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Abstract. The aim of this paper is to give an epistemological characterization of Gettier cases 

from the perspective of a topological account of knowledge and belief. Relying on a topological 

semantics of Stalnaker’s logic KB of knowledge and belief the following will be shown: For 

most topological models of KB Gettier cases occur in a natural way, i.e., most models of KB 

contain sets of possible worlds that can be interpreted as Gettier cases where certain true 

justified beliefs obtain that cannot be considered as knowledge. Topologically, Gettier cases 

are characterized as nowhere dense sets. This entails that Gettier cases are “epistemically 

invisible”, i.e., they can neither be known nor consistently believed.  The proof that Gettier 

cases cannot be known is elementary, the proof that they cannot be consistently believed relies 

on a highly non-trivial theorem of modern point-free topology, namely, Isbell’s density 

theorem. This theorem renders it possible to prove this result for all belief operators B 

compatible with a given knowledge operator K. 
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1. Introduction. Understanding the relation between knowledge and belief is an issue of 

central importance in epistemology. A meanwhile classical problem for the relation between 

knowledge and belief has been put on the agenda of epistemology by Edmund Gettier, when 

he asked whether knowledge could be defined as justified true belief or not (Gettier 1963), and 

put forward several examples that cast serious doubt on an affirmative answer to his question 
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(Borges, de Almeida, Klein (2017), Machery (2017), Nagel (2013)). Nevertheless, there are 

philosophers who maintain that the classical account of knowledge as true justified belief is 

essentially sound notwithstanding Gettier cases (Sellars 1975). The topological account of 

knowledge and belief to be presented in this paper may help to clarify this issue.  

A mild preliminary semi-formalization may be useful to explain how we will proceed in the 

following. Let X be a set of possible worlds. A subset A Í X is called a proposition. The 

negation of A is defined as the set-theoretical complement CA of A. For a proposition A the 

subsets K(A) Í X and B(A) Í X are to be interpreted as the propositions “It is known that A” 

and “It is believed that A”, respectively.  

A proposition A is true in a world w iff wÎ A; otherwise, A is false in w. The empty set Ø is 

to be interpreted as the contradictory proposition that is false at every world w.  The set X is 

the trivial tautological proposition that is true at every world. A proposition A is known in a 

world w iff w Î K(A). Analogously, a proposition A is believed in w iff w Î B(A). A Gettier 

proposition G(A) is defined as the proposition such that G(A) := A & B(A) & CK(A) ≠ Ø. A 

world w is a Gettier world iff w Î G(A). Such a world is an A-world, it is believed that A is a 

A-world,  but nevertheless it is not known that A is an A-world.   

 The aim of this paper is to characterize Gettier cases G(A) topologically and episte–

mologically. On the basis of a topological semantics of Stalnaker’s logic KB of knowledge and   

we will prove the following: 

 
(i)  Whether Gettier cases G(A) exist, depends on the topological structure of the models 

of KB. For most topological universes Gettier cases exist. A special class of topological 

models, however, can be shown to have no Gettier cases. Moreover, a slight change of 

the knowledge operator K results in an elimination of Gettier cases.   
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(ii) Gettier cases are epistemologically invisible for Stalnaker’s logic of knowledge and 

belief. This means, Gettier cases G(A) can neither be known nor consistently believed, 

since K(G(A)) = Ø and B(G(A)) = Ø.  

(iii) Topologically, Gettier cases can be characterized as nowhere dense sets of (X, OX), 

i.e., intcl(G(A)) = Ø for all Gettier cases G(A). 

 
The proof that K(G(A)) = Ø is elementary.1 In contrast, to prove that B(G(A)) = Ø for all 

consistent belief operators B compatible with K requires some more effort, since there are 

many such operators. In order to show that Gettier cases G(A) are invisible for all consistent 

belief operators B one has to invoke a highly non-trivial theorem of modern point-free 

topology, namely, Isbell’s density theorem (cf. Johnstone (1982, 2.4., Lemma, p. 50-51), 

Picado, Pultr, and Tozzi (2004, 2.13, Proposition, p. 50), Picado and Pultr (2012, Ch. III, 8.3., 

Proposition, p. 40)). More precisely, one has to rely on the logico-mathematical achievement, 

long ago proved by McKinsey and Tarski (1944) that the modal logic S4 can be identified with 

the logic of topological spaces. In other words, S4 is sound and complete with respect to the 

class of models defined as topological spaces (X, OX).   Isbell’s theorem implies that all 

consistent belief operators are smaller than or equal to Stalnaker’s belief operator BS. This 

entails that it is sufficient to show that Gettier cases are epistemically invisible with respect to 

BS.  

The existing literature on the topological semantics of Stalnaker’s KB systems (cf. Baltag et 

al. 2013, 2017, 2019)), only takes the operator BS = intclint (cl = the closure operator of (X, 

OX)) into account. This operator, is, however, not the only one and, arguably, not the most 

plausible one of a large family of belief operators B that are compatible with K.2 To obtain a 

 
1 It is on a similar technical level as Fine’s recent results concerning the epistemic invisibility of 
“Rumsfield ignorance” and “higher-order ignorance” (cf. Fine (2017)). 
2 For general topological spaces (X, OX) for which the interior kernel operator int is interpreted as knowledge 
operator, a well-behaved belief operator is defined by intclint. This belief operator is the only one that is dealt 
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more comprehensive understanding of the relationship between knowledge and belief, it seems 

expedient to consider the whole set of belief operators B compatible with K (cf. Stalnaker 

(2006), Baltag et al. (2013, 2017, 2019).  

In Stalnaker’s KB logic, the belief operator BS is uniquely determined by the knowledge 

operator K. This is due to the fact that the “axiom of negative introspection” (NI)for the belief 

operator is assumed. This axiom is, to put it mildly, debatable. It claims that if one does not 

believe A, one knows that one does not believe A. In this paper, a more flexible relation 

between knowledge K and belief B is proposed. In a nutshell, this relation may be described as 

follows. A topological structure (X, OX), i.e., a knowledge operator K defines a family of belief 

operators B that fit the knowledge operator K in the sense that the pairs (K, B) of modal 

operators satisfy the axioms of a Stalnaker logic (except the axiom (NI) of negative 

introspection). The family of belief operators  B related to K can be shown to have the structure 

of a complete Heyting algebra. Stalnaker’s belief operator BS turns out to be the top element of 

this Heyting algebra, its bottom element is the knowledge operator K that may be considered 

as the “ideal” or “optimal” belief operator, while BS is the most “risky” belief operator in the 

sense that it maximally deviates from knowledge K without becoming inconsistent. Different 

belief operators compatible with the same K can be compared with each other according to 

their strengths and how far they deviate from K.   

