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Abstract. The first aim of this paper is to prove a topological completeness theorem for a weak 

version of Stalnaker’s logic KB of knowledge and belief. The weak version of KB is 

characterized by the assumption that the axioms and rules of KB have to be satisfied with the 

exception of the axiom (NI) of negative introspection. The proof of a topological completeness 

theorem for weak KB is based on the fact that nuclei (as defined in the framework of point-

free topology) give rise to a profusion of topological belief operators that are compatible with 

the familiar topological knowledge operator Int. With the help of nuclei, a canonical 

topological model for weak KB can be constructed. For this canonical model a truth lemma for 

the modal operators K and B holds such that a completeness theorem for weak KB can be 

proved in the familiar way. 

The second aim of this paper is to show that the topological interpretation of knowledge as the 

interior operator Int comes along with a complete Heyting algebra of belief operators N° (inter-

definable with nuclei N) that all fit the knowledge operator Int in the sense that the pairs (Int, 

N°) satisfy all axioms of weak KB. This amounts to a pluralistic relation between knowledge 

and belief: Knowledge does not fully determine belief, rather it designs a conceptual space for 

belief operators where different (competing) belief operators coexist that can be compared with 

each other. Thereby an intuitionistic calculus of belief operators related to one topological 

knowledge operator is set up. 

 

Key words: Epistemic Logic, Topological Semantics, Heyting algebras, Nuclei, Doxastic 

Plurality, Weak KB logic of knowledge and belief. 
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1. INTRODUCTION. Understanding the relation between knowledge and belief is an issue of 

central importance in formal epistemology. Especially after the birth of knowledge-first 

epistemology, the question of what exactly distinguishes an item of knowledge and an item of 

belief and how one can be determined in terms of the other has become even more pertinent. 

In the recent literature on the topological semantics of epistemological concepts such as 

knowledge and belief one may find two especially popular accounts. On the one hand, there is  

Stalnaker’s combined logic KB of knowledge and belief that can be elegantly topologized as 

has been shown by the works of Baltag et al. (2017, 2019) and others. On the other hand, there 

is the work of Steinsvold and others that offers a formal account of belief and related 

epistemological concepts in a framework based on the notion of topological derivation (cf. 

Steinsvold (2006), Parikh et al. (2007), Bezhanishvili and van der Hoek (2014)). It is not quite 

clear, however, how these two accounts of a topological epistemology are related to each other. 

In this paper, it will be shown that both may be conceived as two special cases of a more general 

account based on the notion of (topological) nucleus. More precisely, Stalnaker’s concept of 

belief can be characterized as one kind of nucleus, Steinsvold’s concept of belief as another. 

To be specific, Stalnaker’s account is characterized by a nucleus that can be described 

mathematically as the (unique) regular nucleus and Steinsvold’ account is closely related to a 

nucleus that in this paper is called perfect nucleus. Beside these distinguished nuclei many 

others exist that give rise to their own concepts of belief.1 Thus, to obtain a more 

comprehensive understanding of the relationship between knowledge and belief, it seems 

expedient to discuss the whole manifold of belief operators instead of restricting one’s attention 

to the special operator NS. In other words, for a given knowledge operator the doxastic plurality 

of correlated belief operators should be taken into account. 

 
1 In topological terms Stalnaker’s operator NS is defined as the concatenation IntClInt, where, as usual, the interior 
kernel operator of a topological space (X, OX) is denoted by Int and the topological closure is denoted by Cl. In 
this paper this (more or less standard) topological terminology is used throughout. In more detail it is explained 
in section 3. 
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In Stalnaker’s KB system, the belief modality B turns out to be uniquely defined by the 

knowledge modality K. For this unique determination of B by K essentially the axiom of 

negative introspection (NI) is responsible. By abandoning (NI), as is done in this paper, a more 

complex and more flexible relation between the modalities K and B arises. In a nutshell, this 

relation may be described as a one-many-relation. The topological structure (X, OX) defines a 

family of belief operators N° that fit the knowledge operator Int in the sense that all pairs (Int, 

N°) satisfy the axioms of KB except (NI). The family of belief operators N° compatible with 

Int has the structure of a complete Heyting algebra. Stalnaker’s belief operator NS° turns out to 

be the top element of this Heyting algebra, its bottom element corresponds to Int that can be 

interpreted as the “ideal” or “optimal” belief operator that by definition cannot err. 

For a given knowledge operator Int, the Heyting algebra of admissible belief operators can be 

conceived as an intuitionistic logic of belief operators: Different belief operators N° can be 

compared with each other according to their strengths and how far they deviate from the 

knowledge operator Int.   

Traditionally, the relation between belief and knowledge has been conceptualized in a rather 

simple way: Either knowledge is defined as a special kind of belief, e.g., knowledge is 

“justified” true belief, or “correctly justified” true belief, or the like, as in many received 

accounts of knowledge, or, as in contemporary knowledge first accounts, knowledge is given 

conceptual priority and is used to define belief in a unique way. In a sense, this paper follows 

the knowledge-first approach but with a special twist. It is shown that for a given knowledge 

operator Int, there exists a pool of different admissible belief operators N° such that the pairs 

(Int, N°) all define well-behaved systems of epistemic logic satisfying the axioms of a weak 

KB system. Therefore, different cognitive agents who subscribe to the same knowledge 

operator Int may use different agent-specific belief operators that may be compared with each 

other according to their deviation from common knowledge. This amounts to a doxastic 
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plurality of a multitude of belief operators based on a common root of one knowledge operator 

Int. 

The organization of this paper is as follows: to set the stage, in section 2 we recall the axioms 

and rules of Stalnaker’s KB logic of knowledge and belief. In section 3, we introduce the 

topological concepts that are necessary for defining a topological semantics of knowledge and 

belief. In section 4 we introduce the concept of (topological) nuclei that plays a central role for 

the definition of belief operators and their semantics. In section 5 nuclei are used to prove a 

topological completeness theorem for weak KB. The plurality of belief operators related to one 

topological knowledge operator is studied in more detail in section 6. In particular, we calculate 

(partially) the Heyting algebras of (consistent) belief operators for some important topological 

spaces. The structure of these algebras heavily depends on the topological structure of the 

underlying topological spaces. In section 7 we study the relation of the theory of nuclei and the 

theory of belief operators based on the topological notion of derived set operator (cf. Steinsvold 

et alii). It is shown that the dual t of the derived set operator d is “almost” a nucleus. More 

precisely, t can be characterized as pre-nucleus, i.e., a slight generalization of the concept of 

nucleus for the rather comprehensive class of TD-spaces. Even more, for the very special class 

of DSO-spaces, the pre-nucleus t turns out to be an honest nucleus. With respect to the other 

way round, the nucleus defined by the perfect kernel of a set (already defined in section 6) can 

be shown to be the nucleus defined in natural way by the pre-nucleus defined by t. In sum, the 

framework of topological nuclei sheds new light not only on Stalnaker’s account of belief and 

knowledge but also on the topological epistemology based on the topological concept of 

derived set. We conclude with some general remarks on the further elaboration of this nucleus-

based approach formal epistemology in section 8. 
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2. STALNAKER’S LOGIC KB OF KNOWLEDGE AND BELIEF. First, for the sake of 

definiteness, let us recall the axioms and the inference rules of Stalnaker’s system (cf. Stalnaker 

(2006), Baltag et al. (2017, 2019). For this purpose, we start with a standard unimodal epistemic 

language LK with a countable set PROP of propositional letters, Boolean operators ¬, Ù, and a 

modal operator K to be interpreted as knowledge. The formulas of LK are defined as usual by 

the grammar 

(2.1)    j::= p½¬p½fÙy½Kj  ,          p Î PROP. 

The abbreviations for the Boolean connectives Ú, ®, and « are standard.2 Occasionally we 

use the abbreviations ^ for  j Ù ¬j and ⊤	for = j Ú ¬j.  

Analogously to LK, a bimodal epistemological language LKB for modal operators K and B as 

an extension of LK is defined. The grammar of LKB is defined as usual: 

 
(2.2)    j::= p½¬p½fÙy½Kj½Bj ,          p Î PROP. 

 
Stalnaker’s combined logic KB of knowledge and belief is defined as follows: 
 
 
(2.3) Definition (Stalnaker’s axioms and inference rules for modal operators K (knowledge) 

and B (belief)). A bimodal logic KB based on the bimodal language LKB is a Stalnaker system 

iff it satisfies the following rules and axioms: 

 
(CL)  All tautologies of classical propositional logic CL. 

(K)   K(j→ ψ) → (Kj → Kψ)   (Knowledge is additive). 

(T)   Kj → j      (Knowledge implies truth). 

(KK)   Kj → KKj      (Positive introspection for K). 

 
2 For a more detailed presentation of LK, the reader may consult the recent papers of Baltag et al. (2017, 2019) 
and Aiello et al. (2003)). 
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(CB)   Bj →  ¬ B ¬ j     (Consistency of belief). 

(PI)   Bj → KBj      (Positive introspection of B). 

(NI)  ¬ Bj → K¬ Bj    (Negative introspection of B). 

(KB)   Kj → Bj     (Knowledge implies belief). 

(FB)   Bj → BKj     (Full belief). 

Inference Rules: 

(MP)   From j and j → ψ, infer ψ.   (Modus Ponens). 

(NEC)   From j, infer Kj.    (Necessitation for K).¨ 

 
For the topological3 approach to knowledge and belief, the axiom (NI) plays a special role as 

will be explained now. Let M = (X, OX, µ) be a topological model of LK in the familiar sense 

(cf. Baltag et al. (2019)). Then for formulas Kj we have µ(Kj) = Int(µ(j)).  A semantics for 

LKB is defined by setting for formulas Bj the interpretation µ(Bj) := IntClInt(µ(j)). Then we 

can prove: 

 
(2.4) Proposition. Let (X, OX) be any topological space. Under the semantics µ just given the 

topological model (X, OX, µ) validates all axioms and rules of Stalnaker’s logic KB except the 

axiom of (NI) of negative introspection. 

 
Proof. Check the definitions (2.3) and the standard properties of the topological operators Int 

and Cl (see section 3). Elementary examples of the real line (ℝ,	Oℝ) and other familiar spaces 

show that (NI) fails to hold in general.4¨ 

 
 

3 The topological terminology used in this paper is fairly standard. Nevertheless, for the sake of 
definiteness, the topological concepts to be used will be explained in full detail in section 3 and 4. 
4 The topological reason for the failure of (NI) in general spaces may be informally described as the 
fact that (NI) requires that many clopen (= open and closed) subsets µ(Bj) exist. General topological 
spaces, however, may lack sufficiently many clopen sets. For instance, connected spaces such as the 
Euclidean line (ℝ,	Oℝ) have only Ø and ℝ	as	clopen	subsets. 
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In Baltag et al. (2019) (and elsewhere) the following has been proved: 

 
(2.5) Proposition (Baltag et al. (2019, Proposition 6). Under the semantics given above a 

topological space (X, OX) validates all axioms and rules of Stalnaker’s system KB ((NI) 

included) iff it is an extremally disconnected space (ED space).¨ 

  
Thus, when we give up we gain greater generality. The very special class of extremally 

disconnected spaces can be replaced by the class of all topological spaces. On the other hand, 

we have to give up some “conceptual economy”: The familiar proof that B is uniquely 

determined by K as B « ¬K¬K is no longer available. Indeed, as will be shown in the 

following, the interpretation of the belief modality B is no longer uniquely determined by K.5 

Depending on the topological structure of models, there are many different possibilities for 

interpreting the belief modality B, not only the one that interprets belief as the “epistemic 

possibility of knowledge” as Stalnaker’s KB-logic does.  Giving up (NI) thereby amounts to 

obtaining a greater amount of conceptual flexibility with respect to B. This should be 

considered as a virtue for a more comprehensive formal epistemology of knowledge and belief, 

or so I want to argue. A unique determination of belief by knowledge is not very plausible, or 

so I want to argue. 

