SIMILARITY AND CONTINUOUS QUALITY DISTRIBUTIONS

In the philosophy of the analytical tradition, set theory and formal logic are
familiar formal tools. I think there is no deep reason why the philosopher’s tool
kit should be restricted to just these theories. It might well be the case—to gener-
alize 2 dictum of Suppes concerning philosophy of science—that the appropriate
formal device for doing philosophy is mathematics in general; it may be set the-
ory, algebra, topology, or any other realm of mathematics. In this paper I want to
employ elementary topological considerations to shed new light on the intricate
problem of the relation of qualities and similarity.! Thereby I want to make plau-
sible the general thesis that topology might be a useful device for matters epis-
termological.

1. Introduction

The idea of defining qualities by means of a similarity relation between par-
ticulars lies at the heart of Carnap’s quasianalysis. Goodman launched an appar-
ently devastating attack against Carnap’s approach.? In this paper I want to show
that the sweeping statement that any attempt to define qualities via similarity is
doomed to fail has been pronounced too hastily. For this purpose I wilt rely on
concepts and ideas borrowed from topology.

The outline of the paper is as follows: in section 2 we’ll briefly recall the

basic definitions of topology necessary for what follows. In section 3 we’ll show
that the relations between similarity and qualities may be conceived of as maps
(to be called quality distributions) between certain sets. In section 4 these scts are
endowed with natural topologies. This enables us to drastically reduce the appar-

- ent redundance of possible mapping relations between similarity relations and
qualities. Sometimes we even achieve uniqueness, This amounts to what may be
called a topological definition of qualities via similarity.?

2. Closure operators and continuity

To fix notation and terminology we recall the definitions of the topological
concepts we will need in the following.*
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(2.1). Definition. Let X be a set, P(X) its power set. A topological closure
operator on X is an operator cl: P(X) — P(X) with the following properties
(Y.Y' c X):

(CLD Yccel(Y) (Reflexivity)
(CL2) cl(cl(Y)) = cKY) {Transitivity)
(CL3) If ¥ ¢ Y' then cl(Y) € cKY") (Monotony)

(CL4) (YU Y= cl(¥Y)ucl(Y)

A set Y & X is called closed (with respect to ¢f) iff it is invariant with respect to
cl, ie., iff cl(Y) = Y. A set Y X is called open (with respect to ¢/} iff it is the
set theoretical complement of a closed set.’

Topologizing a set X allows us to classify the subsets of X in a variety of
ways. We may distinguish between “natural” and “non-natural” ones. The former
are topologically well-behaved or “nice” sets, while the latter are “topologically
wild” subsets of X.5 However, the definition of topological structures and clo-
sure operators on a set X can hardly be considered as a goal in itself. Their raison
d’étre is that they allow a precise definition of the concept of continuous maps.
Among the various equivalent definitions of continuity we choose the following:

(2.2) Definition. Let X and ¥ be topological spaces. A map f: X— Y is
continuous if and only if the induced map f~ 1. P(Y) - P(X) maps closed sub-
sets of ¥ onto closed subsets of X.

It is the concept of continuity that will be crucial for the approach to be de-
veloped in this paper. The following lemma is well-known:

(2.3) Lemma. Let X,Y, and Z be topological spaces and f: X—VY, g: Y=Z
continuous maps. Then the concatenation gof: X—Z is continuous.

3. Qualities and similarity

In this section I want to show how the topology may be used to shed new
light on the intricate relation between the concepts of similarity and qualities. As
a point of departure (and as a target) I take Goodman’s negative claim that
“[Slimilarity between particulars does not suffice to define qualities.””” The ar-
gument Goodman is attacking here runs as follows: at first sight one might
think that several particulars all similar to each other, have to share some com-
mon quality or other. If this were the case qualities could be identified with the
most comprehensive classes of particulars which are all similar to each other.
The following example shows that this argument is not sound:

Suppose ... we have three discs, the first one half red and half blue, the second
one half blue and half yellow, and the third one half yellow and half red:

rb by yr
1 2 3
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Each two of the three discs have a color in common, but there is no color com-
mon to all of them. Dyadic likeness between particulars will not serve to define
those classes of particulars that have a common quality throughout.