Usually, the relation between belief and knowledge is conceptualized in a rather direct way: 

either knowledge is defined as a special kind of belief (e.g., knowledge is “justified” true belief, 

or “correctly justified” true belief, or the like, as in many received accounts of knowledge), or, 

in some version of “knowledge first” epistemology, knowledge is given conceptual priority 

and defines belief in a unique way. An example of the latter approach is Stalnaker’s, who 

 
with in Stalnaker (2006) and the various papers of Baltag et alii. For a very special class of topological spaces, 
namely, extremally disconnected spaces, the definition of this operator can be simplified to clint.   
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defines belief as the epistemic possibility of knowledge (cf. Stalnaker (2006), Baltag et al. 

(2017)). The theorem of Stalnaker’s logic of knowledge and belief the operator B can be 

defined uniquely in terms of the operator K depends on the assumption that the contentious 

axiom (NI) of “negative introspection” is assumed to be valid.   

As will be shown in this paper, if (NI) is abandoned, the unique definability of belief by 

knowledge is no longer valid. Rather, a profusion of different belief operators all of which are 

compatible with the same knowledge operator K appears on the scene.  

This plurality is to be considered as an advantage for a good logic of knowledge and belief 

even it renders the theory more complicated. It may be characterized still as a “knowledge-

first” approach – but with a special twist. It is shown that for a given knowledge operator K, 

there exists a pool of different admissible belief operators B such that all the pairs (K, B) define 

well-behaved systems of epistemic logic satisfying the axioms of Stalnaker’s KB system. 

Therefore, different cognitive agents who subscribe to the same knowledge operator K may 

use different agent-specific belief operators B. 

The “epistemic invisibility” of Moore and Gettier cases holds for all (consistent) belief 

operators B compatible with K. This claim is easily stated but not so easily proved. Rather, the 

proof relies on a theorem of Isbell the proof of which requires a considerable technical 

apparatus from modern point-free topology (Johnstone (1982), Picado and Pultr (2012)).   

Stalnaker’s approach (Stalnaker 2006) does not contribute anything to the solution of this 

problem, since he requires the axiom (NI) of negative introspection as valid thereby forcing a 

1-1-relation between the operators K and B. Abandoning (NI) results in a novel pluralist 

relation between knowledge and belief. For the a more detailed investigation of this relation 

modern point-free topology offers useful conceptual devices, or so I want to argue. 
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Due to the trail-blazing result of McKinsey and Tarski (1944) the modal logic S4 is sound and 

complete with respect to the class of topological spaces. That is to say, every theorem of S4 is 

a theorem of topology and vice versa.   

The construction of more and more ingenuous and contrived examples of Gettier cases by a 

flourishing “Gettier industry” in the last 50 years suggests that Gettier situations are somehow 

not exceptional situations, they occur only under extraordinary, especially lucky (or unlucky) 

circumstances (Zagzebski 2015). The topological approach of Gettier cases reflects this feature 

in a novel way by characterizing Gettier cases G(A) topologically as nowhere dense subsets of 

(X, OX). This entails that for the KB-concepts of knowledge and belief Gettier cases G(A) are 

epistemically invisible in the sense that one cannot know and not even consistently that a world 

w is a Gettier situation, i.e., w Î G(A). This holds, since K(G(A)) = Ø and B(G(A)) = Ø.  

The outline of the paper is as follows. In the next section we recall the basics of Stalnaker’s 

logic of knowledge and belief. Section 3 recalls the basics of the topological semantics of 

Stalnaker’s logic elaborated by Baltag et al. in several recent publications (cf. Baltag et al. 

(2013, 2017, 2019) bvb m). Section 4 characterizes Gettier cases as topologically nowhere 

dense subsets of topological spaces. In section 5 is it shown that a given topological knowledge 

operator K is accompanied by a profusion of belief operators B, such that all the pairs (K, B) 

satisfy the rules and axioms of a weak Stalnaker system. In Section 6 the main theorems are 

proved, namely, that Gettier cases are epistemically invisible for topological knowledge and 

consistent belief operators. We close with some remarks suggesting some possible roads for 

future research on the relation of knowledge and belief in section 7. 

 

 
 2. Stalnaker’s Logic of Knowledge and Belief. Now let us recall the basics of the grammar 

and syntax of the bimodal logic KB of knowledge and belief put forward by Stalnaker (2006). 

In recent years Baltag, Bezhanishvili, Özgün, and Smets in various recent publications 
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proposed a topological semantics for KB (cf. Baltag et al. (2013, 2015, 2016, 2019)). This 

semantics will be also be the basis of the used in this paper. The main novelty of this paper is 

the introduction of a new semantics for the belief operators B of KB, since, in contrast to 

Stalnaker and Baltag et al. belief operators B are no longer uniquely definable in terms of K. 

The main ingredient for the more flexible semantics of B is the concept of a nucleus, introduced 

in the 1980s in modern point-free topology (cf. Johnstone (1982), Picado and Pultr (2012)). 

We start with a standard unimodal epistemic language LK with a countable set PROP of 

propositional letters, Boolean operators ¬, Ù, and a modal operator K to be interpreted as a 

knowledge operator. The formulas of LK are defined as usual by the grammar 

j::= p½¬p½fÙy½Kj      ,          p Î PROP. 

The abbreviations for the Boolean connectives Ú, ®, and ¬® are standard. Then, analogously 

to LK, a bimodal epistemological language LKB for operators K and B is defined. For a more 

detailed presentation of topological semantics, the reader may consult the recent papers of 

Baltag et alii mentioned above. 