As a consequence, for the systems of knowledge and belief to be considered in this paper, the 

validity of (NI) will not be required. Rather, we will require only that our systems are weak 

Stalnaker systems in the following sense:   

 
(2.6) Definition (Weak KB logic). A bimodal logic (with modal operators K and B) based on 

the bimodal language LKB is a weak KB-logic iff it satisfies the following two conditions: 

 

 
5 That is, the elegant equivalence of Stalnaker (2006) and Baltag et al. (2019) that B  «  ¬K¬ K is no longer 
valid. In contrast, weak KB turns out to be a truly bimodal extension of CL, i.e., B cannot uniquely be defined in 
terms of K. 
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(i) The modal operator B satisfies the Kripke axiom (K)B and the axiom (4)* for B:  

(K)B   B(j→ ψ) → (Bj → Bψ)   (Belief is additive). 

(4)*  BBj«Bj.     (B is idempotent) 

 
(ii)  All of  Stalnaker’s axioms and rules given in (2.3) hold except the axiom (NI) of 

negative introspection.¨  

 
The axiom (4)* is stronger than the well-known axiom  

(4)   Bj®BBj  

for the modal operator B that holds for the B-fragment of weak KB due to the axioms (PI) and 

(KB). More precisely, the B-fragment of weak KB is a special normal logic:6 

 
(2.7) Corollary. The B-fragment of weak KB-logic is a KD4*-logic: 

 
(K)B             B(j®y) ® (B(j)®B(y)).                                     

(D)             Bj ® ¬B¬j. 

(4)*         Bj «BBj.¨ 

 
(2.7) may be compared with the corresponding result for full KB logic according to which the 

B-fragment of full KB logic is a KD45 system (cf. Baltag et al. (2019, Proposition 4), Stalnaker 

(2006)).7 As it should be: 

 
(2.8) Proposition. Weak KB logic is (strictly) weaker than KB logic.   
 

 
6 For various equivalent definitions of a normal modal logic, see Chellas (1980, Theorem 4.3, p. 115). 
7 These authors characterize the B-fragment of KB logic only as a KD45 logic. Actually it is also a KD4*5 logic 
since for extremally disconnected spaces the belief operator ClInt clearly satisfies (4)* due to ClInt = ClIntClInt. 
Elementary examples based on the Euclidean line (ℝ,	Oℝ) show that there are models of weak KB logic the B-
fragments of which are not KD45 models (cf. Proposition (4.11)). Further, there are topological models of KB-
(NI) + (K)B + (4) that do not satisfy (4)*. 
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Proof. We have to show that the modal operator B of (full) KB logic satisfies the Kripke axiom 

(K) and (4)* of (2.6)(i). According to Stalnaker (2006) and Baltag et al. (2019) in (full) KB-

logic one has B « ¬K¬K « K¬K¬K. As is easily checked, K¬K¬K is a normal operator, 

i.e., satisfies (K) and (4)*. Hence, as it should be, (full) KB logic is a weak KB logic. In order 

to show that weak KB is strictly weaker than KB, one has to find a formula that is valid for KB 

but not for weak KB. The formula ¬K¬K(j Ù ψ) = ¬K¬Kj Ù ¬K¬Kψ will do.¨ 

 
In the following sections 3 and 4 a properly bimodal topological semantics for LKB will be 

constructed that will be used to prove a topological completeness theorem for weak KB-logic 

and help elucidate the notion of doxastic plurality that is characteristic for weak KB. This 

semantics for weak KB is a bimodal extension of the familiar topological semantics of the 

unimodal topological semantics for K (cf. Baltag et al. (2019)). But first we have to recall the 

necessary rudiments of set-theoretical topology in more detail. 

 

 

3. ON THE TOPOLOGY OF KNOWLEDGE OPERATORS. In order to define a topological 

semantics for knowledge and belief operators, in this section we will recall the necessary 

rudiments of set-theoretical topology for topological epistemology. For a more detailed 

presentation, the reader may consult the recent works of Baltag et al. (2017, 2019).  

First of all, recall the definition of a topological space: 

 
(3.1) Definition. Let X be a set with power set PX. A topological space is an ordered pair (X, 

OX) with OX Í PX that satisfies the following conditions: 

(i)  Ø, X Î OX. 

(ii)     OX is closed under finite set-theoretical intersections Ç and arbitrary set-theoretical        

unions È.¨ 
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The elements of OX are called the open sets of the topological space (X, OX). The set-

theoretical complement AC of an open set A is called a closed set. The set of closed subsets of 

(X, OX) is denoted by CX. The interior kernel operator Int and the closure operator Cl of (X, 

OX) are defined as usual: The interior kernel Int(A) of a set A Î PX is the largest open set that 

is contained in A; the closure Cl(A) of A is the smallest closed set containing A. For details, 

see Willard (2004), Steen and Seebach Jr. (1982), or any other textbook on set-theoretical 

topology. The operators Int and Cl are well-known to satisfy the Kuratowski axioms:   

 
(3.2) Proposition (Kuratowski Axioms). Let (X, OX) be a topological space, A, B ÎPX. The 

interior kernel operator Int and the closure operator Cl of (X, OX) satisfy the following 

(in)equalities  

(i)                  Int(A Ç B) = Int(A) Ç Int(B).                                    Cl(A È B) = Cl(A) È Cl(B). 

(ii)                 Int(Int(A)) = Int(A).                                                   Cl(Cl(A)) = Cl(A). 

(iii)                 Int(A) Í  A.                                                              A Í Cl(A). 

(iv)                 Int(X) = X.                                                                Ø = Cl(Ø).¨ 

These axioms are used in the following without explicit mention. Moreover, we will use freely 

the fact that the operators Int and Cl are inter-definable: Int(A) = Cl(AC)C and Cl(A) = Int(AC)C. 

Further, it is expedient to conceive the operators Int and Cl as operators Int: PX¾>PX and Cl: 

PX¾¾>PX defined on PX. Hence, the concatenation of these operators makes perfect sense. 

Thus, the following definition makes sense: A subset A of X is called regular open iff 

Int(Cl(A)) = A. The set of regular open subsets of a topological space is denoted by O*X. 

Dually, a subset A of X is called a regular closed set iff Cl(Int(A)) = A. In the following, 

concatenations of Int and Cl such as IntCl and IntClInt will play an important role.  

The concept of a topological space (X, OX) is extremally general. For most applications it is 

expedient or even necessary to require that the topology satisfies axioms in addition to those 
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generally required of topological spaces. One such collection of conditions is given by means 

of axioms called separations axioms. Some axioms of this kind that are important for the 

purposes of the present paper are the following ones: 

 
(3.3) Definition (Separation Axioms for Topological Spaces). Let (X, OX) be a topological 

space. 

(i) X is a T0-space if, for every distinct a, b ÎX there exists an open set A such that either a Î 

A and b Ï A, or b Î A and a Ï A.  

(ii) X is a TD-space if, for every a ÎX, there exists an open set A such that a Î A and that A–

{a} is also open. 

(iii) X is a T1-space if, for every distinct a, b ÎX there exist open sets A and B such that a Î A 

and b ÎB, such that b Ï A, and a Ï B. 

(iv) X is a T2-space if, for every distinct a, b ÎX, there exist disjoint A and B containing a and 

b, respectively.¨  

Each of these axioms is independent of the Kuratowski axioms of a topological space. In fact, 

there exist topological spaces which do not satisfy any of the separation axioms T0  - T2. More 

precisely, the following chain of implications hold:  

 
(3.4) Proposition. The separation axioms Ti defined in (3.3) satisfy the following chain of 

implications: T2  ÞT1 Þ TD Þ T0. All implications of this chain are proper, i.e., they cannot 

be reversed. 

Proof. Cf. Steen/Seebach Jr. (1978, p. 12) and Picado/Pultr (2012, p. 5).¨ 

 
The axioms T2, T1, and T0 are classical. They are discussed (usually together with many other 

separation axioms) in full detail in most standard textbooks of topology (see also the 

particularly useful presentation in Steen and Seebach Jr. (1978)). The axiom TD is rather new.  
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It was first proposed in the 1960s by several authors for a variety of reasons (cf. Aull and Thron 

(1963)). For a modern presentation of many equivalent formulations of TD see Picado and Pultr 

(2012, I.2). The axiom TD will be especially useful for the calculation of the lattice NUC(OX) 

of belief operators for a wide class of topological spaces. Further, TD turns out to be essential 

for dealing with nuclei and belief operators related to the derived set operator (cf. section 7 and 

Steinsvold (2006)). 

For the definition of consistent belief operators, the concept of a dense subset of topological 

spaces will be important:                                                                                                                                              

 
(3.5) Definition. Let (X, OX) be a topological space with interior operator Int and closure 

operator Cl, Y, Z Î PX.  

(i) Y is a dense subset of X iff Cl(Y) = X.  

(ii) Z is a nowhere dense in X iff Int(Cl(Z)) = Ø. 

(iii) A point xÎX is isolated iff {x}ÎOX. 

(iv) A space (X, OX) is dense-in-itself iff it has no isolated points.¨ 

 
(3.6) Examples of dense and nowhere dense sets of topological spaces (X, OX). 

(i) For the trivial coarse topology (X, {Ø, X}) every non-empty subset A Î PX is dense and 

only Ø is nowhere dense. For the discrete topology (X, PX) only X is dense, and only Ø is 

nowhere dense.   

(ii) Let (ℝ, Oℝ) be the real line endowed with the familiar Euclidean topology. Let F Í ℝ be 

a finite set. Then F is nowhere dense and the complement FC of F is a dense open subset of (ℝ, 

Oℝ). More generally, the infinite set of integers ℤ is a nowhere dense subset of (ℝ, Oℝ).   

(iii) The sets ℚ of rational numbers and ℚC of irrational numbers are disjoint dense subsets of 

(ℝ, Oℝ), i.e., ℚ Ç ℚC = Ø and Cl(ℚ) = Cl(ℚC) = ℝ. 
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(iv) A more sophisticated example of a nowhere dense set is given by the Cantor dust D of the 

real line (ℝ, Oℝ) defined as follows: From the unit interval [0,1] of ℝ remove the open middle 

interval (1/3, 2/3) obtaining the union of the closed intervals [0, 1/3] and [2/3, 1]. This set is 

denoted by D1. From D1 remove the open middle intervals (1/9, 2/9) and (7/9, 8/9) obtaining a 

set D2 that consists of the four closed intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1]. And 

so on. Then the Cantor dust D is defined as the infinite intersection D:= ÇiÎℕ Di.  

The Cantor dust is nowhere dense and perfect (= closed and having no isolated points) (cf. 

Steen and Seebach Jr. (1978, p. 57- 58)). Hence the complement DC of the Cantor dust D is a 

dense open subset of (ℝ, Oℝ). In section 6 the complement DC of the Cantor dust D will be 

used to define some interesting belief operators for the Euclidean space (ℝ, Oℝ).¨ 

 
After these preparations, topological models for the modal language LK can be defined as usual 

(cf. section 2 and Baltag et al. (2019, 2.2.1)):   

 
(3.7) Definition. Given a topological space (X, OX), a topo(logical) model for LK is given by 

M = (X, OX,  µ), µ a valuation function in the sense of McKinsey and Tarski. In particular, µ 

maps the propositional letters p Î PROP onto elements of PX. The interior semantics for the  

model (X, OX, µ)  is defined as usual. In particular, if a formula j of L has the truth set ||j||, 

then the formula Kj of LK has the truth set ||Kj||:= Int(||j||).¨  

 
As will be shown in the next section, the topological structure of topological models (X, OX, 

µ) can be used not only to define a semantics for the knowledge modality K, but also for the 

belief modality B. For this purpose, it is necessary, however, to introduce some further 
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topological apparatus, in particular the concept of (topological) nuclei of OX.8 This will be 

done in the next section.   