As far as it goes this argument is correct. I do not think, however, that it suf-
fices to dismiss once and for all the possibility that there might be a kind of
defining relation between likeness and qualities.

To argue against Goodman’s negative assessment, first we have to intro-
duce some formal machinery. We assume throughout that the set § of particulars
we are dealing with is finite. Hence § may be taken to be the set of natural
numbers {1, 2, ..., n}. A similarity relation is a reflexive and symmetric, but
not necessarily transitive, relation ~ < § x $. Then a similarity structure, de-
noted by (8,~), is a set § endowed with a similarity relation ~. A similarity
structure (S,~) can be conveniently represented by a (numbered} graph such that
two different elements of § form an edge iff they are similar. In this way, Good-
man’s example discussed above corresponds to the following triangte:

2. 3.

In order to topologize the problem of how similarity and qualities are re-
lated, I intend to conceive the attribution of qualities to particulars, as a map
whose domain is the set of particulars and whose codomain is a set of sets of
qualities. Of course, not just any map will do. The following definition intends
to capture what may be considered as a minimal requirement:

(3.2) Definition. Let (S,~) be a similarity structure, and Q be a set whose
elements are to be interpreted as qualities. A quality distribution is a map
F: § = P(Q) that satisfies the requirement s~s' < f(5) f(sN 2 D.

(3.2) renders Goodman’s informal requirement that “a relation of likeness
obtains between two particulars if and only if they share at least one among cer-
tain qualities” a structural constraint on the map f. It can be cast in an even
more convenient form if we observe that the set P(Q) is a (rather special) simi-
larity structure jtself. Define a similarity relation on P(Q) in the following way:

the empty set is similar only to itself, two non-empty sets P, P' are similar iff

they have a non-empty intersection, i.e., f(s) N f(s") # @.

(3.3) Corollary. Let (S,~) be a similarity structure, and Q be a set of quali-
ties. A quality distribution in the sense of (3.2) is a structure-preserving map
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F: 8 = P(Q) between similarity structures, i.e., for all 5,5’ .S we have s~5' <
Js)»~F(s").

If we could define qualities by similarity alone this would mean that, given
the similarity structure (S,~), there is only one structure-preserving map
F: 8§~ P(Q) in the sense of (3.3). As Goodman’s bicolored disks show, this is
not the case. For one and the same similarity structure (5,~) there might exist
several quality distributions. Does this mean, as Goodman wants to make us be-
lieve, that there is no general relation between similarity and qualities? I don’t
think so. It might well be the case that among the different quality distributions
that fit a given similarity structure we might be able to establish a ranking ac-
cording to which some distributions are better than others. This is the line of ar-
gument I want to pursué next. For this task we need the following defini-
tions that can be traced as far back as 1923~—to Carnap’s first account of quasi-
analysis.

(3.4} Definition. Let (5,~) be a similarity structure. A subset T of §
is called a similarity circle if and only if it satisfies the following two condi-
tions:

{1 for all x,y (x,ye T = x~y)
(i}  for all x (x¢ T = Jy(ye T and x and y are not similar)).

The set of sirﬁilarity circles of (8,~) is denoted by SC(S).

A quality distribution all whose qualities are similarity circles is defined as
follows:

(3.5) Definition and lemma. Let (S,~) be a similarity structure, and SC(S)
its set of similarity circles. Define fyc: § - P(SC(S)) by fsc(s)= {T: se T}.
Then f is a quality distribution in the sense of (3.2) all of whose qualities are
maximal. It is called the standard distribution.

'Goodman’s example of bicolored discs shows that there are quality distribu-
tions other than fge. His example can be generalized as follows:

(3.6) Goodman's example generalized. Let § be a similarity structure. Let
the set of qualities Qg defined by Q= {{x,y}: x,ye S and x~y, x#y}. Define
fo: 8 = P(Q% by felxy= {{x.p}: x~y, x#y}. Then f¢ is a quality distribu-
tion.