First, for the sake of definiteness, let us recall the axioms and the inference rules of Stalnaker’s 

KB-systems (cf. Stalnaker (2006), Baltag et al. (2017, 2019): The language of the KB-systems 

is an extension of classical (Boolean) propositional language by two modal operators 

K(knowledge) and B(belief ) that have to fulfil the following rules and axioms: 

 
(2.1) Definition (Stalnaker’s axioms and inference rules for knowledge and belief).  

(CL)  All tautologies of classical propositional logic. 

(K)   K(ϕ → ψ) → (Kϕ → Kψ)   (Knowledge is additive). 

(T)   Kϕ → ϕ      (Knowledge implies truth). 

(KK)   Kϕ → KKϕ      (Positive introspection for K) . 

(CB)   Bϕ →  ¬ B ¬ ϕ     (Consistency of belief). 
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(PI)   Bϕ → KBϕ      (Positive introspection of B). 

(NI)  ¬ Bϕ → K¬ Bϕ    (Negative introspection of B). 

(KB)   Kϕ → Bϕ     (Knowledge implies belief). 

(FB)   Bϕ → BKϕ     (Full belief). 

Inference Rules: 

(MP)   From ϕ and ϕ → ψ, infer ψ.   (Modus Ponens). 

(NEC)  From ϕ, infer Kϕ.    (Necessitation).¨ 

 
For the topological approach to knowledge and belief, the axiom (NI) plays a special role. It is 

easily shown that (NI) holds only for topological models of a very special kind, namely, models 

that are based on extremally disconnected spaces. For the systems of knowledge and belief 

considered in this paper we will only require that they are weak Stalnaker systems in the 

following sense:   

 
(2.2) Definition. A bimodal system based on the bimodal language LKB is a weak Stalnaker 

system iff it satisfies all of Stalnaker’s axioms and rules given in (2.1) except possibly the 

axiom (NI) of negative introspection.¨ 

 
There are various reasons for abandoning (NI): first, (NI) is a rather implausible requirement 

for belief. Second, from a topological perspective, the axiom (NI) is very restrictive. Only a 

severely restricted class of topological models satisfies (NI), namely, extremally disconnected 

spaces (ED-spaces). Most spaces that occur “in nature”, do not belong to this class. For in–

stance, the familiar Euclidean spaces and their derivatives are far from being extremally 

disconnected. Finally, the axiom (NI) of negative introspection leads to a 1-1-relation between 

knowledge K and belief B. This is, as I will argue in the following, an implausible and too 

simplistic understanding of the complex relation between knowledge and belief. Rather, for a 
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given a topological knowledge operator K, it can be shown that many belief operators B are 

compatible with K in the sense that the pairs of operators (K, B) satisfy all axioms of a weak 

Stalnaker system.   

 

  

3. Topological Semantics of Knowledge and Belief Operators. In a topological setting some 

propositions are necessarily unknown due to the fact that for a non-trivial, i.e., not discrete 

topology, necessarily some subsets A ≠ Ø of worlds exist that have an empty interior, i.e., 

int(A) = Ø. Otherwise, the topology is discrete, i.e., int(x) = {x} for all x Î X what would 

amount to the trivial assumption of omniscience. 

 
Now let us recall the basics of the interior semantics for epistemic logic of knowledge and 

belief as presented by Baltag, Bezhanishvili, Özgün, and Smets (cf. Baltag et al. (2013, 2015, 

2016, 2019)). This semantics will be used throughout the rest of this paper. First of all, recall 

the definition of a topological space: 

 
(3.1) Definition. Let X be a set with power set PX. A topological space is an ordered pair (X, 

OX) with OX Í PX. The subset OX has to satisfy the following conditions: 

(i)      Ø, X Î OX. 

(ii)     OX is closed under finite set-theoretical intersections Ç and arbitrary unions È.¨ 

 
The elements of OX are called the open sets of the topological space (X, OX). The set-

theoretical complement CA of an open set A is called a closed set. The set of closed subsets of 

(X, OX) is denoted by CX. The interior kernel operator int and the closure operator cl are 

defined as usual: The interior kernel int(A) of a set A Î PX is the largest open set that is 

contained in A; the closure cl(A) of A is the smallest closed set containing A. For details, see 
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Willard (2004), Steen and Seebach Jr. (1982), or any other textbook on set-theoretical 

topology. The operators int and cl are well-known to satisfy the Kuratowski axioms:   

 
(3.2) Proposition (Kuratowski Axioms). Let (X, OX) be a topological space, A, B Î PX. The 

interior kernel operator int and the closure operator cl of (X, OX) satisfy the following 

(in)equalities  

(i)                  int(A Ç B) = int(A) Ç int(B).                                    cl(A È B) = cl(A) È cl(B). 

(ii)                 int(int(A)) = int(A).                                                   cl(cl(A)) = cl(A). 

(iii)                 int(A) Í  A.                                                              A Í cl(A). 

(iv)                 int(X) = X.                                                                cl(Ø) = Ø.¨ 

The operators int and cl are inter-definable, i.e., int = CclC and cl= CintC. In the following 

these and some other well-known formulas will be used without explicit mention.  

 
It is expedient to conceive the operators int and cl as operators PX¾¾int¾¾>PX and 

PX¾¾cl¾¾>PX operating on on PX. Then, clearly, OX and CX appear as images of int and 

cl, respectively. That is, OX =int(PX) = {int(A); A Î PX}, and CX = cl(PX) = {cl(A); A Î 

PX}. Hence, the concatenation of these operators makes perfect sense.  Moreover, for later use 

we observe that the interior kernel operator int factors as a concatenation of an epimorphism 

(by a slight abuse of denotation denoted also by int) and a monomorphism i: 

PX¾¾int¾®OX¾¾i¾®PX. In the following, concatenations such as intcl, clint and 

intclint will play an important role.  

 
Dense and nowhere dense subsets of (X, OX) will be essential for discussion of consistent 

belief operators and investigating the concept of epistemological invisibility:   
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(3.3) Definition. Let (X, OX) be a topological space with interior operator int and closure 

operator cl. A subset YÎ PX is dense iff cl(Y) = X, Y is nowhere dense iff intcl(Y) = Ø. Clearly, 

if Y is nowhere dense, the complement CY is dense.¨ 

    
(3.4) Examples . (i) For the trivial coarse topology (X, {Ø, X}) every non-empty subset A Î 

PX is dense and only Ø is nowhere dense.  