 

4. NUCLEI OF TOPOLOGICAL SPACES. In this section we introduce the concept of 

(topological) nuclei (cf. Johnstone (1982), Borceux (1994), Picado and Pultr (2012)). As said 

nuclei will be essential for the definition of belief operators B compatible with topological 

knowledge operators K.9 

 
(4.1) Definition. Let (X, OX) be a topological space, and let A, D Î OX. A map N: OX®OX 

is called a nucleus of (X, OX) if it satisfies the following properties: 

(i)  A Í N(A).                                     (Inflation) 

(ii)   N(N(A)) = N(A).       (Idempotence) 

(iii)  N(A Ç D) = N(A) Ç N(D).      (Distributivity)
   
The set of nuclei of a topological space (X, OX) is denoted by NUC(OX).¨ 

 
(4.2) Definition. A partial order ≤ on NUC(OX) is defined by the relation 

                                            N ≤ N’ iff N(A) Í N’(A), for all AÎ OX.¨ 

 
In the following, NUC(OX) is always endowed with this partial order. As is easily proved, the 

partial order ≤ renders NUC(OX) a complete lattice. Its bottom element 0 is the identity 

 
8 The necessity of introducing nuclei for defining the semantics of belief operators distinguishes weak KB logic 
from original KB logic. Since for original KB systems the belief modality B can be defined in terms of K, in these 
systems the excursion into the theory of nuclei can be avoided, since the semantics of B can be defined in terms 
of the semantics of K. 
9 The literature on nuclei in point-free topology has reached a high level of technical sophistication. This paper 
does not aim to give a full-fledged introduction into the theory of nuclei. Instead, we intend to provide the basic 
definitions and facts so that the reader can understand that this theory has interesting applications regarding the 
modal theory of belief and knowledge. For a fuller account, the reader may consult Johnstone (1982), Borceux 
(1994), or Picado and Pultr (2012, 2021) and the extensive bibliographies mentioned there. 
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operator idOX:OX®OX, and its top element 1:OX®OX is the trivial nucleus that maps every 

AÎ OX onto X.  

Actually, much more is true about (NUC(OX), ≤). In order to express this in an appropriate 

way, one needs the following definition: 

 
(4.3) Definition (cf. Borceux (1994, Definition 1.3.1, Proposition 1.3.2(2)). Let L be a complete 

lattice. For M Í L denote the supremum of M by SUP(M). L is a complete Heyting algebra iff 

the following infinite distributive law holds: For all a Î L and M Í L one has  

                                             a Ù SUP(M) = SUP(a Ù M). 

For every complete Heyting algebra L a binary operation Þ is defined by  

a Þ c := SUP{b Î L; a Ù b ≤ c}  

for a, c ÎL. The operation Þ is called the Heyting implication of L. ¨ 

The Heyting implication Þ has many interesting properties (cf. Borceux (1994, chapter 1.2), 

Johnstone (1982, I.1.10, p. 13), Picado/Pultr (2012, Appendix I, Section 7)) that have been 

studied by many authors.  

The best-known examples of complete Heyting algebras are the lattices OX of open sets of 

topological spaces (X, OX) with A Þ D := Int(AC È D), A, D Î OX. For the purposes of this 

paper, however, another more general class of complete Heyting algebras plays an important 

role: 

 
(4.4) Proposition. Let (X, OX) be a topological space. Then the lattice NUC(OX) of nuclei of 

OX is a complete Heyting algebra. The Heyting implication Þ  of NUC(OX) is defined by  

                                 N Þ N’(D) := INF{N(E) Þ N’(E); E ≥ D}               D, E Î OX. 

Proof. (Johnstone (1982, II, 2.4, Lemma), Borceux (1994, Theorem 1.5.7)).¨ 
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In the last decades, the investigation of NUC(OX) has turned out to be a fruitful pathway for 

studying topological problems of various kinds, particularly problems related to point-free 

topology (cf. Johnstone (1982), Borceux (1994), Picado and Pultr (2012)). In this paper, we 

conduct some modest steps to use the concept of nuclei to shed new light on the problems of 

modal systems that deal with the epistemological concepts of knowledge and belief. More 

precisely, we will deal with problems related to Stalnaker’s KB logic of knowledge and belief 

and the theory of doxastic operators of Steinsvold and others. Before dealing with specific 

problems regarding this issue, it is expedient to give some examples of nuclei and to elucidate 

the structure of NUC(OX).   

The following special class of nuclei will be the most important one for the purposes of this 

paper: 

 
(4.5) Definition. A nucleus N Î NUC(OX) is called a dense nucleus iff N(Ø) = Ø. The subset 

of dense nuclei of NUC(OX) is denoted by NUC(OX)d.¨ 

 
(4.6) Examples (Johnstone (1982), Borceux (1994), Picado and Pultr (2012)). Let (X, OX) be  

a topological space and A, D Î OX. Denote the join and the Heyting implication of OX by È  

and Þ, respectively. 

(i) The map kA:OX¾>OX defined by kA(D) := A È D is a nucleus. The nucleus kA is 

called the closed nucleus defined by A. Clearly, for A ≠ Ø the nucleus kA is not a dense 

nucleus. 

(ii)  The map jA : OX®OX defined by jA(D) := (A Þ D) is a nucleus. The nucleus jA is called 

the open nucleus defined by A. If A is a dense subset of X then jA is a dense nucleus.10  

 
10 The reader should not be confused by this (established) terminology: every open subset A of X (as an element 
of OX) defines a closed nucleus and an open nucleus, namely, kA and jA, respectively.  
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(iii)  The operator NS: OX®OX defined by NS(D):= IntCl((D)) is a nucleus. It is usually 

called the regular nucleus of OX.11 Due to the Kuratowski axioms (3.2)(iii) and (3.2)(iv) 

for Int and Cl the nucleus NS is a dense nucleus, i.e., NS(Ø) = Int(Cl(Ø)) = Int(Ø) = Ø. 

Only for few topological spaces the nucleus NS is an open nucleus, for most spaces (X, 

OX) there is no AÎ OX, such that NS(D) = IntCl(D) = jA(D) = A Þ D.¨   

 
 Dense nuclei will play a central role in the following, as they define consistent belief operators. 

Now all ingredients are available to formulate a central definition of this paper: 

 
(4.7) Definition. Let (X, OX) be the topological space of a topological model with interior 

kernel operator Int, let N Î NUC(OX), and i:OX®PX the canonical inclusion.  Denote the 

concatenation of i:OX®PX, N:OX®OX, and Int:PX®OX by N°. Then this operator N°: 

PX®PX is called the belief operator (related to Int and corresponding to the nucleus N).12¨ 

 
The natural next step is to show that (4.7) is a reasonable and fruitful definition that defines a 

family of well-behaved belief operators N° for a knowledge operator Int that enjoy all 

properties that one intuitively expects from “good” belief operators.  

The task of justifying the predicate “belief operator” for N° is naturally divided into two 

subtasks:  

(i) It has to be shown that (4.7) is formally adequate in the sense that the belief operators defined 

by (4.7) satisfy appropriate formal conditions of adequacy.  

(ii) It has to be shown that sufficiently many philosophically interesting belief operators N° 

exist that fulfil the requirements of (4.7).  

 
11 In this paper the regular nucleus IntCl is also called the Stalnaker nucleus and denoted by NS, since it has played 
such a prominent role in the topological interpretation of Stalnaker’s logic KB, cf. Baltag et al. (2017, 2019). 
12 Clearly, a nucleus N and its corresponding belief operator N° determine each other uniquely: N = iN°Int and  
N° = IntNi. Here, i is , of course, the canonical inclusion OX®PX.   
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Epistemologists do not fully agree on what “good properties” for a belief operator are, of 

course, but the following qualities are rather uncontroversial candidates: 

 
(4.8) Definition (Good belief operators). A good belief operator N° (related to a knowledge 

operator Int and corresponding to N) should satisfy the following conditions: 

 
(i) A good belief operator N° may produce a false belief. Formally this means that there should 

exist a proposition A Í X, such that w Î N°(A) but wÏ A, i.e., a cognitive agent who uses N° 

believes that w is A-world, but actually w is not an A-world. 

(ii) A good belief operator N° should be consistent, i.e., if the cognitive agent believes that w 

is an A-world, then he does not believe that w is not an A-world, i.e., w Î N°(A) entails that 

wÏ N°(AC). 

(iii) A good belief operator N° should be minimally compatible with its related knowledge 

operator Int, i.e., if it is known that w is an A-world, then it should be believed that w is an A-

world, i.e., w Î Int(A) entails w Î N°(A).¨ 

 
(4.9) Proposition. Let (X, OX) be a topological space and NÎ NUC(OX)d, N ≠ idOX. Then the 

belief operator N° corresponding to N is a good belief operator in the sense of (4.8). 

 
Proof. We have to prove that N° satisfies the conditions (4.8)(i) – (iii). 

(i): In order to show that there exists a proposition A such that N°(A) is possibly false one can 

argue as follows: By the definition of the partial order ≤ of nuclei (4.2), the smallest dense 

nucleus of OX is the identity idox with corresponding belief operator Int. Thus, according to 

the assumption idOX ≠ N, we may assume idOX < N. Hence, there must be an A Î OX Í PX 

such that A Ì N(A). By definition of N° and the fact that A is assumed to be open this entails 

that A is properly contained in N°(A), i.e., A Ì N°(A). This is equivalent to N°(A) Ç AC ≠ Ø. 

In other words, there is a world w Î N°(A) Ç AC. This means that an epistemic agent who uses 
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N° believes that w is an A-world but actually w is not an A-world. In other words, the agent’s 

belief is false. This proves (4.8)(i). 

(ii) Due to the fact that N is dense and distributive with respect to Ç ((4.1)(ii)) for all A Î PX 

one has  

            Ø = N°(Ø) = i(N(Int(A Ç AC))) = i(N(Int(A))) Ç i(N(Int(AC))) = N°(A) Ç N°(AC). 

Hence N°(A) Í N°(AC)C, i.e., the belief operator N° is consistent. This proves (4.8)(ii). 

(iii) Since for all nuclei, by definition Int(A) Í N(Int(A)) one obtains that w Î Int(A) entails w 

Î N°(A). This proves (4.8)(iii). 

In sum, for all NÎNUC(OX)d with N ≠ id, the corresponding belief operator N° is a good belief 

operator.¨ 

 
The condition (4.8)(i) is generally accepted as a necessary condition in order that an operator 

may be considered “as suitable for defining a doxastic logic” (cf. Bezhanishvili and van der 

Hoek (2014, p. 373) and Parikh et al. (2007, p. 329)). The conditions (4.8)(ii) and(iii) are also 

rather unanimously accepted among epistemologists. Thus, proposition (4.8) ensures that at 

least prima facie, nuclei may be considered as a promising source for a semantics of doxastic 

logic. 

More systematically, one may require that good belief operators are those operators that define 

topological model of weak KB-logic. This can be carried out as follows. Let (X, OX) be a 

topological space and N ÎNUC(OX)d a dense nucleus. Relying on a classical idea of McKinsey 

and Tarski we may use (X, OX, N) to define a valuation of weak LKB by putting 

• µN(p) Í X.      

• µN(¬j) = X - µN(j).          

• µN(j Ù y) =  µN(j) Ç µN(y).  

• µN(j Ú y) =  µN(j) È µN(y).                                             
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• µN(j ® y) = µN(j)C È µN(y). 

• µN(Kj) =  Int(µN(j)).     

• µN(Bj) =  iN(µN(Kj))  =  iNInt(µN(j)).                                                                                           

  
Clearly, this definition is an extension of the classical definition of a valuation of the unimodal 

language LK (cf. Aiello et al. (2003, p. 891)). Moreover, it should be noted that for the smallest 

dense nucleus N = idOX the last clause boils down the penultimate one, i.e., µN(Bj) = 

idOX(µN(Kj)) = µN(Kj)).    

Now we can define the notion of a topological model of weak KB as follows. 

        
(4.10) Definition. A topological model of weak KB is given by a quadruple M = (X, OX, N, 

µN), N ÎNUC(OX)d.¨ 

As usual, for topological models (X, OX, N, µN) the truth of a formula j at a world w Î X is 

inductively defined as follows:  

• M, w ⊨	p																		iff												wÎ	µN(p).         

• M, w ⊨	¬j             iff           NOT(M, w ⊨	j).            

• M, w ⊨	j Ù y         iff           (M, w ⊨	j) AND (M, w ⊨	y). 

• M, w ⊨	 j Ú y        iff           (M, w ⊨	j ) OR (M, w ⊨	y). 

• M, w ⊨	j ® y        iff           NOT(M, w ⊨	j) OR (M, w ⊨	y)). 