As is easily seen, for (5,~) as in (3.1), fg is just the bicolored discs quality
distribution, and the standard distribution fgc is the distribution that attributes
one and the same quality to each element of S. Thus, most similarity structures
(S,~) have at least two different quality distributions: on the one hand we have
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the standard distribution fgr, on the other hand we have the Goodmanian distri-
bution fg. For most similarity structures it’s quite easy to construct many other
quality distributions (some examples will be discussed in the following). If the
cardinality of S is large the number of quality distributions rapidly increases.
This fact, as we might reformulate Goodman's criticism against the feasibility of
defining qualities by similarity, undermines any reasonable and controlled rela-
tion between similarity and qualities. At [east this is the case if we stick to a set
theoretical account. It seems we don’t have any criteria for distinguishing “good”
from “bad” quality distributions. Here topology comes to the rescue. In the next
section we’ll embark on the task of distinguishing between “good”, i.e., continu-
ous quality distributions and “bad”, i.e., discontinuous ones. Moreover, we will
show ‘that in many cases exactly one good quality distribution can be selected
whose qualities are thereby definable by similarity alone.

4. Continuous quality distributions

Conceptualizing the attribution of qualities to particulars as a map f:
S — P(Q) is the essential presupposition for applying topological considera-
tions. The next thing we have to do is to look for appropriate topological struc-
tures on § and P(Q). Then we have to find out whether f is continuous or not
with respect to these topologies. In this way Goodman’s negative assessment of
the feasibility of defining similarity by qualities can be defused: we only admit
continuous quality distributions. This will yield the pleasing result that in many
cases there is only one continuous distribution fitting a given similarity struc-
ture. Hence we might consider the qualities of this distribution as being defined
by similarity alone. Goodman’s criticism against the feasibility of such an
approach is based on the fact that he allows for all kinds of quality distributions
and docs not impose any continuity constraint on them,

It is a rather amusing fact that the topological structures we use to get rid
of Goodmanian quality distributions can be traced back to Carnap, one of the
“good philesophers” Goodman targeted in the argument quoted above. The am-
munition for a topological counterattack against Goodman’s criticisms is not to
be found in the well-known acount of quasianalysis of the Aufbau, however, but

in the unpublished Quasizerlegung. There Carnap developes a more sophisticated

version of quality distribution than in the Aufbau. In contrast to the Aufbau ac-
count, in Quasizerlegung quality distributions have to satisfy two further con-
straints that turn out to be the souice for the topological concepts to be em-
ployed in the following. For their definitions we need some preparatory defini-
tions which are topological reformulations of concepts Carnap introduced some
70 years ago:
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(4.1) Definition. Let (S,~) be a similarity structure and x€ S. The similarity
neighborhood of x is the set co(x) of all elements similar to x: co(x) := {y: x~y}.
The relation between similarity circles and co is as follows: '

Te SC(S) <= T=M{co(x): xe T}.

Proof: (i). Let T be a similarity circle, and xe 7. Because all elements of T
are similar to each other we have T < co(x). Hence we get T < (M {co(x): xe T}.
On the other hand, let ye co(x) for all x& T. Then y is similar to all x of 7. Then
by definition of a similarity circle y already belongs to T.

(ii) Let T be a subset of S such that T =(\{co(x): x€ T}. Any ye T belongs
to co(x) for all xe T, hence it is similar to all elements of 7. Thus T satisfies the
condition (3.4)(i). Assume y-does not belong to 7. Then there is an x& T’ with
y& co(x), i.., y is not similar to x. That means, T satisfies (3.4)(ii). Hence T is
a similarity circle.

