Issues in Epistemic and Modal
and their applications

A dissertation submitted to the
Faculty of Philosophy of the University of Tiibingen
in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Fa— -]

1

h

o~ by

[-]

«

o Cezar A. Mortari
2
]
]
[8]
ﬁ from
2

Santa Maria (Brazil)

1991

Logics

Hauptberichterstatter: Prof. Dr. Dr. Walter Hoering
Mitberichterstatter: Prof. Dr. Peter Schroeder-Heister
Dekan: Prof. Dr. Giinter Figal

Tag der miindlichen Prilfung: 28.1.1991

Gedruckt mit Genehmigung der Philosophischen Fakultit der Universitit Tilbingen

This work has been done also thanks to a scholarshin ne~--** ~ by CAPES, Brazil.

0000782870
O -

For Daniela,

in love.

Acknowledgements

Many people contributed in several ways to make this work possible, so any tentative
1o write a list would certainly end up being unjust by leaving someone out. To all of you, my
warm appreciation.

To some people, however, I owe a special debt:

Many thanks to Prof. Walter Hoering, my adviser de jure, who was always there,
ready to help, when I needed him, and who has done his best to keep my way free of
troubles.

This work would not have been accomplished at all without the constant support and
encouragement of Prof. Franz Guenthner, my de facto adviser, who, besides showing me a
lot of the logical landscape, also introduced me to computers and to the joys of programming.
As the former director of the Seminar fur Natilrlich-Sprachliche Systeme (SNS) of the
University of Tibingen, Prof. Guenthner provided me with a wonderful working and
learning environment, which I will never forget. Thank you very, very much!

1 would like also to thank all my colleagues and friends, both at the SNS and at the
Federal University of Santa Catarina (UFSC), Brazil, for the help along the way. In
particular, my thanks to Prof. S6nia Felipe.

Finally, my decpest gratitude 1o Daniela, for her love, patience and understanding.

Contents

Chapter 0 : Introduction & Road Map

Part I : Mini‘mal Belief States in Epistemic-Doxastic Logics
Chapter 1 : An Overview of EDL-SYSIEMScccccoociniiiiieniinrmvienrenienneneaneon
Chapter 2 : Minimal Belief Statescoccovoiviniimiicinninececieiiiine

INtermezzo 1 ..o

Part I1 : Valuation Semantics and Generalized Truth-Tables
Chapter 3 : Valuation Semantics for Normal Modal Logicsccoccvvvreneenns
Chapter 4 : Valuation Semantics for Classical Modal LOgICScc.ocoeecrerrernrrinnns
Chapter 5 : GTTs for K
Chapter 6 : The §S4 problem [T,

Chapter 7 : Valuations, Possible Worlds, and Tabl SYslemsccocovvvcvcrannns

Chapter 8 : Valuations & GTTs for Z5cocvvivvcicnnneninrenencienecnnas
INtErMEeZZO 2 ...ttt e s e
Part III : Implementationscccooociiiiiiiimiiiomiiniieecr it rrreeneinae

Chapter 9 : Implementing a GTT Builder for Z5 ...
Chapter 10 : A tableau-like theosem prover for ZP5

Chapter 11 : Implementation of the algorithmccocovvviieiiiniininiiriien

Final Remarksccocooiiiiiiiiiiiiiiiic e
Appendices and References ...

Appendix A : Some derivations
Appendix B : GTT.ZS Listings
Appendix C : TTP.ZP5 Listings
D : ALG.ZP5 LiSUNEScocoimiiiiiiniiiimiiiiiiiecree e e
E

$ REIEIENCES .ooveiiiiiiiiree ettt e et e e ane e e s e e e e

Appendix
Appendix

69

n

3
94
114
121
128
134

145

147

149
159

0

introduction & Road Map

Mihi a docto doctore

domandatur ¢ et rati quare
opium facit dormire?

A quoi respondeo

Quia est in eo
Virtus dormitiva,
Cujus est natura
Sensus assoupire.

MOLIERE, Le Malade Imaginaire.

0.1 Painting the background

The title of this work, Issues in epistemic and modal logics and their applications, is obviously a
very comprehensive one, the reason for this being the fact that the contents reflect my multiple interests
during the time I have been studying and working in Tiibingen. Such a title doesn’t tell us very much about
exactly what the contents are, or which issues are actually going to be considered, so of course I'll have to
say a few more words introducing the work and narrowing its subject matier. However, before we get
down to discussing the specific research problems, I guess it would be nice, and even necessary, to dwell
awhile on some preliminaries describing the big mosaic of which this work is hopefully going to be a small
piece. This surely will give the reader a better understanding of what I'm up to here, and why.

To begin with, one could ask, why (one more work in) modal logics? Such a question is perhaps to
be expected since probably everybody has, at least once, heard about these logics, and, if they are not one’s
working area, one probably has this idea that modal logics only deal with funny concepts like necessity and
possibility and contingency; in other words, that they deal with a lot of pretty metaphysical stuff—just
remember all that talking about Leibnizian “possible worlds™ (of which ours is supposed to be the best
one), and worlds being “accessible”, and “parallel universes”, and so on, until one is caught discussing

Chapter 0

how many possible fat men stand on that doorway.! One would hardly suspect that modal logics could be
of use in this (possible) world and utilitarian times of ours.

Now, to tell the plain truth, the interests of modal logics do nor—at least not only—concern
metaphysical talking about possible worlds. Modality is in fact a very broad notion, and considerations
about necessity and possibility deal with just one small side of it, namely with what is usually called alethic
modality. (“Alethic” comes from the Greek word for “truth”.) Necessity and possibility are said to be
“modes of truth™; i.e., they refer to the way in which a proposition can be true, like “necessarily true”,
“possibly true”, “impossibly true” (that is, “necessarily false™), and so on.

Now alethic modal logic was the first one to get developed: we can trace its beginning down to the
beginning of logic itself, namely to Aristotle. In his works De Interpretatione and Analytica Priora he
discusses logical interconnections between modal notions—such as necessary, impossible, possible, and
permitied—as well as giving some thought to the theory of modal syllogisms, that is, syllogisms which
have modalized premisses and conclusion (cf. [Lem77], p. 1-2). (As an example, “all animals are
necessarily mortal” and “all humans are necessarily animals”, ergo “all humans are necessarily mortal™.)
According to Lemmon, much of Aristotle’s discussion is quite confused, but “(its] outcome is a remarkably
correct set of implications” ([Lem77], p. 1).

From Aristotle’s time on, beginning with his own school, not forgetting the Stoics and Megarians,
and going until the end of the Middle Ages, there were a lot of people interested in and working with modal
notions, with sometimes rather interesting conuibulidns. We could mention, as an illustration, Diodorus
Chronus, who gave definitions of necessity and possibility by means of temporal notions (*'the possible is
that which either is or will be”); or the medieval discussion about de dicto and de re modalities; or Pseudo-
Scotus, who studied, besides “necessary” and “possible”, other modalities such as “it is known that” or it
is believed that”, thus antecipating-epistemic logics (cf. (Lem77, p. 4)). Afterwards, however, not very
much happened, the intermegnum between the end of the Dark Ages and the nineteenth century not being the
best possible modal logical world. Thus the modem development of modal logic starts only in this century
with the work of C.I. Lewis, whose main contribution, one could say, were the so-called “Lewis
systems”, SI-S5, which axiomatize increasingly strong conceptions of necessity.2

To make it short, thanks to alethic modal logic’s early, aristotelic beginning, the term “modal” got
stuck with this member of the logic family—it was the only one around in town, But as the years went by,
alethic’s younger sisters came into existence and grew into logics in their own right, and it became then
usual to employ the expression “modal logic” in a broader sense, which wasn’t only restricted to modes of
truth. Thus, today, we classify as modal logics, beyond the alethic ones, also temporal logics, deontic
logics, epistemic logics, and so forth. In a sense, one could label as “modal logics” all logical systems in
which one extends the language of classical logic by means of adding a certain kind of new operators, the
so called intensional ones. Intensional operators are those which are not truth-functions of the propositions
to which they apply. For instance:

1 (Cf. {Qu80}, p. 4) By a very suspicious coincidence, their number is exacty the same as the number of angels in the eye of a
needlo—or was It in the head of a pin...7

2 To e}l the truth, Lewis’ main interest was not formalizing several notions of nccessﬂy and possnbnh\y he was actually
working on different conceptions of implication, trying to avoid the parad of It In the course of his
investigations he arrived to the strict implication, which one can ch ize as the ity of the conditional—this is where
necessity comes into picture. By the way, readers wanting to know more about the historical development of modal logic are
referred to [KK62, Lem77, 1C72), whete additional bibliography can also be found.

e

Introduction & Road Map

“It is necessary that ...”

“It is possible that ..."

“It will be the case that ...”
“Darth Vader believes that ...”
“It is obligatory that ...”

In the Customary Way Of Doing Things, one takes the classical logic, say the classical propositional
logic, and adds to its language two new operators, ‘0’ (box) and ‘O’ (diamond), also introducing some
axioms and inference rules involving them. Usually the box gets interpreted as “necessarily”, and the
diamond as “possibly”. But someone can choose to say that ‘0p’ means “always p* (where p stands for
some proposition), so he’s doing tense logic. And someone else takes ‘Op’ to mean “Yoda knows that p”,
so she’s doing epistemic logic. Thus one could venture that only the way you interpret the box (necessary,
knows, always, provable) and the diamond will give a cue about which kind of logic you are doing. Of
course, depending on the different interpretations of the operators, different formulas can or will hold, or
not, but very often the same calculus is said to be both the, nicest alethic and the nicest epistemic logic, for
instance. '

As (0 the possible worlds we mentioned above, we are going to find them in the so-called possible-
world semantics for modal logics. In the case of classical logic, ¢.g. in a semantics for the propositional
calculus, to evaluate a formula we proceed by looking at one model (typically a function assigning truth-
values to propositional variables) and then computing this formula’s value. In the case of modal logics, we
have to consider more “models” at the same time. If we understand a model 1o be a kind of “world
description™, this amounts to say that in the modal logic case more worlds have to come into the picture.
Thus a proposition is necessary (in some world) not only if it holds with respect to this world, but also if it
holds in every other possible world (or, at least,’in every other possible world which is accessible o the
one we're in). And a proposition is possible if it holds in some (accessible) world. As one can see, this
kind of semantics matches well the old Leibnizian account of necessity and possibility.

Before going on, let me remark that the above characterization of modal logics—as extensions of the
classical one—is obviously too restrictive. Actually it just applies to what one could label classical modal
logic (sce [BS84]). According to this view, modal logics do not try to substitute the classical one, just
extend it and make it more powerful. But one could as well take another position, choosing as underlying
logic a rival of the classical one: intuitionistic logic, for instance, or relevance logic. If we now extend it by
adding modal operators, we'll end up with, say, paraconsistent modal logics, or relevant modal logics, and
so on. (For relevant modal logics, see e.g. [AB75, Fu88).)

Thus we have seen thal there are many other possibilities besides plain alethic modal logic, so with
yet another work in modal logics one won't necessarily end up being a metaphysician.3 Nevertheless,
before we jump to the conclusion that alethic modal logics are prima facie metaphysical and hence
uninteresting, let me remind you that this is absolutely not the case: there are also several other
interpretations of “necessity” to choose from. One can of course talk about a metaphysical kind of
necessity, conceming possible worlds, but “necessarily” can also mean “according to the laws of physics”

3 These is of coursc nothing wrong in doing Mctaphysics, but this word is often used as an accusation, thus...

Chapter 0

or “after the program terminates”, or “according to my beliefs” (cf. [FV85], p. 2; also [Go87], p. 6). We
can even talk about “historical necessity”, for that matter,

Having thus learned from these general remarks what modal logics are, fet us talk a little bit about
their importance. To begin with, surely in philosophy:

Some of the problems saised by modal logic seem to us to be among the most
important and fundamental in philosophy, but it would require a separate book, and
a very different one from ours, to discuss them adequately. In our view there is also
a link of a different kind between philosophy and modal logic, in that modal logic
can be used to clarify 8 number of philosophical problems themselves (...)
({HC72}, p- x) ’

Among the problems raised by modal logics, the first is certainly the one concerning their own
status as logics. Seen from the point of view of someone for whom there exists a thing such as The One
And Only True Logic, which is the classical, two-valued one—modal logics are no more than mathematical
formalisms, maybe nice to play with but without real philosophical importance. Witness for instance
criticisms such as Quine's, for whom modal logics, first, were conceived in sin—the sin of confusing use
and mention; and second, they are of no use anyway, because everything one does in some modal logic can
be somehow translated into the formalism of first-order predicate calculus; and third, there are serious
philosophical problems in their interpretation—among which one could mention a controversy over the
interpretation of quantifiers (objectual vs. substitutional), as well as an apparent commitment of modal
logics to essentialism (i.c., the thesis that objects have some of their properties essentially). But letting
aside this dispute, which, hawever interesting, is out of this work’s scope?, modal logic’s importance to
the philosophical analysis of the notions of necessity and contingency should go without saying.

Considering now what is outside philosophy’s realm, there is hardly any denying of the essential
role played nowadays by logic itself in computer science and artificial intelligence (henceforth “Al')—but
what about modal logics, particularly temporal and epistemic ones? Since we are going to talk a lot about
epistemic logics in this work, I would like, before shifting attention to them, to say just some words about
this other kind of modal fogic, i.¢., temporal (or tense) logics. There is again probably no need to stress
their importance, at least not in philosophy:

the theory of temporal logic is an integral concern of philosophical inquiry, and
questions of the nature of time and of temporal concepts have preoccupied
philosophers since the inauguration of the subject ({RU71], p. 1).

Among the contributions temporal logics can offer are formal models of time, which of course
“provides the philosopher ... with tools for achieving a better understanding of the nature of time itsel(”
([RU7I], p. 1).

In other areas, like computer science, the number of papers one can find dealing with, say, temporal
logic of programs, is legion. It seems that computers, or at feast logic programming, cannot dispose of a
temporal fogic of a kind—witness the following quotation (from the introduction of a paper of James
Allen’s, in which he presents an interval-based temporal logic):

4 The reader wanting to know more about criticisms of modal logics can consult [1ick78), ch. 10.

Introduction & Road Map

The problem of representing temporal knowledge and temporal reasoning arises in a
wide range of disciplines, including computer science, philosophy, psychology,
and linguistics. In computer science, it is & core problem of information systems,
program verification, artificial intelligence, and other areas involving process
modelling. ([A183], p. 832)

As an example, if we are concemed with planning the activities of a robot, it is necessary o
consider the effect of the robot’s actions in the world, if they are to be effective. What involves the need to
take changes into account, and changes obviously involve time. This is also emphasized in e.g. [MB83):
the authors state that “most work in Al which deals with real world problems would require some
reasoning with time and space” (p. 343). Allen himsclf, in the mentioned paper, gives us more examples,
such as databases which contain historical data—for example, if we are interested in modelling facis about
the history of a person, we are bound to take time into account.

And so on. I'm not wanting to go into details at this point and on this subject, because, in spite of
this work’s title being very encompassing, not everything gets in. Temporal logics, for instance, are not
mentioned—this work is about something else. The reader interested in this kind of modal logic can take a
look at [Go87], where more examples are discussed, and whose emphasis is on computational matters, or
at [Pr68] and [RU71], where more philosophical aspects are considered. So let us get down to the subarea
of modal logics which is of special interest here (it does get mentioned on the title): epistemic logics.

0.2 Getting eplistemic

First of all, it goes without saying that epistemic logic deals with epistemic notions, namely
knowledge, belief, conviction, and other similar propositional attitudes. To put it In other words, epistemic
logic is the kind of logic whose aim is “to explicate epistemic notions and to investigate the laws governing
them” ({Len78], p. 16). Concretely, it is the kind of modal logic in which we interpret the box ‘0’ as “A
knows that ..."”, where A refers to some particular agent (which can be a human being, a robot, a
knowledge base, a processor...). There is also a second side to this, namely the possibility of interpreting
the box as “A believes/is convinced that ...”, in which case we’d have a doxastic logic. The term
“epistemic”, however, usually covers both cases. And, instcad of using the box, one commonly takes ‘K’
and ‘B’ to symbolize the desired operators. Sometimes these notational changes are the only ones we have:
the axioms and inference rules of some alethic system are kept as paradigms. For instance, very often the
modal calculus S5 is taken to be the logic of knowledge (e.g. in [HM84]), and weak S5 (a.k.a. KD45) w0
be the logic of belief.

This briefty sketched situation describes only the case in which we consider a single agent. But it is
common in Al 10 have situations in which one must consider a whole lot of interacting agents. So, if one
has, say, 1,...,m agents, one has to introduce one operator K; for each of these agents.

On the semantical side, when we now talk about possible worlds we are no longer having in mind
some metaphysical sense of possibility, but rather what the agents think to be possible. The terminology

Chapter 0

“possible worlds” is even replaced by “epistemic alternatives”, meaning the different ways the world can be
according to the agent. Thus an agent knows some proposition p iff p is true in ali worlds she thinks are
possible. In a sense, we still are talking about possibility, but now a subjective one. As a side remark, there
is a lot of discussion about whether one can believe impossible things, that is, whether only logically
possible worlds are allowed to count as sound epistemic alternatives, or whether we could, maybe, have
some impossible ones, too. Opinions are greatly divided. (More about this question e.g. in [Len78] or
[Hi75].)

Now what is, concretely, the importance of epistemic (or doxastic) logics, aside from a purely
philosophical one? Well, their role is central to research in artificial intelligence, but not only there:
examples in economics, linguistics, compuler science, efc., are easy to find. Let us keep (o the Al case.
According to Stanley Rosenschein, everyrhing in Al has to do with knowledge. For instance, he states that
the major subareas of Al can be described in a way that highlights the importance of the concept of
knowledge. [quote:

+ Perception has to do with an agenl’s acquiring knowledge about its environment
by interpreting sensory input.

+ Planning has (o do with an agent’s acting on the basis of its knowledge of the
consequences of its potential actions.

« Reasoning involves an agent’s deriving conclusions from f{acts it already knows.

« Learnlng involves incrementing knowledge through experience.

« Communlcatlon (e.g. in natural language) involves the continual updating of
mutual knowledge possessed by the speaker and hearer. ({Ro85], p. 3)

So it seems that one cannot deny the importance of treating knowledge in AI—Rosenschein even
speaks of the existence of a “knowledge industry” ([Ro85}, p. 3). Now, since epistemic logic is a topic
about which this work is concerned, perhaps we could talk somewhat more about its importance by
considering some more concrete examples. In doing this, I'll closely follow a nice paper of J. Halpem’s
[Ha86b], in which the author addresses these questions. There he talks about the importance of reasoning
about knowledge in certain areas of research in Al like distributed systems, logical omniscience, common
knowledge, knowledge and action. (To these [would also add nonmonotonic logics.) I'll try to characterize
briefly the importance of epistemic matters in each one of these topics, what shall give us a little more of the
flavor of this subject. '

1. Distributed Systems

Distributed systems of computers, as one can grasp by taking a look at the specialized literature, are
becoming more and more popular and widely applicd. Such systems are used, for instance, to compute a
protocol, which is “an algorithm whose execution is shared by a number of independent participants”
([LR86], p. 208). More precisely, a distributed system can be characterized as follows:

A distributed system consist of a collection of processors, say 1,...,m, connected
by a communication network. The processors communicate which each other over
the links in the nctwork. Each processor is a state machine, which at all times is in

Introduction & Road Map

some state. This state is a function of the initial siate, the messages it has received,
and possibly some internal events (such as the ticking of a clock). ({Ha86b], p. 5)

In other words, we have the different participants in the system compulting different tasks, and, contrary to
sequential or parallel processing (where processors share the same memory), each player doesn't
necessarily know what the others are doing, even if, in fact, they are exchanging messages all the time.
(This is for insiance a reason why the former logics of programs are inadequate when we reason about the
behavior of protocols. Cf. [LR86], p. 208.) Now this property— that players are not necessarily aware of
what the others are doing—characterizes just the lack of knowledge from each player with respect to the
total state of the system. According to [Ha86b], the notion of knowledge at stake here is an “external” one,
meaning it is not the processor who thinks (“and scratches its head™) about whether or not it knows
something, but it’s rather a programmer, from an outside point of view, who says that the processor
knows, or not, some fact. Even though, one cannot dispute that reasoning about knowledge is a very
important characteristic of distributed systems. Quoting from {LR86]), “‘any logic of protocols must include
as part of it a logic of knowledge” (p. 208).5

Now talking about knowledge in sitvations involving more than one agent involves a lot of
“subtleties™ (JHM86), p. 1). The point can be better illustrated by the following puzzle of the muddy
children ((HM86), p. 2):

Imagine 7 children playing together. The mother of these children has told them
that if they get dirty there will be severe consequences. So, of course, each child
wants lo keep clean, but each would love 1o see the others get dirty. Now it happens
during their play that some of the children, say k of them, get mud on their
foreheads. Each can see the mud on others but not on his own forehead. So, of
course, no one says a thing. Along comes the father, who says, “At least one of
you has mud on your head™, thus expressing a fact known to each of them before
he spoke (if k > 1). The father then asks the following question, over and over:
*“Can any of you prove you have mud on your head?” Assuming that all the children
are perceplive, intetligent, truthful, and that they answer simultancously, what will
happen?

There is a “proof” that the first k — 1 times he asks the question, they will all say
“no” but then the kth time the dirty children will answer “yes”.

I'm not going to discuss the “proof” here; the reader is referred 1o (HM86), where the problem is
examined in detail. Now one of the “subtleties” this puzzle is suppose to illustrate is the following: since
what the falhg said was already known by the children, it would seem that his statement wasn’t needed at
all. But this is not the case, the proof won't go without it ({HM86), p. 2). Thus, before and after the
father’s statement, we have two different sitvations with regard to what the children know. The difference
involves the topic we are going to mention next: after the father’s statement, the children have conunon
knowledge.

3 By the way, they :mé that a logic of time is also necessary.

Chapter 0

2. Common Knowledge

Another theme that very often appears is discussions of knowledge, in particular in cases (as the one
before) where more agents are involved, is the notion of common knowledge. To put it short, we say that a
certain group of agents has common knowledge of a certain fact p not only (as one could think) if every
member of the group knows p, but also if everybody knows that everybody knows that p, and if
everybody knows that everybody knows that everybody knows that p, and if everybody knows ... That
there is a big difference between the two situations is one of the points in the muddy children puzzle above.
Without the statement of the father, even if every children knows that at least one has mud on his/her
forchead, they don’t have common knowledge.

Now, is common knowledge interesting? Can we find applications of it?

Sure. It seems that the notion of common knowledge is essential to the notion of agreement—
agreement’ implies common knowledge of the agreement” ({Ha86b), p. 10). We can see this clearly in
the next example of the coordinate attack problem ((HM86), p. 6):

Two divisions of an army are camped on two hilltops overlooking a common
valley. In the valley awaits the enemy. It is clear that if both divisions attack the
encmy simultaneously, they will win the battle, whereas if only one division attacks
it will be defeated. The divisions do not initially have plans for launching an attack
on the enemy, and the commanding general of the first division wishes to
coordinate a simultaneous attack (at some time the next day). Neither general will
decide to attack unless he is sure that the other will attack with him. The generals
can only c« icate by of a messenger. Normally, it takes the messenger
one hour to get from one encampment to the other. However, it is possible that he
will get lost in the dark or, worse yet, be captured by the enemy. Fortunately, on
this particular night, everything goes smoothly. How long will take them to
coordinate an attack?

[HM86) show that, despite the fact that in the said night everything goes smoothly, it is impossible
for the two generals to reach an agreement and coordinate an attack (p. 6). It is not difficult to sce why: the
first general will not attack unless he or she knows that the message proposing a joint action was delivered,
and unless he or she knows that the other general knows that his or her acknowledgement of the first
message was delivered, and unless ... Well, unless there is common knowledge that an atiack is going to
happen.

As a side remark to this, the authors in (HM86] show that “not only is common knowledge not
attainable where communication is not guaranteed, it is also not attainable in systems where communication
is guaranteed, as long as there is some uncertainty in message delivery time” ((Ha86b], p. 10). This also
holds for humans—think for instance of how often, and under which difficult conditions, do nations reach
agreements. ..

3. Knowledge and Action

It is common, I think, that examplés intending to illustrate some point end up throwing light in more
than one. In the previous example of the coordinate attack, not only common knowledge is at stake, but it
also involves communication and acting upon having knowledge. Knowledge and action, for instance, are

Iniroduction & Road Map

crucially intertwined: “Knowledge is necessary to perform actions, and new knowledge is gained as a result
of performing actions™ ([Ha86b), p. 11). Witness also the quotation from [Ro85] above, concerning
planning: an agent acts based on the knowledge of the consequences of its actions. Discussions of this topic
can be found in (McH69], and also in a paper by R.C. Moore ([Mo81]), where he introduces a logic
combining knowledge and action. The main point is that knowledge alone, or reasoning about knowledge
alone, is of little value—mostly we are interested in having information about what we can do with the
knowledge we’ve got. To mention the example discussed in [Mo81], if there is a safe that John wants to
open, we might make the following inferences: if John knows the combination, he can immediately open
the safe. Or, if he doesn’t know the combination, but know where it is written, he can read the combination
and then open the safe ([Mo81], p. 473). As one can see, if John doesn’t have knowledge about the
combination, his next preoccupations could well be how to obtain this knowledge, and which actions are
necessary for that.6

4. Logical Omniscience

After having stressed (I hope successfully) the importance of the notion of knowledge in different
topics in Al, one should also mention some problems concerning the way things are being done. I said over
and over again thal epistemic logics are important. Now, are the ones we have really good for the uses we
have in mind for them? Yes and no. Thal is, there is a problem with the way people model knowledge, and
the key words here are “logical omniscience™.