(ii) For the discrete topology (X, PX) only X is dense, and only Ø is nowhere dense.  

(iii) Let (R, OR) be the real line endowed with the familiar Euclidean topology. Let F Í R be 

a finite set. Then F is nowhere dense and the complement CF of F is a dense open subset of 

(R, OR). Also the infinite set of integers Z is a nowhere dense subset of (R, OR).  The set Q 

of rational numbers and the set CQ of irrational numbers are disjoint dense subsets of (R, OR), 

i.e., Q Ç CQ = Ø and cl(Q) = cl(CQ) = R.¨ 

Perhaps not so well known is the following formula that will be used in the proofs of the main 

theorems in section 5: 

 
(3.5) Lemma.3  Let (X, OX) be a topological space with interior kernel operator int and closure 

operator cl, A, B Î PX. If A or B Î OX, then  

intcl(A & B) = intcl(A) & intcl(B).¨ 

 
After these preparations, we can tackle the task of defining a topological semantics for the 

bimodal  language LKB defined as an extension of propositional logic by the modal operators 

K and B. LKB is considered as an extension of the unimodal language LK by an unimodal 

 
3 It is well known, of course, that the operator intcl distributes over & if A and B are open. The point of 
(3.5) is that only one of these factors has to be open in order to ensure that intcl distributes. This fact 
will be used to prove that Gettier cases G(A) are nowhere dense (cf. (5.4)). An explicit proof of the dual 
statement of (3.5) (intcl is replaced by clint, and & by Ú, respectively) can be found in Kuratowski and 
Mostowski (1976, I.8. (18), p. 31).¨ 
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operator B. Consequently, the topological models of LKB will be extensions of the topological 

models of LK. The topo-models of LK are standard in the pertinent literature (cf.  Aiello et al. 

(2003, 2006), Baltag et al. (2019). For convenience of the reader let us briefly recall the basics 

of this approach:  

 
(3.6) Definition. Let (X, OX) be a topological space and FORM(LK) the set of well-formed 

formulas of LK. A valuation v of the formulas of LK into (X, OX) is a map that is recursively 

defined as follows: 

 v(p)  Í  X      ,      v(¬p)  = Cv(p)   ,   v(jÙy) = v(j) Ù v(y)    ,    v(Kj) = int(v(j))       

Other operators such as Ú, ®, ¬® etc. are defined in terms of ¬, Ù and K as usual and their 

valuations are defined correspondingly.¨  

 
Analogously to K, the semantics for belief operators B is defined with the help of operators PX 

¾¾B¾®PX that satisfy appropriate structural requirements and can be used to define belief 

operators that fulfil the axioms of Stalnaker’s KB. The following preparatory definition is 

essential for this task: 

 
(3.7) Definition (Johnstone (1982, 2.2., p. 48f), Borceux (1994, 15.1, Definition, p. 29)). Let 

(X, OX) be a topological space. An operator OX ¾¾j¾®OX is called a nucleus of OX iff it 

satisfies the following requirements 

(N1) A  Í  j(A). 

(N2) j(j(A)) Í j(A).  

(N3) j(A & B) = j(A) & j(B).¨ 

 
For the definition of consistent belief operators, a special class of nuclei is needed: 
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(3.8) Definition (Johnstone (1982, 2.4(c), p. 50)). A nucleus OX ¾¾j¾®OX is called a dense 

nucleus iff j(Ø) = Ø.¨ 

 
Now the central concept of a topological belief operator B can be defined as follows: 

 
(3.9) Definition. Let (X, OX, v) be a topological model of the language LK, and let j be a dense 

nucleus OX¾¾j¾®OX of OX. Define a belief operator B as the concatenation 

PX¾¾int¾®OX¾¾j¾®OX¾¾i¾®PX. Then a topological model (X, OX, B, v) of 

LKB is defined by extending the valuation v defined by formulas of LK to formulas of LKB by 

v(Bj) := B(v(j)). In order to simplify notation, the valuation v of topo-models (X, OX, B, v) 

will not be explicitly mentioned if not needed. In this way, v(j), ¬v(j), v(j Ù y),  B(v(j)) etc. 

are denoted set-theoretically as A, CA, A Ç D, B(A) etc. assuming that v(j) = A, v(y) = D 

etc. ¨ 

 
The operators B and j uniquely determine each other.4 Explicitly, one easily observes that B = 

i • j • int and j = int • B • i. Thus, the theory of belief operators B that are compatible with a 

topological knowledge operator K could be formulated as a theory of operators 

OX¾¾j¾®OX that satisfy the just mentioned requirements (1) – (4). This is more than a 

formal nicety. The conceptual advantages to replace B by j are considerable: While belief 

operators B may be considered as ad hoc and contrived inventions of philosophers, the theory 

of operators j satisfying (1) – (3) has turned out in the last forty years or so as a very valuable 

and versatile conceptual tool of (point-free) topology (Borceux (1994), Johnstone (1982, 2002), 

Picado and Pultr (2012)). There is no need to go into the technical details of these theories here, 

the only point we want to make is that that the theory of nuclei entails (via Isbell’s theorem) 

 
4 All belief operators that will be considered in the following are defined with the aid of nuclei j. Usually, it is not 
necessary, however, to mention nuclei explicitly. 
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that for any topological universe (X, OX) whatsoever the partial order of consistent belief 

operators has a maximal element, namely, Stalnaker’s operator BS.5 

 
(3.10) Proposition. Let (X, OX, B) a topological model of LKB. Let K be the knowledge 

operator of (X, OX) and B be a belief operator defined by a dense nucleus OX¾j¾>OX. Then 

the pair of operators (K, B) satisfies all axioms and rules of a weak Stalnaker system.  

 
Proof. First, the rules and axioms that only deal with the knowledge operator K are clearly 

satisfied for (X, OX, B). 

Next, by definition of the belief operator B as a concatenation B = int • j • i the operator B 

satisfies the axioms (PI) of positive introspection, the axiom (KB) that knowledge implies 

belief, and the axiom (FB) of full belief.  