Already in Quasizerlegung Carnap used the concept of similarity neighbor-
hood to impose the following structural constraint on good quality distributions:

(4.2) co(x) =co(y) = f(x) = f(y)

In the following we shall use a slightly stronger condition than (4.2}. It has the
advantage of being a genuine topological condition, to wit, it is the condition of
continuity. Firsi we have to define topological structures on similarity struc-
tures:

(4.3) Definition and Lemma. Let ($,~) be a similarity structure. Define an
operator ¢l on S by cl(R).= {y: there is an xR with co(x) < col{y}}. ¢l is a topo-
logical closure operator on S.

The proof that ¢/ is a topological closure operator is well known and de-
pends on the fact that the inclusion of similarity neighborhoods renders § a par-
tial order. The topology defined by (4.3) is also called the order topology. Thus,
the similarity structures S and P(Q) present themselves with ready made topolog-
ical structures. From now on it is assumed throughout that the sets § and P(Q)
are endowed with these topological structures. With respect to these topologies
we get the following pleasing result:

(4.4) Proposition. Let (S,~) be a similarity structure. A quality distribution
f: 8 = P(Q) is continuous iff it preserves the order structures of S and P(Q),

i.e., iff co(x) < co(y) = f(x) < f(3).
The proof of (4.4) only depends on the fact that co renders S and P(Q) par-

tially ordered sets. It is a well-known fact that order-preserving maps are contin-
uous with respect to the order topologies. In this paper, continuity of quality dis-
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tributions f: § — P(Q) is always to be understood with respect to these topolo-
gies. According to the Topological Maxim to be formulated below, continuous
functions are to be preferred, ceteris paribus, to non-continuous ones. Since the
condition in (4.4) is only slightly stronger than Carnap’s original requirement
(4.2), by hindsight we might say that Carnap got it almost right back in 1923.10
Applying (4.4) we can now tackle the main task of this paper, namely to dis-
tinguish between “good” and “bad” quality distributions. The result is almost
optimal:

(4.5) Corollary. (i) For all similarity structures (S,~) the standard quality
distributions fge: S — P(SC(S)} are always continuous. (ii) The Goodmanian
quality distributions f5: — P(Q) are not always continuous.

Proof: (i) Let (§,~) be a similarity structare, and fg-: § — P(SC(S)) the
standard quality distribution. According to (4.4) we have to show that fgc is
order-preserving. Assume co(x) < co(y) and let T be a similarity circle with
Te fsc(x). By (4.1) we have T c co(x). Hence T < co(y), i.e., Te fsc(y).

(ii) It is sufficient to give an example of a similarity structure (§,~) whose
Goodmanian quality distribution f; is not continuous. The simplest example is
provided by Goodman’s original bicolored disc example. Morcover, as is easily
seen, Goodmanian quality distributions of most similarity structures are not con-
tinuous. The content of (4.5} may be formulated in the following slogan: The
SC-method of assigning quality distributions is reliably topologically well-
behaved, the G-method is not.

This does not exclude that some very Goodmanian quality distributions turn
out to be continuocus as is shown by the following example:

(4.6) ; N\

3 4 5 6

The quality distribution f; of (4.6) is continuous and actually different
from the standard distribution fgc. Thus we find that some similarity structures
have essentially different continuous quality distributions. For them, the crite-
rion of continuity does not suffice to reach unigueness. (4.5} is not to be inter-
preted as the claim that the SC-method yields always an optimal distribution,
however. The standard distributions fsc are less than optimal in certain respects
which are not covered by the distinction between continuous and discontinuous
distributions, Consider the following example:
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6

As is casily proved, the standard distribution fsc: § — P(SC(S)) needs exactly
four qualities, whose extensions are {1,2,4}, {2,4,5}, {2,3,5}, and {4,5,6}. Actu-
ally we can do without g={2,4,5}. This means, the distribution fsc: S —> PSC(SY)
can be reduced to a continuous quality distribution f*: § — P(SC(5)-{q}). Taking
the plausible stance that quality distributions should be as parsimonious as
possible, we are led to the conclusion that distributions of type fscare not
always the best ones. This deliberation we already found in Carnap’s paper of
1923. There he defined an economy condition that can be formulated in the fol-
fowing form:!!

