etc. Such a tower of nuclei has, or does not have, an infinite height, 
depending on the complexity of the topological space (X, OX). An extreme case is the (not very 
plausible) epistemic logic of knowledge S5, for which one obtains OX = NUC(OX) = NUC(NUC(OX)) 
= …  = NUCn(OX) for all n. 
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NUC(OX) of nuclei. The belief operators B that are compatible with K live on this floor. The 

lattice NUC(OX) of belief operators has a very complex structure even for familiar apparently 

simple spaces (X, OX) such as the Euclidean spaces. A more detailed investigation is an issue 

of future research. Several types of belief operators can be distinguished. Among them are 

belief operators defined by dense subsets F of (X, OX) and, particularly important, iStalnaker’s 

operator BS distinguished as the riskiest, but still consistent belief operator that is compatible 

with K.   
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