It remains to show that B satisfies the axiom (CB) of consistency. For the proof we essentially 

use that the nucleus j defining B is assumed to be dense. By definition B is distributive with 

respect to &. Then density of B and the definition of the valuation v entail that   

            Ø = B(Ø)   iff    B(j Ù ¬ j) = B(j) Ç B(¬j) = Ø   iff   v(B(j)) Í CB(Cv(j)).¨ 

 

 

4. On the Topology of Gettier Cases. In the last 50 years a profusion of ingenious examples 

has been produced that describe Gettier situations informally (cf. Borges, de Almeida, Klein 

(2017), Machery (2017)). As already explained in the Introduction in the framework of a 

topological epistemology Gettier cases appear as (not trivial) propositions G(A) := A & B(A) 

& CK(A). Then, for a topological epistemology the following questions arise naturally:    

 
 

5 Indeed, in mathematics, the operators j are called (dense) nuclei of the Heyting algebra OX of the topological 
space (X, OX) (Johnstone 1982, Picado and Pultr 2012). This term has been chosen, of course, without any 
reference to the concept of “belief operators”. The general format of the nuclei j of a Heyting algebra OX is given 
in (Johnstone 2002, Lemma 1.1.17, p. 485). 
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(1)  For which models (X, OX, B) of KB-logic do Gettier cases G(A) := A & B(A) 

& NOT(K(A)) exist and for which they do not exist? 

 
(2)  Can cognitive agents, who use K, know Gettier cases G(A) in the sense that 

there are worlds w with w Î K(G(A))?   

 
(3)  Can cognitive agents, who use B, consistently believe Gettier cases G(A) in the 

sense that there are worlds w Î B(G(A))?   

 
(4) How can Gettier cases G(A) be characterized topologically? 

 

The answer of the first question is as follows: For most topological models (X, OX, B) of KB-

logic Gettier cases can be constructed in a direct and straightforward way. There are, however, 

topological spaces for which no Gettier cases exist, i.e., for all A Î PX one has G(A) = A & 

B(A) & NOT(K(A)) = Ø.  

The answers to questions (2) and (3) are, perhaps surprisingly, negative. Gettier cases G(A) are 

epistemically invisible, i.e., cognitive agents who rely on K and B in their epistemic practice 

on as the operators K and B can neither know nor even consistently believe that a world w be 

a G(A) world, since K(G(A)) = Ø and B(G(A)) = Ø.  

Question (4) can be answered as follows: Gettier cases G(A) are nowhere dense, i.e., intcl(G(A) 

= Ø. Intuitively, this means that Gettier cases are “exceptional” or “thin” sets. 

For every (non-discrete) topological space (X, OX), some propositions A Î PX cannot be 

known, i.e., one has A ≠ Ø but int(A) = Ø. Those propositions may be said to be epistemically 

invisible. An analogous question may be asked for the bimodal logic KB of knowledge and 

belief. For instance, given a Gettier case G(A) in a topo-model of KB one may ask whether 

one can know or believe G(A) or not.  
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(4.1) Definition. Let (X, OX) be a model of LKB. A set A Î PX defines a Gettier case G(A) for 

(X, OX, B) iff G(A):=  A & B(A) & NOT(K(A))  ≠  Ø. Analogously, the  set A defines a Moore 

case M(A) in (X, OX) iff M(A) := A & NOT(K(A))  ≠  Ø.¨  

 
In more detail, G(A) is to be read as follows. A is assumed to be a set of possible worlds. A 

world w Î G(A) is to be interpreted as a situation in which A obtains (“w is an A-world”), w 

Î B(A) is to be interpreted as the fact that the cognitive agent who uses B as his doxastic 

operator believes that w in an A-world, and w Î NOT(K(A)) means that nevertheless it is not 

known that w is an A-world. The following elementary example should suffice to convince the 

reader that Gettier cases can be easily constructed for many topological models of KB-logic:    

(4.2) Gettier cases in the Euclidean plane.  Let (R2, OR2) be the Euclidean plane with the 

standard Euclidean topology. (R2, OR2) defines a topo-model of KB by taking the interior 

kernel operator int of (R2, OR2) as knowledge operator K and B the Stalnaker belief operator= 

intclint. A Gettier case is defined as follows: Denote the rational numbers by Q Í R. Let R 

¾¾i¾¾>R2 be the embedding of the real numbers R into the plane defined by i(r) := (r, 0), 

r Î R. Let A Í R2 be the subset defined by A := R2 – i(Q). Let BS be the Stalnaker belief 

operator BS := intclint. One calculates B(A) = intclint(A) = R2 and int(A) = R2 – i(R). Thus, 

the set G(A) defined by G(A): = B(A) Ç A Ç CK(A) = i(Q) ≠ Ø is a Gettier case. Nevertheless, 

one clearly has K(G(A)) = K(i(Q)) = Ø. That is, whether a world w exemplifies the Gettier 

case G(A), i.e., whether or not w Î G(A), cannot be known according to the conditions of KB-

logic since int(G(A) = Ø. Analogously one obtains B(G(A)) = B(i(Q)) = Ø. In other words, the 

Gettier case G(A) is epistemically invisible for K and B. Later, we will prove that for all topo-

models (X, OX, B) all Gettier cases are epistemically invisible.¨ 
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The fact that familiar topological spaces such as the Euclidean plane give rise to topo-models 

of KB that possess Gettier cases should not be taken as evidence that this is the case for all 

topo-models. Indeed, the following recipe shows that topo-models of KB-logic exist that are 

free of Gettier cases:  

 
(4.3) Theorem. A topo-model (X, OX, BS) of KB has no Gettier cases if and only if (X, OX) is 

a nodec space (aka a-space), i.e., iff int(A) = A Ç intclint(A) for all A Í X.  

Proof. First, assume that (X, OX) has no Gettier cases with respect to intclint, i.e., G(A) = A Ç 

intclint(A) Ç Cint(A) = Ø for all A Í X. This implies A Ç intclint(A) Í int(A). The reverse 

inclusion int(A) Í A Ç intclint(A) holds by the Kuratowski axiom of int. Thus, (X, OX) is an 

a-space. 