(4.7) Definition. Let Q be a set of qualities, Q' < @ a subset. Q" induces a
continuous map r" P(Q) — P(Q" defined by r'(P):= @'n P. Let f: 5 — P(Q) be
a continuous quality distribution. A reduction of f to Q' is a quality distribution
§'+ 8 = P(Q" such that r*» f = f'. The map f is said to cover f'; f is said to be
irreducible if and only if there is no reduction of f to Q' except for Q = Q" If f'
is a reduction of the the standard distribution fs¢ it is said to be of the first kind.

The constraints of irreducibility and continuity exclude quite different kinds
of distributions:

(4.8) Lemma. (i) The Goodmanian quality distributions fg: § — P(Qg) are
irreducible but not always continuous. (ii) The standard quality distributions fsc:
$ — P(SC(S)) are continuous but not always irreducible.

Hence, in general, neither standard nor Goodmanian quality distributions
can be considered optimal. To get optimal quality distributions we have to invest
more work. Since the G-method is topologically unreliable, i.¢., does not gen-
erally produce continuous distributions, a natural strategy is to see whether the
SC-method of standard distributions might be improved in such a way that we
end up with a continuous and irreducible distribution, This indeed can be done.
Starting with the standard distribution fgc we can always obtain an irreducible
continuous distribution simply by removing superfluous qualities:

(4.9) Lemma. Let £ § = P(Q") be a quality distribution covered by a con-
tinuous quality distribution f: S — P(Q). Then f'is a continuous quality distri-
bution. In particular, quality distributions of the first kind are continuous.
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Proof: Let £ § — P(Q)' be a quality distribution covered by the continuous
distribution f: §— P(Q), i.e., f' = r'sf, r': P(Q) — P(Q" induced by the inclu-
sion Q' C ©. Obviously the map ' is continuous. Then f’ is continuous by (2.3).

However, the following problem remains. We cannot be sure that this pro-
cess of reduction leads to a uniquely determined irreducible continuous distribu-
tion. The following example shows that there are similarity structures that pos-
sess more than one continuous, irreducible quality distribution:

The standard distribution fg: S— P(SC(S)) can here be reduced to two es-
sentially different irreducible continuous distributions: either we may remove the
similarity circle g = {2,4,5}, or we may remove the similarity circle g’ = {4,5,7}.
We have no reason to prefer one of these distributions to the other. Thus, in
general we have to give up hope of reaching a unique optimal quality distribu-
tion. It may be the case, however, that there are unique, continuous and itre-
ducible quality distribution for similarity structures of a special kind. This is in-
deed the case. For similarity structures that are topologically not too complicated
unique irreducible continuous distributions with maximal qualities exist. Such a
theorem was proved by Brockhaus some 30 years ago (without any reference to
topology).!? Its content may be informally stated as follows: the standard quality
distribution fg- has a unique minimal reduction iff there is a subset SC(5,2) C
SC(S) which covers S, and all elements of SC(S,2) are extensionally generated
by at most two elements. The precise definition is as follows:

(4.10) Theorem. A similarity structure ($,~) has a unique continuous irre-
ducible quality distribution f: § — P{Q} of the first kind iff S can be covered by
a class SC(S,2) < SC(S) defined as follows:

§)) T, S5C(5,2) iff there are x;;, X;» &€ T; Such that co{x;)) M co(xp) =T;
g USCES2)=S.

The proof of (4.10) is somewhat lengthy, hence it is deferred to the ap-
pendix. To get a feeling for the condition involved in (4.10) let us make the fol-
lowing observations:
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(1) If (S,~) is a transitive similarity structure, i.e., a set endowed with an
equivalence relation, then its similarity circles T}, i.e., its equivalence classes,
are all generated by one x;. Hence the unigue irreducible continuous quality
distribution of (S,~) is the distribution that maps each element x of § to its
equivalence class [x] = {y: y~x].