• M, w ⊨	Kj              iff           $U(UÎOX(w Î U AND "v Î U(M, v ⊨ j)).                                                       

• M, w ⊨	Bj               iff          $U(UÎOX(w Î N(U) AND "v Î U(M, v ⊨ Kj)).                                                   

 
Then a formula j is said to be true in the model M = (X, OX, N, µN) if µN(j) = X. A formula 

j is said to be topologically valid if it is true in every topological model. Then we can easily 

prove: 
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(4.11) Proposition. The weak KB logic of knowledge and belief defined in (2.6)  is sound with 

respect to the class of all topological models (X, OX, N, µN), i.e., all axioms and rules of weak 

KB hold for all topological models (X, OX, N, µN). 

 
Proof. As is to be expected for proofs of soundness the proof is routine. Looking at the list of 

axioms and rules of weak KB-logic given in (2.6) the proof can be divided into three parts:  

(i)                     axioms dealing only with the modal operator K; 

(ii)                      axioms dealing only with the modal operator B; 

(iii)                      axioms dealing with modal operators K and B (mixed axioms).  

(i) The axioms of the first group are (K), (T) and (KK). The validity of (K), (T), and (KK) for 

topological models of weak KB is well-known because every model (X, OX, N, µN) of weak 

KB defines a model (X, OX, µN) for standard epistemic logic K (cf. Aiello et. al. (2003)). 

Moreover, modus ponens (MP) and necessitation (NE) hold for topological models.  

 
(ii) The second group of axioms consists of the axioms that only deal with the modality B. This 

group contains the axioms  

(CB)     Bj ® ¬B(¬j) 

(K)       B(j→ ψ) → (Bj → Bψ) 

(4)*  BBj « Bj    

In order to show that (CB) holds in all models (X, OX, N, µN) of weak KB one has to show 

that µN(Bj) Í µN(B(¬j))C for all j. This can be seen as follows:  

                    µN(Bj) Í µN(B(¬j))C                                     iff       µN(Bj) Ç µN(B(¬j))CC = Ø  
            
      iff              iNInt(µN(j)) Ç iNInt(µN(¬j)) = Ø     iff      iNInt(µ(j Ù ¬j)) = iN(Ø) = Ø. 

since N is a dense nucleus.  
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The semantic interpretation of the modal operator B is defined as the concatenation of the three 

normal operators i, N, and Int and hence normal, i.e., (K) is satisfied.  The validity of (4)* 

follows similarly from the definition of the belief operator: inIntiNint = iN2Int = iNInt.  

Clearly, the concatenation iNInt is idempotent, i.e., (iNInt)2 = iNInt. Hence, (4)* is satisfied. 

(iii) The third group of axioms comprises the axioms (PI), (KB), and (FB). The validity of these 

axioms can be read off directly from their definitions, the defining properties of nuclei, and the 

Kuratowski axioms.¨ 

 
 For the proof of a topological completeness theorem for weak KB in section 5 we have to 

construct an adequate nucleus for the canonical topological model of weak KB that takes care 

of the belief modality B. For this construction, we show that the nuclei of OX give rise to 

appropriate sublocales of OX.  We heavily rely on the detailed presentations of sublocales in 

Picado and Pultr (2012, Chapter III) and Johnstone (2002, Proposition 1.1.13, p. 481).  

 
(4.12) Definition. Let H be a complete Heyting algebra. A subset S Í H is a sublocale of H iff 

S is closed under all meets of H and for every s Î S and every x ÎH, the Heyting implication 

x Þ s Î S.¨13 

 
It may be observed that sublocales are defined for complete Heyting algebras in general. For 

our purposes we only need this concept for the special case of Heyting algebras OX arising 

from topological spaces (X, OX). 

 
(4.13) Definition. A sublocale S is a dense sublocale of H iff S contains the bottom element 0 

of H.¨ 

 
13 Sublocales  are also called Þ-ideals. 
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In the following we will only consider sublocales of Heyting algebras of the form OX for 

topological spaces (X, OX).  

The smallest sublocale of OX is {X}. Clearly, {X} is a not a dense sublocale. Trivially, OX is 

the largest dense sublocale of OX. Probably the best-known non-trivial example of a dense 

sublocale of OX is the Boolean lattice of regular open sets O*X Í OX. Actually, O*X is a very 

special sublocale. According to Isbell’s theorem, for every topological space (X, OX) O*X is 

the smallest dense sublocale of OX (see Theorem (6.5)).  

Denote the set of sublocales of OX by SL(OX). Then SL(OX) is a complete lattice with respect 

to set-theoretical intersection Ç. Even more, with respect to Ç the lattice SL(OX) is a complete 

co-Heyting algebra with the sublocale {X} as bottom element and the sublocale OX as its top 

element (cf. Picado and Pultr (2012, 3.2.1. Theorem, p.28)). Thus, we obtain: 

 
(4.14) Proposition. For all A Í OX there is a (unique) smallest sublocale SA Î SL(OX) such 

that A Í SA, namely, the intersection of all sublocales that contain A.  

Proof. The class of sublocales that contain A is not empty, since A Í OX. Since SL(OX) is 

complete with respect to arbitrary set-theoretical intersections there is a smallest sublocale SA 

that contains A, namely, the intersection of all sublocales that contain A.¨14    

 
Given A Í OX a unique nucleus corresponding to the sublocale SA may be constructed as 

follows. The inclusion i: SA®OX has an adjoint map j: OX®SA. Then the concatenation 

ij:OX®OX is the desired nucleus. It may be called the nucleus generated by A.  

 
14 Actually there is an order-reversing bijection between nuclei and sublocales: A nucleus N:OX®OX is uniquely 
determined by its image i:N(OX)®OX. Indeed, N(OX) Í OX is a sublocale. Thus, a nucleus uniquely determines 
a sublocale. On the other hand, the inclusion map of a sublocale i:S®OX has an adjoint frame map j:OX®S such 
that the concatenation ij:OX®OX is a nucleus N (cf. Johnstone (2002, Proposition 1.1.3., p. 486), Picado 
and Pultr (2012, 5.3.2. Proposition. p. 32)). We don’t need this result, however. 
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This correspondence will be important for constructing a canonical model for weak KB. More 

precisely, in the next section we will use this construction to define a canonical topological 

model (H, OH, NB, µNB) which shows that weak KB logic is complete with respect to 

topological models (X, OX, N, µN). 

 

 

5. A TOPOLOGICAL COMPLETENESS THEOREM FOR WEAK KB.  In this section we 

will construct a canonical topological model (H, OH, NB, µNB) for weak KB logic. This 

topological model will be used to prove a completeness theorem for weak KB. The proof 

follows closely the lines of the standard topological completeness proof of S4 epistemic logic 

for the knowledge modality K as carried out in Aiello et al. (2003). The only novelty is the 

construction of an appropriate dense nucleus NB Î NUC(OH)d that is used to define the 

semantics of the belief modality B.  

We start with the construction of a topological space (H, OH) for the canonical topological 

model of weak KB. Let j be any well-formed formula of the bimodal extension LKB of classical 

Boolean propositional logic. Call a set G of formulas LKB-consistent if for no finite set {j1, …, 

jn}Í G we have KB ⊢ ¬ (j1 Ù … Ù jn). A consistent set G is called maximally consistent if 

there is no consistent set of formulas properly containing G. Due to Lindenbaum’s lemma (cf. 

Blackburn et al. (2001, Lemma 4.17, p. 197)) any consistent set of formulas can be extended 

to a maximal consistent one. It is well known that G is maximally consistent iff for any formula 

j of LKB, either j Î G or ¬j Î G, but not both. 	

Now we can construct a topological space of maximally consistent sets of formulas for LKB in 

a quite analogous way as this has been done for LK (cf. Aiello et al. (2003)). 

 
(5.1) Proposition.  Define the canonical topological space (H, OH) for LKB is as follows:   
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(i)  H is the set of all maximally consistent sets Gmax of formulas of LKB.  

(ii)  For j Î LKB let [j] := {GmaxÎH; j Î Gmax}. Define SK := {[Kj]; j Î LKB}. Then OH 

is defined as the set of subsets of H generated by arbitrary unions of the SK.  

(H, OH) is a topological space, called the topological space of the canonical model of LKB. 
 

Proof. One has to show that SK is a basis for a topology of H. This is carried out exactly in the 

same way as is done for the analogous assertion for LK in Aiello et alii (2003, Lemma 3.2) by 

replacing LK by LKB.¨ 

 
Obviously, for the modal operator Int of (H, OH) a truth lemma can be proved in the same way 

as is done in Aiello et al. (2003) for the interior operator of the canonical topological space for 

S4. 

Thus, the only missing ingredient for a full truth lemma of the bimodal logic of weak KB (and 

thereby a completeness theorem for weak KB) is the construction of an appropriate belief 

operator N° that satisfies a truth lemma for (H, OH). This will be carried out now. The key for 

this construction is the following observation:    

 
(5.2) Lemma. For all formulas j of LKB one has [Bj] = [BKj] = [KBj], i.e., the sets [Bj] are 

basic open sets of the topological space (H, OH). Moreover, one has [Bj] = [Bnj] for all n ≥ 

1. 

 
Proof. By the axioms (PI) and (T) one obtains that the formulas Bj are logically equivalent to 

KBj and to BKj. Hence, the sets [Bj] = [KBj] are basic open sets of (H, OH). Due to (4)* 

one has [Bj] = [Bnj] for all n ≥ 1.¨ 
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Now all ingredients are available for the definition of the canonical topological model of weak 

KB-logic. The construction of the underlying topological space is standard. The point is the 

definition of an appropriate nucleus that takes care of the modal operator B.  

Since the lattice SL(OH) of sublocales of (H, OH) is closed with respect to arbitrary 

intersections by (4.14) the sublocale S(B) of the intersection of all sublocales that contain the 

elements of {[Bj]; j Î LKB} exists. It is denoted S(B). As S(B) is a sublocale, for i:S(B)®OH 

an adjoint map j:OH®S(B) exists such that a nucleus ij:OH®S(B)®OH is defined. This 

nucleus will be denoted by NB. Clearly, NB Î NUC(OH)d, i.e., NB is a dense nucleus, since by 

the axiom of consistency (CB) one has  

                                       [B(^)] Í [B(¬ ^]C = [B(⊤)]C	=	[⊤]C	=	Ø.  

The nucleus NB defines a consistent belief operator NB°. This NB° is used to define the 

canonical topological model of weak KB logic as follows: 

 
(5.3) Definition. The canonical topological model of weak KB-logic is defined as (H, OH, NB, 

µNB) with 

(i)  The elements of H are the maximally consistent sets of formulas Gmax of LKB. 

(ii) The topology OH is generated by the basis of open sets {[Kj]; j Î LKB}. 

(iii) The belief operator NB° is defined by the nucleus NB generated by the sublocale S(BH) 

that is generated by the set of open subsets {[Bj]; j Î LKB}. 

(iv) µNB(j) := {Gmax; Gmax is a maximally consistent set of formulas of LKB with j Î Gmax}. 

 
This definition of the canonical model for weak KB is a straight-forward generalization of the 

analogous definition of the canonical model for K to be found in Aiello et al. (2003).15 The 

 
15 According to Aiello et al. (2003, p. 896) the canonical topology of the canonical space is the 
intersection of the Kripke topology and the Stone topology. This entails that this space is compact and 
dense-in-itself. 
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definition of the belief operator NB° is based on the observation that the sets {[Bj]; j Î LKB} 

are basic open sets of OH and [Bj] = [Bnj] for all n ≥ 1. Therefore they define a dense sublocale 

of OH that corresponds to a dense nucleus. Since NB° Î NUC(OH)d, from (3.13) it follows that 

(Int, NB°) satisfies the rules and axioms of a weak Stalnaker system, i.e., (H, OH, NB, µNB) 

belongs to the class of sound models of weak KB-logic.¨  

 
Now we prove a truth lemma for the canonical topological model (H, OH, NB, µNB). This will 

be the essential ingredient for the proof of the desired completeness theorem: 

 
(5.4) Theorem (Truth Lemma TL). Let (H, OH, NB, µ) be the canonical topological model of 

weak KB. For all modal formulas j of LKB and all w Î H one has: w ⊨LKB j iff wÎ[j]. 

 
Proof. Induction on the complexity of j. The base case follows from the definition from (4.10). 