If one would take a day out to dive in the literature conceming epistemic logic, one would surely
notice that people have been and are still talking a real lot about this problem. One would also notice that
most authors just avoid the problem (“we consider in this paper only agents having very powerful
reasoning capabilities...”), or they accept logical omniscience as a kind of malum necessarium, that is,
something unpleasant you have to live with if you want to have a logical system at all. Not so often (but it
has been changing in the last years), people do Iry to find a solution to the problem.

To present things in an informal way, an agent A is considered 1o be logically omniscient if she
knows all logical consequences of her knowledge, among which, by the way, are all “logical truths”. In
other words, if A knows that A, and moreover B is a logical consequence of A, then A knows that B, 100.
Or take A to be a logical truth, e.g. a tautology: then A also knows that A.

Now this presentation is surely very rough—there are many other, more rigorous formulations of
the problem—bult it will be enough for our motives here. (A more detailed presentation of several different
“formal encodings” of consequential closure principles can be found in {Len78], pp. 53(f.)

More ofien than not, this situation conceming an agent’s reasoning capabilities is considered 10 be a
plague. I am not wanting to commit myself here and yet on this topic-—one should, first of ali, betier check
out whether this situation is really a Bad Thing, or something that’s not really that serious. But anyway,
one should at least have the possibility of making choices, that is, it would be nice to have different
epistemic-doxastic logical systems in which one can have or not, as one likes, logical omniscient agents.
This is exactly the rcason why logical omniscience is seen as a plague for the possible-world semantics:

6 One couldn’t have made this point more precisely than “Slippery Jim" diGriz, the Stainless Steet Rat: “Money was what |
wanted. Other peoplc’s money. Money is locked away, 3o the more | knew about locks the more 1 would be able to get this
money.” (Harry Harrison, A Stainless Steel Rat is Born. Ney Work, Banlam Books, 1988, p. 12.)

Chapter 0

you don’t have a choice. Because of the way this semantics is built up, agents end up being logically
omniscient—or so they seem. Remember above, where we said that A knows p iff p is true in every world
(epistemic alternative) that A thinks to be possible? Well, worlds are supposed to be logically consistent—
they are logically possible worlds—so tautologics are bound to be true in every conceivable one. Hence,
modelling an agent’s knowledge in this way is 10 assert, right from the beginning, that she’s going to be
logically omniscient. There’s simply no world in which a tautology A will be false, so that we can falsify
KaA too.

There are of course tentative solutions, even if not very satisfactory ones—sometimes one ends up
with mixings of syntax and semantics; or one finds out that agents are no more logically omniscient with
regard to the classical logic, but they are, say, in some relevance logic, what doesn’t looks much better and
also doesn’t seem to agree with our intuitions. But see for instance [Hi75, Lev84, Va86] on the problem.
And more about this on [Ha86b], which also mentions additional bibliography.

5. Nonmonotonic Logics

To close this general introduction and background painting, I have to say a few words about
nonmonotonic logics (henceforth NMLs), not only because one of the approaches to the formalization of
nonmonotonic reasoning makes use of epistemic logics, but also because our work touches marginally
upon these matiers, or better: this work’s starting point arose from some problems in epistemic logics that
deal with the formalization of nonmonotonic inferences. But what exactly are NMLs? Or, for that matter,
what is monotonicity?)

A characteristic of classical logic—to tell the truth, also of a lot of its rivals—is the following one:
once you have carried out a valid inference, nothing you may possibly add to your premisses will ever
change the validity of this inference (even if you add the negation of the conclusion, because in this case the
premisses would be inconsistent and anything goes). Now this is what monotonicity is about: by adding
premisses you can gain information (in the form of new conclusions), but you lose nothing. A little more
formally, if p follows from some set I of propositions, monotonicity guarantees that it also follows from I’
augmented by whatever set of new propositions you like.

Well, if one now thinks about how things should idcally be, inferences being monotonic seems to
be something desirable in logic. However, more often than not, we humans are confronted with situations
in which we have 10 refrain from previously derived conclusions. Consider the following proposition
([Gi87]. p. 2): birds fy. It is obviously not the case that all birds fly, but they normally (typicaliy) do.
Now if someone tells you that Tweety is a bird, and you know nothing else about Tweety, you'll gladly
jump (or even fly) to the conclusion that Tweety flies. But suppose afterwards you learn that Tweety has its
feet set in concrete, old Chicago style: then you are not anymore ready (o assert or believe that Tweety flies.
So the inference from “Birds fly” and “Tweety is a bird™ to “Tweety flies” was a nonmonotonic one: upon
leaming new information, we have to retract this conclusion. Actually the inference relied more on the fact
that typical birds fly, and, in the absence of contrary information, you assumed that Tweety was a typical
bird, from what you refrained upon leaming of its predicament.

Now there are severat different ways of doing nonmonotonic reasoning, or, to put it better, of
trying to formally capture such inferences—like default logics, or circumscription. [won’t discuss all them

Introduction & Road Map

possibilities here, but I have to mention the one among these which is of some interest to us here: the so-
called “modal approaches” (cf., also what follows, [Gi87], pp. 8-9).

According to Ginsberg, the first ones who tried to use a modal logic to model nonmonotonic
reasoning were McDermott and Doyle [McD80], in which they used a first-order logic augmented by a
modal operator M, which should mean “maybe” or “is consistent with everything else that is known”. If we
take ‘b’ 1o symbolize ‘Birds fly’, and ‘f 10 *Tweety flies’, our example inference could be then formalized
as

bAMff

This M operator, however, is not entirely without problems. According to R.C. Moore, it
characterizes so weak a “notion of consistency that, as [McDermott and Doyle] point out, MP is not
inconsistent with —P" ({Mo83}, p. 128). Moore set out to change thig himself, what he accomplished by

introducing an autoepistemic logic, in which he changed this weak consi y operator into an epistemic
necessity operator (“it is known” or “it is believed”). So the example inference would now be formulated as
b A —\Lﬁf—)f.

With such an approach we reach then a state of things where also epistemic logics can make an
important contribution to the formalizations of nonmonotonic reasoning. But this is all what I wanted to say
about NMLs here. I hope I could have made clear the importance of epistemic notions in Al and computer
science, and also that I succeeded in giving an idea of where our work is going to fit in. So now let us get
down 1o our specific research problems here.

0.3 Down to specifics

The main interest of this work—its leading thread, or, at least, where things begin—comes from
epistemic logic, more precisely, from the tentative of characterizing minimal belief states. The problem can
be traced back to a paper of J. Halpern and Y. Moses’ called “Towards a theory of knowledge and
ignorance” ({HM84)). In said paper the authors (henceforth HM) consider the problem of characlerizing the
knowledge state of an agent A in situations where A has only partial information about some domain, that
is, when A knows only some formula a. In their paper they assume that reasoners are logically omniscient,
i.e., that they are perfect reasoners concerning propositional logic: they know all logical consequences of
what they know. Besides, reasoners are also thought to have perfect introspective knowledge about their
own knowledge or ignorance: they are completely in clear about what they know and what they don’t
know. As a consequence of these assumptions, the characterization of a knowledge state is a non-trivial
matter. Suppose, for example, that A(ngela)’ knows only p: she can discover by introspection that she
doesn’t know ¢ and thus she knows she doesn’t know it. This entails that something more than just the
logical consequences of knowing a belongs to an agent’s knowledge state, and so any atiempt 1o

7 1¢s a litde bit boring and cumbersome 10 speak all the time about "an agent A™, so0 1 prefer W give her a name, like Angela.
Things look nicer this way, too. For the reason why we're talking about female agents, cf. Lazarus Long: “Men arc more
sentimental than women. It blurs their thinking.*

Chapler 0

characterize such a state will have to take this fact into consideration. To cope with the problem, HM
present different characterization methods, making use for instance of Kripke models, stable sets, and so
on. They also introduce the notion of an “honest” formula, namely of a formula that uniquely characterizes
Angela’s knowledge state, when this formula is everything that she knows. As an example, or rather as a
counter-example, the formula a = Kp v Kq is not honest, because an agent cannot know a without
knowing either p or q. On the other hand, Kp A Kgq is honest. HM present several ways of defining
honesty, and they are all proved to be equivalent. An algorithm for deciding about the honesty of a formula
is also given.

So far so good, but the logic used in (HM84] is propositional S5, and, as I mentioned, this implies
that agents are supposed to be logically omniscient and fully introspective. What can be just fine for a lot of
applications, but using S§ as a logic of knowledge will give us some problems the moment we try to
formalize in it nonmonotonic inferences, for instance, default reasoning. Loosely speaking, a default rule
could be described as follows: g (which is called the default) is true, unless one knows that p is true
(cf. [HM84], p. 17). Formally, —Kap — ¢, where ‘Kap’ is to be understood as ‘Angela knows that p’.
Now according to HM the formula —Kzp — q is itself not honest, if p and q are propositional variables;
further, the authors state that such a formula doesn’t behave at all like a default rule:

In fact, for an honest a, [-Kap — ¢] is a consequence of ‘knowing only o’
exacltly if one of p or ¢ is ({(HM84], p. 17).

As a consequence one should, in their opinion, either give up on the hope of having consistent non-
monotonic default ruies, or else give up on S5 as an adequate logic for modelling knowledge. HM,
however, would like to preserve both, so they suggest, as a possible way of escaping this dilemma, that
default rules could perhaps be better formalized in an epistemic-doxastic logic, namely as formulas of the
form BA(—Kap — ¢), where ‘B’ stands for ‘Angela believes that ...". They justify this suggestion by
saying that '

it is not our knowledge or ignorance of p that makes ¢ true, but it is our information
regarding our knowledge-gathering capabilities that leads us to believe ¢ in the
absence of our knowledge of p ((HM84], p. 17).

(Under “epistemic-doxastic logic”—EDL for short——we understand a logic system in which both concepts,
knowledge and belief, are contemplated.)

So, to begin this work, and to set its main and more important goal, I will follow their suggestion
and try to characierize “minimal epistemic states” in different EDL-calculi. In other words, I'll be looking
for ways of describing Angela’s epistemic (i.e., knowledge or belief-—we’ll decide it later) state under the
supposition that she knows or believes only some formula a. In doing this I won’t stay restricted to the
only EDL-system proposed by HM (since this logic’'s “knowledge branch” is §§. and I am not that
convinced that SS§ is the best option in formalizing knowiedge), but I'll rather try to work with several
calculi of dilferent strength.

Thus, in Chapter 1, we’ll have an overview of some epistemic-doxastic logics. I will introduce
several systems which we'll be working with, giving for each one an axiomatic presentation. This will be
accompanied by a small discussion about the tenability of the various epistemic-doxastical principles
involved. Also in the syntactical part are included some resufts about the number of modalities and the

Introduction & Road Map

existence or not of reduction laws with respect to each system, results which will prove to be useful later
on. In the semantical part we'll introduce a possible-world semantics for our logics, after what correctness
and completeness theorems will be proved.

Chapter 2 will be devoted to the characterization of minimal epistemic states, in which I'll try the
different approaches already employed by HM. A first trial employs stable sets, which we’ll use to
represent epistemic states. A next, shorst section will establish some relation between stable and saturated
sets (which are maximal consistent), giving an alternative to our characterization problem. A third approach
will rely on Kripke models—that is, on possible-world models; and last (but not least) an algorithmic
approach. We'll see that each of these methods yield different results, depending on the logic being
considered—sometimes they work, and sometimes don’t. Nicely enough, the algorithmic one will prove o
be the most general of them. Now, to talk a little bit more about the importance of this enterprise, 1 would
like to mention that HM’s original motivation arose from the question of “how communication in a
distributed system changes the state of knowledge of the processors in the system” ((HM84], p. 1). 1
already remarked above, speaking of distributed systems, that the players in the system suffer under a lack
of knowledge concerning what the remaining players are doing. This is an example of a situation where
agents only have partial information at their disposal. In other words, everything they know (or believe)
can be described by some formula . The question of how (o characterize an agent’s knowledge state in
such a situation comes from our intuition that there must be one, and only one, of such states, which fully
describes what the agent knows (or believes). In our case here, where we consider both knowledge and
belicf, we have the additional motivation that results could also be of use for the formalization of
nonmonolonic reasoning. I

As I was saying, then, the algorithmic method is the one which will prove to be the most fruitful. In
the case of HM's paper, the algorithm relies in a decision procedure for S5, which was the knowledge
logic assumed there. Here we’ll have obviously to examine decision procedures for each of the epistemic-
doxastic logics we are considering. This new goal makes the connection to the second part of the present
work, in which I consider valuation semantics and generalized truth tables for alethic modal logics. I hope 1
have already made a case concerning the importance of alethic modal logics in the preceding sections of this
chapter. At the risk of repeating myself, the structure of modal logics and the EDLs considered here is very
similar; thus we can adapt results in alethic modal logics to the epistemic case. And I'll be taking a look at
valuation semantics because they easily yield decision procedures.

We’ll thus begin Chapler 3 with a short and informal introduction to valuation semantics, trying to
give the reader afirst, intuitive idea of what they are about without jumping immediately to the definitions.
In the following sections of this chapter we’ll be examining the construction of such semantics for normal
modal logics. These are, so to say, the mostly known among the modal logical systems, including
landmarks such as T and the Lewis sysiems 84 and S5. We'll see that, for some of these logics, valuation
semantics are (somewhaf) easy to find, whilst for others we still are confronted with open problems.

In Chapter 4 will 1ake care of classical modal logics, where here “classical” is not being employed in
the sense I did some pages before, that is, meaning all modal logics which extend the classical one. In the
sense of Chapter 4, classical modal logics are certain subsystems of the weakest normal one (which is K).
These logics are, in a sense, of no greater importance to the main goal of this work, since the EDLs we'll
be considering are ali normal, but it is nice to see in which way valuation semantics can be defined for other
kinds of modal logic as well.

'

13

Chapier 0

In Chapter 5 we will take a look at the main byproduct of valuation semantics, which are generalized
truth-tables. These are, similar to the truth-tables for the classical propositional calculus, constructs which
atlow us to decide on the validity of a formula by examining the value it gets on different assignment of
truth-values to its propositional variables and, depending on this, to itls modalized subformulas. In other
words, they are a method of having truth-tables—sort of—for modal logics. We'll show how by means of
an example logic, K. And in the next chapter, which is number 6, we'll briefly look at how to obtain
generalized truth-tables for one of the “problematic™” normal logics of chapter 3, namely $4.

Having worked with generalized truth-tables, one has the fecling that there are some similitudes to
another decision procedure for modal logics, the tableau sysiems. So in Chapter 7 we’ll have a small
comparison between the two methods, showling that, to use a metaphor, they are the two sides of a coin—
as are truth-tables and tableau systems for the classical propositional logic.

Finally, in Chapter 8, which closes the second part, we'll return to our main interest and show how
to adapt valuations semantics, and hence the construction of gencralized truth-tables, to the epistemic-
doxastic logical case. We will take then an EDL as example, and adapt for it the whole procedure. As we'll
see, this can be done in a more or less straightforward way: some semantic conditions are automatically
given, because now all we have is for instance “Angela knows” instead of “necessarily”. The conditions,
however, that take care of the validity of “mixed” axioms—the ones involving knowledge and belief—are
particular 1o EDLs, thus posing new problems. The reason is that in EDLs we have, so to say, two strong
operators—i.e., which behave like necessity—and no weak operators. The opposite of your run-off-the-e
mill alethic modal logic.

The third part of this work concems the “and their applications” part of the title, what reflects my
interests in programming issues, in particular the implementation of theorem provers for modal logics. By
“theorem proving” I mean of course autormated theorem proving (henceforth ATP), which also goes by the
name of “automated deduction”. The big interest in ATP developed only in this century, with the Age of the
Digital Computer, what gave researchers means of trying out their theoretical considerations. The ideas
behind the ATP enterprise, however, are quite old, the automation of reasoning, or mechanizing ol
thought, being something many a philosopher or scientist dreamt about. Following M. Davis, we could say
that the fundamental stone in the history of the mechanization of human thought was laid by Descartes with
his employing of algebraic methods to develop classical Greek geometry: “what had seemed in Euclid to be
the result of cunning and mathematical ingenuily was now revealed as being accessible to relatively
mechanical treatment” ([Da83}, p. 1). Descartes himself seemed to be quite aware of this, but the dream of
doing for all deductive.reasoning what he did for geometry was really bom in the works of Leibniz, with
his ambitious projects of a calculus of reason (calculus ratiocinator) and of a universal language
(characteristica universalis). These projects, unfortunately, were never actually developed, for Leibniz had
also many other interests: from the calculus of reason we have some fragments, but the universal language
remained really a dream (cf. [Da83}, p. 3). As [said, the real “boom” of interest in automated deduction
really began in this century 8

Speaking of applications, there is of course, if one can say so, a more “theory oriented” side of this
research; one would desire powerful ATPers in order to gain more knowledge in mathematics—either by
obtaining new, maybe shorter proofs of known theorems, or even by proving propositions which now still

8 A short but clearly ged history of d deducti t least until the end of the 60°s—can be found in Davis's paper
[Da83].

Introduction & Road Map

have the status of conjectures. ATPers would be thus helping the progress of science. On a more “practical”
side, again if one can say so, good ATP techniques can be used by computer scientists to prove properties
of programs working on axiomatized structures (cf. [Ga86], p. 3). Not to forget applications in logic
progr ing: let us consid

the declarative language Prolog, for instance. A Prolog program consists in a
set of facts and mles, that is, in a set of assertions, and a Prolog computation is in fact a proof, from which
a program'’s outpul is to be extracied. It goes without saying that efficient proof techniques are vital to
efficient implementations of Prolog. Speaking of this, there are extensions of the Prolog language which
introduce modal or temporal features, in which case ATPers for modal logics also play an essential role
when it comes to implementations.

Besides this, ATP techniques are of importance also in database management. It should be obvious
that one cannot explicitly encode in a database all possible facts: a lot of them will have to be implicit. Take
for instance the true proposition “the Earth has only one sun”. It is also true that “the Earth doesn’t have
two suns”, “the Earth doesn’t have three suns”, and so infinitely on. Since it is impossible to store ali these
propositions explicitly, one has 10 make use of inference techniques to deduce such information. This is
what also happens in the ficld of knowledge representation—e.g. conceming the knowledge base of some
robot. One just cannot use memory to store every single fact such a robot knows or believes. Because—
even if we set aside examples like the preceding—the robot is interacting with its ambient and “leaming”
new facts. In order to behave intelligently, it has to be able to draw inferences from pieces of information
he gathers. So it makes sense 10 have some mechanism—and an efficient mechanism would be even
better—which allows one to deduce new facts from facts already stored. This is where ATP techniques
come into picture.

Thus, in the third part of this work, we’ll try to go to the practical side of what we have so far
discussed. In Chapter 9 we'll examine a program implementing generalized truth-tables for the example
EDL of Chapter 8—a rather “naive” program, but reflecting with fidelity the definitions. The next Chapter,
Chapter 10, will try to optimize this situation presenting a thecorem prover which is an improved version of
our first program, by using tableau proof techniques. As I remember mentioning before, generalized truth-
tables and tableau systems can be scen as the two sides of a coin, so it is not surprising that, once we have
GTT definitions for some logic, we can tum them around and generate tableau systems. I cannot go into
much details here, because first we will have to sec how, exactly, do our generalized truth-tables function.
Finally, in Chapter 11, we'll implement, using the ATPer from Chapter 10, the algorithm used to
characterize minimal belief states.

15

Minimal Belief States
in
Epistemic-Doxastic Logics

1

An Overview of EDL-Systems

I will now show off almost all the Greek I know:
“epistemic” has to do with knowledge; “doxastic” , with belief.
So in what follows we shall have to do with

logics of knowledge and belief. -

D. ISRAEL, A Weak Logic of Knowledge and Belief.

In this chapter | make a presentation of the epistemic-doxastic logics we are going to work with. We
consider modalities and reduction laws, a possible-world semantics, and prove correctness and
completeness.

1.1 Enter the logics

We'll use in this Part I a propositional language L which also includes operators for knowing that
and believing that. Small letters (p, g, r,...) will be used as propositional variables, whereas capital letters,
italicized, (A, B, C,...) will stand for syntactical variables for formulas. I'll also be occasionally using
small greek letters as metavariables in some special cases, namely for formulas which denote everything
that Angela knows or believes (like in “suppose @ is everything that Angela believes”). Since we are going
to keep to the one—agent case, ‘KA’ and ‘BA’ will be used as abbreviations for ‘KA’ (that is, ‘Angela
knows that A’) and ‘BaA’ (that is, *Angela believes that A’), respectively. ‘=’ and ‘—° are introduced as
primitive; the other boolean operators ‘A’, ‘v’ and ‘&3’ are defined in terms of these in the usual way.
‘FOR’ stands for the set of all formulas of L.

We begin by considering a basic EDL? (at least in the bounds of this dissertation), which we will
call Z. Actually, if we would follow the (more or less) standard way of christening modal logics (like in
[Ch80]), this system should be named something like ‘K T4KbDb4bSbM*, where the ‘KT4’ part refers
10 the knowledge branch, *KbDb4bsb’ (o the belief one, and ‘M’ to one “mixed” axiom (as one can see

9 I'll use the expressions “EDL”, “EDLogic”, “EDL-calculus” and “EDL-system” as synonymous throughout this work.

19

Chapter |

from the axiom listing below). However, since we are here also going (o consider several extensions of Z,
names would be growing and growing, so let us agree (non sunt prolonganda nomina preeter necessitatem,
or words to that effect) that *Z’ stands for KT4KPDb4bSbM Thus, in this work, Zxyz will denote the
extension of Z by adding schemas x, y, and z as axioms.

Now Z has the following axioms:

pc. Allautologies of the classical propositional logic.

k. K(A - B)—> (KA - KB)

t KA A

4. KA - KKA (positive K-introspection)
k. B(A - B)— (BA - BB)

db. BA - -B-A

45, BA - BBA (positive B-introspection)
56, —BA — B-BA (negative B-introspection)
m. KA 5 BA

As rules of inference we have

MP. A, ~A—>SB/+B
RK. +—A [+ KA.

As derived inference rules we can also have

RB. ~A /+BA
RKE. ~A& B [+ KA & KB
RBE. mA&© B/ + BA & BB

Let us now talk a bit about this axiomatization. The reader has surely noticed that the schema

5. -KA - K—-KA (negative K-introspection)

doesn’t belong to the axiom basis, as it was perhaps to expect. There are two reasons for this, namely: (1)
if we are not considering ideal agents (with regard to their introspective powers), 5 is clearly not valid (at
least for human agents it is not, on what everybody seems to agree); and (2) if we put 5 together with some
harmless—looking, acceptable EDL-principles, we get as a conscquence lots of trouble (in the form of some
nasty theorems, what I'lt be showing soon enough). But of course we can lake ideal agents in
consideration, and lhixs extend Z by adding 5 as a new axiom. This resulting extension of Z we will call
zs.10

Z5 is actually the system HM suggested, but they mention it in a slightly different axiomatization—
instead of m we would have the following axiom schema:

10 1 am not going here and yet to enter the discussion Ideal vs. Not [deal agents, even if 1'd like to do that. Hence we'll be
suffering in this work of logical omniscience and similar troubles.

20

An Overview of EDL-Systesns

m*. KA — BKA.

We could call this other system Z5*, but it is not difficult to prove that both axiomatizations ase
equivalent, that is, they axiomatize the same logic. (Se¢ Appendix Al for a proof of this claim.)

Now, lest the reader think that 5 is the villain of this story, it should be remarked loud and clear that
not all the other axioms are accepted as evident. In fact, it seems that not a single one of them is free of
criticisms for one or another reason. For the sake of completeness I am going to list some arguments
against the different axioms.

Let us begin for instance with k and its belief instance kb; these formulas can be said to embody one
version of the infamous principle of consequential closure, which is just another way of spelling “logical
omniscience” (or “logical omnibelief").!! Letting these considerations apart, since we are taking for granted
that Angela is omniscient, there are still other reasons—or what some researchers think to be reasons—why
these principles shouldn’t hold. k2, for instance, should be plain false, if we interpret ‘B’ not as conviction,
but as a general, weaker kind of belief. In this interpretation, Angela believes some proposition p if she
thinks p is more probable than its negation (cf. [Len78], p. 36). The argument against the validity of k2 is
based on the lottery paradox, because we can show that k? is equivalent to BA A BB — B(A A B), against
which principle this paradox is directed. Suppose we have a lottery with, say, 1000 tickets, and let ‘W(n)’
stand for “Lottery ticket number # is the wining one”. Suppose also that Angela is buying a ticket. Since it
is obvious that each ticket has only a very small probability of being the winning one, we can say Angela
believes, for any n, that not-W(n). More formally:

(*) B-W({I)A B-W@)A ... A B=W(1000).

On the other hand, it would be false to state that Angela believes the conjunction of these negated
propositions:

**) B(=WU) A —W(@) A ... » =W(1000)),

and this because she’s buying a ticket; she is quite sure that some ticket muss win (assuming it is a fair
lottery, of course). We thus have a situation where Angela believes several propositions taken isolatedly, .
but not their conjunction. This only holds, of course, because we are here talking about weak belief—
Angela is far from being convinced, of each ticket, that it won’t win. Were this the case, she wouldn’t
obviously buy one. So the conviction analog of k? holds, the same for k, the knowledge version.