(2) All examples of similarity structures dealt with so far by philosphers
satisfy the condition of (4.10). Hence their standard quality distributions have
unique irreducible reductions. In the counterexample of figure 5 one of the quali-
ties g or ¢’ belongs to any quality distribution. g and ¢’ have exactly three genera-
tors, g = co(2) N co(4) N co(5), ' = co(d) N co(5) N co(T). Hence the condition of
(4.10) does not apply to this similarity structure.

(4.8} gives the motivation for characterizing similarity structures according
to how many generators are needed for their necessary similarity circles:

(4.11) Definition. A similarity structure (S,~) is of the n-th order (n > 1) iff
S can be covered by a class SC(5,n) < SC(S) of similarity circles that are gener-
ated by at most n elements. This means the following:

) Te SC(S,n) iff there are x,,...,x,& T so that co(x;) M ... Nco(x,)=T.
(i) LUISC(S,n) =8S.

Now we are able to express succinctly the main result (4.10) of this section
as follows:

(4.12) Theorem. A similarity structure (S,~) has a unique continuous ir-
reducible quality distribution of the first kind if and only if it is of the first or
second order.

Let us take stock of what we have achieved so far: according to (4.10), for
similarity stractures of the first and second order qualities can be defined by simi-
larity alone. At least, this holds if we are prepared to impose topological con-
straints on the distributions admitted. These topological constraints are quite
natural ones: they flow directly from the topological structures similarity struc-
tures are endowed with by nature, This means, these structures are not invented
ad hoc, they are already there as soon as we talk about similarity. Hence, if one
is not blind to the topological aspects of reality for a large class of similarity
structures, there is one and only one optimal system of corresponding qualities.
That means, contra Goodman, that in this case qualities can be defined by simi-
larity. Thus, at least for similarity structures of the first or second order, Cat-
nap’s quasianalytical approach is completely vindicated.

The general format of the problem we have dealt with is the following: Let
X and Y be sets. The task is to classify, somehow or other, maps f: X =Y.
More precisely, we’d fike to keep the “good” 'maps and discard the “bad” ones.
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Set-theoretically, this is a hopeless task, since all maps f: X ~» Y are on an
equal footing. There is a profusion of alien maps with undesired properties which
we do not want to count as reasonable functorial relations between X and Y. Not
so in topology. Here is a great divide between “good”, i.e., continuous maps,
and “bad” ones that do not enjoy this property. That means, if we conceptualize
X and Y as topological spaces we can impose the topological constraint of
continuity on maps between X and Y. Thereby the undesired profusion of maps
might be drastically reduced.

The introduction of topological considerations may be expressed in the fol-
lowing “Topological Maxim™: -

Topological Maxim: Whenever you meet a set theoretical map f: X—Y try
to achieve the following two tasks:

(1)  Try to conceptualize X and ¥ as topological spaces in a natural way.
(2)  Find out whether f is continuous or not.

If f turns out not to be continuous probably the functional relation between
X and Y is ill-defined. In any case, ceteris paribus, continuous maps should be
preferred to non-continuous ones.

In this paper the Topological Maxim has been applied to similarity struc-
tures (S,~) and (P(Q),~) whose natural topologies are the order topologies. In
this case, “good” quality distributions are continuous maps between the topolog-
ical spaces S and P(Q).

5. Appendix: Proof of Theorem (4.10)

By presupposition all quality distributions we consider are of the first kind.
Hence we may assume that they are maps f: S—»P(Q) with @ € SC(5). Let us
call a quality ge SC(S) necessary iff it occurs in all quality distributions. Neces-
sary qualities can be characterized as follows:

(5.1) Lemma. Let (S,~) be a similarity structure. ge SC(S) is necessary iff
the following holds: There are x,, y, € ¢ such that g = co(x,) " co(y,).