The case of the Booleans is also well known, see (Aiello et al. (2003, p. 895)). The interesting 

cases are the modal operators K and B. The proof for K is just a rehearsal of the well-known 

proof of the truth lemma TL for the unimodal case for K. Thus, it only remains to prove TL for 

B. Analogously to the proof of TL for K, the proof of TL for B is divided into two parts:  

 
(i)  From truth to membership (If w ⊨LKB j then wÎ[j]).  

(ii)  From membership to truth (If wÎ[j] then w⊨LKB j). 

 
Proof of (i): Suppose w⊨LKB Bj. That means that there is a UÎ OH such that  

                w Î N(U) and "v(If vÎU then "v Î U(M, v ⊨ Kj)).  

Since we may assume that TL holds for K in OH this may be simplified to   

 
             w⊨LKB Bj iff there is a KyÎ OH such that w Î BKy and[Ky] Í [Kj].  
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Since (H, OH) is a topological model of S4 (with respect to K), due to the completeness of S4 

the inclusion [Ky] Í [Kj] entails the validity of Ky ® Kj in S4. By necessitation with respect 

to B in weak KB also B(Ky ® Kj) is valid in weak KB. Since B satisfies (K) in weak KB we 

have that B(Ky ® Kj) ® (BKy ® BKj) is valid we obtain by MP that (BKy ® BKj) is 

valid in weak KB. Since weak KB is sound of (H, OH) we obtain that [BKy] Í [BKj]. By 

(5.2) we have [BKj] = [Bj]. Thus, we eventually conclude wÎ [BKy] Í [BKj] = [Bj]. In 

other words, “Truth entails membership”. 

 
(2) From Membership to Truth: Proof by induction on the complexity of formulas and reductio 

ad absurdum. Suppose w Î [Bj].  We can assume that the first part of TL “From truth to 

membership” has been proved for B. Suppose w÷≠ Bj. Then by definition of w÷≠ Bj this is 

equivalent to 

(i)                                 NOT($UÎ OH (w Î N(U) & "v(If v Î U then v⊨ Kj))    

 
Since we can assume that TL is already proved for K this can be simplified to  

 (i’)          NOT($UÎ OH (w Î N(U) &  U Í [Kj])) 

This is equivalent to  

(ii)                               "UÎ OH (w Ï N(U) OR NOT (U Í [Kj])) 

In order to carry a reductio one has to find a U for which (ii) is false. Obviously, this is the case 

for U = [Kj], since [Kj] Í [BKj] = [Bj] by (5.2) and we have assumed that w Î [Bj]. Thus, 

the reductio ad absurdum has been carried out. Thereby the proof of the truth lemma for the 

modal operator K and the modal operator B is completed.¨ 

 
Now a completeness theorem for weak KB can be proved in the canonical way: 

 
(5.5) Completeness Theorem for weak KB. For any consistent set of formulas G of LKB one has  

                                                             If  G ⊨ j then  G ⊢wKB j. 
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Proof. Suppose that NOT(G ⊢wKB j). For the proof of (5.5) we have to prove that this 

supposition entails NOT(G⊨j). Then G È {¬ j}is consistent, and by a Lindenbaum Lemma it 

can be extended to a maximally consistent set Gmax Î H with {¬ j}Î Gmax, i.e., Gmax Î [¬ j]. 

According to the truth lemma (5.4) for (H, OH), this is equivalent to Gmax⊨¬j, whence 

NOT(Gmax ⊨ j). and we have constructed the required counter-model.¨ 

 
In sum, the weak KB logic (2.6) of knowledge and belief is a normal, sound and complete 

bimodal extension of classical propositional logic CL defined by the two modalities K and B.16   

In the next section it will be shown that for a given knowledge operator Int a wealth of belief 

operators N° exists such that all the pairs (Int, N°) satisfy the rules and axioms of weak KB. 

For a given knowledge operator Int the pairs (Int, N°) are partially ordered by the partial order 

of NUC(OX) defined in (4.2) such that different belief operators N° can be compared with 

respect to the extent how much they deviate from knowledge Int.   

 

 
6. ON THE DOXASTIC PLURALITY OF WEAK KB. In this section we deal with a peculiar 

feature of weak KB-logic, namely, its doxastic plurality. Doxastic plurality means that any 

topological knowledge operator Int always comes with a plurality of accompanying belief 

operators N° defined by the dense nuclei N Î NUC(OX)d such that all quadruples (X, OX, N, 

µN) are topological models of weak KB-logic. In other words, the complete lattice NUC(OX)d 

(which will be shown to be even a complete Heyting algebra in a moment) provides a 

framework for comparing weak KB logics (Int, N°), (Int, N’°) with respect to how much their 

belief operators N°, N’° deviate from knowledge Int. More precisely, NUC(OX)d sets up an 

 
16 If the axiom (NI) of negative introspection is assumed to be valid, the bimodal logic KB boils down to a 
unimodal logic defined by K since then the belief modality B can be uniquely defined in terms of K, namely B « 
= ¬K¬K (cf. Footnote 4). 
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intuitionistic logic of competing belief operators related to one and the same knowledge 

operator Int.17   

Up to now, we do not know much about the doxastic plurality of belief operators, since we do 

not know much about NUC(OX)d. Given a topological space (X, OX) the only dense nuclei of 

this space that are known are the nucleus Int and the Stalnaker nucleus IntClInt. Thus, it is high 

time to overcome this shortage by providing other concrete examples of dense nuclei. This is 

the aim of this section. Moreover, to show that the plurality of dense nuclei is really interesting 

for the logic of knowledge and belief, it has to be shown that the belief operators defined by 

these nuclei are conceptually appealing as belief operators.  First of all, let us give some 

concrete examples of (dense) nuclei that are located between Int and IntClInt: 

 
(6.1) Proposition (Macnab (1981, §6). Let (X, OX) be a topological space, Y Í X, and D Î 

OX. Define a map 𝒩:PX®NUC(OX) by 𝒩(Y) by  

	 	 	 	 	 𝒩(Y)(D) := Int(YC È D).       

The nucleus 𝒩(Y) is called the spatial nucleus defined by the subspace Y of X.  

 
Proof. 𝒩(Y) satisfies requirements (4.1)(i) – (iii) that define a nucleus:   

(i):  For D ÎOX, one obtains D Í Int(YCÈ D). Hence, D Í 𝒩(Y)(D). 

(ii):  Clearly, 𝒩(Y)(D) = Int(YC È D) Í Int(YCÈ Int(YC È D)). On the other hand, one 

calculates Int(YC È Int(YC È D)) Í Int(YC È (YC È D)) = Int(YC È D). Hence, 𝒩(Y) 

(𝒩(Y)(D)) = 𝒩(Y)(D). 

(iii):  By the Kuratowki axiom (3.2) (i) one obtains 𝒩(Y)(D Ç D’) =  Int(YC È (D Ç D’))  

= Int(YC È D) Ç Int(YC È D’) = 𝒩(Y)(D) Ç 𝒩(Y)(D’).   

Thus, for all subsets Y of X the map 𝒩(Y): OX®OX is a nucleus.¨  

 
17 This section is somewhat technical. Readers who believe the general assertion that a knowledge operator Int is 
always accompanied by many belief operators seems plausible may therefore skip this section on first reading. 
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(6.2) Proposition. If Y is dense in (X, OX) then 𝒩(Y) is a dense nucleus. 

 
Proof. For Y dense in (X, OX) the Kuratowki axiom (3.2) (i) yields: 𝒩(Y)(Ø) = Int(YC) = 

Cl(YCC )C = Cl(Y)C = XC = Ø.¨ 

 
(6.3) Corollary. If Y is dense in (X, OX) the belief operator 𝒩(Y) is a dense nucleus and the 

pair (Int, 𝒩(Y)°) defines a weak KB-logic. 

 
Proof. Since N(Y) is a dense nucleus, by (4.10) the pair of operators (Int, N(Y)°) defines a 

weak KB-logic.¨ 

 
In order to ensure that (6.3) actually yields different dense nuclei it is expedient to assume that 

the space (X, OX) is a TD-space (cf. (3.4)).18 Under this mild restriction one can prove: 

 
(6.4) Proposition. For TD-spaces (X, OX) the map 𝒩:PX®NUC(OX) defined in (6.1) is an  

order-reversing monomorphism.   

Proof.  Suppose that Y and Y’ are two distinct subsets of X and 𝒩(Y) = 𝒩(Y’). Suppose x Î 

Y – Y’. Since (X, OX) is a TD-space (3.3)(ii), x has an open neighborhood D such that D – {x} 

is open as well. Then we obtain x Î Int(Y’C È (D –{x})) but clearly x Ï Int(YC È (D – {x})). 

This is a contradiction. Analogously, the assumption that there is an x Î Y’ – Y leads to a 

contradiction. Hence Y = Y’, i.e., j is a monomorphism. 𝒩 is order-reversing by definition.¨  

 
Propositions (6.2) and (6.4) show that for “most” spaces (X, OX) many dense belief operators 

can be defined by dense subspaces Y of X that differ from Int and IntClInt, respectively. It is 

expedient to note, however, that for many familiar spaces there are important dense nuclei that 

cannot be characterized in this way. Rather, the belief operators defined by subspaces Y of X 

 
18 TD is a rather weak axiom satisfied by most topological spaces that “occur in nature”. For instance, Euclidean 
spaces and, more generally, all T2 -spaces, and all T0 -Alexandroff spaces are TD-spaces. 
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turn out to be only the most elementary class of belief operators. Indeed, the structure of 

NUC(OX) is much more complicated than the rather elementary structure of the classical 

Boolean algebra PX = {Y; Y Í X}.19  

The fact that not all belief operators related to the knowledge operator Int arise from dense 

subsets should to be considered as an advantage of the concept of dense (= consistent) belief 

operators over dense subspaces. Or, the other way round, it has to be considered as a serious 

shortcoming of the concept of dense subspaces that there not enough of them. This may be 

explicated in some more detail as follows. As is well-known, for topological spaces (X, OX) 

the intersection of dense subspaces Y and Y’ in general is not dense. A classic example is the 

real line (ℝ, Oℝ) for which the set of rational numbers ℚ and set of irrational numbers ℚC are 

both dense, but the intersection ℚ Ç ℚC = Ø is clearly not dense. Hence, in general, a 

topological space (X, OX) does not have a unique smallest dense subset. But, due to Isbell’s 

theorem (see (6.5)), there is a largest dense nucleus, namely, Stalnaker’s nucleus NS aka IntCl.  

More generally, the intersection ÇYl of arbitrarily many dense subspaces Yl of a topological 

space (X, OX) is usually far from being a dense subspace of X. Thus, the partial order of dense 

subspaces of a topological space (X, OX) (partially ordered by set-theoretical inclusion Í) is a 

rather unwieldy structure. In sharp contrast, for dense nuclei of a topological space the situation 

is quite different. As will be proved in a moment, the set NUC(OX)d of dense nuclei is a (rather 

special) complete Heyting algebra.20 Consequently, the class of belief operators related to a 

knowledge operator has a rather nice structure. 

 
19 Already in Macnab (1981) it is proved that for TD -spaces (X, OX) there is a Boolean isomorphism between PX 
and the Boolean algebra of regular elements of NUC(OX) (cf. Macnab (1981, Theorem (6.5)(5)). In contrast,  
even for the Euclidean line (ℝ, Oℝ) the full structure of NUC(Oℝ) is not fully known up to now (as far as I know). 
20 Roughly, the relation between dense subspaces and dense nuclei of a topological space (X, OX) may 
be compared with the relation between the field of rational numbers ℚ and the field of complex numbers 
ℂ with respect to their algebraic qualities. A very simple aspect of this issue concerns the solvability of 
polynomial equations. While there are enough complex numbers to solve all polynomial equations in a 
neat and elegant way, this does not hold for the more restricted domain of rational numbers ℚ. It is 
quite difficult to say anything general about the solvability of polynomial equations in rational numbers.  
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By Proposition (4.3) we already know that the lattice NUC(OX) of nuclei of a space (X, OX) 

is a complete Heyting algebra. This result may be used to prove an analogous result for the set 

of dense nuclei NUC(OX)d by invoking a famous theorem of Isbell. Isbell’s theorem asserts 

that every topological space (X, OX) has a greatest dense nucleus: 

 
(6.5) Theorem (Isbell’s Density Theorem). Let (X, OX) be any topological space. The dense 

nucleus NS is the greatest element of NUC(OX)d, i.e., for all dense nuclei N one has N(D) Í 

NS(D), D Î OX.   