However, it scems that one still could make a case for the validity of kb, lottery paradox just the
same. A possible way out of the predicament would be to say that even if we can believe, for any n, that
ticket # won’t win, this is not the same as believing it for all n (cf. [Har86), p. 71).

There are also some other tentatives of rejecting these principles, most running along the lines that
someone knows some facts, and fails to draw its conseq es—for i e with one of these logic
puzzles that usuvally come in magazines. A reader can be said 10 know all the premisses, but mostly he or
she needs a lot of time (o arrive at the solution—if at all. This kind of example is actually not so good,
because probably the agent doesn’t know (“'sec™) that A — B, so it would be improper to assert K(A — B).

1 The inology “principic of quential closure” is due to K. Konolige (cf. (Ko86], p. 242). On logical ommiscience,
sce the remakrs on Chapter 0 of this work. There are of course many other principies which entail logical omniscience, but
they are somewhat beside the point here. A good discussion can be found in both [Len78) and [1.en80).

21

Chapier [

Thus, everything considered, it seems hard to deny that some agent knows that p, and that p implies ¢, and
nevertheless “fails to apply modus ponens” (cf. [Len78], p. 65).

Against 4 and 4° there are also some proposed counterexamples. In the case of belief, they mostly
refer to phenomena like subconscious beliefs and someone’s not recognizing or even repressing such. (40
was even acused of being “a short rejection of Freud”. Cf. [Len78], p. 71.) Thus we have the atheist
bishop example, which concerns a bishop who lost his faith. He believes that God doesn’t exist, but cannot
admit it to himself-—thus he doesn’t believe that he believes that God doesn’t exist. The problem with this
“counterexample” is, of course, the confusion between subcounscious beliefs and conscious ones. You can
naturally choose which kind of belief ‘B’ is going to formalize, but then you've got to be consistent, what
is not the case in the proposed couterexample.

Another proposed counter-argument states that, if I know that p, then I know that I know that 1
know that [know that I know that p, which is certainly somewhat unnatural. But the argument misses the
point, because unnatural doesn’t mean logically wrong. Besides, in certain systems, where we have
reduction laws, such long iterations of epistemic operators can be proved to be equivalent to shorter,
“natural” ones.

Similar attempts have been made to refute 55, mostly making the same mistakes (cf. [Len78],
pp. 7710). Its knowledge version, 5, is, as I said, false, for the very simple reason that we commonly
believe, or are even convinced that we know something, when it’s not true. 5 would imply that we always
can tell when we don’t know something, and this is of course desirable, but highly unrealistic.

Against d? it is said that it rules out incoherent or impossible beliefs, which many people (me for
instance) seem to find desirable in certain contexts. Not in the sense that someone would or could believe a
downright contradiction, like A A —A, but maybe believe a set of facts, which, in the long run and in a
non-obvioﬁs way, proves to be inconsistent.

The less disputed of the axioms is ¢, but even so there are some people who think it to be false, i.e.,
they defend one can know falsities (in which case I am prepared to concede that they know that ¢ is false...)
Mostly the arguments use the fact that we often “know” things that prove afterwards to be untrue, and
generally there is some confusion between knowledge and knowledge claims.

And last a remark conceming the schema m (KA-BA). Roughly speaking, this means that what
Angela knows makes part of her beliefs (she believes what she knows). Putting things this way does lead
to some confusion, and it is exactly on this confusion that some arguments against this principle are based.
_ For instance, “I don’t believe I'm married; 1 know it!” is the classical example. What is here at stake is, of
course, a merely believing—I don’t merely believe that I'm married, but of course 1 believe it. But one
perhaps would like—and as a logician one should certainly try—to keep both concepts separated, in the
sense that when one knows something, one doesn’t actually believe it—one already knows it! We can
introduce this concept without any problem in the calculi through the following definition:

B"A =41 BA A KA.

But there are still other tentatives of rejecting this principle. Some of them (which in [Len78] are
called “linguistic™) concern the different uses of know and believe ([Len78}, p. 24). For instance, it is
entirely appropriate to say that I know Frankfurt, I know the name of the Bundeskanzler, and so on, but it
doesn’t make much sense to say that 1 believe Frankfurt, or Kohl’s name. So m should be rejected. But m

22

An Overview of EDL-Systems

actually has (o do with “knowing that...” and “believing that...” Finding out whether things like “I know
Frankfurt” can be reduced to that-clauses is an open question.12

Another proposed argument against m considers an examinee who, being asked for certain historical
dates, such as when did James [die, and being unsure about his knowledge, answers with *1635” while
believing it is wrong date. It tumns out, however, that “1635" is the correct answer. So the examinee knew
the correct answer wirthout believing it was correct. But of course the “argument” forgets that there is a
difference between “he knew the correct answer™ and “he knew that the answer was correct”.

But let us leave the examples aside, at least for a while, and go back to axiomatizations. There are of
course still other ways of extending Z besides ZS. We could for instance introduce one or more of the
following “mixed” formulas as axioms:

p. BAKBA
p*. —BA - K-BA
c. BA —» BKA.13

Some words concerning them. First of all, p can be accepted without much problem: if Angela
believes that A, then it is reasonable to suppose that she knows that she believes it. This can be justified by
saying that Angela has a unique (“privileged') access to her own internal (epistemic) states. (But, as usual,
there is a lot of discussion about this and related principles in the philosophical literature, mostly variations
on the themes we’ve been discussing above.) p* should be accepted on the same reasons. On the other
hand, we can accept c only if we interpret ‘B’ not just as a kind of “weak belief"—like “I believe moming
it’s going to rain, but I'm really not that sure of it"—bul as conviction. (It is a normal situation that there are
Bt of propositions we believe, and nevertheless we are not willing to assert that we know them.)

Another possibility would be to make the knowledge branch stronger: not so much as S5, but, as
many people like, as $4.2. We could do that by introducing the next formula as an axiom:

g. —K-KA - K—K-A.

If we now consider ali the possible extensions of Z by means of p, p*, c and g, it seems on a first
fook that we would end up having something like 32 different logics. But this won't be the case, since, for
instance, p and p* are actually equivalent in Z (see Appendix A2); meaning it is enough to add one of these
formulas as a new axiom in order (0 get the other one as a theorem. 4 We also get g as a theorem, if we add
5 or p as an axiorn. So we get only the 9 following calculi:

YA (the basic system)
Zp: Z + p= 1 4p*

ZC: Z + ¢
ZG: Z + g
ZCG: ZC + g= ZIG +c¢

12 we are here, of course, moving in the realm of the so-called “Reccived View”, where knowledge is actually (or reducible)
knowiedge of facts: 10 say that | know an object is to say that I know facis about it. Cf. [SaB7), where this question is adressed
and discussed in detail.

13 hnve been at great pum o ﬁnd names for these schemas. So we'll have m because of “mixed”; p because of “privileged

k ge of i | states™; ¢ b of “conviction”, and p* because it is equivalent to p.
14 This doesn t necessarily hold if we arc using a weaker belicf logic (for instance without d).

23

Chapier 1

ZICP: ZC + p = ZC +p*

zs: Z +5

ZPS: 1S + p= 715 +p*= 2P +5§

2CS: 25 + c¢c= 2ZC +5 = ICP+5=1272P5+¢c

The following diagram show us how these systems relate to each other. (An’ arrow means that the
logic on the left is a subsystem of the logic on the right):

C —= 206~
z / e ch \ .
/ \ /
/

T~ zs

Looking closer at these systems, we see that adding 5 to ZC, or ¢ to Z§, is enough to get ZC5 (in
which case g and both p and p* are derivable, and this explains why this logic is just called ZCS instead of
ZCPGS).

Let us now consider the problems I mentioned regarding axiom 5 (negative K—introspection): they
appear in the systems Z5, ZPS and ZCS, particularly in ZCS5. One can show that the formula BKA —
KA is derivable in Z5—and this doesn’t sound that reasonable: if Angela believes (or has the conviction)
that she knows A, then she really knows it! This formula results from § together with @® and m. Since we
also have KA — BKA as a theorem, we can derive in Z5 the equivalence BKA ¢» KA.

Well, this sure looks a good reason 1o forget schema 5, or at least to have serious doubts conceming
it—but, who knows, maybe for Angela to be convinced of knowing something is really the same as
knowing that something.15 The situation is still further complicated in ZCS. In this system we have BA —
BKA as an axiom, and, from this schema, together with BKA — KA, we can prove BA — KA—and,
what is (if possible) still worse, BA—A too! This of course means an equivalence between the knowledge
and the belief operators, at the same time entailing that beliefs are infallible. At the risk of repeating myself,
such a situation may be admissible if we are exclusively considering agents like Angela, for whom a notion
of fallible bleief may-make no sense at all. But if this were the case, we wouldn’t like having these
additional complications in the language of our systems—we would certainly prefer to make ourselves
comfortably at home in a pure knowledge logic. In view of these considerations, 1 propose that we forget
completely the unfortunate system ZCS5, and work only with the other ones. 16

15 1'm not going to follow this question here, but maybe we can explain this '3 If Angela beli p. and doesn’t
know it, then, by 5, she knows (and by m she belicves) that she doesn’t know that p. So it is not possible for Angela to
believe that she knows p, against c.

16 As a side remark on the psychology of ideal agents, we have here an interesting point: it seems that they cannot have
beliefs, they just know. Because it should belong to the nature of belicl, 1 think, that it can be defeated, that one isn't really
sure that it holds. So ideal agents cannot believe. (Are they thus unable to have faith?)

24

An Qverview of EDL-Systems

We should also notice that there are still other ways of extending Z, ZC, ZP and ZCP, which I'm
not going to consider: namely by using instead of 5 or g different characteristic axioms of the calculi
between S4 and S§ (systems like $4.3, and so on).

To close this section, a small comparison between the logics I'm talking about in this paper and
EDL-systems that were discussed by other logicians. The axioms and rules I have presented are well-
known in the epistemic-logical literature, but a thorough study of its different combinations (like putting
them together the particular way I'm doing here, with several logics of different deduclive strength) seems,
as far as I know, to be missing. (People commonly take one of the standard alethic systems and work with
it.) Z5, of course, was already mentioned in [HM84].

In [Len80) we find the most complete study on epistemic-doxastic logics I know of, but Lenzen’s
presentation is somewhat different from my own here. First of all, he distinguishes, in the syntax of his
logics, between weak beliefi7 and conviction: 10 each of these concepts corresponds an operator (namely
‘G" and ‘U"), and there is of course an operator "W for knowledge. The principies we are taking here to
hold of ‘B’ correspond to Lenzen's laws for the *U’-operator.18 So he has three operators, for the two in
this work, in which I follow what he calls “the anglo-saxon tradition™.

In the second place, Lenzen doesn’t discuss systems of different strength but, in formalizing the
logic of each concept, sets for the strongest possible calculus, i.e., a calculus that encompasses all the
principles he considers to be valid (with regard to each concept). Thus Lenzen give us (mainly) 5 different
systems, namely G (a pure logic of weak belief), U (a pure logic of conviction), W (a pure logic of
knowledge), D (a combination of weak belief and conviction) and E (the strongest of his logics; the one
containing the three operators). The logic G is somewhat weaker than KID4S (which plays here the role of
the belief logic); U is isomorphic to KD4S, and W 0 §4.2.19 Since I'm not making here a difference
between weak belief and conviction, the logic E, if we leave ‘G’ out, corresponds to our system ZCP.

We are now ready to get things rolling. We can for instance define the notions of proof and
syntactical consequence for our logics. We say that a sequence Aj,... A, of wffs is a proof in some logic L
if, for 1 <i <, (i) A; is an axiom of L; or (ii) there is j < i and k < i such that Ag = Aj — A;; or (iii) there
is j < i such that A; = KA;. If A = A,, we say that this sequence is a proof of A in L (and A is said to be a
theorem of L, what we denote by 1 A). If now I is a set of wffs, we say that A is a syntactical
consequence of T in L (and we write I~ A) if there is a sequence Dy,...,D, of wffs such that, for I <i
<n, (i) Ai € T; or (ii) A is an axiom of L; or (iii) there is j < i and k < i such that Ay = Aj = A;; or (iv)
there is j < § such that A; = KA; and some subsequence of D.....Dy is a proof of A;. (Of course, ¥ A
and I' 1. A mean that A is not a theorem of L, and is not deducible in L from T, respectively.)

Now, before we go into the next section, it is worth mentioning (later also worth using) that the
following proposition holds of all our logics here:

Theorem T1. (Deduction Theorem)T U (A} +B iff T+A - B.

Proof In the usual deduction-theoremic way. ®

7 Maybe “wider belief” would be a better name, since to Lenzen this notion ranges from a “mere surmise” (blofe Vermutung)
to a “thorough conviction” (feste Uberzeugung). (CE. [Len8BO}, p. 34)

18 A4 I mentioned, Lenzen says that for instance kP doesn't hold if *B’ is taken to be a weak belief operator.

19 Lenzen argues, by the way, that this calculus should be idered the logic of k ledge.

25

Chapter 1

1.2 Modalities and reduction laws

In this section, as well as in the following one, I will be trying to obtain some results about the
EDL—calculi which will be needed by the (tentative) characterization of epistemic states. These results
concern primarily the number of modalities in each logic, and whether reduction laws are available. By a
modality we understand any (finite) sequence of the operators —, K and B—this including the empty
sequence ¢, which is called the improper modality.

The first notion which is of importance here is the modal degree (dg) of a formula A, which we
define as follows: if A is a propositional variable, then dg(4)= 0. A = —B, dg(A)=dg(B). (A= (B #
C),for#te ['A’,'v', "', *©>"), dg(A) = maxldg(B), dg(C)). If A = KB or A = BB, dg(A) = dg(B) + 1.

Next comes the defintion of a modal conjunctive normal form (MCNF): a wiT A is in MCNF iff (a)
the only operators that occur in A are ‘—', ‘K, ‘B’, ‘A’ and ‘v"; (b) A =D A ... A D, is in conjunctive
normal form (like in classical propositional logic) and, for each disjunct D, either (i) dg(Di) = 0, or (ii) D;
= #B, where dg(B) =0 and # € (K, B, —K, —B}.

We begin by examining each logic and trying to determine how many distinct modalities are there in
it. In order to make things clearer to grasp, I am going to introduce here two abbreviations (in the same way
as ‘O’ abbreviates ‘—0—" in alethic modal logic):

PA =a4 -K-A
CA =g —B-A

Actually there seems lo be no correct semantical interpretation for P and C,20 but 1 think it is nice to
use them as abbreviations, else one gets lost on a forest of negations. Of course our definition of a modality
must be extended to contemplate this abbreviations too.

Let us now examine the different logics.

1. Modalities inZ

In Z we have a very little number of reduction laws. Since the knowledge branch is $4, we know
that we have at most 14 pure knowledge modalities, and since the belief branch is KD45, we also know
that we have at most 6 pure belief modalities. (CI. [Ch80], p. 149, 154) But what happens with mixed
sequences, like ~KB—K—~—K-~BK—B- (or rather: -~ KBPPBKC)? Mixed reduction laws are not legion

"inZ.In spite of this, there is a finite number of distinct modalities in this logic, as we can see on the next
theorem, even if it is very large:

Theorem T2. In Z there are at most 84 distinct modalities, namely +, K, B, C, P, KB, KC, KP, BK/CK,
PK, PB, PC, BP/CP, KBK/KCK, KPK, KPB, KPC, BKB/CKB, BKC/CKC, BKP/CKP, BPK/CPK,
BPB/CPB, BPC/CPC, PKB, PKC, PKP, PBP/PCP, KPKB, KPKC, PKPB, PKPC, BKPK/CKPK,

20 1 we interpret ‘B’ as conviction, 'C’ would mean (see [Len80], p. 16) something like “to think it possible that...” (fiir
méglich halten, dgf...). But there scems to be no correspondent in the case of weak belief, or knowledge, for that matter. But
sec [I1i62], where ‘P’ scems to mean something like “for all that one knows, ...". For an opinion against the existence of
natural duals to ‘K’ and ‘B’, sce [Ist], especially footnote 8 on p. 3.

26

An Overview of EDL-Systems

BPKB/CPKB, BKPB/CKPB, BPKC/CPKC, BKPC/CKPC, BPKP/CPKP, BKPKB/CKPKB,
BPKPB/CPKPB, BKPKC/CKPKC, BPKPC/CPKPC, and of course the negations of them all: -, —K,
—B, and so on.

Proof. The proof is quite long, but relatively straightforward. It relies on the fact that the following

equivalences (reduction laws) hold in Z:

(1) KKA4 & KA

(2) PPA & PA

(3) BBA &> BA

(4) CBA © BA
(5)BCA © CA

6) CCA & CA

(7) BKA ¢ CKA
(8) BPA > CPA
(9) KBPA & KPA
(10) KCPA & KPA
(11) PBKA & PKA
(12) PCKA > PKA

(13) BKBKA © BKA
(14) CKCKA ¢ CKA
(15) KBKBA © KBA
(16) KCKCA 3 KCA
(17) CPCPA & CPA
(18) BPBPA & BPA
(19) PCPCA & PCA
(20) PBPBA © PBA
(21) KCKBA & KBA
(22) KBKCA © KCA
(23) PBPCA © PCA
(24) PCPBA © PBA

(25) KPKPA <> KPA
(26) KBKPA ¢ KPA
(27) KCKPA ¢35 KPA
(28) KPBPA & KPA
(29) KPCPA ¢ KPA
(30) PKPKA ¢ PKA
(31) PKBKA & PKA
(32) PKCKA ¢ PKA
(33) PBPKA & PKA
(34) PCPKA & PKA

Now we have obviously only one zero-lenght modality, which is «. We consider the other lengths, but just
the positive cases:

(i) There are four modalities of length 1, K, B, C, and P, which we obviously cannot reduce further.

(ii) If we now add K, or B, or C, or P 10 the modalities of length 1, we get the following 16 modalities of
length 2: KK, KB, KC, KP, BK, BB, BC, BP, CK, CB, CC, CP, PK, PB, PC and PP. Many of them,
like KK, PP, BB, and so on, can be reduced using the equivalences (1) through (6). Moreover, with‘('l)
and (8) we see that some other pairs are equivalent, even if not reducible. So we end with the following 8
modalities of length 2: KB, KC, KP, BK/CK, BP/CP, PK, PB, PC.

(iii) If we now repeat the procedure, we'll gey, first, a lot of reducible modalities, like adding K to KB and
obtaining KKB, which is immediately reducible to KB again. Trivial cases apart, we have equivalences (9)
through (12), which also allow some further reductions. Thus we end with the following modalities of
length 3: KBK/KCK, KPK, KPB, KPC, BKB/CKB, BKC/CKC, BKP/CKP, BPK/CPK, BPB/CPB,
BPC/CPC, PKB, PKC, PKP, PBP/PCP, which we cannot further reduce.

(iv) There are 256 modalities of the lenght 4, but using the equivalences, now also the laws (13)+34), we
arrive at the following distinct 10 modalities;: KPKB, KPKC, PKPB, PKPC, BKPK/CKPK,
BPKB/CPKB, BKPB/CKPB, BPKC/CPKC, BKPC/CKPC, BPKP/CPKP.

(v) We repeat the procedure and obtain 4 modalities with length 5: BKPKB/CKPKB, BPKPB/CPKPB,
BKPKC/CKPKC, BPKPC/CPKPC.

(vi) There are no irreducible modalities of the length 6. If we trying to expand the preceding modalities,
trivial cases apart, we obtain things like KBKPKB, which, using (26), is equivalent to KPKB, which is of
smaller length. And so with the other ones.

Now the negative cases are treated in a similar way, so the theorem is proven. B

27

Chapter 1

This list of all them modalities is everything we get here: I've been until now unable to draw a
simple, easily understandable diagram depicting the relations between them. Some of the modalities, as you
have noticed, come in pairs, like BK/CK: this means that they are equivalent, so I'm counting them as one.
We can of course eliminate one of the pair, but we are unable to reduce them any fusther. On the other
hand, one could take a different approach and say that modalities in a pair, even if equivalent, are
(syntactically) distinct. In this case, Z would have 124 modalities.

2. Modalities in 1G

In ZG we have the additional axiom —~K—KA — K—K-A (or PKA — KPA), what allows us to
reduce a little bit the number of modalities. As a result we end up with the following:

Theorem T3.InZG there are at most 46 distinct modalities, namely «, K, B, C, P, KB, KC, KP,
BK/CK, PK, PB, PC, BP/CP, KBK/KCK, KPB, KPC, BKB/CKB, BKC/CKC, BPB/CPB, BPC/CPC,
PKB, PKC, PBP/PCP, and of course their negations.

Proof. The proof is similar to that of T2, with the difference that we now also have the following reduction
laws:

(1) KPKA & PKA (3) PKPA & KPA
(2) BPKA ¢ PKA (4) CKPA «» KPA. m

In the next picture we have an idea of the relations among ZG modalities. In the diagram, only the

positive modalities are shown. To obtain the relation among the negative ones, just put a negation sign in
front of each modality and then revert the direction of the arrows.

/ KBK/KCK
X - / -

An Overview of EDL-Systems

3. Modalities in ZC

In ZC things begin to get better. We have now as an axiom BA—BKA, and this allows us, since
BKA-—BA is already a theorem of Z, as well as BKA &> CKA, 1o substitute BK and CK everywhere for
B. Actually we get the following new reduction laws:

(1) BKA & BA (3) PKA &3 PBA

(2)CPA & CA (4) KCA © KPA

which atlow us to make big cuts in the number of Z modalities.

Theorem T4. In ZC shere are at most 18 distinct modalities, namely +, K, B, C, P, KB, KC/KP,
PB/PK, PC, and their negations.

Proof. AsinT2. m
Of these 18 modalities, the 9 positive ones are in the following picture:

|
- N

Pl c

PBPK

\B
N
N

4. Modalities in ZCG

In ZCG we have g as an extra axiom; however, this doesn’t allows us to reduce the number of
modalities:

Theorem T5.In ZCG there are at most 18 distinct modalities, namely +, K, B, C, P, KB, KC/KP,
PB/PK, PC, and their negations.

Proof AsinT2. m v

Now, even if the number of modalities is the same of ZC, the relations between them are other,
what allows us to make the diagram simpler:

29

Chapter |

—
J .

5. Modalities in ZCP

In ZCP things improve more. The situation is, by U.ie way, very interesting here. Adding p as an
axiom to ZC, or ¢ to ZP, allows us now to derive BA ¢3 —K—KA as a theorem, what means that one
could just do by introducing belief as a derived concept in a pure knowledge logic. Another point is that the
knowledgé branch is no more §4, since the axioms for belief (with ‘B’ replaced by ‘—~K~K’) now give us
as theorem the S4.2 characteristic axiom as well. So we are back to §4.2, and in this logic the results on
number of modalities are well known (see e.g. [Ch80], p. 156 or (HC72}, p. 261): there are ten of them,
namely +, K, P, PK, KP and their negations. But since we want to keep belief in the picture, theorems like
BA & PKA allow us t0 reduce the §4.2 modalities even more (i.c., to only one epistemic operator each).
We arrive at the end to the following result:

Theorem T6. In ZCP there are at most 10 distinct modalities, namely «, K, B, C, P, and their negations.

Proof. Asin T2. m
How they are related can be seen on the following picture:

B —=C

/N

K——«——&p

fig. 5

6. Modalities in 1P

In ZP we of course don’t have everything as in ZCP, only part of it. Thus:

Theorem T7.In ZP there are at most 14 distinct modalities, namely +, K, B, P, C, BK/CK/PK,
KP/BP/CP, and their negations.

Proof AsinT2. ®

The relations between the positive modalilies are the following:

An Overview of EDL-Systems

K —————— BK/C

K

-—) ﬂ—ﬁ‘——g

P ~+—eee—KPBPCP

7. Modalities in 15

Theorem T8. In 15 there are at most 18 distinct modalities, namely +, K, B, P, C, KB, PB, KC, PC,
and their negations.

Proof. As in T2. We now the reduction laws which hold in systems containing 5, namely PKA «» KA and
KPAE© PA. W

The relations among these (positive) modalities can be seen in the following diagram:

KB

c

NS

Y
LN\
| %

8. Modalities in ZPS

ZPS, which is one of the strongest of our systems (the other being ZCP), will of course have very
few distinct modalites.

Theorem T9. In ZPS there are at most 10 distinct modalities, namely +, K, B, P, C, and their negations.
Proof. AsinT2. m

Now these are exactly the same modalities of ZCP, so all you have tg do is 1o look a fig. 3 again!

31

Chapter 1

Thus all of our systems have a finite number of distinct modalities. But as we know, this is not
sufficient to guarantee that there also is only a finite number of different modal functions of one variable in
each of the logics. In other words, this does not guarantee that we are able to reduce formulas, first, to the
MCNF, and second, to a first degree one, what would be very nice. The modal logician reader certainly
suspects that we won't find all we need in some systems, but quite probably in ZPS, which seems to be
strong enough. We can in fact prove that in ZPS5 it is possible to reduce a formula from any degree
whatsoever to another one of the first degree.

Proposition P1. In ZP5 we can reduce every formula of a degree higher than one to a first degree one.