Assume that (X, OX) is an a-space, i.e., int(A) = A Ç intclint(A). Then clearly any G(A) = A 

Ç intclint(A) Ç C(A Ç intclint(A)) = Ø. In other words, (X, OX) has no Gettier cases.¨ 

  
That Every topological space (X, OX) with interior kernel operator int gives rise to an a-space 

(X, OaX) defined by inta (A) := A Ç intclint(A) that is free of Gettier cases. The move from 

(X, OX) to (X, OaX) amounts only to a topologically small change of the defining topologies 

in the sense that for all A the set-theoretical difference of int(A) and inta(A) is nowhere dense 

with respect to intcl, i.e., intcl(inta(A) Ç Cint(A)) = Ø. 

The logic of a-topological spaces (X, OaX) is well known. Among other properties, these 

spaces are spaces, for which all nowhere dense subsets A of (X, OaX) are closed. Further, those 

spaces are models for the so-called Zeman logic S4.Zem (cf. Bezhanishvili, Esakia, and 

Gabelaia (2005), Zeman (1969)). This logic is an extension of S4 that is characterized by the 

modal axiom  
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(4.4)                                         S4.Zem = S4 + intclint(A) & A ¾® int(A).  

In sum, from a topological point of view, the JTB-theory of knowledge and belief is not simply 

false, rather, it can be described as a theory of a limited range, namely,  the realm of a-spaces 

as its models. Further, the construction of a-topological spaces (X, OaX) reveals that  a-spaces 

(X, OaX) are not just a special class of topological spaces (X, OX). Rather, every topological 

space (X, OX) is accompanied, so to speak, by its own a-space (X, OaX). Both spaces are 

related to each other in a natural functorial way. This means, among other things, that repeating 

the a-construction yields nothing new, since (X, OaaX) = (X, OaX). Being free of Gettier cases 

is a stable quality of topological models of KB. If one considers the thesis that knowledge is 

true justified belief as a claim of a “JTB-theory” then Gettier cases can be considered as a kind 

of Kuhnian anomalies for that theory that refute the theory in rare cases.   

Example (4.2) illustrates this by a toy example: Let TA be the “theory” that all points (p, q) of 

the plane R2 are A-points. A cognitive agent can come to know this assertion for all points (p, 

q) that do not lie on the line R, i.e., (p, q) with q ≠ 0. For this realm, TA is true can be known 

to be true. Nevertheless, T is true as well beyond this “safe” area, namely, for some points of 

the line R = {(p, 0)} that satisfy p Ï Q.  Due the fact that every open neighborhood of such a 

(p, 0) includes points that do not belong to A, one cannot know that (p, 0) ÎA. Nevertheless, it 

seems a justified belief that A is the whole plane. Indeed, one obtains B(A) = intclint(A) = R2. 

Then (p, 0) Î A with p Ï Q is a justified true belief that cannot be recognized as knowledge, 

since there is no open neighborhood U(p, 0) of (p, 0) in R2  that can be considered as evidence 

that (p, 0) is an A-point.¨   
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5. On the Plurality of Belief Operators. The topological approach to epistemology is, in a 

rather obvious sense, a “knowledge first” approach. Defining knowledge as the interior kernel 

operator int of a topological space (X, OX) is a direct and quite plausible way to bring topology 

to work in the epistemological realm. In comparison with knowledge, it is much less clear how 

to handle the concept of belief in a topological framework. In this section I’d like to 

demonstrate that the concept of belief is underdetermined by the axioms and rules of weak 

Stalnaker systems. More precisely, I’d like to show that for any topologically defined 

knowledge operator K there is a profusion of different belief operators B such that (K, B) 

satisfies all axioms and rules of a weak Stalnaker system.  

The belief operators B related to K are partially ordered in a natural way. The smallest belief 

operator is the operator K (= int), the largest belief operator is Stalnaker’s operator intclint. The 

larger B, the riskier it is to use B for stating one’s beliefs, since they may considerably deviate 

from K. Nevertheless, as long as one’s belief operator is not greater than BS one can assume 

that it is still consistent.    

Clearly, the underdetermination of the logic of knowledge and belief by the axioms of a weak 

Stalnaker systems renders the logic of knowledge and belief more complex but also more 

interesting and more realistic. There is no convincing reason to assume knowledge uniquely 

determines belief.  

Fortunately, for the purposes of this paper, the multiplicity of belief operators is not an 

insuperable obstacle to prove the epistemological invisibility of Gettier cases, since the 

invisibility for intclint entails the invisibility for all other (consistent) belief operators. This is 

be proved by Isbell’s theorem.  

In this paper I’d like to deal with the issue of the plurality of belief operator only in barest 

outline. We only point out that for given knowledge operator K a lot of compatible belief 

operators B exists. This is explicitly shown by the following proposition: 
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(5.1) Proposition. Let (X, OX) be a topological space with interior kernel operator int. For a 

dense subset F Í X define the operator PX ¾BF¾>PX by  

BF(A) := int(F¾¾>int(A)) 

Then the pair (K, BF) of operators satisfies all rules and axioms of a weak Stalnaker system.  

 
Proof. In order to show that the pairs of operators (K, BF) of operators define weak Stalnaker 

systems, it only remains to show that BF satisfies the axioms of consistency (CB), positive 

introspection (PI), knowledge implies belief (KB), and full belief (FB). All these assertions 

easily follow from the definition of BF and elementary calculations using the Kuratowki 

axioms.¨ 

 
Now we show by an elementary example that the recipe (5.1) yields   many different compatible 

belief operators B that are all compatible with a knowledge operator K - Stalnaker’s operator 

BS is only one among many.   

 
(5.2) Examples. Let (R, OR) be the real line, p Î R, let Q denote the subset of rational 

numbers, A Î PR.   Define operators Bp and BQ by  

(i) Bp(A) := int(R – {p}¾® int(A)).  

(ii) BQ(A) := int(Q¾® int(A)).   

(iii) BCQ(A) := int(CQ¾® int(A)). 

(iv) BS(A) := intclint(A). 

 
Then (i) – (iv) define different belief operators all compatible with the knowledge operator 

int.6¨ 

 

 
6 It should be noted that the examples (i) – (iv) in no way describe all belief operators compatible with the 
standard knowledge operator of ((R, OR). 
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The set of compatible belief operators B of K has a very complex structure that up to now is 

not fully known even for “elementary” spaces such as (R, OR). This paper is not the 

appropriate place to deal with this issue. Rather, we are content to show by some examples that 

there is a plurality of belief operators that accompany a given knowledge operator. A 

comprehensive topological logic of knowledge and belief should take into account the whole 

spectrum of belief operators B compatible with a given knowledge operator K. It cannot settle 

for the investigation of only one belief operator that has been chosen for one reason or other. 