Proof. The proof of this theorem goes well beyond the horizon of this paper. The reader is 

recommended to consult the excellent treatises Johnstone (1982, II. 2.4 Lemma, p. 50/51) or 

Picado and Pultr (2012, III, 8.3., p.40, also VI, 2.1, p. 101ff.)¨  

 
Isbell’s theorem is a remarkable theorem, since it demonstrates that the dense nuclei of a 

topological space (X, OX) behave quite differently than the dense subspaces Y of X.  More 

precisely, a space may have more dense nuclei N than dense subspaces (see propositions (6.7) 

and (6.8)): A pertinent example is the Euclidean line (ℝ, Oℝ) and its disjoint dense subsets ℚ 

and ℚC which entails that there is no largest dense subspace of (ℝ, Oℝ). Moreover, as will be 

shown in a moment, Stalnaker’s nucleus NS is not a spatial nucleus for (ℝ, Oℝ) (see (6.7)). 

As has been pointed out by Johnstone and others, this difference between nuclei and subspaces 

may be considered as one of the great advantages of doing topology in the conceptual 

framework of “pointfree topology” - based on “nuclei”, “(sub)locales”, and related concepts -

instead of traditional set-theoretical topology (cf. Johnstone 1991, p. 87-88). This paper is not 

the place to discuss this issue in any further depth, however. Just let us note the following 

elementary corollary of Isbell’s density theorem:  
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 (6.6) Corollary. The partially ordered family NUC(OX)d of dense nuclei is a complete Heyting 

algebra with bottom element idOX and top element NS = IntCl. These nuclei correspond to the 

dense belief operators Int and IntClInt, respectively. 

 
Proof. NUC(OX)d is a subset of the complete Heyting algebra NUC(OX). By Isbell’s theorem 

(6.5) the largest element of NUC(OX)d is the regular nucleus IntCl. Hence, NUC(OX)d is the 

downset ¯NS of nuclei N that are smaller than or equal to NS, i.e., ¯NS:= {N; N ≤ IntCl}. 

Thereby NUC(OX)d inherits canonically the structure of a complete Heyting algebra from 

NUC(OX) with bottom element idOX and top element IntCl. By definition (4.2) of the partial 

order ≤ of NUC(OX) one calculates for N ≤ NS that N(Ø) Í NS(Ø) = Int(Cl(Ø)) = Ø. Hence, 

the NÎ NUC(OX)d are indeed dense nuclei.¨ 

Corollary (6.6) offers a neat intuitionist calculus of belief operators N° related to a given 

knowledge operator Int: Any two belief operators N°, N°’ compatible with Int can be compared 

with respect to riskiness. An operator N° is riskier than N°’, i.e., more error-prone than N°’, if 

and only if N°’ ≤ N°. The least risky belief operator is, of course, the knowledge operator Int, 

since by definition w Î Int(µ(j)) always entails that wÎ µ(j), i.e., Int is factive. The riskiest 

belief operator is Stalnaker’s belief operator N°S, since by Isbell’s theorem (6.5) N ≤ NS for all 

NÎ NUC(OX)d. Hence, if one is guided by a cautionary principle in stating one’s beliefs, it is 

advisable to base one’s beliefs not on NS but on a less risky operator N even if NS may be 

considered as the operator that can be defined in the mathematically most elegant way. 

In order to show that spatial nuclei 𝒩(Y) do not tell the whole story about nuclei of (X, OX) it 

is sufficient to give a prominent example of a nucleus N for which in general no generating 

subset Y exists:    

 
(6.7) Proposition. For the Euclidean line (ℝ, Oℝ) the regular nucleus NS is not a spatial nucleus, 

i.e., there is no subset Y of ℝ such that NS = 𝒩(Y).  
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Proof. Suppose the contrary, i.e., there is a Y Í ℝ such that 𝒩(Y)(D) = Int(YC È D) = IntCl(D) 

for all D Î Oℝ). Clearly, Y ≠ Ø. Assume x Î Y. Take D = ℝ – {x}. The set D is open in (ℝ, 

Oℝ) since (ℝ, Oℝ) is a T2-space (cf. (3.4)). Then, we get 𝒩(Y)(D) = Int(YC È D) = Int(D) = 

D, but NS(D) = ℝ. Hence, for (ℝ, Oℝ) the regular nucleus NS is different from any spatial 

nucleus 𝒩(Y) of NUC(Oℝ) whatsoever.¨ 

 
(6.8) Proposition. The join 𝒩(ℚ) Ú 𝒩(ℚC) of the spatial nuclei 𝒩(ℚ) and 𝒩(ℚC) is not a 

spatial nucleus. 

 

Proof. Suppose 𝒩(ℚ) Ú 𝒩(ℚC)	 is a spatial nucleus 𝒩(F)	with F Í ℝ.	Then	one	obtains	

𝒩(ℚ) ≤ 𝒩(F)	and	𝒩(ℚC) ≤ 𝒩(F).	By	(6.4)	this	implies	F	Í	ℚ,	ℚC and	therefore	F	=	Ø.	

Hence	𝒩(Ø)(D)	=	Int(ℝ	È	D)	=	ℝ for	all	D	ÎOℝ.	This	is	a	contradiction	since	𝒩(ℚ) and 

𝒩(ℚC) are dense nuclei and therefore 𝒩(ℚ) Ú 𝒩(ℚC)	is	also	dense	and	at	most	as	large	as	

NS.		Hence	𝒩(ℚ) Ú 𝒩(ℚC)	cannot	be	a	spatial	nucleus.21¨ 

 
Proposition (6.8) is a strong argument for the claim that there are not sufficiently many spatial 

nuclei for a satisfying theory of nuclei: The finite join N Ú N’ of two nuclei N and N’ is a 

plausible and meaningful operation, if there is any such operation on these objects at all. If the 

domain of spatial nuclei is not closed under such an operation, this domain must be assessed 

as seriously incomplete. An appropriate strategy to overcome this deficit is to move from the 

domain of spatial nuclei to the domain NUC(OX) of all nuclei that may be considered as a kind 

of completion of the set of spatial nuclei.  

 
21 With some more effort it can be shown that there exist many spatial nuclei N1, N2 in NUC(Oℝ)d such 
that N1 Ú N2 is non-spatial and different from  NS = IntCl. 
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For some spaces, however, NS is a spatial nucleus. A simple case is provided by polar spaces 

introduced by Rumfitt to deal with the Sorites paradox in the framework of classical Boolean 

logic (cf. Rumfitt 2015).22 

 
(6.9) Definition. Let X be a set and Ø ≠ P Í X be a set of distinguished elements to be 

interpreted as prototypes, paradigmatic cases, or poles. Assume that for all x Î X there is a 

non-empty set m(x) Í P of poles p. For all x Î X and all pÎ P the sets m(x) are assumed to 

satisfy two requirements: (i) Ø ≠ m(x) Í P, and (ii) m(p) = {p}. These assumptions define a 

map X¾m¾>2P in the obvious way. The map m is called a pole distribution and denoted by 

(X, m, P).¨ 

 
(6.10) Proposition. A pole distribution (X, m, P) defines a topology on X (cf. Rumfitt (2015), 

Mormann (2020)): For A Í X define the interior operator Int:PX®PX of the pole topology by 

x Î Int(A) Û (x Î A and m(x) Í A). Then the operator Int is a Kuratowski interior kernel 

operator and defines a topology OX. More precisely, (X, OX) turns out to be a (submaximal) 

Alexandroff space, i.e., arbitrary (not only finite) intersections of open sets are open.¨ 

 
 More precisely, the topology of a polar spaces defined by (X, m, P) is calculated as follows:   

 
(6.11) Proposition (Topology of polar spaces). Let the pole distribution (X, m, P) define the 

polar space (X, OX). Then for p Î P and x Î X - P the following holds: 

 
         Int({p}) = {p},       Int({x}) = Ø,      Cl({x}) = {x},     Cl({p}) = {x; p Î m(x)}                

         IntCl{p) = {x; {p} = m(x)}, {x} È m(x) is the smallest open set that contains x. 

 
Proof. Just check the definitions. See Mormann (2022, Proposition 2.5).¨ 

 
22 Rumfitt’s polar spaces have been well known in topology. They may be characterized as submaximal 
Alexandroff spaces (cf. Bezhanishvili, Esakia, and Gabelaia (2004), Mormann (2022)). 
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From (6.11) one reads off that a polar space (X, OX) is a scattered TD-space, i.e., X contains 

no non-empty dense-in-itself subsets (cf. Steen and Seebach Jr. (1982, p. 33)). Hence, we may 

apply a famous theorem of Simmons in order to obtain that NUC(OX) is Boolean: 

 
(6.12) Theorem. (Simmons (1980), Picado and Pultr (2012)). Let (X, OX) be a scattered TD-

space. Then the map 𝒩:PX®NUC(OX) defined in (6.1) is a Boolean isomorphism, i.e., all 

nuclei N are spatial, i.e., N(D) = 𝒩(Y)(D) = Int(YC È D), for some Y Í X.¨ 

Clearly, by (6.11) a subset Y is dense in a polar space (X, m, P) iff P Í Y. Hence, polar spaces 

are scattered TD-spaces and we obtain:    

 
(6.13) Proposition. Let (X, m, P) define a polar space (X, OX), D Î OX. Then NUC(OX)d = 

{Y; P Í Y Í X} = 2X-P.  The bottom element Ø of 2X-P corresponds to the largest dense subset 

of (X, OX), namely X, and is related to the nucleus idOX by 𝒩(X)(D) = Int(XC È D) = D, and 

the top element 1 corresponds to the smallest dense subset of (X, OX), namely P Í X and is 

related to the Stalnaker nucleus NS by 𝒩(P)(D) = Int(X-P È D) = IntClInt(D).¨ 

 
In sum, for the special case of polar spaces (X, OX) the family of consistent nuclei N, 

(equivalently, the family of corresponding belief operators N°) related to Int has the structure 

of an atomic Boolean algebra. This entails, in particular, that for every nucleus N there exists 

a “complementary” nucleus N* such that N Ù N* = idOX and N Ú N* = IntCl.  

Moreover, propositions (6.9) and (6.7) show that the logics of belief (encapsulated in the 

complete Heyting algebras NUC(OX)d of polar spaces and “ordinary” topological spaces like 

Euclidean spaces, respectively, strongly differ: For polar spaces the operator IntCl is spatial, 

i.e., induced by the subspace P Í X, while for Euclidean spaces IntCl is not spatial. 

As already explained in the previous section, NS° is the riskiest choice for a belief operator that 

is compatible with Int and still consistent. Certainly, NS° is an elegant choice for a belief 
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operator that is available for all kinds of topological spaces whatsoever. Nevertheless, if one 

subscribes to a cautionary principle there is no reason to stick to the riskiest operator just for 

aesthetic reasons. For dense-in-themselves topological spaces there is a less risky alternative 

to NS, namely, the perfect belief operator defined by the nucleus NPF. This may be explained 

as follows. 

The nucleus NPF is a general operator in the sense that it relies on general features of the concept 

of topology and not on specific features of the underlying topological spaces. First recall that 

a subset A Í X is dense-in-itself in (X, OX) iff A has no isolated points (cf. (3.5) (iv)). Since 

the arbitrary union of dense-in-themselves subsets of X is dense-in-itself, the closure Cl(A) of 

a dense-in-itself set A is dense-in-itself, and the empty set Ø is clearly dense-in-itself 

(Kuratowski (1966)), for all closed subsets A Í X the largest dense-in-itself subset PF(A) of 

A is a well-defined concept. Clearly, for AÎCX the set PF(A) is a closed and dense-it-itself 

set, i.e., a perfect set (cf. Steen/Seebach Jr. (1982, p.6)). Hence, PF(A) is usually called the 

perfect kernel of A (cf. Zarycki (1930), Oxtoby (1976)).  

 
 (6.14) Proposition. Let (X, OX) be a topological space, A, D Î CX. The perfect kernel PF(A) 

of A has the following properties: 

(i)  PF(A) Í A and PF(A) is closed. 