Proof. The proof of this proposition is somewhat long, but actually not difficult. (I'll sketch it here, details
can be found in [Len80], p. 152fT, or in [HC72], p. 53f.) The important point for the proof is the fact that
in ZPS the following reduction laws are derivable, laws which allow us to eliminate iterated modalities:

m KKA © KA (19) C(AvB) & CAvCB
@ PKA & KA (20) P(AvB) & PAvPB
3) BKA > KA (21) K(AvKB)e KA VKB
@ CKA & KA (22) K(AvBB)©KAvBB
5) KPA ¢3 PA (23) KAvCB) & KAvVCB
©) BPA ¢ PA (24) K(AvPB) o KAvPB
) CPA&PA - (25) B(AvKB)© BAVKB
®) PPA © PA (26) B(AvBB)© BAv BB
© KBA ¢ BA (27) B(AvCB) <> BAvCH
10) BBA © BA (28) B(AvPB) & BAvPB
(11) CBA & BA (29) C(AAKB)© CAAKB
(12) PBA & BA (30) C(A ABB) & CA A BB
13) KCA 3 CA (31) C(A ACB) > CAACB
14) BCA & CA (32) C(AAPB)& CAAPB
(155 CCAaCA (33) P(A AKB) & PA AKB
(16) PCAoCA (34) P(AABB) <> PAABB
an K(A AB) & KA AKB (35) P(AACB) ¢ PAACH

-(18) B(A AB) & BAABB (36) P(AAPB) &> PAAPB

It will be enough to show that we can reduce a second-degree formula to an equivalent [irst-degree one.
The procedure that we use to accomplish this has four steps:

(1) We eliminate (by means of the definitions) the opcrators ‘—" and ‘¢3'.

(2) Negation signs are pulled inside with the help of the DeMorgan and the reduction laws. At the end
negations will occur just immediately be:,‘fore propositional variables.

(3) We reduce all iterated modalities, using the reduction laws, to a single modal operator.

/ (4) If the formula still is one of the second degree, the reason is that the formula itself, or one of its parts, is
of the form #B, where # is a modal operator and B a conjunction or disjunction of the first degree. Using
the laws (17) — (36) we can distribute and “absorbe” the # operator, so that at the end the result is a
formula of the first degree. W

32

An Overview of EDL-Systems

Proposition P2.In ZPS there is for every formula A an equivalent formula A* such that A* is a
conjunction Dy A ... A Dy, and each D; = KBy v ... v KBy v ~KBmyy v ...v —KBp v BCy v ... v BCy
v =BCpyp Vv ...v —BCjV E, where dg(By) = ... = dg(Bp) = dg(Cy) = ... = dg(C}) = dg(E) = 0 (i.e., A*
is in MCNF),

Proof. First we eliminate from A implication and equivalence operators using the definitions. Then we
examine the possible cases:

(a) If A is a zero-degree formula, we can simply reduce it according to PC-laws to the conjunctive normal
form. It will be then automatically in MCNF (with the indices p and j being equal 1o zero in every case).

(b) Suppose now that A is a first-degree formula. Then it is a truth-function of wffs each of which is either
a wif of PC or a wff of the form KB, —KB, BB or BB, where B is a zero-degree formula. Treating each
of these formulas as if it were an atom, we reduce the whole formula 1o the conjunctive normal form by PC
methods. The resulting formula is in MCNF.

(c) Suppose A is of a degree higher than one. Then we simply reduce it to a first-degree wif A’, according
to Proposition P1, and apply step (b) to this wif. ®

Now to Z5. We don’t have in this system all the reduction laws from ZPS, but most of them.
However, in Z§ it is not possible to reduce every formula to a first-degree one. In spite of that, we get
something which is almost as good for our purposes. We say that a wff A is a P-formula iff (i) dg(A) = 0;
or (ii) for some B, such that dg(B) =0, A = BB or A = —-BB. We can then prove the following
proposition:

Proposition P3. In ZS there is for every wff A an equivalent wff A* such that A* is a conjunction Dy A
«.ADp,and eachDi =KA;v ..vKA,v —-KApyyv...v -KApvKB)v . . vKB,v —KB,yyv ..V
—~KBgv BCiv ..vBCxv —BCryi v ..V =BCjV E, where dg(A}) = ... = dg(Ap) =dg(Cy) = ... =
dg(C;) = dg(E) = 0, and By,... B4 are P-formulas.

Proof. Similar 1o P2. ®

This of course amounts to saying that we can reduce a formula 10 one of the second degree.

The other six logics are complicated cases: we also don’t have all of the ZPS reduction laws, just
some, very few of them. We could now be hoping, since the number of, for instance, ZP-modalities is
finite, that it would be possible, like we did in ZS§, to reduce any ZP-formula (o a second degree one.
Actually, this is not the case. Remember, the “knowledge-branch” of ZP (all the formulas in which no ‘B’
occurs) is 84, and Makinson (see [Ma66]) has proved, for a supersystem of S4 called D, that this system
contains an infinite number of modal functions of one variable. Makinson’s proof can be without much
difficulty adapted for ZP and the other five logics, and so we come to the next proposition:

Proposition P4./nZ,ZP,2C,ZG,ZCG and ZCP there are infinitely many different modal
functions of one variable.

Proof. Using semantic methods; as it is in [Ma66], or in [Len80] pp. 241-43. ®

33

Chapter 1

This result is also interesting with respect to ZCP: one could have hoped, because the modalities of
ZCP and ZPS are the same, that the reduction laws would also be present. What is not the case,

unfortunately.

1.3 A semantics for the EDL-systems

The goal of this third section is to provide each system with a possible world semantics, what we’ll
also be needing later, 1 will first defline models for the basic system Z, and will show soon afterwards how
to change the definition to obtain models for the other systems as well.

Definition D1. A Kripke model M for Z is a triple <W,R,§>, where:

Weze,

each w; € Wisan
RCSCWxW,;

&

o a0 o

§ is reflexive and transitive;
R is transitive, serial and euclidean.2!

of truth-values to each atomic formula;

The set W can be seen as a non-empty set of “worlds™, or “points”, or “epistemic states”. To
simplify things a bit [will consider them to be assignments of truth-values to propositional variables, R is
the belief accessibility relation, and § the knowledge one.

We can now define, for each formula A, what it means for A to be true in a model and in a state:

Definition D2. Let M = <W R,5> be a Kripke model, and w, v elements of W:

. M, wEe A iff
b. M, wi= —A iff
M, w= A-B iff
M, wr= KA iff
M, w = BA iff

w(A) = 1, if A is a propositional variable;
M, w A,

M, w2 A or M,wrB;

for every v, such that wSy, M, v = A;
for every v, such that wRv, M, v = A.

Now to obtain models for the other systems we need, as usual in possible-world semantics, to

introduce some restrictions in the accessibility relations. To each new axiom there is a corresponding
condition in the semantics that must be fulfilled:

I's § is incestual2;
5: S is euclidean;
p: 1-mixed transitivity, that is: VxVyVz(xSy A yRz — xRz);

21 A relation R is serial iff VxJy (xRy). R is euclidean iff VxVyVi(xRy A xRz - yR1).
22 A binary relation R is said to be incestual iff VxVyVz(xRy A xRz — Fw(yRw A 2RW)).

34

An Overview of EDL-Systems

*: mixed euclideanity, that is: VxVyVz(xRy A 18z — zRy);23
c 2-mixed transitivity, that is; VxVyVz(xRy A ySz — xRz).

N

We now obtain models for the other logics just by restricting the accessibility relations S and R of
the definition D1 in the following way:

71G: § is also incestual;

YAS 1-mixed transitivity (or mixed euclideanity);

C: 2-mixed transitivity;

ZCG: 2-mixed transilivity, § incestual;

zs: § is also symmetric (or $ is reflexive and euclidean);
ZCP: 1- and 2-mixed transitivity;

ZPS: §is symmetric, 1-mixed transitivity.

Based on this all we can now give the usual semantical definitions: a formula A is true in a model M
for an EDL-calculus L (M =1, A) if, for every w in M, Mw = A. A is L-valid (=L A) if, for every
L-model M, M= A. A is in L a semantical consequence of a set T of formulas if, for every M and
every C € T such that M =g C, we have M= A. '

It is now relatively easy to prove correctness and completeness theorems, as well as (but we won’t
do that here) the decidability of all systems. We begin by introducing the notion of a saturated set (what
we'll also need later for the characterization of minimal states): a set L is an A-saturated ses24, for some
formula A, if 21~ A and, for ali B ¢ I, L U [B) + A.25 Of course, a set T is saturated if, for some wff
A, I is A-saturated.

Proposition P5. Let L be a C-saturated set, for some wif C. Then:

@ AelX iff IrA;
®) -Ael iff AelX
¢) A->BeL .iff A¢«LorBel

Proof. (a) In one direction, if A € X then obviously I + A, In the other direction, suppose that L+ A. If
now A ¢ L, then by definition £ < (A) - C, but then it follows (by Cut) that £ +— C, against the
hypothesis that I is C-saturated. Hence A € L.

(b) Suppose —A € I. If we also have that A € Z, then X is inconsisient and is not C-saturated. So A ¢ E.
In the other direction, suppose that A ¢ I. By definition, then, Z U (A} + C, and, by the deduction
theorem, L+ A — C. If now —A4 ¢ I, we also have Z U {—~A4) +— C, and, again by the deduction
theorem, £+ —A ~» C. But then L+ A v A - C; and, since obviously T +~ A v —A, we have L -
C, against the hypothesis that I is C-saturated. Hence —~A € L.

1 4

2 Since p and p* are equi
to the scmantics.
24 The notion of an A-saturated set was first used, as far as | know, by A. Lopari¢ ({L.o77]).

25 When there is no risk of confusion, I'm going to use ‘' and ‘=" without subscripts.

t least in the sy d here—it will be enough to add just one of the sestrictions

35

Chapter !

(c) Suppose A~3B € L.If A ¢ X, there is nothing to prove. So let us suppose that A € X. By (a), L+ A,
L+ A-3B; so obviously X + B and, again by (a), B € L. In the other direction, suppose first that A ¢
. So, by (b), —A € I, and, since L~ —~A—» (A B), we have L A5 B, and A—B € . Suppose
then that B € X. Since L+ B— (A—5B), we have L+ A—B,and A»Be I m

Proposition P6. If <A, then there is an A-saturated set £, such that T C L.

Proof. By a standard Lindenbaum argument. ®@

To make life easier, let us introduce some abbreviations to talk about saturated sets. Let I" be a set of
‘formulas. We then define the subsets of I consisting of K- and B-formulas as follows:

TR =4t (A€ I'thereis B,A = KB);
B =4 (A€ I:thereisB,A=BB).

Next we define, for each of these sets, its scope set:

e(TK) =4t (A:KAeT);
&) =g (A:BA€T).

Lemma L1. If A then #1—#A, where # € (K,B) and #T = (#B :B e T}.
Proof. By induction on theorems. Suppose I"+— A. We have four cases:

(1) A € T. Then #A € #I" and, obvio‘usly, ¥-HA.

(2) A is an axiom. Then A and, by RK or (derived rule) RB, —#A, so #T'—#A.

(3) A was obtained by MP from B and B — A. By the induction hypothesis, #T—#B and #[-#(B —A).
Since —#(B —A) — (B H#A) (k or kP), #D-#B —#A, and hence #—#A.

(4) A = #B and was obtained by R#.If I + A, then there is a proof of A. By R#, 1—#A, so #T—#A. =

Proposition P7. IfTw<#A, # € (K, B), there is an A-saturated set ¥ such that e(T'*) C ¥.

Proof. If Tw<#A, therr obviously T'* <#A. By L1, e(T¥) 1« A and, by P6, there is an A-saturated set ¥
suchthate(ThH C I m

Before we go to the next bunch of properties that saturated sets have, let us define two binary
relations p and p over them. So let I and X be saturated sets; we say that

TpZ iff B CI;
ez i e(FK)cL

Proposition P8. Let T, X and A be saturated seis. We have:

(a) in all logics:

36

An Overview of EDL-Systems

i. ur;

ii. TUE A TUA = Tpa;
iii. 318: TpB;

iv. TpEaATpA = IpA;
v, TpL A LpA = TpA;
vi. IpL = Iux;

(b) in logics which have g as a theorem

vii. TUE ATHA = 38: Zu6 A AuS;
(c) in logics which have p as a theorem:

viii. THE A ZpA = TpA;

ix. TUZATpA= IpA;

(d) in logics which have c as a theorem:
X. FpZ A TuA = TpA;
(e) in logics which have 5 as a theorem:
xi. THZ ATHA = TuA.
Proof. (i) We have to show that €(TX) C T. Let A € ¢(I'K); so KA € I'. Since ~KA—A, ' A, and A
el

(i) Suppose I'uX and ZuA, and let A € €(T'K); thus KA € T and, since —KA — KKA, KKA € T, and
we get KA € X. Since ZpA, A € A; thus (TK) C A and TpA.

(iii) Suppose there is no O such that Tp®,; thus, if B is a saturated set, there is some wif A such that BA €
I' and A ¢ O. But then, since ~-BA & —B—A4, ~-B~A € T; B-4 ¢ T"and I' »» B—A. By P7, there is a
—A-saturated set © such that ¢(T'B) C 6. It follows that Tp®.

(iv) Suppose I"pX and T'pA, and suppose it is not the case that ZpA. Then there is some A € €(ZB) such
that A ¢ A. Since T'pA, it cannot be that BA € T, else A would be in A because ¢(TB) CA. So-BAe T
and, since —~—~BA — B—BA, B—BA € T, and we get —BA € Z; but then I would be inconsistent. Hence
IpA.

(v) Like in (ii), using BA — BBA.

(vi) Suppose T'pZ, and let A € €(TK); thus KA € T and, since KA — BA, BA€ I',and we get A € I.
Thus ¢(TK) C I and T'uX.

(vii) Suppose I'uX, THA, and there is no © such that Iu® and Au®. That is, there is no saturated set
such that €(ZK) U e(AK) C 8. By PG, then, for every formula A, ¢(ZK) U e(AK) - 4; ie., e(ZK) U
€(AK) is inconsistent. So there is a B such that, say, B € €(ZK) and —8 € €(AK). Thus we have: KBe I
and K—Be A; - KB¢ L and -K-B¢ A, K-KB¢ I and K—K-B8 ¢ T; thus -K-KB € T. But
+---K—-KB - K—~K~8, so K-~K—B € T, a contradiction. Hence there is a saturated set ® such that
e(TKyueaK)c e.

(viii) Suppose T¢L and IpA, andlet A € €(T'B); thus BA € I and, since —BA — KBA, KBA € T, and
we get BA € L. Since ZpA, A € A; thus (I'B) C A and TuA.

(ix) Like in (iv), using ——BA -3 K—BA.

37

Chapter |

(x) Like in (ii), using BA — BKA.
(xi) Like in (iv), using -~KA 5 K—~KA. ®

Well, it certainly jumps to the eyes that these properties we’ve just proven saturated sets have are
exactly the ones we require of the accessibility relations in the Kripke models for the different logics. We'll
use all this later in the completeness proof.

Theorem T10. (Correctness) If T+A then I'=A.
Proof. Let us suppose that N-A,
(A) A € T. Then, for all M such that Mi=T", Mi=A.

(B) A is an axiom. We examine each case;

(pc) That is, A is tautology. Trivial.

(k) A is of the form K(p—q)—>(Kp—Kgq). Let us suppose that A is not valid. Then there is a model M =
<W,R,5> and w € W, such that Mw = Kp, M, w = K(p—3q) and M,w & Kq. It follows that there is v
€ W such that wSv and M,v » ¢. But it also follows that M,v &= p and M,v = p— ¢, which is
impossible.

(1) A is of the form Kp-+p. If A Is not valid, then there is a model M = <W R,§> and w € W, such that
Mw = Kp and M,w b p. However, since § is reflexive, wSw, and then it is not possible that M,w b=
P

(4) A is of the form Kp—3KKp. If A is not valid then there is a model M = <W,R,5>and w € W, such
that M,w = Kp and M,w »* KKp. Now it follows from D2.d that there is v € W such that wSv and M.v
Kp. Again from D2.d we have a r € W, such that vSt and M » p. However, since § is transitive,
wSt, s0 it cannot be that Mt b p.

(k) A is of the form B(p—¢q)—(Bp-2Bq). Proof like in (k).

(4%) A is of the form Bp—BBp. Proof like in (4).

(5%) A is of the form —Bp—B—Bp. If A is not valid, then there is a model M = <W R S>andwe W,
such that M,w = —Bp and M,w = B—Bp; thus M,w b Bp. From D2.¢ it follows that there isave W
such that wRv and M,y & p. From D2.e again we have a t € W such that wRs and M.t ~Bp, hence
Mwe=Bp.Ris howevér euclidean, so we have that tRv, and then M,y = p—a contradiction.

(d%) A is of the form Bp——B—p. If A is not valid, then there is a model M = <W,R,5>and we W, such
that M,w = Bp and M,w b —B-p; thus M,w = B—p. Since R is a serial relation, there isave W,
such that wRv and M,y = p. However, it follows from D2.b that M,v = —p, M,v = p, what cannot be.
(m) A is of the form Kp—Bp. If A is not valid, then there is a model M = <W RS> and w € W, such that
Mw = Kp and M,w & Bp. From D2.e there is then a v € W, such that wRv and My » p. However,
since R C S, it follows from D2.d that wSv and thus M,v = p—a contradiction.

(g) A is of the form —K—Kp—K—K—p. If A is not valid, then there is a ZG-model M=<W.RS>and w
€ W, such that M,w = —K—Kp and M,w % K—K—p; thus M,w » K—Kp. From D2.d it follows that

38

An Overview of EDL-Systems

there is a v € W such that wSv and M,v = —Kp, hence M,v = Kp. From D2.d again we have are W
such that wSt and M1 » —K—p, hence M,w = K—p. § is however incestual, so we have a u € W such
that vSu and (Su. It follows that Mu = ~p and M,u = p—a contradiction.26

(5) A is of the form ~Kp—K—Kp. Proof like in (5), using now the fact that § is euclidean for Z5 and
ZP5 models.

(p) A is of the form Bp—KBp. If A is not valid, then there is a ZP-model M =<W.R.S>andwe W,
such that M,w = Bp and M,w v KBp. From D2.d it follows that there is a v € W such that wSv and
M,v » Bp. From D2.¢ it follows now that there is a f € W such that vRt and M.t ¥ p. Now in ZP-
models the 1-mixed transitivity holds, so we get that wRt, and consequently, that M.t = p—a
contradiction.2?

(c) A is of the form Bp—BKp. If A is not valid, then there is a ZC-model M = <W,R,S> andw e W,
such that M,w = Bp and M,w » BKp. From D2.¢ it follows that there is a v € W such that wRv and
M.,v b Kp. From D2.d it follows now that there is a f € W such that vSt and M.t p. Now in ZC-
models the 2-mixed transitivity holds, so we get wRt, and consequently, that Mt &= p—a contradiction.?8

Thus, in all cases and all logics L, A is L-valid, and so, for all M, such that Mi=T", Mi=A,

(C) A was obtained by using MP from B and B—A. Induction hypothesis: for all M, such that Mi=T,
Me=B and Mi=B—A.1If M= A, thereisawe W such that Mwi A. Buu Mwi= B, MwE
B-3A, and this is contradictory. Thus, for all M such that M=T", M=A.

(D) A = KB was obtained from B using RK. Induction hypothesis: for all M, such that M=I", Mi=B.
Now if M b= A, there is aw € W such that Mw = A, i.e., M,w b KB. From D2.d it folliows then that
there is a f € W such that wSr and M ¢ b B—and this cannot obviously be the case. Thus, for all M such
that Mi=I', Mi=A. m

To prove now the completeness theorem we need first 1o establish some relations between saturated
sets and Kripke models. If M and N are Kripke models, we say that M~ A (M and N are equivaleny) if,
for every A, M =A iff N=A. :

‘=’ is clearly an equivalence relation. Now let M = <W ,R,5> be a model. For each w € W, let
[Mw]= (A: M, wi=A}. Let W = { [C FOR: T = [M,w], for some M, some w}, and let now S be the
class of all sets X, such that, for some formula A, X is A-saturated.

Now we can prove the following:

Lemma L2. If [Mw]+ A then M, w = A.

Proof. If A € {M,w}, then M, w = A by definition. If A is a theorem, then A is valid, hence M, w = A.
If A was obtained through uses of MP or RK, then M, w i= A, because these rules (see proof of T10) are
validity preserving. @

Lemma L3.W=S§,

26 This also holds for ZCG.
27 This also holds for ZCP and ZPS.
28 This also holds for ZCG and ZCP.

39

Chapter 1

Proof.
(=>) Let us suppose that T € W: thus, for some M= <W RS> somewe W, T =[Mw].
(i) First of all, M,w » —(A—A), for all wifs A, since M,w = A—A, and then, because of L2, [M,w}
W —~(A-A).
(ii) Now we have the following: for all B,if B ¢ T, then I' U (B} - —~(A—3A), because B ¢ [Mw],
hence M,w » B, M,w = —B and, since -—-B3 (B3> —~(A3A)), MwE= B (B> -(A-A4)),
—~B(B—(A-A)) € (Mw], (Mw] B3 (B-(A-A)), s0 T U (B} — ~(A—>A).
From (i) and (ii), [M,w] is a ~(A—A)-saturated set, for all A. Thus [M,w)e S, T e S.
(=)TeS.
(a) We construct a model M = <S,p,4>, such that M= A iff A € I, for every wif A andevery Z€ S.
From P8.vi, we have that, if TpZ then TuX, so p C p. It is now easy to prove, using P8, that p and ¢
satisfy, for each logic, the required properties of the accessibility relations.
(b) We prove now the following: for every L€ S, £(XB) = (B e S: g(XB) C 9).
It is clear that €(ZB) C n{© € S: £(TB) C 8). On the other direction, let A be such that A ¢ €(EB); then
BA ¢ E. Since £ € S, X+ BA, 50 by P7 there is an A-saturated set £* such that ¢(X8) C £*. Then A ¢
I*, and I* € (I e S: ¢(ZB) C T'). From this it follows that A ¢ (O € S: e(ZB) ¢ 8).
(c) In a similar way, for every £ € 8, e(ZK) = ~(® € S: ¢(ZK) C 9).
(d) Hence, from (a) and (b) we have that A € ¢(EZB)iff A € Nn(O e S:e(XB)C B)iffAec N[O € S:
Xp8). From (a) and (c), A € e(ZK)iff Aec n(B e S: e(ZK)C B)ilfA e N[O e S: ZuB).
(e) We prove now that M = <S,p,u> is a Kripke model. S is a non-empty set, and bC pCSxS. pand
1t also have the desired properties. We show now that M fulfills the conditions of definition D2. For all £
€S,

({HME+= B iff -Be Lilf Be X ilf MZwB;

() MI=B-C ilf BsCec X iff BeXTorCe Liff ML Bor ML= C;

(jii) M,Z = KB iff KBe X iff Be e(ZX)iff Be n(O € S: TuB) iff forall ® e S such that
Iu®,Be 6;
(iv) MZ=BB iff BBe X iff B ¢(XB) iff Be n(B e S: £pB) ill forall @ e S such tha
Ip8,B e 8.
(f) Now I' € S, hence T is one of the worlds in M. Now we define Aafr = (A: MT" = A). thus [M, T)
=I,soTeWw

Theorem T11. (Completeness) TA iff T=A.

Proof. One direction is T10. To prove the other direction, let us suppose that I'»A. From P6 there is an A-
saturated set £ such that T C . From L2 there is a Kripke model M € K and w in M such that £ =
[Mw]. Thusforall Ce T, M,wr= C,and Mw b A. It thus follows that T A. m

f

Now that we have presented a semantics for the EDLs, and have proven correctness and
completeness, it is time that we tie some loose ends from section 1.2, where we discusses modalities.
Theorems T2 to T9 are stated in the form “there are at most ... modalities”. What we should do now is to
show that the numbers mentioned are exact. Thus:

An Overview of EDL-Systems

Theorem T12./nZ,2G,2C,ZCG,ZCP, ZP, Z5 and ZPS5, the number of. distinct modalities is,
respectively, 84, 46, 18, 18, 10, 14, 18 and 10.

Proof, Since Theorems T2 through T9 state that the logics have at most the mentioned modalities, we need
to show that one cannot reduce them further. For instance, we affirmed that, in Z, K and KBK are distinct
modalities. Since KA — KBKA is a theorem of Z, we have to show that KBKA — KA doesn’t hold {else
they are equivalent). Consider the following model M = <(x, y, z}, {<x,z>, <y,2>, <2,2>}, {<x,y>,
<Y,2>, <X, 2>, <X x>, <y,y>, <2,2>}>, such that x(p) = 1, y(p) = 0 and 2(p) = 1. It is easy 1o check out
that R is serial, transitive and euclidean; that § is reflexive and transitive; and that R is contained in S. It is
also easy 10 see, in the next picture, that this model falsifies KBKp — Kp.

KBKp 5 Kp
110 0 0 *
BKp
100

fig. 8 l

Kp :
11

Here the smooth arrows represent the S relation, and the other ones, the R relation. (zRz was represented
by a thicker outline, as you may notice. § reflexivity was left out.) Thus KBKA & KA doesn’t hold in Z.
In a similar way, we have to show, for each pair of modalities, that they are not equivalent—what I won’t
do here for reasons of space. B

41

2

Minimal Belief States

If you think the problem is bad now, just wait until we've solved it.
A. KASSPE

Clysterium donare,
Postea seignare,
Ensuita purgare.

MOLIERE, Le Malade Imaginaire.