On the other hand, even for apparently “simple” spaces like the real line (R, OR) a complete 

determination of its belief operators is a formidable task. Fortunately, for the questions that are 

dealt with in this paper, a full knowledge of the set of belief operators is not necessary. Some 

general information is enough. The first essential observation is that the set of belief operators 

is endowed with a natural partial order: 

 
(5.3) Definition. Let (X, OX) be a topological space, B1, B2 belief operators compatible with 

the interior operator K of (X, OX). A partial order ≤ between belief operators is defined by 

  
(5.3)     B1 ≤ B2 := B1(A) Í B2(A) for all A Î PX. 

As is easily seen the unique minimal element of the set of belief operators is the identical map 

PX–¾id¾®PX.¨ 

 
Next one needs to show that the partially ordered class of consistent belief operators has a 

unique greatest element, namely, Stalnaker’s operator BS. That is to say: For every consistent 

belief operator B, one has B(A) Í BS(A) for all A Í X. Formulated with the concept of nuclei, 
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Isbell’s theorem asserts that every topological space (X, OX) has a largest dense nucleus 

OX¾J¾>OX, namely, the regular nucleus j = intcl.7   

 
(5.4) Isbell’s Density Theorem. Every complete Heyting algebra (X, OX)8 has a largest dense 

nucleus OX¾¾j¾¾>OX, namely, the nucleus j defined as j(A) := intcl(A), A Î OX. In other 

words, for all dense nuclei OX¾¾j ¾¾>OX and for all A one has B’(A) Í intcl(A).¨  

 
The proof of Isbell’s theorem goes well beyond the horizon of this paper. The reader may 

consult any of the standard sources of point-free topology such as Johnstone (1982, 2002), 

Picado, Pultr, and Tozzi (2006) or Picado and Pultr (2012). For our purposes we need only for 

the following immediate consequence of Isbell’s theorem

 
(5.5) Corollary. For all topological spaces (X, OX), all consistent belief operators B are smaller 

than or equal to Stalnaker’s belief operator BS := intclint, i.e., for all A Î PX one has B(A) Í 

intclint(A). 

 
Proof. By definition there is 1-1-correspondence between belief operators and dense nuclei (cf. 

(3.9)).¨ 

 
As will be shown in detail in the next section, (5.5) is enough to prove that Gettier and Moore 

cases G(A) and M(A) are epistemically invisible for epistemic operators of all models of KB-

logics. 

 

 
7 This fact is in stark contrast with the analogous assertion in set-theoretical topology, according to 
which every topological space has a smallest dense subspace. This As assertion is blatantly false. The 
disjoint dense subsets Q and CQ of rational numbers and irrational numbers of R is a classical 
counterexample. 
8 Actually, Isbell’s theorem is more general. It does not only hold for complete Heyting algebras of the 
form OX but for all complete Heyting algebras. 
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6. Epistemic Invisibility of Moore and Gettier cases: Proofs of the main theorems. Now 

everything is prepared to prove the epistemic invisibility for Moore and Gettier cases with 

respect to knowledge and belief operators which satisfy the laws of Stalnaker’s KB-systems. 

For the convenience of the reader, we explicitly recall once again the general setting. Let (X, 

OX) be any topological model of KB-logic of knowledge operator K and belief operator B. 

These operators are assumed to satisfy the axioms of a weak Stalnaker system. For A Î PX a 

Moore case is defined as M(A) := A Ç C(K(A)) ≠ Ø and a Gettier case as G(A) := A Ç B(A) 

Ç C(K(A)) ≠ Ø, respectively. M(A) and G(A) are said to be epistemically invisible in (X, OX) 

if and only if K(M(A)) = K(G(A)) = Ø and B(M(A)) = B(G(A)) = Ø.  

The proof that Gettier cases are epistemologically invisible with respect to the knowledge 

operator K is elementary. It can be carried out by some elementary calculations with S4-

formulas. In contrast, the proofs of epistemic invisibility with respect to belief operators B 

depends on Isbell’s theorem that is to be characterized as a highly non-trivial theorem of point-

free topology. Isbell’s theorem ensures that Stalnaker’s belief operator BS = intclint is the 

largest consistent belief operators B compatible with the knowledge operator K. 

 
(6.1) Theorem. Let (X, OX) be a topological model of KB-logic, M(A) and G(A) a Moore case 

and a Gettier case, respectively. Then M(A) and G(A) cannot be known, i.e., K(M(A)) = Ø and 

K(G(A)) = Ø.   

Proof.                 K(M(A)) = K(A & C(K(A)) = K(A) & K(C(K(A))) 

                    =     K(K(A)) & K(C(K(A))) = K(K(A) & C(K(A))) = K(Ø) = Ø.  

Since G(A) Í M(A) and K is monotone one obtains K(G(A)) Í K(M(A)) = Ø. Hence, Moore 

cases M(A) and Gettier cases G(A) are invisible for the topological knowledge operator K.¨ 
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To show the epistemic invisibility of Moore and Gettier cases with respect to all consistent 

belief operators B requires some more work. First of all, we show that Moore and Gettier 

sentences cannot be believed by Stalnaker’s belief operator BS: 

 
(6.2) Theorem. Moore cases M(A) and Gettier cases G(A) are epistemically invisible with 

respect to Stalnaker’s belief operator BS  = intclint, i.e., BS (M(A)) = Ø and BS(G(A)) = Ø. 

 
 Proof.                BS(M(A))    =    intclint(M(A))     =      intclint(A & C(K(A))  

                     =    intclint(A) & intclint(C(int(A))    =   intclint(A) & C(clintclint(A))     

                     =    intclint(A) & C(clint(A)  Í  clint(A) & C(clint(A)) = Ø. 

 
Hence, Moore cases M(A) are epistemologically invisible for BS. Since G(A) Í M(A) and BS 

is monotone, one obtains that a fortiori Gettier cases G(A) are epistemologically invisible for 

BS, i.e., BS(G(A))) = Ø.¨   

 
(6.3) Corollary. Moore cases M(A) and Gettier cases G(A) are epistemically invisible with 

respect to all consistent belief operators B, i.e., B(M(A)) = Ø and B(G(A)) = Ø. 