(ii) If A Í D then PF(A) Í PF(D).   (Monotony) 

(iii) PF(PF(A)) = PF(A).     (Idempotence) 

(iv)  PF(A È D) = PF(A) È PF(D).   (Distributivity with respect to È)23. 

 
23 Zarycki (1930) erroneously claimed that PF is distributive with respect to È for all subsets A, D of 
X, not only for closed ones. This error was observed by Vaidyanathaswatasmy (1947) and Oxtoby 
(1976). Oxtoby proved a more complex formula for all subsets A, D that yields (6.12)(iv) for closed 
sets. For our purposes it is sufficient that distributivity ((6.14)(iv)) holds for closed subsets of X. 
Simmons (1978, 1982) stated (without explicit proof) that (6.14) (iv) holds, i.e., that the operation PF 
is distributive with respect to  È for closed sets. He then went on to show that PF(AC)C is a nucleus. 
Actually, Oxtoby proved his more general results on PF only for T1-spaces. A closer inspection of his 
proof, however, reveals that for the distributivity of PF his proof works for all topological spaces. 
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Proof. The proofs of (i) – (iii) are obvious. A detailed proof of (iv) can be found in Oxtoby 

(1976).¨ 

If the space (X, OX) is dense-in-itself one has PF(X) = X. Then we can define a dense “perfect 

belief operator” NPF as follows: 

 
(6.15) Proposition. Let (X, OX) be topological space that is dense-in-itself, A Î OX. Define 

the operator NPF: OX®OX by NPF(A) := PF(AC)C. Then NPF is a dense nucleus. NPF is called 

the perfect nucleus of (X, OX). 

 
Proof. We have to prove that NPF satisfies the conditions (4.1)(i) – (iii) that define a nucleus.  

(4.1) (i):  Since the closure of a dense-in-itself subset of AC is dense-in-itself and AC is closed 

one clearly has that PF(AC) Í AC. Hence A = ACC Í PF(AC)C.  

By definition of PF the proofs for (ii) and (iii) are obvious. A detailed proof of a stronger and 

more general result than (6.14)(iv) can be found in Oxtoby (1976, section 2). Thus, NPF is a 

nucleus.  

If X is dense-in-itself one has X = PF(X) and NPF is a dense nucleus since NPF(Ø) = PF(ØC)C = 

(PF(X))C = XC = Ø.¨ 

 
As explained before, the nucleus NPF defines in a canonical way a belief operator denoted by 

NPF°. By (4.8) we obtain: 

 
(6.16) Theorem. Let (X, OX) be a dense-in-itself topological space. Then the pair (Int, NPF°) 

of the interior operator Int and the perfect belief operator NPF° satisfies the rules and axioms of 

a weak KB system.¨ 
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Examples of dense-in-themselves spaces abound. For instance, Euclidean spaces and other 

Polish spaces24 are dense-in-themselves. Hence, (6.14) has wide applications. By Isbell’s 

theorem the perfect nucleus NPF is smaller than or equal to NS, i.e., for all A Î OX one has 

NPF(A) Í NS(A). For some spaces it can be shown that NPF is indeed strictly smaller than NS. 

Ignoring the mild restriction that the perfect nucleus NPF is only defined for dense-in-itself 

spaces (X, OX) we may say that NPF° is another “general” belief operator (besides NS°) in the 

sense that its definition does not depend on the specifics of the topological structure of (X, OX) 

as is the case, for instance, for spatial operators N(Y) defined by dense subsets Y Í X. In 

Forming beliefs on the basis of the perfect belief operator NPF° is, with respect to generality, 

on an equal footing as NS°.   

It is natural to ask, whether NPF° and NS° are really different. The real line (ℝ, Oℝ) shows that 

NPF° is different from NS°: Consider the Cantor dust D (cf. (3.6)(iv)). As is well known, D is a 

perfect set and nowhere dense in ℝ, i.e., IntCl(D) = Int(D) = Ø. Hence DC is open and one 

calculates for the belief operator NS° and NPF°, respectively: 

 
                                    NS°(DC) = IntClInt(DC) = IntCl(DC) =   ℝ.   
(6.17) 
                                    NPF°(DC) = PF(DCC)C = PF(D)C   =   DC. 
 
Hence, on (ℝ, Oℝ) the perfect belief operator NPF° is strictly smaller than Stalnaker’s NS°.¨ 
 
 
The Heyting algebra NUC(OX) defined by the underlying topological structure (X, OX) brings 

to the fore the doxastic plurality of weak KB-logic, i.e., the fact that there are many belief 

operators N° related to one given knowledge operator Int.    

Concentrating on Stalnaker’s NS° amounts to a considerable simplification. Following 

Stalnaker (2006), Baltag et al. (2019) rightly emphasize as an important feature of Stalnaker’s 

 
24 A Polish space is a separable topological space that is homeomorphic to a complete metric space (cf. Jech (2002, 
Definition (4.12), p. 44)).  
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KB system that in KB the only admissible belief operator NS° can be defined in terms of the 

knowledge operator, namely, as NS°= IntClInt.  

According to the authors,  

this proposition constitutes one of the most important features of Stalnaker’s 
combined system KB. This equivalence allows us to have a combined logic of 
knowledge and belief in which the only modality is K and the belief modality B is 
defined in terms of the former. We therefore obtain ...a more economical 
formulation of the combined belief-knowledge logic... (Baltag et al. (2019, p.221)) 
 

“Economy” is certainly an important feature of logical systems, but one may ask whether such 

an “economy” for a logic of knowledge and belief is actually desirable.  It may be appropriate 

also to take into account that for the topological knowledge operator Int of an arbitrary 

topological space a numerous family of belief operators exists that are compatible with Int in 

the sense that all pairs (Int, N°) satisfy the axioms of weak KB logic. Acknowledging this fact 

adds a plausible dosage of epistemological pluralism and simultaneously maintain the “spirit” 

of Stalnaker’s logic of knowledge and belief. It relates the operator of knowledge Int and the 

operators of belief N° in a more flexible manner than is done traditionally, when either N° is 

uniquely defined by Int, or Int is uniquely defined by N°.   

We already have ensured that there exist many belief operators that satisfy the formal 

conditions that can reasonably be expected to hold for good belief operator. It remains to show 

that these operators are also philosophically plausible. In the following I’d like to argue that 

the class of novel belief operators introduced in this paper inherit their plausibility more or less 

directly from the philosophical plausibility of Stalnaker’s operator classical belief operator NS° 

= ClInt that conceives (a strong version of) believing  j as not knowing that one does not know 

that j (Stalnaker (2006, p. 195), Baltag et al. (2019, p. 220)). For extremally disconnected 

spaces (X, OX) this definition of full (or strong) belief – “Belief as possibility of knowledge” 

- is rendered formally as 

 (6.18)            Bj := ¬K¬Kj      or, in topological terminology     N° := iClInt 
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As has been discussed in full detail this definition of belief has quite nice properties, namely, 

the pair (Int, ClInt) defines a topological model of (full) KB system iff the underlying space 

(X, OX) is extremally disconnected. For the more comprehensive class of all topological 

spaces, however, ClInt scores rather badly. As is easily calculated, already on (ℝ,	Oℝ) the 

operator ClInt does not satisfy the axioms of (PI) of positive introspection, the axiom (CB) of 

consistency, nor the Kripke axiom of normality (cf. (2.6)(i)).25 In other words, for general 

topological spaces (X, OX), ClInt is certainly not an acceptable belief operator.  

There is a way out of this impasse. If one switches from ClInt to IntClInt the new operator 

preserves almost all plausible features of ClInt that qualified it as a nice normal belief operator. 

More precisely, IntClInt is a weak KB operator for all topological spaces, i.e., IntClInt satisfies 

all axioms of KB logic except the axiom (NI) of negative introspection. In other words, (Int, 

IntClInt) defines a weak KB system, but fails to be a (full) KB system, if (X, OX) is not an 

extremally disconnected space. Thus, IntClInt may be considered as a well-behaved 

generalization of Stalnaker’s original operator:  

(i)  IntClInt is conservative in the sense that it does not change anything for extremally 

disconnected spaces (X, OX), and  

(ii)  IntClInt minimally modifies the original operator ClInt where it is necessary.  

Thus, the new general definition of belief IntClInt (“knowledge of the possibility of 

knowledge”) faithfully preserves the spirit of Stalnaker’s account of belief and renders it 

applicable to a much larger domain of topological universes than just extremally disconnected 

ones. Thus, everybody who considers Stalnaker’s arguments that (full justified) belief ClInt as 

“conceptual possibility of knowledge” is philosophically convincing for belief in the case of 

 
25 Already Stalnaker (2006) pointed out that on general topological spaces the operator ClInt does not define a 
(reasonable) belief operator, since it is not a normal operator, i.e., does not satisfy (2.6)(i). (cf. Stalnaker (2006, 
p. 195)). Elementary instances for this fact are already obtained by the Euclidean line (ℝ,	Oℝ): For A = (0, 1) and 
D = (1, 2) one calculates ClInt(A Ç D) = Ø and ClInt(A) Ç ClInt(D) = {1}. This contradicts the normality of 
ClInt. 
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extremally disconnected spaces, should accept IntClInt (“knowledge of possibility of 

knowledge”) as a good formal explication of this concept in the more general case of arbitrary 

topological spaces.  

Conceiving IntClInt as a good formal explication for belief also renders philosophically 

respectable other belief operators based on dense nuclei N Î NUC(OX)d as well. An essential 

ingredient for the proof of this thesis is Isbell’s density theorem. Due to this theorem, one has 

for all nucleus-based dense belief operators N° = iNInt 

(6.19)                                              Int(A) Í iNInt(A) Í IntClInt(A).  

Informally expressed this chain of inequalities asserts: a belief operator defined by any good 

(i.e., normal, consistent, …) nucleus-based belief operator iNInt is entailed by knowledge Int 

and is at least as strong as (and therefore entails) belief as defined by knowledge of possibility 

of knowledge IntClInt.  

Nucleus-based belief operators iNInt take into account the specifics of the topological structure 

of the universes of possible worlds to strengthen the requirement of IntClInt. Topologically, 

the nucleus-based belief operators iNInt Int may be understood as approximations of Int in the 

sense that for all A Î PX Int(A) Í iNInt(A) and iNInt(A) is extensionally close to Int(A), i.e., 

their set-theoretical difference iNInt(A) Ç Int(A)C is nowhere dense in (X, OX).  

The simplest way of constructing an approximative knowledge operator in this sense is to 

ignore a small set of anomalies or exceptions that are not contained in Int(A) when a claim 

justified belief of approximative knowledge is made. Formally, this procedure is described by 

replacing the knowledge operator Int (applied to A) by the belief operator 𝒩(Y)°(A) = Int(YC 

È Int(A)) for some appropriate set Y. It is important to note that the set YC of anomalies or 

exceptions has to be “small” in some appropriate sense. Not just any approximation of 

knowledge by YC is a reasonable approximation. The point is that YC has to be assumed as 

“small” or “negligeable” in some reasonable sense. Otherwise 𝒩(Y)° would not be dense A, 
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i.d., the approximative belief based on Y would not be consistent. More precisely, one has to 

assume that Int(YC) = Ø, i.e., that Y is dense in (X, OX). 

Accepting IntClInt as the “correct” generalization of the operator Clint originally defined for 

extremally disconnected spaces entails that all weak belief operators (i.e., belief operators that 

do not necessarily satisfy (NI) on general topological universes (X, OX)) may be considered 

as generalizations of the prototypical operator ClInt defined for extremally disconnected spaces 

and its logic S4.2. Thus, we may say that the nucleus-based approach of belief preserves the 

spirit of Stalnaker’s approach, and, simultaneously, generalizes it.  

The simplest way of asserting an approximative knowledge claim is by ignoring some small 

set of anomalies that are considered as irrelevant. Formally this is described by belief operators 

that are defined by spatial nuclei 𝒩(Y) Î NUC(OX)d, with Y a dense subspace of X. But 

depending on the topological structure, many other (non-spatial) methods of defining dense 

nuclei exist. As we have shown, already the formation of the finite supremum N Ú N’ of spatial 

nuclei N and N’ may lead us beyond the realm of spatial nuclei. Thus, admitting only spatial 

nuclei for the definition of belief operators is rather inconvenient. One should give up the 

restriction to spatial nuclei and their belief operators and accept the larger domain NUC(OX)d 

of belief operators that can be defined by dense nuclei in general. The move from spatial nuclei 

to general nuclei is a kind of completion. This is a procedure that takes place quite often in 

mathematics. An example in elementary algebra is the extension of the field of rational 

numbers	ℚ	to	the	field	of	complex	numbers	ℂ	in	order	to	deal	in	a	more	comfortable	way	

with	the	problems	concerning	the	solution	of	polynomial equations. 	 