Now that we are done with this overview of the EDL-systems, and are hopefully more in clear
about the properties of the logics that we are using, we can move to considering our main problem, namely,
how to characterize Angela’s epistemic states, in the cases where she knows or believes only some formula
. We should maybe begin by asking what does this actually mean. By stating, for instance, that “Angela
believes only o we are surely not pretending to assert that @ is the only one proposition Angela believes—
just remember, she believes all tautologies, that is, ali tautologies, which are quite a lot, are already
contained in her belief state. “believes only” could then be better understood as meaning that the formula
should be some kind of information sufficient to “reconstruct” or “characterize” or “determine” Angela’s
belief state; in other words, with orin our hands we should be able to know what is in Angela’s belief state.
a would be in this sense more a kind of “minimal description”, or a “key”. This naturally leads to the
question of what kind of formula can a be? We don’t really want to narrow our choices just to
propositional variables: Angela can, for instance, only believe that “if p then ¢”. Even if she doesn’t believe
either p or g, this situation is of course different of believing just tautologies, because “if p then ¢" really
tells us something about the world. So we should allow & to be at least any propositional (i.e., zero-
degree) formula whatsoever. But why exclude modalized ones? Prima facie there is nothing which speaks
against them: some of them will certainly show themselves to be “dishonest” (the preferred example in
[HM] is the formula a = Kp v Kg), but others won’t (like for instance Bp). So let us agree that a can be
any formula of L, modalized or not.

We should next decide which kind of state we would actually like to characterize: a knowledge state,
a belief state, or both of them? Well, in ali our systems we have the formula KA — BA as an axiom, and
this means that Angela belleves every proposition she knows. If we now consider epistemic states as being
sets of formulas, then this would intuitively mean that a knowledge state is always a (probably proper)

a2

Minimal Belief States

subset of a belief state. Thus belief states are more comprehensive—and since HM understand default rules
anyway as “rules of conjecture”, like B(—~Kp — ¢), we could then concentrate mainly on belief states. An
additional reason is that agents, in order t0 act, normally also take into account what they believe, not only
what they know. So this should settle the question. In the following sections, then, we consider different
ways of characterizing belief states.

2.1 Stable sets

A first tentative of characterizing belief states uses the notion of “stable sets”, a denomination that
was introduced by Stalnaker.2% Of course, in the original discussion this notion referred only to
“knowledge” sets, so we have to adapt it here. Well, in all EDLs the “belief branch” (i.e., the set of all
formulas in which no K-operator occurs) is as strong as the modal calculus KD45.30 For this reason I
suggest for stable sets the following definition (essentially the same that was already used in [HM84) for
knowledge stable sets, with the difference that we now work with beliefs):

Definition D3. Let L be any EDL-logic. A set S of formulas is an L-stable set if:
(stl) S is closed under logical consequences;

(s12) Ae S iff BAe §;

(st3) Ae S iff -BA€ S;

(s14) S is consistent.

This is a general definition, and can be used in every EDL-system, but of course each system will
determine in its own way which formulas should belong to the stable set. I'll try to make this clear with an
example. Suppose we have a situation in which Angela knows and believes p; believes, but doesn’t know,
¢: and neither believes nor knows r. That is, we have:

Kp, Bp, Bq, —-Kq, —~Kr, —Br.

Now, in each of the different logics, Angela’s belief state would look like the following (where
‘bsy’ abbreviates the belief state in logic L):

. bsz: { p. ¢, Kp, Bp, Bq, KKp, BBp, BBq, KBp, —Br, ...)
bszp: bsz w (KBq, K-Br,..);
bszc: bsz v [Kgq, KKgq, KBq, BKg, ...);
bszce: bszp U bszcs
bszs: bsz v [K-Kq,K-Kr, ..);
bszps: bszs W bszp.

29 cf. [1IM84), p4.

Just 1o remember, KD4S is also known as “weak S5”, that is, S5 with (xx —» oot instead of the reflexivity axiom Do
- o

43

Chapter 2

Supposing further that she doesn’t know that she doesn’t know r (-K—Kr), we would have:

bszG: bsz v (—-K-r,..):
bszca: bszc v (K-, ..).

In this example I have included in the I;sL-scts only the formulas that should necessarily be on
them. If we had for instance that Angela also knows that she believes ¢, then KBq would of course also
belong to bsz,. But in Z Bg—KBgq is not a theorem, so KBgq would hold for another reasons, and we could
entirely as well have a different situation in which KBgq is not true. This is in Z still possible. But KBq
must be in bszp, because Bg—KBgq is an axiom of ZP, hence believed by ideal user Angela. Thus there
are no ZP-stable sets containing Bg and not containing KBg as well. Similar holds of the other logics.
Notice also that the additional hypothesis concerning the logics using axiom g wouldn’t hold in Z§ and
ZPS, because in this logics Angela is fully instrospective, hence she knows when she doesn’t know
something.

" But let us proceed. Suppose now that Angela believes only the formula & (which can be of course a
conjunction of other formulas). How can we characterize Angela’s belief state? It is clear that this state mu$t
contain a—but we have obviously a lot of states to which a belongs. This particular belief state should
then be the “minimal”, whatever we choose here “minimal” to mean. The easiest and most elegant solution
would be to use the notion of set inclusion: let us take all stables sets containing ¢, and the smaliest of them
is now Angela’s belief state when she believes only o

But nothing in life is that easy, as we can sce with the next proposition.

Proposition P9, [HM84] No stable set is a proper subset of another stable set.

Proof. As in [HM84], p. 5: suppose there is two stable sets S and T such that S C T. Hence there is A €
S, A ¢ T. From definition D3 we have BA € § and —BA € T. But BA € S implies BA € T, in which
case T would be inconsistent, and this cannot be, by definition, ®

Oh well, there must be other ways of killing this cat. HM’s solution goes as follows:

A possible candidate for the ‘minimal’ [belief] state containing « is the stable set
containing & whose propositional subset3! is minimum (w.r.t inclusion).
([HMB84], p. 5, italics mine.)

¢

That this solution works in the pure knowledge logic arises from the fact that in {HM84] a stable set is
uniquely determined by its propositional subformulas. But here this is not aiways the case, as we can sece
on the following example.32 Let us suppose that we have two different situations (call them a and b) such
that in a Angela knows that p, but doesn’t know that ¢; and the other way round in b. In both cases she
believes that p and that ¢. So:

a={ Kp, Bp, ~Kq, Bg, ...)

31 Under “propositional subse1” should be understood the set of all formulas In which no K- or B-operator occurs—or whose
modal degree is zero (see definition in Chapter 1).

32 with exception of the systems ZC, ZCP, ZCG and, in certain aspects, of ZS and ZPS.

44

Minimal Belief States

b = {—Kp, Bp, Kq, Bg, ...}
The cormresponding (Z-)stable sets would then be:

bsa=(p,q.Kp,—.Bp,Bq, BKp, —, ...}
bsp = (p,q,-.Kq, Bp, Bq, -, BKq, ... }

As we can sec, bs, # bsp, even if their propositional subsets are the same, namely the set (p, g}. In
spite of Angela’s belicving the same “facts” (p and g) in borh situations, what she believes about her own
internal states is different in each of them. I'd like 10 remark here that this is only so because the known
facts are different in the two worlds, that is, because the “pure knowledge™ propositional subset (zero-
degree wifs that Angela knows) is not the same—that’s the reason for our problem. (Remember we
couldn’t reduce formulas to first-one degree ones? Here is where we are going to miss that.) So we are
bound to run into trouble with some logics. But before we dive into these walers, let us examine closer the
cases in which things work. What we will be trying to do is to find under which conditions two stable sets
are the same, i.e., which kind of subsets uniquely determine a stable set. If we have this, we can, as it will
be shown later, define a kind of smaller-than relation, and then identify the minimal belief state we are
looking for.

1. The ZC/ZCG/ZCP solution

In ZCP we can easily prove that BA «> —K—KA is derivable, or equivalently, that one can define
the operator ‘B’ in terms of ‘K’ (cf. Appendix A3). We can hence consider ZCP, in the end, as being a
pure knowledge logic, as strong as the modal system 54.2. With this ZCP loses some of its interest to us,
because the characterization problem reduces itself to the level of the pure knowledge logic. Anyway, we
can find for it, and for ZC/ZCG as well, a method of characterizing minimal belief states. Since ¢
(BA—BKA) is an axiom of these systems, we have B(BA—KA) as theorem (see Appendix Ad). (Just to
remember, in these calculi we should beuer interpret ‘B’ as conviction.) A natural language rendering of
this formula could be: Angela is convinced that, when she is convinced of A, then she knows that A. Now
this interestingly means that, in Angela’s belief states, conviction and knowledge are equivalent. It is easy
to see why: —B(BA—KA) entails that BAKA belongs 1o the belief state. This is also the case for
KA—BA, which it is an axiom. Hence KA <> BA will also be in Angela’s belief state, and the direct
consequence of this'is that ZC/ZCG/ZCP-stable sets have the same characteristics of the knowledge
stable sets in [HM84). Let us call these x-stable sets, and they are defined as follows:

Definition D4. A sct S of formulas is a X-stable set iff:

(x-stl) S is closed under logical consequences;
(x-st2) AeS iff KAe S;

(x-st3) Ae S iff -KAe S;

(x-st4) S is consistent.

45

Chapter 2

Proposition P10. Let S be a ZC/ZCG/ZCP-stable set. Then S is x-stable.

Proof. x-stl and x-st4 follow immediately from the definition of stable sets. The other two conditions
follow as easily:

(x-s2) Ae S iif BAeS (D3)
iff BKAeS (- BKA & BA)
iff KAeS (D3).

(xst3)Ae S if —BAeS (D3)
iff B-KAeS (- —-BA & B-KA)
iff -KAeS (D3). =

As a consequence of this proposition we can consider ZC/ZCG/ZCP-stable sets as sets in which
one reasons with the rules of the pure knowledge logic. But the most interesting in this story is the fact that
K-stable sets are uniquely determined by their propositional subsets—what was atready proved in [HM84]
(p- 4, Proposition 1: result due to Moore [Mo83]). To prove it here we need the following definitions.
Where S is a stable set, we say that prg(S) = (A € S: dg(A) = 0} is the propositional belief subset of S.

Lemma L4. ((HM84] , Lemma 1) Let S be a ZC/ZCG/ZCP-stable set. Then:

(a) KAvBeS iff AeSorBe S;
®) —XAvBeS iff AeSorBeS.

Proof. Exactly like in [HM84]—or similar to the one of Lemma L5 below.

The next theorem establishes then that ZC/ZCG/ZCP-stable sets are uniquely determined by their
prp-subsets.

Theorem T13. Let S and T be ZC/ZC2/T.CP-stable sets such that prg(S) = prp(T). Then S =T.

Proof33 If A is a formula, let A* be a formula obtained from A where all B-operators were replaced by K.
It is first of all easy to prove that there is for S and T corresponding sets S* and T*, such that A € S (T) iff
A* € S* (T*). It is also easy (o prove that S* und T* are closed under S5-consequences. We then prove
that S* = T*, that is, for ali formulas B,B € S*iff B € T*. If dg(B) = 0, we don’t need to prove
anything, since S and T agree on propositional formulas, and hence S* and T* too. Let us then suppose
that dg(B) = 1. Since both sets are closed under S5-consequences, B is equivalent to a first degree
conjunction B* of disjunctions D; such that, for each D;, D; = KCy v ... v KCpy V ~KCinyp v ... v =KCy
vE,where Eis a proposilional formula, the same as each C;, since dg(B*) = 1. Now B* € $* iff each
conjunct D; € S*, and this holds, by Lemma L4, iff one of the following holds: C; € S*,...,Cm € S*,
Cm+t € S*.,...,Cre S* E € $* A similar property holds for T*, and, since S* and T* agree on
propositional formulas, B* € S* iff B* e T*,Be S*iff Be T* HenceAe SiffAc T.®

33 The f of this theorem, as well as of T14 and T15, is adapted from {11M84), Proposition 1, p. 4.
proof

46

Minimal Belief States

The consequence of this all is that now we have, when we are working with ZC, ZCG and ZCP,
a method of characterizing Angela’s belief state when she believes only some formula a—it will be the
stable set whose prg-set is the “smallest”—in a sense of “small” we are going to define later on. Let us first
look at the other logics.

2. The ZPS solution

Another among the above mentioned nice cases—and this only with some restrictions—is ZPS, one
of the strongest EDL-systems. To prove that ZP5-stable sets are uniquely determined by their propositional
(belief and also knowledge) subscts we need first some definitions and lemmas. If S is a stable set, we say
that prx(S) = (A € S: dg(A) =0 A KA € S) is its propositional knowledge subset. Of course prx(S) C
pra(S). As we'll see, the pri-sets must also play a role.

Lemma LS. Let S be a ZP5-stable set. Then:

(a) BAvBeS iff A€eSorBes;
b) —BAvBeS iff A¢SorBesS;
(c) KAvBe S iff A€ prx(S) or Be S, ifdg(A) =0;
(d) —-KAvBeS iff A pr(S) or Be S, ifdg(A) = 0.

Proof. We prove the cases (c) and (d).
(c=>)KAvBe S . ThusKA e SorBe S. I Be S we are done, so let us consider KA € S. From
axiom k it follows that A € S and, since dg(A) = 0, that A € prg(S).
(c<=)A € prx(S)orBe S.IfBe Sthen KA v B € S.If A € prx(S) then by definition KA € S, and KA
vBeS.
(d=>) —KA v B € S.If A € prx(S), by definition KA € S, and it follows from the hypothesis that B € S.
If A ¢ pri(S) then it’s alright.
(d<=)A ¢ prx(S)orBe S.IfB € S then -KA v B € S and we are finished. So let us suppose that B ¢
Sand -KAvBe¢ S. Then ~-KA ¢ Sand B ¢ S.If KA ¢ S then —~B—KA € S (s14). Since — —KA —
B--KA, —KA € §,KA € S and, since dg(A) = 0, A € prg(S), which is a contradiction. Hence —KA v
BesS.
For (a) and (b) the proof is similar and even simpler. 8

!

The next theorem now shows that ZPS-stable set are uniquely determined by both their
propositional subsets (prx and prg).

Theorem T14. Let S and T be ZPS-stable sets, such that pri(S) = prx(T), and prg(S) = prg(T). Then S
=T.

Proof. We prove that for every formula A, A € S iff A € T. By Propositions PI and P2 we have that A &
A*, where A* is at most of the first degree and is in MCNF. If dg(A*) = 0, we don’t need 1o prove

anything, since S and T agree on propositional formulas. Let us thus suppose that dg(A*) = 1. Since it is in
MCNF, A* is a conjunction of disjunctions D;, such that each Di =KB;v ...vKBpVv KBy v ... v

47

Chapter 2

—KByv BCiv ... vBCrv —BCpyi v ... v =BCy v E, where E is a propositional formula, same as each
By, Cj, since dg(A*) = 1. Now A* € § iff each conjunct D; € S, and this holds, by Lemma L5, iff one of
the following holds: Bj € prx(S)...., Bm € prx(S), Bms1 # prg(8),..., By ¢ prx(8),C; € S,...C, €
S,Cry1 € S,....Cs ¢ S, E € S. Asimilar property holds for T, and, since S and T agree on propositional
formulas, and since prx(S) = prx(T), A* € SiffA* € T,Ae SiffAc T. =

We can see in this proof the importance of the restriction prx(S) = prx(T): in order 1o show thatA €
S iff A € T we need to suppose that both sets agree on some “basic” formulas—in this case not only the
believed zero-degree formulas, but also the known ones. This would seem to imply that, in order to
characterize a minimal belief state, we not only need to know that « everything Angela believes, but also
that some f is everything she knows. On the other hand, betwen a siate in which she believes @ and knows
B, and another in which she believes o and knows nothing, the second is clearly the smaller—the smallest
of ali, thus, being the one in which Angelas has only beliefs and no knowledge.

3. The 28 solution

With respect to this logic the situation is somewhat more complicated, but anyway not beyond
salvation. In the first place, it is easy to see that stable sets are not uniquely determined by their
propositional subsets alone. Let us imagine two different situations (call them again a and b, and let bsa
and bsy be stable sets denoting Angela’s belief state in each case) such that prg(bsa) = pri(bsy), and
pra(bss) = pra(bsy). Let us further suppose that in a Angela knows that she believes A (KBA), while in
case b she doesn’t (-KBA). We would consequently have KBA € bsa, -KBA € bsy, and of course bs,
bsp. We must hence introduce further restrictions in order to characterize the desired belief states. This is
s0, of course, because in Z§ we can’t reduce every formula to a first-degree one, only to the second
degree. So we need one construction more, namely of a BT-ser. For any stable set S, we define BT(S) as
(A€ S: A=KB and B is a f°-formula).

We can then go to the next theorem, which proves that Z5-stable sets are uniquely determined by
their prx-, prg- and BT-sets.

Theorem T15. Let S and T be 15-stable sets, such that prx(S) = prx(T), prg(S) = prg(T) and BT(S) =
BT(T). ThenS=T.

Proof. Similar to theorem T14, with now the BT-sets also playing the important role. ®

4. The lack of a Z, TG and TP solution

Now these are the complicated cases—these logics are going to stay for the present as open
problems, at least in what concems the characterization of belief states through stable sets the way we are
irying it here.

Minimal Belief States

5. Defining a smaller-than relation

Now with respect to the other systems for which we had a solution, we are able 1o give for them a
definition of “honesty” of a formula. We must first only define a kind of “smaller than” relation between
stable sets, something corresponding to the notion of set inclusion.

In the logics ZC, ZCG and ZCP, this is no big problem. In Theorem T13 we have proved that
ZC/LCG/LCP-stable sets are uniquely determined by their prg-subsets. So it is enough that prg(S) is a
proper subset of pra(T) to characterize S as a state in which Angela believes less than in T. The following
table show the possible relations that obtain between the prg-subsets of two stable sets S and T (where ‘S
<p T’, or ‘'S =, T' mean that in S Angela believes less than, or the same as, in T):

if ... l we_have ...
preS) Cprp(T)] S<pT
pre@S)=prp(M) | S=T
pra(S)opra(M| T>S

This could lead us then to the following definition:

Definition D5a. Let S and T be stable sets. We say that S is ZC/ZCG/ZCP-smaller than T iff pra(S) C
pra(T).

In ZPS things aren't thal easy, because here we have to consider the two propositional subsets of a
stable set (cf. T14). Let us examine the possible configurations: -

if ... and ... we have ...
pre(S) Cpra(D) prxS) T pre(T)} S<T
pre@S)=pra(M) | prx(S)Cprx(T)| S<pT
pro(S) > pra(T) | pri(S) C pri(T) n
pra(S) Cpra(M)| prx(S)=prx(T) | S<pT
proS)=pra | preS)=prM | S=pT
praS)opra(M | pre(S)=pre(T) | T>pS
praS) Cpra(D| prS)oprM| 7
praS)=pra(M | prx(S)opr(TM) | T=S
preS)oprg(M | T>S

pra(8) D prp(T)

As one can see, in three of the lines S is smaller than T; in other three T is smaller than S; in one they are
the same and, in two lines (marked with *?7°), there is no comparison possible. We artive then to the
following definition:

Definition DSb. Let S and T be stable sets. We say that S is ZP5-smaller than T iff prp(S) C prp(T) and
prx(8) © prx(T), or if prg(S) = prp(T) and prx(S) C pri(T).

49

Chapier 2

In the case of Z5, now, things are going w get really lough, because here we have to consider three
different subsets of a stable set (cf. T15). Let us try to make some sense of ali the possible combination in
the following table:

if ... and ... and ... we have
pra(S) C pra(T) pre(8) Cprx(T) | BT(S)CBT(T)| S<pT
pra(S) = pra(T) prxS)Cpr(T) | BTS) cBT(T)} S<T
pre(S) > pra(T) prx(S) C prx(T) BT(S) C BI(T) n
pra(S) C prp(T) prx(8) = pri(T) BT(S) CBT(T)| S<pT
pra(S) = pra(m) prxS)=pre(M | BTS)cBT(T)| S<uT
pra(S) > pra(T) Pri(S) = prx(T) BTS)cBI(T)| 7
pra(8) C pra(T) pre(8)oprg(T) | BTS)CBT(T)| M
pra(S) = prp(T) prx(S)Dprx(T) | BT(S)CBT(T)| M
pra(S) o pra(T) pre(S)oprx(M | BTS)CcBT(M| M
pra(S) C pra(T) prx(S) C prx(T) BT(S)=BT(T) | S<T
pra(S) = pra(T) pre(S) Cprx(T) | BT(S)=BT(T) | S<pT
pra(S) o pra(T) pri(8) € prx(T) BT(S)=BT(T) n
pra(S) C prg(T) prx(S) = prx(T) BT(S)=BT(T) | S<T
pra(S) = pra(T) pr(S) = prx(T) BT(S)=BT(T) § S=pT
pra(8) o pra(T) prx(S) = prx(T) BT(S)=BT(T) | T<pS
pra(S) C prp(T) prx(8) D pri(T) | BT(S) = BT(T) n
pra(S) = pr(T) pre(S) D pri(T) | BT(S)=BI(T) | T<S
pra(S) > pra(T) prx(8) o prx(T) BT(S)=BT(M) | T<p$S
pra(S) C prp(T) prx(S) C pre(T) BT(S) > BI(T) n
pra(S)=prg(T) prx(S) C prx(T) | BT(S) > BT(T) n
pre(8) > pra(T) prx(S) C prx(T) BT(S) o BT(T) n
pra(S) C prp(T) prx(S) = pr(T) BT(S) o BT(T) n”
pra(S) = prg(T) pri(S) = prx(T) BT(S)oBT(T) | T<pS
pru(S) o pre(T) pri(S) = prg(T) BT(S)oBT(T) | T<uS
pra(S) € pra(T) prx(S)oprx(T) | BTS)DSBT(T) | 77
pr(S) = prg(T) prx(S) o pr(T) BT(S)o>BT(T) | T<pS
pre@)opra(, | pre(S)Spre(™ | BTS)>BT(T) | TS

One can see that we have more undecided cases as in the logic before. Anyway, summing up what this
table tells us, we arrive at the following

Definition DSc. Let S and T be stable sets. Then S is ZS-smaller than T iff (i) pra(S) C prg(T), prx(S)

C prg(T) and BT(S) C BT(T); or (ii) pre(S) = pre(T), prx(S) C prx(T) and BT(S) C BT(T); or (iii)
pra(S) = prg(T), prx(S) = prx(T) and BT(S) C BI(T).

We can now characterize Angela’s belief state, in which she believes only @, as the “L-smallest”
stable set containing a, for L € (ZC, ZCG, ZCP, Z5, ZP5). There are of course lots of formulas a for

50

Minimal Belief States

which there is no such a state, for instance let a = Bp v Bg. This leads us 1o the following definition of
honesty: for L € {ZC, ZCG, ZCP, 75, ZPS), a formula a is L-honests iff there is an L-smallest stable
set S containing a.

We can see at once that the formula & = Bp v Bq is not ZC/ZCG/ZCP-honests. All
ZC/LCG/LCP-siable sets which contain @ must also contain either p or ¢. Further, there is a
ZC/ZCG/ZCP-stable set Sp which contains a and p, but not ¢, and another set S, which contains a and
¢, but not p. Neither S, nor S, are ZC/ZCG/ZCP-smallest, and the intersection Sp M Sy contains neither p
nor g. Hence there is no ZC/ZCG/LCP-smallest stable set T containing a, such that prg(T) C pr(Sy)
and prg(T) C prp(Sy). Thus a is not ZC/ZCG/ZCP-honests. In a similar way we can show that a is not
honests in other systems as well.

22A §|destep: saturated sels

An aliemative way of characterizing Angela’s knowledge state using these smaller-than relations just
defined concems saturated sets. We begin by establishing some relations between stable and saturated sets.
The reader has surely noticed that a saturated set can be seen as a world—or, to put it better, as a world
description: this description tells us what is true in the world, also including what Angela knows or
believes—these are facts, t0o. So the following should be true: to each sawurated set (world) X corresponds

a stable set, namely the set of the formulas believed (in this world) by Angela, and this set is no other than
€(EB). As we prove in the next two propositions;

Proposition P11. Let I be a C-saturated set. Then €(IB) is a stable set.34
Proof. We prove that e(IB) fulfills the conditions of definition D3.

(st1) Let A be a PC-tautology; thus A, —BA (by RB), so £+ BA and BA € X, A € €(XB). Let us
now suppose that A, A8 € €(E8). Thus we have BA, B(A-»B) € X. From kb and MP it follows that
BB € X and finally B € €(XB).

(s12) Let us suppose that A € €(ZB). So BA € X and, since we have BA—BBA as an axiom, BBA € I,
BA € €(£B). Ou the other direction, if BA € €(£B), then BBA € L. But -BBA—BA,soBAe £, A€
€(ZB).

(st3) If A ¢ €(IB) then BA ¢ I, —BA € I and, from 5%, B—BA € I, —BA € €(XB). On the other
direction let us suppose that ~BA € &(£B), A € &(ZB). From —BA € €(ZB) we get BA ¢ €(XB), BBA ¢

I. From A € g(IB) it follows that BA € Z, and, through 4%, BBA € I—a contradiction. Thus A ¢
€(ZB).

(st4) To prove that €(EB) is consistent we have, since I is C-saturated, that for some wif C, it holds X 1+
C, so L is consistent. Let us now suppose €(ZB) is inconsistent. Then there is an A such that A and —A4 €

34 When 1 1alk about “stable” sets without specifying some EDL-system 1 am of course meaning that what is being said holds
for all systems we arc considering here.

51

Chapter 2

€(ZB). From this fact it follows that BA, B—A € ¥. But BA——B—4 is an axiom, and thus —~B—A € I,
and X is in this case inconsistent, what cannot be. Hence €(EB) is consistent. &

Proposition P12. Let T be a stable set. Then, for some C-saturated set L, T = ¢(IB).