Proof: (a) Let ge SC(S) and assume that x,,y,€ g such that g = co{x,) N
co(y,). We show that g is necessary. Since g is a similarity circle x, and y, are
similar to each other. Let f; § — P(Q) be a quality distribution of the first kind.
There must be a similarity circle g with g'e f(x,) N f(y,). Due to g'=(\{z: ze ¢’}
we have ¢' < co(x,) M co(y,), ie., g' € g. Similarity circles do not properly
include each other, hence we get ¢’ = g, and g is necessary.

(b) Let us assume that for g there are no x,, y,€ g such that g = co(x,) N
coly,).- We show that g is not necessary, i.e., there is a quality distribution where
g does not occur. Let f: § — P(Q) be a quality distribution with g € Q. Let
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X2:¥4€ q. According to the premiss there is an element ze S with ze co(x,) N co(y,)
but ze q.

The elements Xy, Yq, and z are similar to each other. Hence there must be a
Gy SC(S) with x,y,2€ g,y since f is of the first kind. After these preparatory
remarks we define a quality distribution £ § — P(SC(S)-{q}) as follows:

fiv)= f(V)s gé f(“')
F) = {g} gy xy.28 g, 26 co(x) M coy), VE Gy}, g€ F(V)-

Obviously, ¢ does not occur in f’ anymore. To show that f' is indeed a con-
tinuous quality distribution let us make the following deliberations. Let v,we S.
We have to show that v~w & f'(v)~f'(w). First assume v~w. We have to distin-
guish several cases:

(i) g& f(v), g& f(w). In this case f'and f coincide for v and w, and there is
nothing to show.

(i) ge f(v) and g& f(w). Since f is a quality distribution there isa g'e f(»)M
f(w). According to the definition of f' ¢’ belongs to the intersection of f'(v) and
f'(w) as well. An analogous argument applies to the case g& f(v) and ge f(w).
Hence f'(v)~f(w).

(iii) ge F¥) N f(w). In this case there is a ze co(v) N co(w) with z¢ g. Hence
there must be a g,,,€ SC(S) with v,w,z€ q,, and ¢,,€ Fio n f'(w). Hence
Fi()~F'(w). Now assume f'(v)~f'w). The distribution f'is covered by the stan-
dard distribution fgc. Hence v~w. This completes the proof of (5.1).

Now, theorem (4.10) immediately follows: if the similarity structure (S,~}
is of the second order it follows from (5.1) that it is covered by a set of necessary
similarity circles. These necessary similarity circles can be used to construct a
unique minimal quality distribution. On the other hand, if there is 2 unique
minimal quality distribution, all of its qualities are obviously necessary. Hence
by (5.1) they are generated by at most two of their elements. This means, (5,~)
is of first or second order. _

Thomas Mormann

Institut fiir Philosophie, Logik und Wissenschaftstheorie
Universitdit Miinchen, Germany

NOTES

1. Cf. Carnap {1928), Goodman [{951, 1972], Quine [1961].

2. Goodman [1951], ch. V, and [1972: 442-43].

3. The main ideas of this paper are topological reformulations of concepts Carnap
developed in a still unpublished manuscript Die Qasizerlegung — Ein Verfahren zur
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Ordnung nichthomogener Mengen mit den Mitteln der Beziehungslehre of 1923, RC-
081-04-01, University of Pittsburgh,

4. As a general reference for topology the reader may consult Dugundji {1966} or
any other of the standard textbooks.

5. As is well known, the definition of a topological closure operator on a set X is
equivalent to the definition of a topological structure on X by specifying a family of
open subsets of X satisfying the well-known axioms, see Dugundji [1966], Theorem
8.3, ‘

6. Applications of these kinds are dealt- with in Mormann [1993: 219-401,

7. Cf. Goodman [1972; 442-43].

8. Goodman [1972: 442].

9. Goodman [1972: 441-42].

10. In the Aufbau, Carnap dropped (4.2}, probably for reasons of pedagogical
simplification. Later authors such as Goodman and others who dealt with formal
aspects of quasianalysis never took into consideration a condition like (4.2) or (4.4).

11. Cf. Quasizerlegung, p. 5.

12. Cf. Brockhaus [1963].
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