In some sense, then, the nucleus-based theory of doxastic operators renders the concept of 

belief an open concept, since for many spaces the domain of nuclei NUC(OX)d is far from 

being completely understood up to now. 
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7. NUCLEI AND THE DERIVED SET OPERATOR. In this penultimate section we resume a 

topic that was mentioned already briefly in the introduction of this paper, namely, that (at least 

for certain topological universes of possible worlds) the derived set operator d of the 

topological structure may be used as a formal model of belief (cf. Steinsvold (2006), Parikh et 

al. (2007)). More precisely, in this section we want to show that the theory of topological nuclei 

not only sheds new light on a Stalnaker’s account of knowledge and belief but also on the 

account of belief that is based on the notion of the derived set operator d. As it turns out both 

accounts of topological epistemology have interesting relations with the theory of nuclei.  Let 

us start with the very definition of the derived set operator in topology:  

 
(7.1) Definition (Steen and Seebach Jr.  (1978, p. 5), Parikh et al. (2007, 11.2, p. 332/333)). 

Let (X, OX) be a topological space. A point x Î X is called an accumulation (or limit) point of 

a set A Í X iff for each open neighborhood U of x we have (U – {x}) Ç A ≠ Ø. The set of all 

accumulation points of A is denoted by d(A). The set d(A) is called the derived set of A and d 

is called the derived set operator.¨ 

 
As is well known, for each A Í X one has Cl(A) = A È d(A), i.e., A is closed iff d(A) Í A. In 

this section it is assumed throughout that (X, OX) is a TD-space (cf. (3.3)). For this class of 

spaces one can prove:  

 
(7.2) Proposition. If (X, OX) is a TD-space and S Î PX, then d(d(S)) Í d(S), i.e., d(S) is closed 

(cf. Bezhanishvili and van der Hoek (2014, p. 373), van Benthem and Bezhanishvili (2007, p. 

233, Definition 5.13)). 

 
Proof. First, we should note that for a TD-space for every open neighborhood U’(x) of x there 

is a possibly smaller open neighborhood of x such that U(x) – {x}is also open. By TD we know 

that for any x there is an open neighborhood V(x) such that V(x) – {x} is open. Hence, if U’(x) 
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is any open neighborhood, then U(x) := U’(x) Ç V(x) is an open neighborhood of x such that 

U(x) – {x} is open. Now we want to show that d(S) is closed, i.e., x Î d(S) entails x Î d(d(S)). 

By definition x Î d(d(S)) iff, for all open neighborhoods U(x), we have U(x) Ç d(S) – {x} ≠ 

Ø. We may assume that U(x) – {x} is open. For all y Î d(S) one has that for all open 

neighborhood V(y) of y one has that V(y) Ç S – {y} ≠ Ø. Clearly (U(x) – {x}) Ç V(y) is an 

open neighborhood of y. Hence, (U(x) – {x}) Ç V(y) Ç S – {y} ≠ Ø. Thus, U(x) is an open 

neighborhood of x such that U(x) Ç S – {x} ≠ Ø, i.e., x is an accumulation point of S. That 

means x Î d(S).¨ 

 
Now let t(A) := d(AC)C be the dual operator of d, also called the co-derived operator of (X, 

OX). By (7.2), for all A Í X the set t(A) is open, since (X, OX) is TD. We are going to show 

that t (restricted to OX) is “almost” a nucleus: 

 
(7.3) Proposition. Let (X, OX) be a dense-in-itself TD-space. The co-derived set operator 

t:OX®OX has the following properties for all A, B Î OX. 

(i)  A Í  t(A). 

(ii)  If A Í B then t(A) Í t(B).          

(iii)       t(A Ç B) = t(A) Ç t (B).    

(iv)        t(A) Í t(t(A)). 

(v)  t(Ø) = Ø.     

 Proof. Check the definitions.¨ 

Informally stated, the co-derived operator t is “almost” a nucleus. The experts call such 

operators “pre-nuclei” (cf. Simmons (2010)). The only requirement that is missing for t being 

a nucleus is the inequality t(t(A)) Í (t(A). As is easily checked, in general this shortcoming 

cannot be eliminated. This can be seen as follows. To find an open A such that t(t(A)) ≠ t(A) 
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is clearly equivalent to find a closed set S such that d(d(S)) ≠ d(S). A simple example of such 

a set is given by the following example (cf. Parikh et al. (2007, Example (6.21), p. 332)):  

 
(7. 4) Example. Let S be the subset of real numbers ℝ defined by 

                                 S := {1/n + 1/(n + 1 + m)} È {1/n} È {0}, for n , m ≥ 1.  

The set S is obviously closed. Its set d(S) of accumulation points is {1/n} È {0} and the set of 

accumulation points d(d(S)) of d(S) is d(d(S)) = {0}. Hence d(d(S)) ≠ d(S) and equivalently 

t(t(SC )) ≠ t(SC).¨ 

 
In order to ensure that the co-derivative t is not only a pre-nucleus but even an honest nucleus 

one has to restrict the class of topological spaces considerably. Instead of dense-in-themselves 

TD-spaces one has to specialize to DSO-spaces: 

 
(7.5) Definition (Parikh et al. (2007, p. 334)). A topological space (X, OX) is called a DSO-

space26 if it is a dense-in-itself TD-space such that d(A) is an open set for each A Í X. 

A simple example of a DSO-space is provided by the set of natural numbers ℕ endowed with 

the finite-cofinite topology (ℕ, Oℕ). In this topology a subset U of ℕ is open in (ℕ, Oℕ) iff its 

complement is finite or U = Ø.¨  

 
For DSO-spaces we can prove: 

 
(7.6) Theorem. The co-derived operator t of a DSO space (X, OX)  defines a dense nucleus.  

 
Proof. By definition of DSO-spaces, for each A Í X the co-derivative d(A) is an open and 

closed subset of X. Since X is dense-in-it-self, d(A) is dense-in-itself as well. This means that 

d(A), as also being a closed set, is even a perfect set. Hence, by definition of being perfect 

 
26 DSO is an acronym for “Derived Sets are Open.“ 



 48 

d(d(A)) = d(A), i.e., for all i one has di(A) = d(A). Trivially, the analogous equality holds for 

the co-derivative t, i.e., ti(A) = t(A). Thus, for DSO-spaces the pre-nucleus t is even an honest 

nucleus.¨ 

 
It should be emphasized that we have already met this nucleus – it is just the perfect nucleus 

NPF defined in (6.15) by NPF(A):= PF(AC)C, PF(AC) defined as the largest perfect (= closed and 

dense-in-itself) subset of AC.  Since d = d2, d(AC) is perfect, and therefore a subset of PF(AC) 

as the largest perfect subset of AC. On the other hand, PF(AC) = d(PF(AC) is clearly a subset of 

d(A) = d(d(A)). Thus, PF(AC) = d(AC) and NPF(A) = t(A) = d(AC)C.  

This relation between t and BPF that exists for DSO-spaces can be generalized to an analogous 

relation for operators defined for the larger class of dense-in-itself TD-spaces. One has to 

observe that for the series t, t2, t3 , … of pre-nuclei ti a supremum SUP(ti) can be defined. This 

supremum turns out to be a nucleus that corresponds to the perfect nucleus BPF (cf. (6.15)). The 

precise construction of SUP(ti) requires a more comprehensive investigation of the lattice of 

pre-nuclei of a topological space (X, OX). Extensive investigations in this area have been 

carried out by Simmons and others (cf. Simmons (1980)). Among other things it has been 

shown that this lattice of pre-nuclei is, analogously to the lattice NUC(OX) of nuclei, a 

complete Heyting algebra. We abstain from going into the details, since this would require the 

introduction of a considerable formal apparatus. Rather, we hope that already the special case 

of DSO-spaces may suffice to persuade the reader that the theory of nuclei is an appropriate 

general framework for doxastic operators that comprises not only Stalnaker’s combined logic 

of knowledge and belief but also systems of doxastic operators based on the derived and the 

co-derived set operator, respectively (cf. Parikh et al. (2007)). 
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8. CONCLUDING REMARKS. This paper has two main results: First, a topological 

completeness theorem for a weak version of Stalnaker’s combined logic KB of knowledge and 

belief has been proved. Second, it has been shown that for weak KB-logic every knowledge 

operator Int is compatible with many different belief operators N° defined by dense nuclei N 

Î NUC(OX)d. Thereby, for any given knowledge operator Int, a wealth of admissible belief 

operators N° exists such that all pairs (Int, N°) satisfy all axioms and rules of weak KB-logic.  

This plurality of belief operators is an argument for doxastic tolerance: Different epistemic 

agents may rely on the same knowledge operator Int but subscribe to different belief operators 

Ni° that all are compatible with Int in the sense that all pairs (Int, Ni°) satisfy the axioms of a 

weak KB-logic.  

By subscribing to the axiom of strong negative introspection (NI), this doxastic plurality of 

different coexisting belief operators compatible with one knowledge operator is eliminated in 

favor of one “dogmatically” imposed belief operator NS°.  This means, more precisely, that the 

intuitionistic Heyting algebra of belief operators encapsulated in NUC(OX)d boils down to the 

trivial Heyting algebra of two elements {Id, NS}. 

The existence of a unique riskiest consistent belief operator NS° for Int is a consequence of 

Isbell’s remarkable density theorem. Mathematicians consider Isbell’s theorem as a important 

mathematical result of “pointfree” topology. They have not been interested in any 

“philosophical” interpretation of it. Given the topological interpretation of Stalnaker’s KB-

logic by Baltag and others and the observation that Stalnaker’s belief operator NS° is related to 

the regular nucleus IntCl that occurs in Isbell’s theorem has the unexpected bonus that one can 

directly apply - without any extra conceptual effort - Isbell’s theorem to obtain a non-trivial 

epistemological result, namely, the determination of the structure of set of dense belief 

operators as a complete Heyting algebra. Such short-circuits between mathematics and 

epistemology are rare. Usually greater philosophical efforts have to be invested to obtain 
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interesting epistemological results. Here, almost everything has been done: On the 

mathematical side, Isbell’s theorem is available, on the epistemological side, the topological 

interpretation of knowledge is a well-established theory.  

Finally, a short remark on the relation between the strong (original) and the weak version of 

Stalnaker’s logic KB of knowledge and belief. Formally, this relation can be described as 

follows: 

The original (strong) version of KB (requiring the validity of (NI)) characterizes the relation 

between knowledge and belief by the trivial Heyting algebra ℤ2 = <Int, IntClInt> corresponding 

to the two extremal belief operators Int and IntClInt. In contrast, weak KB-logic conceptualizes 

the relation between knowledge and belief by the elements of a much larger complete Heyting 

algebra NUC(OX)d with bottom element Int and top element IntClInt. The structure of this 

algebra depends on the structure of the underlying topological space (X, OX). Depending on 

(X, OX), the structure of NUC(OX)d may considerably vary: For polar spaces (X, m, P), the 

Heyting algebra NUC(OX)d of nuclei has the simple structure of an atomic Boolean algebra 

2|P|. In contrast, for the Euclidean line (ℝ, Oℝ), the structure of NUC(Oℝ)d is, as far as I know, 

only partially known up to now and clearly not an atomic Boolean algebra. 

From an epistemological point of view, the nucleus-based approach of this paper may be 

characterized as a “knowledge first” approach, since the belief-defining structure NUC(OX)d 

may be considered as “derived” from the underlying topological structure (X, OX) defined by 

the interior operator Int. 

Thus, an important task for a comprehensive topological logic of knowledge and belief is the 

investigation of how the topological spaces (X, OX) which underly the topo-models of our 

epistemological logic determine the structure of the algebras NUC(OX)d of dense nuclei N 

which define the belief operators N° related to the knowledge operator Int.   
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The results of this paper may be considered as some modest steps on the path towards a 

realization of this task. 
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