Proof. Since T is stable, we know that T is consistent, so there is a formula C such that T v+ C. From
proposition P6 it follows that there is a C-saturated set I, such that T C . We have now (o prove that T =
€(ZB).

(A) Let us suppose, for some A, that A € T. Then BA € T (st2) and, since TC £, BA € £, A € £(ZB).

(B) Let us now have A € €(XB), A ¢ T. Then BA € X. However,ifA ¢ T, then -BAe T, —-BA € %,
and this is a contradiciton. Hence A ¢ T.»

By now, it jumps to the eyes, since stable sets are the bs-sets of some saturated set, that there is
(sort of) a way of defining honesty using saturated sets: & is L-honestw iff there is a A-saturated set
containing Ba such that £(ZB) is L-smallest (for L € (ZC, ZCG, ZCP, Z5, ZPS)). This is of course
just another way of making use of stable sets.

2.3 Kripke models

A second method employed by HM in the characterization of knowledge states uses Kripke, or
possible-world, models. Basically, the procedure is:

@ define, for each model M, the set of known formulas in M (namely the wifs that are true in every
state of the model);

(ii) show that this set of known formulas is a stable set;

(iiiy show that the model in which Angela knows only & is the union of ali models in which she knows
a.

Well, in [HM84] this task is easily accomplished, and again this is so because the knowledge logic
they used is SS. In models for this system, the accessibility relation must be an equivalence relation. Now
this almost amounts to saying that each world is accessible to every world, which fact has as a consequence
that one can completely delete the accessiblity relation from the picture: thus KA is tiue in a model if A is
true in every world of the model.

But I said almost: in fact, we could have a model like the one in the following picture:

52

Minimal Belief States

As one can see, the accessibility relation (depicted by arrows and black-filled circles in case of reflexivity)
is an equivalence relation: it is easy to check visuvally that it is reflexive, symmetric and transitive, However,
not every world is accessible to every world: they are grouped in different “clusters” which have no
communication to another. As Hughes and Cresswell already pointed out ((HC72], p. 67), this means the
same as having two §5-models glued together: since no cluster has any influence on the other, to evaluate
valid formulas we have (o get their values separatedly in each cluster—same procedure as looking in two
different models. Hence we can in fact use models without the accessibility relation for S5--which we can
call monoclustered models.

Now this has another interesting consequence: HM define the set K(M) of the known facts in model
M as (A : M= A, for every 1 in M) (cf. [HM84], p. 7). It is now easy to show that

) Ae K(M) iff * M= KA forall f; and
?) Ae K(M) iff M, = —KA for all 1.

(1) would give no problem even with standard (multiclustered) models, but (2) would. In a monoclustered
model, if A ¢ K(M) then, for some state w, H,w » KA. So there is a state v such that M,y » A. Since
now every world is accessible to every world, for every ¢ there is a world (namely v) where A is false, so
KA is false in every world, and —KA is true in every world. That this doesn’t work in a multiclustered
model can be scen in the next picture:

-KA KA

o o e

fig. 10

HYre we have on the left a cluster where, for every 1, Mt = —KA. Bul worlds of this cluster are not
accessible to worlds of the second one, so there, on the right, we have M, w = KA, for every w. So
K(M) won’t have the nice property (2), and won't be stable.

Now getting rid of this problem is only the first advaniage of working with monoclustered models.
The second concerns the method of characterizing the model in which Angela knows only a. As 1 said, a
formula Ka is then true in a state s if and only if a is true in all states simpliciter. Now the intuition behind
Kripke models is l(hc following one: states are worlds which Angela thinks are possible relatively to what
she knows/believes. If now a model M contains more states than another model A we can say that in M
Angela is more ignorant than in A{ This fact implies that the model in which Angela knows only a should
be the union My of all models M such that M= K, i.c., all models in which K& holds. And this works
with monoclusiered models because we can take any two models whatsoever and nevertheless still be sure
that their union will be a model. Bad luck, with our EDLs this is not always the case. Let us consider the
following example: let M = <M Ry, Sp> and N= <N,Ry,Sy> be iwo EDL-Kripke models, where M =
{a, b}, Ry = {<a,b>, <b,b>}, Sy = (<a,a>, <a,b>, <b,b>}, N = {a, ¢}, Ry = (<a,c>, <c,c>}, Sy =
(<a,a>, <a,c>, <c,c>}. Let now U the union of M and X that is, U = <U,Ry.Sy>, where U=M U N,
Ry = Rm U Ry = {<a,b>, <b,b>,<a,c>,<c,c>}, Sy = Sm U Sy. The uouble here is that the belief

53

Chapter 2

accessibility relation Ry in U is not euclidean: we have aRyb and aRyc, but the pair <b,c> doesn’(belong
to Ry. Thus Uis not a Kripke model. '

On the other hand there are some cases where the union of two models is still a model, namely, if
the two original models don’t have any states in common. (States, remember, are considered here to be
truth-value assignments to propositional variables.) As follows:

Proposition P13. Let M = <M ,Rp,Sm> and N = <N,Ry.SN> be two Kripke models such that M ~ N
=@. Then U= <URySy>, where U = MU N, Ry = Rpyg U Ry and Sy = Sy U SN, is a Kripke model.

Proof. U is obviously a non-empty set. What we must show is that the relations Ry and Sy have the
desired properties.

(a) Ry is serial, i.e., for every u in U there is a v such that uRyv. This is evident, because Rps and Ry are
serial, and the pairs <u,v> are consequently in Ry.

(b) Ry is transitive. Suppose not: then there is u, v, w in U such that uRyv, vRyw, but not uRgyw.
However, since M N N = @, we have as a consequence either (i) u, v and w are in M, in which case uRpv,
VRpw and—since Ry is transitive—uRpyw, with the consequence that uRyw; or (ii) u, v and w are in N,
in hich case the same holds. So Ry is transitive.

(c) Ry is euclidean. Suppose not: then there is u, v, w in U, such that uRyv, uRyw, but not vRyw or
wRyv. However, since M n N = @, we have as a consequence either (i) #, v and w are in M, in which case
uRpv, uRmqw and—since Ry is euclidean—vRpyw, and hence vRyw; or (ii) u, v and w are in N, in
which case the same holds. Hence Ry is euclidean.

In a similar way we can show that Sy has the desired properties. ®

How this fact could help us is still not clear to me. So how can we go on? Well, there should be a
way of getting a kind of monoclustered model for knowledge and belief together. Let us see.

To begin with, in handling belief, things are likely to be somewhat different from the knowledge
case. In fact, it is perfectly possible to have M = BA (i.e., BA is true in every state w € M) and
nevertheless there could be w* € M such that M, w* ¥ A. Now, if this happens, then w* must be a
special kind of world. If for instance there were a t € W such that tRw*, then we would have Mt »* BA
(because there would be an accessible world with A false). So we can conclude the following: if M= BA
and there is w* such that 3, w* A, then there is no t € W such that (Rw*. If this is so, we say that w*
is a lost world (ot closed, or forbidden—take your choice). Worlds that are not lost we will call open, or
accessible.

The interesting about lost and open worlds seems (o be that for KD45 (which is our belief logic
here), we can put the open worlds together in the same basket: in fact, they are all accessible to every other
world, if in the same cluster. A typical, multiclustered KD45-model could look like this:

L GV

fig. 11

54

Minimal Belief States

Unfilled circles represent the worlds that are not accessible to others, not even to themselves. The only
thing we need to do, if we drop the belief accessibility relation from the picture, is to single out lost and
open worlds when we define a model. So let us put all these ideas together and see what we gel.

We define a monoclustered EDL-model as follows:

Definition D6. A monoclusterd model M is a pair <W,0>, where:
a. Wee,;

b. eachw; € W is an assignment of truth-values to atomic formulas;
c. OCWandO#¢.

Again the elements of the set W of worlds are assignments of truth-values (o propositional
variables. O, of which we require to be non-empty, is the subset of W which contains the open worlds. Of
course, the set W of lost worlds can be defined as W-0.

It should be now obvious, since we dropped the S-accessibility relation from the picture, that the
knowledge branch of this as yet unknown EDL is S5. But do we really get KD45 as belief logic? And
which of our EDLs here is characterized by the class of monoclustered models?

Probably ZPS, and we’ll see that this is the case. A first way to show that is to define for
monoclusiered models two accessibility relations over W, R™ and S, and to prove that they have exactly
the characteristics of ZPS relations. So let M= <W,0> be a monoclustered model. For any two worlds w,
ve W, we say that wR™v, if v € O; and that wS™v. Now we show that:

Lemma L6.

(i) Rm is serial, transitive and euclidean.

(ij) S™is an equivalence relation.

(iii) RmMmC §m,

(iv) 1-mixed transitivity holds.

Proof. (i) Since by definition O is non-empty, for every w € W there is a v such that wR™v. So R™ is
serial. Suppose now wR™v and vR™t. So ¢ € O, hence wR™t, and R™ is (ransitive. Suppose now wR™y
and wR™t. So 1 € O, hence vR™;, and R™ is euclidean.

(ii) Since wS™v, for any two worlds w and v, ™ is obviously an equivalence relation.
(iii) Since O C W, it is trivial that Rm C §™,

(iv) Suppose now wS™v and vR™. So 1 € O, hence wR™¢, and 1-mixed transitivily holds. »

I is also easy to see thal, for instance, 2-mixed transitivity does not hold. Suppose wR™v and
v§™. So v € O; however, we have no guarantee that 1 also belongs 10 O—it could be a lost world.

So we just got monoclustered models for at least one logic. Is there any chance of having this kind
of model for the other systems as well? Well, the way we defined things entails that all these models
validate the schema p. In view of this, it seems thal if we want the models having this monoclusierdness
characteristic—which is important in order (o have BA true in the model iff A is true in all worlds——then we
must accept that BA—>KBA shall turn out valid. Else there should be a world where BA is false; and yet
another (obviously not in the same cluster, then) where A would be false. Thus BA would come out false

55

Chapter 2

in the model. Well, what we want to have is the following: the worlds that matter to evaluate belief
formulas should be kept together in a cluster—this doesn’t mean that worlds that matter for the cvaluation
of knowledge formulas couldn’t be arranged in a different way. To put it in another way, we could try
models with the open—worlds—story instead of the belief accessibility relation, but introducing back again
the § accessibility relation for knowledge.35 Let us see what we get.

Definition D7. A mixed monoclustered model M is a triple <W,0,5>, where:

a. Wze

b. each w; € W is an assignment of truth-values to atomic formulas;

c. OCWandO#g;

d. §is a binary relation over W x W which is at least reflexive and transitive; moreover, if ve O then
for every w, wSv.

I claim that these just defined models are models for ZP. If we now add the following requirement:
e. foreveryw,ve W,ifwe OandwSvthenve O;

then we should get models for ZCP.

We’ll be proving all that soon. We must now redefine, for each formula A, what it means for A to
be true in a (monoclustered) model and in a state. In what follows, I will use the following notation to
denote monoclustered or mixed monoclustered models; M = <W,0{,§]> . This just means that the relation
S only applies, obviously, in the cases of ZP and ZCP.

Definition D8, Let M = <W,0f,5]> be a monoclustered model, and w an element of W:
M, wk=mA iff w(A) = 1,if A is a propositional variable;
M, wi=m _A iff M, wrmA;
M, wiEmAB il M, wrmA or M,w=mB;
M, w=m KA iff for every ve W, M,ve=mA; (ZP5)

for every v such that wSv, M, vi=" A; (ZP/ZCP)
e. M,wkmBA ifl forevery ve O, M,v=m A,

aoe o

Validity and semantical consequence are defined as before, just with ‘=™" instead of plain ‘=",
Now, in the following, let £ be one of ZP, ZP5 and ZCP.
‘

Lemma L7. If T is a saturated set, then, for some monoclustered model M, I" = [M,w].

Proof. Let us suppose that I is saturated. The best way to show the lemma is to take some subset of the set
S of saturated sets whicﬁ includes T" as the set of worlds, and show that we can have a model on this—T°
would be then one of the worlds and we’d be done. Well, for ZP and ZCP we’ll use again the relation g
we defined over the set S of all saturated sets, namely ZpA iff e(EZK) C A. As one see from the proofs of
P8.i and ii, this relation is reflexive and transitive.

35 Trying to keep the SS-characteristics and extend ZPS leads only to ZCS, which we already have thrown into (this story’s)
trash can.

56

Minimal Belief States

(a) We first construct a model M = <[T']%, [[}B{, uJ>, where [T% = (B € S: e(TK)C B),[INP= (B e
S : &(I'B) C ©), and, for ZP and ZCP, y is as above.

(b) We first prove (in ZP5) that, for every I, © € [T]¥, e(ZK) = ¢(0K). Let A € €(EK). By construction
of [I']%, &(TK) C X. We then have KA € I; —-KA ¢ I, K—KA ¢ T, ~K—KA € I and, since ——K—KA
— A, A € T. Hence £(ZK) C T, from what it follows that €(EK) = (I'K). By a similar reasoning, ¢(6K) =
€(T'’K), from whal it follows that e(ZK) = ¢(6K).

(c) We now prove, still in ZPS, that, for every I € [T)%, ¢(EK) = N[O € [T]*). Well, A € e(ZK) iff,
from (b), for every © € [T']%, A € &(OK) iff for every ® € [T}, KA € O iff forevery O € [T']x, A€ 8
iff A e N[O € [T]*).

(d) We prove now, for ZP and ZCP, that for every I € [T]%, ¢@K) = ~(8 € ()< EuB).

It is clear that £(ZK) € N (O € [T]%: €(ZK) C 6). On the other direction, let A be such that A ¢ g(ZK);
then KA ¢ X. Since I is a saturated set, E * KA, so by P7 there is an A-saturated set £* such that e(ZK)
C Z*. Then A ¢ Z*. Now, since I € [T]%, &(I'K) C Z; and, since g is transitive, e(I'’K) C Z*;s0 Z* €
{8 e S:e(TK)C B),i.e., I* € [T]*. From this it follows that A ¢ N(0 € [T']*: &(ZK) C 8).

(e) We prove now that, for every L € [I')%, &(TB) = n(© € [T'|P}. Let A be such that A € e(¥B); then BA
€ I; ~BA ¢ I. By the construction of [[']%, K~BA ¢ T', -BA ¢ T, BA € T, and, finally, A € g(I'B).
Obviously then A € N[O € (I']P) (by the construction of [I')B), so e(XB) C (O e (T'}#).

On the other direction, let A be such that A ¢ £(ZB); then BA ¢ I. By the construction of [[']%, KBA ¢ T,
BA ¢ T, and T ¢ BA, 50 by P7 there is an A-saturated set © such that ¢(TB) C @, Then A ¢ © and, by
the construction of [[]P,® € (I)B. Thus A ¢ N(B € [T]B).

It follows that, for every X € {T]%, e(EB)=n(B e (T)8).

() We prove now that [I')P # ¢. Since I is a saturated set, there is some wif A for which I" is A-saturated.
So I' b A, and obviously I" b2 KA, I" < BKA. By L1 there is some saturated set T such that ¢(T'B) C L.
So e (TP, and [T # @. It follows immediately that also [T # @, because clearly [P C [,

(g) We now have to prove (in ZP and ZCP) that, if © € [I')Pand I € (I']%, then ZuB. Let A be such that
A € e(ZK); then KA € X; BA € £, and A € €(XB). By (f) above, A € n(O € [T')B), 504 € O and
€(ZK) C ©. That is, Zu®.

(h) We now have to prove (in ZCP) that for every I, 8 € (T]%,if L € (T') and Zu® then 8 € (I'}P.
Since I € (I']8, &(I'B) C I. Now, for every wif A such that BA € T, BKA € T, and KA € L. But then'’A
€ 8,s50e(IB)COandB e B

(i) We have now to prove that M = <[T]¥, rer J4J> is a monoclustered model. We already proved that
{T'}* and [T}8 are 'non-cmply, and that 4 satisfies the required conditions. We show now that M fulfills the
conditions of definition D8. We say that ML= A iff A € I, for every wif A and every I € [I']X. Now
we have, for all € [T}¥,

(M= -B iff -Be L iff Bg L iff MIwB;
(ii) ME=BC iff BoCe X iff B¢ LorCe Ziff MXw» Bor MXI C;
(iii) ML = KB iff KB € I iff B € ¢(XK)iff
ZP5:B e (B e [T}x}iff forallB® e (%, Be B;
ZP/ZCP: B € (O € [T'}*: Lu®) for all B € [T} such that £u6, B € O,
(iv) M.Z+= BB iff BB € X iff B e e(XB) iff Be n(B e [IP) iff forall @ e [P, B e O.

57

Chapter 2

Now obviously T" € {I']%, hence I" is one of the worlds in M. Now we define {M,I'] = (A: M, = A},
and obviously enough, F = (M. =

Theorem TI16.+p A iff ="A,

Proof.
(I) Suppose 1, A.

(A) A is an axiom. We examine each case. If A is a tautology, it is evident from clauses D8b and D8c that
=mA, And it is also obvious that (k), (1), () and (5), ali valid formulas, are also monoclustered valid. Let
us now consider the belief case, and the mixed formulas,

(k?) A is of the form B(p— ¢)—->(Bp—Bgq). Let us suppose that A is not valid. Then there is a
monoclustered model M = <W,0[,5]> and w € W, such that M,w =" Bp, M, w =" B(p—q) and
Mw m Bgq. It follows that there is v € O such that M,v ™ ¢, But it also follows that M,y =7 p and
My =" p—3q, which is impossible. Thus A is valid.

(4%) A is of the form Bp—BBp. If A is not valid then there is a model M = <W,0 {,S]>and w € W, such
that M,w =m Bp and M,w »™ BBp. Now it follows from D8e that there is v € O such that M,y =m
Bp. Again from D8e we have a 1 € O, such that M,¢ ™ p. However, M,w =m Bp implies that for every
open world ¢, Mt =" p_ Thus A is valid.

(5%) A is of the form —Bp—B—Bp. If A is not valid, then there is a model M =<W,0 [,S]>andwe W,
such that M,w =" —Bp and M,w »™ B-Bp; thus M,w » Bp. From D8e it follows that there isa v e
O such that M,y »™ p. From D8e again we have a 1 € W such that M ¢ =™ —Bp, hence Mt =" Bp.
Now this entails that, for every open world, inclusive w, M;w =" p—a contradiction. Thus A is valid.

(d%) A is of the form Bp——B-p. I A is not valid, then there is a model M = <W,0 [,S]>andwe W,
such that M,w =" Bp and M,w *m —B—p; thus M,w =" B-p. Since O is not empty, there is at least a
v € O such that M,v =m p. However, it follows from D8e that M,y =" —p, M,y » p, what cannot be.
Thus A is valid.

(m) A is of the form Kp—3Bp. If A is not valid, then there is a model M= <W,0[,5]> and w € W, such
that M,w =m Kp and M,w »m Bp. From D8e there is then a v € O, such that M,v =7 p. However,
Mw =" Kp entails that p is true in every world: thus M,v =" p—a contradiction. Thus A is valid.

(p) A is of the form Bp—3KBp. If A is not valid, then there is a M = <W,0/[,5]> and w € W, such that
M,w =" Bp and M,w ™ KBp. From D8d it follows that there is a ve W such that M,v »™ Bp.
From D8e it follows now that there is a1 € O such that M. =™ p. But M,w = Bp entails that for every
open world ¢, M1 +=" p—a contradiction. Thus A is valid.

(c) A is of the form Bp—BKp. If A is not valid, then there is a M = <W,0 [,5]> and w € W, such that
Mw =" Bp and M,w »+ BKp. From D8d it follows that there is a v € O such that M,y ™ Kp. From
D7e and D8e it follows now that there is a ¢ € O such that M,(=™ p. But M,w =" Bp entails that for
every open world 1, M.t = p—a contradiction. Thus A is valid.

58

Minimal Belief States

(B) A was obtained by using MP from B and B—A. Induction hypothesis: =™B and ="B—A. If there is
a monoclustered model M such that M =™ A, there is a w € W such that M,w b A. But M,w =™ B,
M,w =m B A, and this is contradictory. Thus, for all M, M=mA and A is valid.

(C) A = KB was obtained from B using RK. Induction hypothesis: ="B. Now if some M #m A, there is
aw e Wsuch that Mw ™ A, ie., Mw t=m KB. From D8d it follows then that there is a t € W such
that M1 =™ B—and this cannot obviously be the case. Thus, for all M, H=mA and A is valid.

(EI) Suppose that b1, A. From P6 there is an A-saturated set I such that I’ C E. From L7 there is a
monoclustered model M and w in W such that £ = Aag,. Thus Mw +=m A. It thus follows that »m A,
»

That, for example, (c) does not comes out valid in ZPS models we can see at once. Suppose
Bp—BKp is not valid, then there is a model M= <W,0> and w € W, such that M,w = Bp and Mw v
BKp. From D8e it follows that there is a v € O such that M,v » Kp. From D8d it follows now that there
is a € W such that M, 1 p. Now we have from D8e and M,¢ = Bp that, for every open world s, M, s
= p. But here we don’t get a contradiction, because ¢ is not necessarily open. By a similar reasoning we
can show that things like Bp—p and Bp—Kp are also not valid.

Now let M be an L-monoclusiered model, for some EDL-calculus L € (ZP, ZPS, ZCP). We
define the sets K(‘M) and B(M) of the known and believed facls in M, respectively, as:

KM)={A: M=KA };
B(M)=(A: M,w=Aforeverywe O }.

It is easy Lo see, from this definition, that:

(i) Ae B iff for all win M, Mw = BA iff M= BA;
(i) AeB(M) iff forallwin Mwr ~BA iff M= —BA.

For instance (ii): if A € B(M) then there is a w € O such that M, w i A. If now there were a 1 € W such
that M, ¢ = BA, then we would have that, for every w € O, M, w = A, a contradiction. So for every t €
W, M, 1< BA; ‘M, 1= —BA, and thus M= —BA.

Proposition P14. Let M be a monoclustered L-model. Then B(M) is an L-stable set.

Proof.

(st1) For all tautologies A, M = A; thus M = BA, A € B(‘M). Let us now suppose that A,A—5B ¢
B(M). Le., Mn= BA, M= B(A—B). Using kb, M = BB, B € B(M). Thus B(M) is closed under
boolean operations.

(s12) A € B(M) iff M= BA ilf M= BBA (—BA & BBA) iff BA € B(M).

(st3) A & B(M) iff M 1= BA iff M= —BA iff M= B—BA (— —BA <> B-BA) iff ~BA € B(M).
(s14) Suppose B(M) is inconsistent. Thus A, A4 € B(M), thus M= BA, M = B-A. But M= BA
implies that M= ~B—A (using d?), and this is a contradiction. Hence B(‘M) is consistent.

59

Chapter 2

Lemma L8. Let M be a monoclustered model, and w € W. Then there is a model N such that, for every
formula A, Mw = A iff N=A.

Proof. Let us have [M,w] defined again as {A: M, w = A). Now let A* = (A: N[= [M,w]). We
show that:

i) A* # 9. Suppose A* = g. Thus for all models A, N\» [M,w]. From this fact it follows that for all
models A[, if A= [M,w] then A= a A —~a. Thus (Mw} = a A —a, and [M,w]+ a A -, and it
follows that { M,w] is inconsistent, what cannot be. Hence * = ¢.

(ii) Let us have A{ Al € A*. We show that A= (. Suppose that N = AL, Then there is a wif B, A=
B, N+ B, AL = —B. But it is easy to show (like in L3) that ['M,w] is a saturated set, thus it cannot be
the case that, for both models, A'= [M,w] and A’ = [M,w]. Hence A= AL.

1t is clear, then, that for some N e A®* and for every formula A, Mw = A iff A=A =

Proposition P15. Let S be an L-stable set. Then there is a monoclustered L-model ‘Ms, such that S =
B(Ms).

Proof. Let S be L-stable. Thus, for some I" € S, S = ¢(I'B). From L7 there is M and w € W, such that,
for ali formulas A, A € T iff M,w = A, From L8 there is Ms such that Mg = A iff M,w = A. We now
show that § = B(M5). So: A € Siff A € ¢(T'B) iff BA € T iff M,w = BA iff M5~ BAiffA €
B(Ms).m

After having established which kind of relationship holds between monoclustered models and stable
sets, we can now ask ourselves which is then the model in which Angela believes only c. As 1 mentioned,
HM’s elegant solution in terms of (S5-)Kripke models consists in just taking the union of all modegls in
which a holds. In ZPS here this is not so problematic, but what about the other cases, in which.we have to
cope with an accessibility relation § which is not an equivalence relation? We can easily construct two
models such that the plain union of Sps and Sy is not, for instance, transitive. So what can we do?

A first way would be trying to define a stronger union operation, namely one in which additional
pairs would be added to the union of the § relations, so that properties like transitivity and the like could be
preserved. We can get this introducing the notion of a closed union of two models: if M= <M,Opm{.Sm]>
and A= <N,On{.SN] > are two L-monoclustered models, we say that the model U= M Nis the closed
union of Mand Nif U is a triple <U,0y{ Sy]>, where:

i. U=MuUN,;

ii. Oy= Oyu O,

ii. Su=n(TCcUxU:SyuSyu [<wy>:we Uandve Oy} € T and such that T is
reflexive, transitive and, for ZCP, it holds that if w e Oy and <w,v> € T thenv € Oy).