  
Proof. By Isbell’s theorem one has B(M(A)) Í BS(M(A)) = Ø. Belief operators B are 

monotone, hence from G(A) Í M(A) one obtains that B(G(A)) Í B(M(A)) = Ø.¨ 

  
In sum, with respect to epistemological invisibility Moore cases and Gettier cases behave the 

same way. Nevertheless, they may behave topologically quite differently. To prove this 

assertion, we use again the technical lemma (3.5): 

 
(6.4) Theorem. Gettier cases G(A) are nowhere dense in (X, OX), i.e., intcl(G(A)) = Ø. In 

contrast, Moore cases may be topologically dense in (X, OX).   
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 Proof. Let G(A) be a Gettier case. By the axiom of positive introspection (PI) (2.1) and the 

facticity of K the set B(A) is open. Hence, we can apply (3.5) and obtain   

 
                         intcl(A & B(A) &  C(K(A)) Í  intcl(B(A) &  C(K(A)) 

               =        intclint(B(A)) & intcl(C(K(A)) = intcl(int(A)) & intcl(C(K(A)))   

               =        intcl(int(A) & Cclintint(A))  Í clint(A) Ç Cclint(A) = Ø.¨                                                                                                                                                                                                                                                                                                                                                                

The following example shows that Moore cases may be dense in (X, OX):  

(6.5) Example of a dense Moore case. Let (R, OR) be the real line with Euclidean topology, 

and Q the rational numbers Q Í R. Then M(Q) := Q & C(int(Q)) = Q, and one obtains: 

intcl(M(Q)) = intcl(Q) = R, i.e., the Moore case M(Q) is dense in (R, OR).¨ 

 
Finally, let us mention that for KB even the difference between knowledge K and (not 

necessarily true) justified belief B is epistemically invisible, even nowhere dense: 

(6.6) Proposition. Let D(A) := B(A) & NOT(K(A)) be the set-theoretical difference between 

justified (consistent) belief B(A) and knowledge K(A). Then intcl(D(A)) = Ø. 

Proof. Using (3.5) and Isbell’s theorem one calculates:   

                          intcl(B(A) & C(K(A))  =  intcl(B(A)) & intcl(C(K(A)))     

                   =     intclint(A) & C(clint(A)) Í clint(A) & C(clint(A)) = Ø.¨ 

In other words, for the KB-logic justified belief B(A) (even if it is not true) and proper 

knowledge K(A) are topologically very close to each other. Their difference is topologically 

“negligible” aka nowhere dense. Thus, from the perspective of KB-logic there is only a small 

difference between knowledge and justified belief.   
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7. Concluding Remarks. This paper evidences that topological epistemology can handle the 

issue of Gettier cases in a flexible way. On the one hand, it shows that Gettier cases can be 

constructed in a natural and systematic way.  On the other hand, it shows that Gettier cases can 

be avoided systematically by choosing an appropriate topological design for the underlying 

topological spaces that are used for the semantics of KB-logic. More precisely, for any 

topological model (X, OX, B) one may find a Gettier-free model (X, OaX, BS) that minimally 

deviates from the original model (X, OX, B). Third, it explains the special epistemic status of 

Gettier cases, namely, that Gettier cases are described as contrived situations that depend on 

rare combinations of lucky and unlucky circumstances. They use to be met with a certain 

incredulity (cf. Nagel (2013), Machery (2017)). In the framework of topological epistemology, 

Gettier cases cannot only be not known and not even be consistently believed according to the 

standards of KB-logic. Nevertheless, they can be predicted on general topological grounds.9    

Topology offers various ways to construct models free of Gettier cases. Depending on the 

structure of conceptual spaces, Gettier cases G(A) as counterexamples to JTB may be predicted 

to occur, or, complementarily, they can be avoided if one is prepared to accept certain 

requirements for the conceptual spaces that underly the models. The occurrence of Gettier cases 

is a question of the topological design of the models that one favors. As Zagzebski emphasized, 

absolute precision is only one criterion for a good explanation of knowledge. Other criteria 

such as simplicity, conciseness, theoretical illumination as well are important.10 Hence, Gettier 

cases do not automatically refute the JTB-theory (cf. Zagzebski 2017, 188).    

 
9 Hence, the topological semantics of KB-systems presented in this paper supports Williamson’s thesis 
according to whom “there are natural formal models that provide robust evidence against JTB” (cf. 
Williamson 2015, 139) – at least partially.  Being more flexible than Williamson’s relational account, 
topological epistemology also has a place for models of KB that confirm the classical JTB-account.  
10 For some remarks on a general “design theory” of conceptual spaces see Douven and Gärdenfors 
(2019) and Douven (2019). 



 27 

In a nutshell, whether Gettier cases occur or not, depends on the underlying topological 

structure of a model. Moreover, the move from (X, OX) to (X, OaX) allows to eliminate all 

Gettier cases by only a slightly changing the topological structure. Thus, the topological 

approach of the logic of knowledge and belief shows that the occurrence of Gettier cases is a 

matter of the topological design of underlying models used. Gettier cases generated by ever 

more ingenuous thought-experiments do not automatically refute the traditional JTB-

conception of knowledge. Formal examples, in particular, topological examples may be 

considered a complementary source for arguments that JTB cannot be the last word in the 

discussion of the relation between knowledge and belief. Whether one should go thus far as 

Sellars is a different question: 

 
The explication of knowledge as "justified true belief", though it involves many pitfalls to 

which attention has been called in recent years, remains the orthodox or classical account 

and is, I believe, essentially sound. (Sellars 1975, p. 99)  

Sellars did not explain what he meant by “essentially sound.” The topological account gives a 

precise explication of the intuitive assessment of the “essential soundness” of the classical JTB-

account of knowledge. Topologically, Gettier cases are characterized as nowhere dense subsets 

of a topological universe, i.e., they are “rare” or “exceptional” in a quite precise sense. 

Moreover, they can easily be eliminated by only changing slightly the underlying topological 

structure. With a lot of good will, these facts may be interpreted as evidence that the JTB 

explication of knowledge is “essentially sound.” 
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