Some words concerning this definition. The set U is the union of the universes of the two models;
nothing new here. The idea behind the definition of Sy, is that this relation should be the smallest subset of
U x U containing Sp U Sy that still fullfils the desired properties of the knowledge accessiblity relation. It
must also contain the set {<w,v>: w e U and v € Oy) (which takes care, in standard model terminology,

Minimal Belief States

of R being a subrelation of §). For ZPS, of course, the clause (iii) doesn’t apply. We can easily prove that
the intersection of all subsets of U x U respecting this condition is the smallest set. This ensures that the
(closed) union of two models will still be a model. The set of open worlds, of course, is the union of the
open worlds of the two models.

A second way of resolving the difficulty would be by means of defining a submodel relation. Let
again M = <M,Opm[.Su]> and N = <N,Opn[,Sn]> be lwo monoclustered models. We say that M is a
submodel of N. (M < N} if M C N, Oy C Oy, and Sy C Sy. (We also say that N[is an extension of
M)

Some propertios of this submodel relation: first, ‘<’ is clearly reflexive and transitive. ‘<’ is also
antisymmetric: if M < Aand A< M holds, then as consequence M = N, Oy = Oy, and Sy = Sy. Hence
M and N are the same model. ‘

The next proposition shows how the truth of certain formulas is preserved under submodels or
extensions.

Proposition P16. Let M = <M,Oum[.Sm]> and N = <N,On[,SN]> be iwo Kripke models and A a
formula, such that M < N and dg(A) = 0. Then:

(a) if A= KA then M= KA,
®) if N=BA then M= BA;
) if M= —KA then N~ —KA;
) if M= -~BA then M= —BA.

Proof. (a) Suppose N = KA and M KA; so there is a w € M such that M, w b« KA. From this fact it
follows that there is a v € M such that [wSpv and) M, v »* A. However, we have that M C N [and Sy C
Sn).so w,v € N [and <w,v> € Sy). Since dg(A) = 0, M,v = A iff Nv = A;36 thus Ay b A, hence
N,w b KA and N KA, against the hypothesis.

(b), (c) and (d) are provable in a similar way, ®

As we see, this proposition is provable exactly because dg(A) = 0. That the property doesn’t need to
hold if the formulas are modalized is shown in the next picture.

M N
()
‘ B~ Bp w [B-Bp
w 0010 1100
S
B-~Bp B-Bp
Y 0011 v 1101
fig. 12
36 This of course holds b A is a propositional fi la, 50 its cvaluation is indcpendent from the values it may get in

other worlds: we don't need to consider another world different from v.

61

Chapter 2

Here we have M = <W,Op {,Sy]> and N(= <W,Op {.Sn]>. Open worlds are thicker outlined;
thus Oy = (v) and Oy = {w, v). So Op © Op. (The S-relation doesn’t matter.) The difference between
the two models is that in Alw is open, but not in M. As a consequence of w also being open in Alis that A
= B—Bp, but this is not the case in M. The propositional variable p has in w and v the same value, and
this, as the reader can see, doesn’t hold anymore for the modalized formulas.

‘We can now use one of these two alternatives to characterize the state in which Angela believes only
o We can for instance take the set of ali monoclustered models in which Ba holds, and then prove that this
set has a biggest element. It is not a surprise that this set Is exaclty the closed union M, of all models. For
awif A, let mds(A) = (M: M= A},

Proposition P17, If My = & mds(Ba), then for each M € mds(Ba), M < M.

Proof. Let Mg =& mds(Ba). Obviously for each M e mds(Ba), Way € Wagg, Oy € Oy, and Sy ©
Sote- Thus M S M. Let us now suppose that there is M* such that for each M e mds(Ba), M < M*.
But then My < M*, and M* < My, with the consequence that M = M. =

Thus Angela’s belief state, when she believes only o, would be the set B(Mg). As in [HM84],
there are formulas that don’t belong to B(My), for instance our old acquaintance a = Bp v Bq. Let us
consider the ZP-models M = <M,Op [SM]> and N = <N,Op [,Sn]>, where M = (b,v), Sy = (<b,b>,
<by>, <v,b>, <v,v>); Oy = On =N = {bw}, Sy = (<b,b>, <bw>, <w,b>, <w,w>}, and b(p) = b(q)
=1,v(p) =1, v(q) =0, w(g) = 1, w(p) = 0. Graphically, so that we can understand it better (the relation §
is again not necessary):

M N

b Bpv Bg b BpvBg

11101 01111

v Bp v Bg w Bpv Bgq

11100 00111
fig. 13

As we see, M= Ba and A\t= Ba. Let now M be the closed union of all models M*, such that
M+ = Ba. Then we have My » Ba, because the set {b,v,w) is contained in Oag, and thus there is a
world, namely b, such that Mg, b b« Bp (since w € Oafq, and My, w & p) and Mg, b = Bq (since
there is v € Oafy, and Mg, v+ q). Hence Mg, b Bp v Bq. Since b € Oaf,, Mq, b B(Bp v Bg),
that is, Mg, b » Ba, s0 My b Ba and consequently o ¢ B(My).

We can now introduce a second definition of honesty, based in monoclustered models: a formula a
is L-honesip iff o0 € B(Mp).

We must stress here that, like trying to find the minimal stable set, the method using monoclustered
Kripke models doesn’t have the advantage of working equally well for ali EDL-systems, as one could

62

Minimal Belicf States

expect. We don't have here, in fact, to introduce restrictions concerning the stable sets (like prx-, prg- and
BT- sets), but, on the other hand, we didn’t get monoclustered models for all logics.

2.4 An algorithmic approach

The third approach in trying to characterize knowledge states is done in HM through the use of an
algorithm. In other words, the algorithm decides whether Angela knows a certain proposition B, given that
she knows only a.

We try to do the same with the EDLs here. The idea is to generate, for each formula @, a set D
which is the set of things Angela believes, if she belicves only . HM begin by asking themselves which
formulas belong to D2. In their case, since the knowledge logic is S5, any formula B for which Ka — B
holds must belong to D®. Since, however, more than just the logical consequences of & should be in D,
the algorithm ends up being the following:

Be Do iff =55 Kaa ¥u(B) - B,

where ¥(B) is the conjunction of KC, for all subformulas KC of B for which C € D%, and of —KC, for
all subformulas KC of B for which C ¢ D% (B being considered a subformula of itseif). (cf. (HM84],
p-9)

The intvition behind the algorithm is that a formula B belongs to D€ iff it is a consequence of
knowing & and the K-subformulas of B which have already been decided. So, for instance, a propositional
formula C is in D% iff =ss Ka - C.

After all is said and done, one could think that D® is a stable set, but this doesn’t always happen.
Some of them would be inconsistent—the ones corresponding to dishonest formulas.

Well, how can all this apply to our EDL case here? The answer is: preity much the same way, but
changes are of course due to be made. First of all, obviously, if B is a consequence of believing « (i.e.,
Ba — B holds), then surely B should be in D@, However, taking the algorithm as it is would imply, for
instance, that a propositional wff a, against our wishes, would not belong to D, because, obviously, Ba
— a doesn’t hold. But we can solve this by stating the following: if believing B isa consequence of
believing a (i.e., Ba — BB holds), then B shall be in D2, Of course, since Ba& — B entails that Ba —
BB, B will also bé in D9, if it is a consequence of believing a.

Besides, in the same way as in the knowledge case, not only logical consequences of believing only
a will be in D%, However, we cannot just take the “¥o(B)” past of the algorithm as it is, since we are
working with logics that deal with knowledge and belief. So we should end up with the following:

B e D iff =g Baa Ya(B) » ®o(B) — BB,

where ¥(B) is the conjunction of KC for all subformulas KC of B for which C € D%, and —~KC for ail
subformulas KC of B for which C ¢ D%, @(B) is the conjunction of BC for all subformulas BC of B for
which C € D2, and —B(C for all subformulas BC of B for which C ¢ D®; and where L is an EDL.

63

Chapter 2

Same case as in HM, there are formulas a for which D% is not consistent. For example (HM), =
p A —Bp. a is clearly consistent, but Ba, i.e., B(p A —Bp) implies both Bp and —Bp, so it is not
consistent, and hence D® iis also inconsistent.

Moreover, even for a consistent @ the set D® might not be consistent. Again we consider our
preferred example o= Bp v Bgq. It is easy to see that —Bp € D%, —~Bq € D%, because it is not the case that
=1L Ba — Bp, i.e, ¥ B(Bp v Bq) - Bp, thus —Bp € D®. For the same reason —-Bg € D®, and
therefore —Bp A —Bq € D% In view of this, we have that Ba A Y{) A ®o(a) = B(Bp v Bg) A ~Bp A
—Bgq, and since =1, B(Bp v Bg) A ~-Bp A —=Bq —» B(Bp v Bgq), we get @ € D& Hence D® is
inconsistent.

This fact induces HM to give another definition of honesty based on the algorithm we have speaking
of so far. We say that a formula a is honestp if the set D® is L-consistent, for some EDL-system L. As
we'll soon be proving, this new notion of honestyp is equivalent to the other two (for the logics to which
they apply). We first prove the followihg proposition.

Proposition P18. If ais honestp then D% is a stable ses.

Proof. Let us suppose that a is honestp. First, it is easy to see from the examples above, that (st2) and
(st3) are satisfied, thatis, B € D®i{f BB € D®and B ¢ DZi(lf —BB € D®. By the definition of honestyp,
D% is consistent, so we have (st4). If then B is some propositional tautology, we have immediately that
=1 Ba — BB,so B € D®, Suppose now that B - C € D% B € D@ and C ¢ D2, Since we have
already proved that (st2) and (s13) hold, we have B(B —» C)e D% BB € D® and —-BC € D2, what
implies that D@ is not consistent, and & would not be honestp against the hypothesis of the proposition. So
(st1) also holds and we are done. ®

The algorithmic approach, then, seems to be the most promising of all, since it applies to all the
logics considered here. Now 1 guess the reader is burning to state an objection—or at least a doubt.
Remember stable sets, and how we didn’t find a solution for some systems, say, Z7 Why does it work
here?

Well, the problem in trying to locate a minimum stable set via some set of propositional formulas
had this drawback that, for instance in Z, there were many stable sets with this same propositional subset.
Here we are not taking a lot of sets and trying to choose one—we are building a stable set from scratch.
The way the algorithm works, it always chooses the path of most ignorance—-if BA doesn’t follow from
the already decided formulas, then add —BA. So it is.

25 Putting it all together

After taking a look at all these different methods of characterizing minimal belief states, with of
course different degrees of success, we can try to sum it all up and see what we get. The following table, in
the first place, gives an overview of the dilferent.methods we have and which of our EDlogics they apply
to.

Minimal Belief States

stable saturated monoclustered | algorithm

logics | sets sets models

7 - _ _ .
Z2 - — — .
7C . . - .
yAd - - . .
s . . - .
7C2 . . - .
Cp
Ps

‘We can now prove the equivalence of ali these definitions of honesty, what we do with the
following theorem, which we also find in [HM84) (Theorem 2, p. 10). The proof is adapted from there.
We prove the theorem only for the cases where L € {ZPS, ZCP), which are the only two logics in which
all methods work. First we will need the following lemma:

Lemma L9.
(i) If M< Nthen B(Aj is ZP5-smaller than B(M);
(i) If M<S Nand Oy C Op then B(A] is ZCP-smaller than B(M).

Proof. Suppose M < A That means M < A but M # N[Let A be a zero-degree wif such that A € B(A).
So A= BA and, by P17, M = BA, A € B(M). Thus prp(B(A\)) C pra(B(‘M)). Now let B be a zero-
degree wif such that B € B(A) and KB € B(A). So A= KB and, by P16, M= KB, M+ BKB,B e
B(M), KB € B(M). Thus prg(B(A}) C prx(B(M)). Now let us consider the two logics separately:

(i) In ZPS, since M < A we have that M C N and Op C Op. Since M # A, we must have either M C
N, or Op C Op. Suppose Oy € Op. So there is a world w such that w ¢ Op and w € Opy. Now it is
easy (o show that there is some zero-degree formula A such that A0 w i+ A, but, for every ve Oy, M, v
= A. It follows that M = BA, and A € B(M), but A[» BA, N = —BA and A ¢ B(N). So pra(B(N))
C pra(B(M)). Since we already have that prx(B(A)) C prx(B(M)), B(A) is ZPS-smaller than B(M).
Now suppose that M C N. So there is a world w such that w ¢ Mand w e A Ifw e Oy, then Oy C
Oy, and the prooli goes as before. So suppose Oy = Oy. We can easily show that there is some zero-
degree formula A such that A, w ¥ A, but, for every ve M, M, v = A, It follows that M= KA, M=
BKA, and A € prx(B(M)). It also follows that Nt KA, A= —KA, A= B—KA and —~KA € B(A\),

hence A & prx(B(N)). So prx(B(N)) C pri(B(M)). Since we already have that prg(B(A)) C prg(B(M)),
B(A} is ZPS-smaller than B(M).

(ii) In ZCP, since M < N, we have that M C N and Oy C Oy. Since M # N, we must have either M C
N, or Op C Op, or SM C Sn. If now Oy C Oy, we can show as before that prg(B(A)) C pra(B(M)),
and that’s enough to get that B(A(} is ZCP-smaller than B(M).®

65

Chapter 2

Theorem T17. (HM84) A formula o is honesty iff it is honestp iff it is honests iff it is honestx.
Proof. The proof is adapted from HM's one, We do a cycle of implications.
(a) honestyy = honestp:

If & is honestas then My is the maximum model that satisfies Ba. We need to show that B(My) = D%,
what we do by proving, by induction on the structure of a formula B, that B € D®iff B € B(My). Let B
be a propositional variable, and suppose B € D®: then =g Ba — BB (because ¥(B) and P (B) are
obviously empty). Now it follows that My =1 Ba —» BB and, since My =/ Ba, it follows that My
=1, BB and 50 B € B(My). So assume that, for proper subformula C of B, that C € DZiff C € B(My).

(=) Suppose now that B € D Then we have (by the definition of D®) that =g, Bax A ¥(B) A ®(B) >
BB. Now for every conjunct of the form BC in ¥g(B), we must have by definition that C € D®, and thus
by the induction hypothesis, C € B(My), and hence Me,w =1, BC, for every w in M. In an analogous
way, for every conjunct of the form —BC in ¥(B), we must have C ¢ D%, and thus by the induction
hypothsis C € B(Mg), and hence My, w =1, —BC, for every w in My. So Mgw =1 Ox(B). In the
very same way we gel that Mg, w =1 ¥o(B). It follows that, for every w in Mg, My, w =1 Ba A
Yo(B) A Po(B), and thus that Mg, w =, BB. This also holds for every open world w, so B € B(My).

(¢<=) Suppose now that B € B(My), and that B ¢ D®. Thus &1, Ba A ¥(B) A ®(B) — BB, and hence
L, Ba A Y(B) A ®(B) —» B. We then must have some model M = <W, O [,§]> such that M= Ba A
¥a(B) A ®a(B), and M b B. So there is some w in M such that M, w = B; M, w = —B. Now
obviously M'S My, so we have W C Wq, and w € Wo. We now prove the following:

(1) for any proper subformula C of B, if Mg, w = Yo(C) A @HC) and M, w = ¥ (C) A P(C)
then Mg, wi= Ciff M, wi=C.

(i) C is a propositional variable, so0 ¥o(C) and Po(B) are obviously empty. Now, since worlds are
assumed to be truth-value assignments to propositional variables, it is immediate that My, w = C iff M, w
= C.

(ii) C = —D. By the induction hypothesis, My, w = D iff M, w = D; and obviously My, w = C iff M,
wke C. .

(iii) C = D — E. By the induction hypothesis, My, w= D iff M, w = D; and Mg, w= E illt M, w =
E. Obviously Mg, w = C iff M,w = C.

(iv) C = KD. Then My, w &= KD iff KD is one of the conjuncts of Y(KD) (since Mo, w — Yo(KD) by
hypothesis, and one of KD and KD must be a conjunct of ¥(KD)) iff M, w = KD.

(v) C =BD. Then Mg, w = BD ifl KD is one of the conjuncts of ®{BD) (since Mg, w — ®(BD) by
hypothesis, and one of BD and —BD must be a conjunct of ®@(BD)) iff M, w = BD.

1t thus follows from (1) that My, w = —B, against the hypothesis that B € B(M). Hence B € D2
Now, since B(Mg) = D®, D® must be consistent, so & is honestp.

(b) honestp => honesls:

If & is honestp then by P18 D@ is stablé. By the construction of D%, & € D®. Moreover, for any zero-
degree formula B, we have that B € D®iff =), Ba — BB. We must now show, for each logic L, that D
is the L-smallest stable set containing cx.

Minimal Belief Siates

(i) In ZCP, this means that D% must be the stable set containing & whose belief propositional subset is
minimum. It is easy to see that, for every stable set S containing a, prg(D®) C prg(S). For suppose there
is a stable set S containing & and a propositional wff A ¢ prg(S) such that A € prg(D®). Then, by
construction of D%, =; Ba — BA. However, Ba — BA € S 100, and, since stable sets are closed under
boolean consequences, BA € S, A € S. Suppose there is now a stable set T containing a such that T #
D2, but prg(T) = prg(D®). In ZCP that cannot be the case, because (by T13) stable sets are uniquely
determined by their propositional subsets.

(ii) In ZPS, we must show that, for every stable set S, either prg(D®) C prg(S) and prx(D®) C prx(S),
or prg(D®) = prg(S) and prg(D® C prx(S). In the same way as in the ZCP case, we prove that prg(D%)
C prp(S). Suppose now there is a propositional wff A ¢ prx(S) such that A € prg(D®). So KA € D&,
Then, by construction of D%, =; Ba —» BKA. However, Ba — BKA € S (00, and, since stable sets are
closed under boolean consequences, BKA € S,KA € S, A € S, A € prx(S). Hence prx(D®) C prg(S).
If now prg(D®) # prg(S), then D€ is automatically L-smaller than S. Suppose prg(D®) = pry(S): we then
have that prg(D%) C prx(S), or else S and D* are the same (by T14). So again D2 is L-smaller then S.

In both cases, we have that D2 is the L-smallest stable set containing a. Thus a is honests.

(c) honests => honestys: Suppose that a is honesis, but not honestys. Since a is honests, there is an L-
smallest stable set S such that & € S. By P15 there is some model Ms such that S = B(Ms).

We prove first in ZP5 that Ms = & mds(Ba). So suppose there is a model Alof Ba such that Mg < |
By L9.i, B(A(} is ZP5-smalfer than S, what cannot be. So, for every Ale mds(Ba), N'S Ms. By P17,
s is the closed union M of ali models in which Ba holds. Now, since a is honests, @ € S, a €
B(M), and hence « is honestyy.

Now in ZCP, let M* be &(M: B(M) = B(Ms)) . We prove that M* = & mds(B a). So suppose there is a
model Alof Ba such that M* < A(If O+ C Op then by L9.ii we have that B(A} is ZCP-smaller than S,
what cannot be. So suppose that Ope = Op. IL is easy 10 show thal, in this case, B(\} = B(M*), so N e
{M: B(M) = B(Ms)). It follows that NS M*, and M* = A, Thus, for every N e mds(Ba), N'< M*.
By P17, M* is the closed union M of all models in which Ba holds. Now, since a is honests, a € S, &
€ B(My), and hence a is honesty. ®

67

Intermezzo 1

With the end of Part I we have reached a considerable success
concerning our main goal, which was o find a characterization method for
minimal belief states. It’s a pity it didn’t happen in all cases with all
methods, but, most interesting for us, there is an algorithm that we can use
with all systems. Since one of my interests here are programming issues,
we could now consider ways of gesting the algorithm implemented. As we
saw, the basis of it consists in having a decision procedure for the
corresponding logic, so this is going to be our main concem in the first
place. And since alethic and epistemic logics have a very similar structure—
sometimes, as | already mentioned once or twice, they are the same,
differences being found only in the way you interpret the operators—we
could wake a look at proof methods for modal logics as well.

In [Pel89] (Section 3, pp. 18ff) we find a discussion of several
types of such proof methods. So we have, among the so-called direct
methods, the tableau, resolution, and natural deduction methods, and,
among the indirect ones, syntactic and semantic methods. We'Hl talk a little
about tableau systems later in this work (particularly when implementing
one), but what I would like primarily to investigate is the method of
generalized truth-tables, which, I think, deserves a little more attention,
even if, as we’'ll see, it is not so as efficient as other possible approaches.

So in the Part 11 of this dissertation we are going to take a look at
valuation scmantics and generalized truth-tables for several modal logics—
as well as for an example EDL. After that we’ll move on o some
programming.

¢

I

Valuation Semantics
and
Generalized Truth-Tables

3

Valuation semantics for normal modal logics

"That must be wonderful! I don’t understand it at all.”

3.1 An informal overview

The aim of this first section is to make an informal presentation of what is called valuation semantics
for some systems of modal logic, and of its main byproduct, the generalized truth-tables (GTTs for short).
I’d say this is a rather complicated kind of semantics—in comparison with possible~world semantics
perhaps even an unintuitive one—so we'll begin take a look at its main ideas, how it is supposed to work,
which are the differences relatively to possible-world semantics, and so on. We'll have afterwards a formal
development of the whole.

1 guess probably few people ever heard about valuation semantics, or still remember what it is, so
I’d better tell what I know of the story. Valuation semantics were first introduced by Andréa Lopari¢, in a
1977 paper, for the modal propositional logic K (see [L.o77]). In order o give a brief description of what
valuation semantics is, let us take as a starting point a semantics for the classical propositional logic PL:
there we see that a model is nothing more than an assignment of truth-values to the propositional variables,
since the value of complex formulas can be calculated if the value their subformulas have is known. We
could also say, in other words, that a model for PL is a function f from wifs into truth-values obeying
certain conditions (like R—A4) # {A), for instance).

If we now consider a possible-world semantics for some intensional logic, we notice that the
structure of a model undergoes a deep change: one doesn’t talk anymore about only one assignment
(which, in a sense, describes a possible world), but about a whole set (a “universe™) of them. The value of
a formula whose main operator is an intensional one thus also depends on the value its subformulas get on
various other worlds which are accessible. Here is where the famous accessibility relations come into the
picture: formally, a model is now a triple <W, R, V>, where W denotes a set of worlds, R is a binary
(acessibility) relation over W, and V is a function which takes arguments in formulas and worlds and goes
into truth-values. The beauty of this construction is that one can get models for different modal logics by
laying different conditions upon the relation R. (For instance, requiring of it to be reflexive singles out a
class of models which characterizes the logic T.) On the other hand, in spite of models changing in this

73

Chapter 3

way, truth definitions for intensional operators like ‘¢ (for “it is possible that...”) are still given as usual,
namely by means of necessary and sufficient conditions (iff~conditions: “0C A is true iff this-or-that holds™).

Valuation semantics proceed the other way round: a model, which is called a valuation, is just one
“world” (a function from wffs into {0,1) having some special properties); that is, one doesn’t have to
introduce a set of worlds and an accessibility relation. The change comes with respect (o truth definitions
for intensional operators, which now appear in the form “if ¢4 is true then such-and-such conditions hold;
and if ¢A is false then such-and-such other conditions hold”.

One could argue, of course, about the propriety of the statement “a model is just one world”, since,
as it will be shown later, to evaluate a formula one also has to take other valuations (i.e.: other models) in
consideration. More than that, when all is said and done a valuation ends up being proved to be the
characteristic function of a maximal consistent set. In a sense, then, the whole could be like saying, in the
setting of a possible-world semantics, that the only universe (model) you have to consider is the class of ali
MCSs and, besides, you don’t have to bother about introducing accessibility relations. This can be a
question of seeing things this or that way. Later on we’ll prove some kind of equivalence between valuation
and possible-world semantics—which is not surprising at all, since the same formulas have 10 come out as
valid. Well, if one asks my opinion, I would say the main dilTerence lies on the fact that valyations are not
declared a priori to be characteristic functions of MCSs; unlike possible-world models, they are defined
inductively for certain sequences of formulas; it is only afterwards that they are generalized and proved to
be characteristic functions of MCSs. And it is exactly because they are so defined that they generate in an
easy way decision procedures, namely the GTTs, which allow us to examine ali relevant models 10 some
formula.

Back to historical matters, Lopari¢ and I gave, some years after her original paper, a valuation
semantics for the minimal tense logic Kt ({LM84]; it was presented in 1980 as a short communication on
the 4th Brazilian Conference on Mathematical Logic). In my master dissertation, under her supervision, 1
extended this semantics to several other tense logics as well, including here some naive logics combining
time and modality. ({Mor82a, Mor82b]) In my dissertation there were also some problems left open, like to
adequately define a valuation semantics for S4, still a tough and open case.3”

But let us talk a little bit about GTTs. As we will see, one could argue about the propriety of the
name “truth-table”. They certainly neither are, nor pretend to be, connective-defining truth-tables—as we
have, for instance, the one defining the truth-function “conjunction’:

; AL 0
1 10
0fjoo o
fig. 14

We already know that intensional operators like “it is necessary that ...” are not truth-functional
(where the value a formula gets depends exclusively on the values of its subformulas). Thus, if one takes
the expression “truth-table” in this narrow sense, as meaning something that defines a truth-function, then
GTTs are not truth-tables, but something else (“truth-tableaus”, maybe). On the other hand, we also talk

37 There is a “natural” definition of valuations for $4, but an important result couldn’t be proved.

74

Valuation semantics for normal modal logics

(perhaps by abuse of the language) about the truth-table for some formula A, like the following one for
a—xb—a).

b—a | a—-(b—oa)

S
<

Lo -]
==
- D

[-]
—

fig. 15

If we thus understand “truth-table” as denoting this kind of construction, then certainly GTTs
deserve the name. As we will soon be seeing, with GTTs the procedure is pretty much the same as in the
classical, truth-functional case: we also build, for some wff A, a sequence Aj,...,A, of its subformulas,
where A = A, is the last element; next we assign values to the propositional variables, and after having
done this we compute values for the remaining formulas of the sequence. The difference is that the value of
a modalized A; in a certain line j of the GTT now depends not only on the value in j of its subformulas, but
also on the values which some other wffs can take in other lines. It should now not be surprising at all that
through this construction one can also determine whether A is valid (meaning it is true on all lines) or not.

Well, one can discuss a lot about whether and in which way valuation semantics (with the
corresponding GTTs) are something new, or whether they are just another way of presenting possible-
world semantics, or semantic tableaus—whether they are, so to speak, possible-world semantics disguised
in another clothes. Guess I'll better make my presentation, and let the reader judge by him- or herself.
(We'll retumn briefly to this topic in chapter 6.)

3.2 Normal modal logics

I am going to present, in the remaining of this chapter, valuation semantics for some normal modat
logics. The contents will be, first, resuming Andréa Lopari¢'s original paper on the subject (for K, see
[Lo77]), with small changes of my own, and second, also presenting some results I got in my masier
dissertation (for KT, KTB, KTS, see [Mor82a)), as well as, third, presenting some new, even if
suaighlforwargl, extensions of these (KD, KB, KDB, K48, KD45).

I'll begin by introducing some notions that will be of general use here as well as in later chapters of
this Part II. We’ll still be considering a propositional language, which now we’ll call L™, 11 is like the
language L of the first part, but now, instead of the epistemic operators ‘K’ and ‘B’, we have the alethic
necessity ‘0’.

75

- Chapter 3

WIFs are defined in the usual way; and ‘FOR’ still denotes the set of wffs. We introduce now the
weak modal operator with the following definition:38

Dfo. 0A =g -—0O-A.

Now an axiom basis for PL consist of the following axioms and rule of inference:

Al. A B-HA)

A2. A-B-HC)3((A2B)>5A->0)
A3. (B -A)->((-B—A)-B)

MP. ALA-B/B

A normal modal logic is then to be defined as an extension of PL which includes at least Dfo , the
following axiom schema:

K. O(A-B)—(QA—0OB)
and is closed under the following rule of inference:

RN.+-A [/ +~ D0A3Y

Taking K as the minimal normal modal logic (i.e., the smallest extension of PL containing Dfo, K
and closed under RN), we can now build other systems by adding o it other axioms. In this chapter we are
going to consider only logics which can be obtained by adding to K one or more of the following axiom
schemas:

D. DA 5 oA
T. DA A
4. DA - ODA
B. A 5 DO%A

5. 0A 5 0O0AM40

In general, we will have KSj...Sp, as the extension of K obtained with axiom schemas S;....,5, (in any
order). For instance, KTB is K plus schemas T and B; KT5 (or KST) is K plus T plus 5. It can be
proved, for instance, that K'TS is the same as KT4B. Taking the equivalences in consideration, we arrive
at the following picture (cf. [Lem77], p. 58, or [Ch80], p. 132) of 15 non-equivalent normal systems (an
arrow means that the logic on the arrow’s lefl is contained on the one on the right):

"

38 Working with definitions makes proofs shorter and life in general easier. Now, even if I don’t handle “it is possible that...
here as a primitive operator, 1'll consider it 5o in the semantics part, to show how things can be done. By the way, in [Lo77],
also in [Mor82], only necessity is considered.

39 The reader wanting to know more about normal modat logics is kindly referred to [Ch80), a very readable book.

40 with the exception of B, these axioms (in the episternic-doxastic version) are aircady known from Part | where they have
names like d, mdd"’. for D here..

76

Valuation semantics for normal modal logics

—_—
T/ TB - /TS
D4

\ KS / fig. 16

Some of these systems also have other names in the literature. Thus KT, KT4, KTB, KTS, KD,
and KD4S are also known as T (or M), 84, B, S5, D, and weak S8, respectively. In a possible-world
semantics, models for these logics are obtained if we lay some constraints upon the accessibility relation R.
For K, R could be any (binary) relation whatsoever, but for the other axioms the following conditions must
hold of it:

T: reflexivity;
4. transitivity;
B: symmetry;
5: euclideanity;
D: seriality.

Definitions of proof, theorem, and syntactical consequence, for some normal modal logic L, are the
same as in the epistemic-doxastic logical case (cf. Chapter 1), with the only care of substituting ‘K’ for
‘D, so I won't repeat them here. It is also woth mentioning that the Deduction Theorem (see T1) also
holds here. Moreover, the following property—an analog of L1, with an (almost) identical proof—also
hold for ali normal modal logics considered in this section:

Proposition P19.If T+ A thenOF' U —~OT'+~ DA (whereOI' = {OB: Be I} and —0T = (0B :
—B € T'}).

As I said, valuations are going to be defined inductively over certain sequences of formulas, so we
need first to characterize which sequences we are interested in. We say that a sequence Aj,...,A, of
formulas is a normal sequence of alogic L if, for I i <n, (a) if B is a subformula of A; then there is j < i
such that B = Aj; and (b) for 1 Si <j, if Aj = Aj then i = j. Condition (a) ensures that, for every formula
occurring in a sequence, ali its subformulas occur before it. Condition (b) ensures that we won’t have
unnecessary repetitions.4!

41 As onc can scc, normal sequences are just the plain, old sequences of formulas onc leams in the school to construct if one
is going to build a truth-table.

77

Chapter 3

Now a valuation is supposed to be a function from the set FOR into the set (0,1} of truth-values
having ceriain properties and satisfying certain conditions—which conditions exactly will of course depend
on the logic being considered. The basis of the whole construction are functions which satisfy the classical
(extensional) conditions: so a function s is called a semi-valuation if s is a function from FOR into {0,1)
such that:

@ s(—A)=1 iff 5(A)=0;
®) sA-B)=1 iff s(A)=0ors(B)=1.

it is now easy to prove that semi-valuations also have the following properties:

© sAAB)=1 iff s(A)=s5(B)=1.
d sAvB)=1 iff s(A)=1ors(B)=1.
© sAeB=1 iff $(A) = s(B).

Thus a semi-valuation is, in fact, a model for the classical propositional logic PL. For the modal
logics extending PL we need to add some clause or clauses which will take care of the modat operators.
We'll do this in two steps: the first one is to define, for each logic L, the notion of Aj,... Ap-valuations
for L, where Aj,..., A, is a normal sequence. They form a subset of the set of semi-valuations, and are
obtained inductively: we define first A;-valuations, and then go on by laying upon the newly defined
Aj,...,Ai-valuations some constraints each time we find a modalized formula. When the A;,... Ap—
valuations are at last defined, we extend the construction to all normal sequences, thus getting the
valuations for L. And that’s it. Having defined valuations, one can go on doing business as usual: a
formula is valid if it gets the value 1 in every valuation; the semantics can be proved correct and complete,
and so on. As I'll show later, valuations happen to be the characteristic functions of MCSs, and one could
have of course begun by defining them to be so, but doing things the way we do here gives us easily the
GTTs and decidability.

3.3 Defining Ay,...,Ap-valuations

So the main point is to find, for each logic, a nice definition of an Ay,...,A,—valuation that suits it.
Before we do just this, I'll have to introduce some definitions and abbreviations which will be needed. In
the following let us suppose that I is some set of formulas, and f a function from FOR into {0,1). Ina
similar way to what we have done by the EDLs, we first define the sets of necessities, possibilities and
impossibilities of T as:

ro =4t (A€ I forsomeB,A=0B8);
re =« [AeTI: forsomeB,A=0CB};
r—-° = f{Ae€ T forsomeB,A=-0B).

78

Valuation semantics for normal modal logics

As one see, they are the subsets of I” containing wffs whose main operator is ‘O’ or ‘¢’ or the
combination ‘~©°. Next we define, for cach of these sets, its scope set:

el =4 (A: ODAe I9);
&°) =4 [(A: OAe I'°);
eI™M?) =4 [—A: =0A e I™°),

Now we define what it means for a function f'to satisfy (reject) a st of formulas:
feul =i foreveryAe T andforue (0,1), fA)=u.

Of course, it only seems to be correct to speak of satisfiability-—like *f satisfies I""—in the case of
k=1 (thatis, if 4 = 1). So in the case of =g I decided to say that f rejects I'™". Just note, however, that “not
satisfying™ (when f gives 0 to at lcast one of the wffs in I') doesn’t mean the same as “rejecting” (when f
gives 0 to all of them).

Next we define the subset of I” having value u according 10 f as:

T =« (AeT: fA)=u).

And at last some abbreviations. First of all, it's going to be quite a job for me having o type—and
for you having to read—things like ‘A;,...,An’ every second line. So let us agree on the following
convention (Abbl): we will use ‘ot as a typographical substitution for ‘Aj,....A’, so, when we write ‘0.
1" and ‘a,’, what we mean is actually "Aj,....Ax.;’ and ‘A;,...,A,’, and so forth.

In the second place we have the other abbreviation, which will be meaning different things for the
different logics, so please pay attention. Abb2: Let o, be a normal sequence (i.e.: Aj,....A,) and f, g two
functions from FOR into {0,1}. We say that, for I Sk <n,

(a) for K, KD, KT:
f<k>g iff g+=1€&({ok}%1), and
g+=oe((a)®s0);
(b) for KB, KDB, KTB:
f<k>g iff g =1 &e({ax}),
8 =0 &({ae) °s0),
! S e((or)9,), and
feoe({ag)?g.0);
(c) for K45, KD4S:
f<k>g iff g =1 e((ax)%),
8 =oe({ax)°s0).
{0k} 91 = (k) Y%,1, and
(o) °r0 = (0} 4,0
(d) for KTS:
f<k>g iff ()91 = (0x)%%,1, and
{ou}?f0 = (0} °g0.

79

Chapter 3

Some words about this all. First, this abbreviation (showing only the “k” parameter) can be used
without fear of confusion If we are working with a fixed normal sequence. If needed, we can also write
f<ou>g—or even f<Ay,..., Ap>g, which is more precise. Now to understand what exactly is at stake here,
fet us consider the sets involved, beginning with (a). ‘{0t}7" denotes the subset of o consisting of those
wils in this sequence whose main operator is a necessary; the subscript ‘;1* now forms a new set by
choosing those wffs among them which are given 1 by f. We take now the scope of this set, and to this
formulas the function g must give a 1, if f<k>g is to obtain. Similarly for the second half of (a), only that
we are now dealing with impossibilities which must be rejected. For the other cases, things are pretty much
the same: variations on a theme.

One can think, if one wishes, of ‘f<k>g" as representing a kind of “accessibility relation” between
two functions, what is not entirely wrong, just a litile bit. The idea is that, when f<k>g obtains, for
instance in (a), g satisfies the scope set of f's true necessities, and rejects the scope set of its impossibilities.
This is similar to what happens on possible-world models if we have two worlds x and y such that xRy.
The difference is, we don’t have here an accessibility relation simpliciter, since f<k>g holds between this
two functions just for the small set of formulas being part of the normal sequence Aj,...,Ax (which is ali
we need to evaluate some wff): this relation may not hold anymore if we consider a longer sequence
Al,... Ak Ar+1,... Ak+j. Moreover, contrary to the possible-world semantics, we don’t introduce worlds
and relations as primitive elements of models, so we don’t have to bother about what worlds “really are”
and what accessibility “really means”. And yet another remark: in (a), (b) and (c), for instance, the f<k>g
abbreviation Is the same for two or three different logics. Thinking of f<k>g as béing an accessibility
relation would imply that it should mean different things, or have different properties, for each particular
logic, what is not the case here. In fact, only the way in which we compute the value of modalized
formulas will allow us to make the differences (see below) for logics in which “f<k>g" means the same
thing.

But let us now proceed and take a look (at last!) to our main definition. I'll give first the definitions
for K, and then we’ll see which changes are needed for the other logics.

Definition D9, v is a a,—valuation (for K) if o, is a normal sequence and:
- 1) n = I and v is a semi-valuation;
2) n > 1, vis an 0, ;~valuation and, if for some m < n,
A) Ap=D0Ap,

T) if W(A,) = O then there is an a,,_;—valuation v, such that v(Am) = 0 and v<n-I>v,;

IE) if w(A,) = 1 then for every p, every ¢, ¢ < p <n, such that A, = OA4 and v(Ap) = 0 [A, = 04,
and v(Ap) = 1] there is an a,.j~valuation vp such that vp(Ag) = 0 [vp(Ag) = 1], vp(Am) =T and
ven-I1>vp.

B) A, = OApy,

1) if w(A,) = 1 then there is an 0, j~valuation v, such that v,(Am) = 1 and v<n-1>v,;

H) if v(Ax) = 0 then for every p, every ¢, ¢ < p <n, such that A, = 0 A, and v(Ap) = 1 [Ap = DAq
and v(Ap) = 0] there is an @,.;—valuation v, such that vp(Ag) = 1 [vp(Ag) = 0}, vp(Am) = 0 and
ven-1>vp.

80

Valuation semantics for normal modal logics

This definition certainly looks scaring, so let us go slowly through it. Clause 1) gives the basis for
the inductive definition: we have there a normal sequence with just one element (which' must be by
definition a propositional variable; else there would have been some subformula of it occurring before), and
so everything required of v is that it shall be a semi-valuation. By clause 2), for n > 1, if the main operator
of A, is not a modal one, nothing has to be done, because the semi-valuation properties already take care of
the extensional operators. And so we come (o the case where A, = OA,. If v gives 0 1o it, then we have to
look for another o,.j—valuation v, giving 0 to A,, and satisfying/rejecting the scope sets of v. One can
draw here a parallel to possible-world semantics, where there must be an accessible world falsifying An.
If, on the other hand, v gives 1 to OA, we only require of v that it has had a “good behavior” before, i.c.,
that for every false necessity, or true possibility, the condition corresponding to case I) was satisfied. Here
there is a difference in relation 10 possible-world semantics, where we require, for a true necessity A, that
its scope A gets truth in all accessible worlds. With valuation semantics this is not the case: we can have
v(OAp) = 1 and, nevertheless, it may exist some “accessible” ,_j—valuation vy with vu(A,,) = 0 and
v<n-1>vp. Our requirements are thus weaker.

" The case where Ap = OAp is similar, only with reversed values. Of course, since possibility is not
a primitive operator, we might have not considered it here, what would have made the definition shorter.

Having thus defined o,—valuations, the rest follows in a more or less straigthforward way. We can
now say that a function v from FOR into (0,1} is a valuation iff for every normal sequence (tp, v is an 0t~
valuation. The next steps would now consist in getting some results about valuations, and then taking a
look on how to prove correciness and completeness. But I would like first to show which kind of
modifications are needed in order to get valuations for the other normal modal logics as well.

Actually the changes are not that big. I am not going to repeat the whole definition; just the places
where changes are needed. It goes as follows:

» for KB, K45:
— same as K.

« for KD, KDB, KD4S:

A) Ay =DApm,
) (asinK);
) if v(A,.)y,= 1 then there is an o, j—valuation v, such that v,(4,,) = 1 and v<n-1>v,; moreover, for
every p, every q, ... (asinK); ’
B)A,=0An,
1) (asinK),
1) if v(A,)= 0 then there is an ¢, j—valuation v, such that v,(A,,) = 0 and v<n-1>v,; moreover, for
every p, every q, ... (as in K).

« for KT, KTB, KTS:
L
A)Ay=0Am,
D (asinK);

81

Chapter 3

IT) if v(A,) = 1 then »(A,,) = 1 and for every p, every q, ... (as in K);
B) Ap=CAm,

D (asinK);

I0) if v(A4) = O then w(A,,) = 0 and for every p, every q, ... (as inK).

Now the definition for K, KB and K4S is only superficially the same: remember, ‘f<k>g’
abbreviates in each of these logics something different! The same holds for the KD, KDB, KD4S, and
for the KT, KTB and KT$ definitions.

Well, what we did until now was to define an a,~valuation for a normal sequence 0, but sure we
would like to consider longer sequences and so be able to extend this construction to an o, j-valuation, an
Oln+2-valuation, and so forth. There are ways of doing this, but useful is going to be a particular kind of
extension which will be called a canonical extension, and whose definition is the same for all our logics:

Definition D10. Let o, be a normal sequence and v an o, j-valuation. We say that v, is the canonical
extension of v 10 @, if:

AYforallm<n, Ay #0Ap,, Ag# OA, and ve = v; OF

B) for some m <n, Ay = DAy, [Ay = ©A,] and v, is a function from FOR into {0,1) such that, for every
formula B,
1) if A, is not a subformula of B, then v(B) = W(B);
2) if A, is a subformula of B, then
a) for B = A,, v(B) = 0 [v.(B) = 1) iff there is an ot,.7—valuation v+ such that v*(A,) = 0 [v*(Ap) =
1) and v<n-1>v*;
b) for B = —C, v(B) = 1 iff v(C) = 0;
c)forB=C D, v(B)=1iff v(C)=00rv (D)= 1;
d) for B=0C or B = 0C, v(B) = v(B).

We have now to show that canonical extensions satisfy the requirements of Definition D9, i.e., that
they are (t,—valuations t00. In this we will use the notion of normality. Let v be an a,—valuation: for I <k
<n, we say that v is Dig~0y—normal if for every p, every ¢, ¢ < p <k, such that Ap = DA g and v(Ap) = 0,
there is an 0y—valuation vp such that vp(A,) = 0 and v<k>v,. We say that vis ¢ |-0—rnormal if for every
p. every g, q < p <k, such that Ap = 0 A4 and ¥(Ap) = 1, there is an oy—valuation vy such that vp(Ag) = 1
and v<ik>vp. ‘

This definition of normality applies not only to K, but also to every normal modal logic here
considered, and it corresponds to the condition required on clause I) of the defintion of an a,,—~valuation.
However, for systems other than K, KB and K45, we also need other kinds of normality, namely those
corresponding to the special conditions occuring in clause IT). So we have, for KD, KDB and KD45, that
a valuation v is Oy—og-normal if for every p, every ¢, ¢ < p <k, such that Ap = 04, and v(A4p) = 1 there
is an ay—valuation vp such that vp(Ag) = 1 and v<k>vp; vis Og—0-normal if for every p,every q,q < p
<k, such that Ap = 0Ag and v(Ap) = 0 there is an ay-valuation v, such that vj(A,) = 0 and v<k>v,. As
the reader has probably grasped by now, this condition is the one required to render axiom schema D valid.

82

Valuation semantics for normal modal logics

In the case of KT, KTB and KTS5, we have: vis O01—0u—normal if for every p, every ¢, q<p S
k, such that A, = OAg and v(Ap) = 1, v(Ag) = L; vis Og—0u—normal if for every p, every ¢,q < p <k,
such that Ap = 0A, and WAp) =0, w(A,) = 0. (This is the condition which takes care of axiom schema 7.)

Thus one can see that, even if some logics use ‘f<k>g’ 1o abbreviate the same property (as we had
for K, KD, and KT), the O;- and ©g-normality requirements are different for each of them. In the
following table I try 10 give an overall view of all these differences:

Logic I<k>g clause I1
K (@) -
KD (a) w
KT (a) s
KB (b) -
KDB ®) w
KTB () s
K4s ©) -
KD45 © w
KTS) s
fig. 17

Some explanations. The letters (a), (b), (c), and (d) in the field ‘f<k>g’ refers to the meaning of the
corresponding abbreviations; that is, cases (a) through (d) of Abb2. “Clause II" (of the definition of an 0~
valuation) shows what kind of (13— and ©o—-normality are required in each logic: namely none (“—"),
KD-type (“weak”™) or KT-type (“strong”).

Now we are ready to get some results.

Lemma LIO. If v is an @,,.;~valuation and v, is the canonical extension from v to O, then v, is a semi-
valuation.

Proof. Straightforward: just consider that, for i < n, v.(A;) = ¥(A;), and v is a semi-valuation. For i < n,
clauses b) and c) of D10 ensure that the classical propertics are respected. So v, is a semi-valuation. B

f
Proposition P20. Let o, be a normal sequence, v an Q,_j-valuation and v, the canonical extension of v
to Q. Let us suppose, for all sy , that v is Og— and © 1—O,.;-normal, and, for KD, KDB, KD4S5,
KT, KTB and KTS, that v is (h— and ©¢—0p.j—normal. In this case, v is an Gp-valuation.

Proof. First of all, v, is an a,.j—-valuation, because it is a semi-valuation and, by construction, for I Si <
n, ve(A;) = v(A;). Now, if, for every m < n,Ap £ 0A,y, Ay # OAp, v fulfills every condition of
Definition D9, so it is an ayp—valuation. Suppose, then, that for some m < n, Ay = 0A. We have two
cases:

(I) ve(An) = 0. By D10.B.2.a there is an 0,.;—valoation v+ such that v*(A,,) = 0 and v<n-1>v*, Since v
and v, agree for i < n, ve<n-1>v*. So v, is an ay—valuation.

83

Chapter 3

(I1) v(An) = 1. We consider separately the different systems:

a) K, KB, K45:

(1) By D10.B.2.a, for every 0t,.;—valuation v* such that ven-1>v*, vt(Ay) = 1.

Suppose now there is ¢ < p <n such that A, = DA 4 and vc(Ap) = 0 [or Ap = 0Ag and v(Ap) = 1]. Then
WAp) = 0 [v(Ap) = 1] and, since v is Do~ and © 1—0t,./-normal, there is an o, s-valuation v, such that
v<n-1>vp and vp(Ag) = 0 [vp(Ag) = 1]. Since v and v agree for i < n, we have that v.<n-1>v,. Now, from
(1), we have that v;(A,) = 1 (eise we would have v.(An) = 0). It follows, in this case, that v, is an o,
valuation.

B) KD, KDB, KD45:

If there is g < p < n such that Ap = 0A, and vc(Ap) = 0 [or A, = 0Ag and v.(A)) = 1], we prove as in)
that the conditions are fulfilled. We have now to prove that there is an (t,.;—valuation v, such that v,(4,,) =
1 and v<n-I>vp. If there is some g < p <n such that A, = 044 and v((Ap) = 0, or Ay = OA4 and v (Ap) =
1, then we have already proved it: there is an ot,,.j—valuation v, such that v<n-1>v, and vp(Ag) = 0 [v,(Ag)
= 1] and vp(Am) = 1 Suppose then that there is no ¢ < p Sn such that A, = OA4 and v(Ap) = 0, or A, =
OA4 and v(Ap) = 1. We have two possibilities:

i) there is some g < p <n such that A, = DA and v{(Ap) = 1, 0r Ap = 0Ag and v(A,) = 0. Then v(Ap) = 1
(or 0) and, since v is (- and ©o—0ty.;—normal, there is an @, —valuation v, such that v<n-1>vp and
vp(Ag) = 1 (or 0). Since v and v. agree for i < n, we have that v<n-I1>vp; and it follows from (1) that
vp(Am) = 1.

ii) there is no ¢ < p <n such that Ap =044 and ve(Ap) =1, 0r Ap = OAq and v (Ap) = 0. Well, in this
case, (0x}0 = (0x}® = @, in which case vc =1 €((ok}Ov.,1) and vc =0 E({@k} ® v 0); SO Ve<n-1>ve
and, from (1), ve(A;m) = 1. It follows, in this case, that v, is an o,—-valuation.

7 KT, KTB, KTS:
If there is ¢ < p Sn such that A, = 0A4 and vc(Ap) = 0 [or A, = 0 A4 and vc(Ap) = 1], we prove as in @)

that the conditions are fulfilled. We have now to prove that v(A,,) = 1. Since, for every o, y—valuation v*
such that ven-I1>v+, v+(Am) = 1, we only need to prove that ve<n-1>v.. In KTS this is immediate,
because {og)O 1 = {0k} vc,1 and (o) °ve,0 = {0k} °vc,0. For KT and KTB, we make use of the
fact that v is O~ and ©g—0ts.s-normal. For every ¢ < p Snsuch that A, = CAg and v(Ap) = 1 [A, = OA4
and v(Ap) = 0], we have that-v(Ap) = 1 [v(4p) = 0], and it follows from v’s normality that v(Aq) = 1
("(Ag) = 0). So v =) £({ok}0y,1) and v =g e({0y) °y o) it follows that v<n-1>v, and, since v and v,
agree for i < n, v.<n-1>v, and we are done. Hence v, is an 0,—valuation.

If now, for some m < n, Ay = ©A,, the proof goes in a similar way, ®

We have thus proved that canonical exiensions are o.,—valuations under the assumption that the
0y 7—valuations they are extending are normal. With the next lemma, we can show that or,—valuations are
normal without restrictions, and thus that they can be extended as long we we want them to be. Just
remember that 0;— and ©g-normality doesn’t apply to K, KB and K45, only to the other systems.

84

Valuation semantics for normal modal logics

Lemma L11. (Normality Lemma) Let v be an 0s—valuation. Then v is Op—, O1—~, ©¢g— and © |~Qy—
normal.

Proof. By induction on n. For n = 1 it holds trivially, so let n > 1 and let us suppose that every t,.j—
valuation is Op—, 01—, ©¢— and © |-, ;-normal. It follows then from P20 that

(1) The canonical extensions of o,.s—valuations (o @, are 0,—valuations.
We have now three cases:

(1) For every m <n,Ag # OA;y, Ay # OAp. So v is trivially (p—, 01—, Oo— and © }—0,—normal.
(2) Let us suppose that, for some m < n, Ax = OA .

(I) Let v(An) = 0. We have:

D {o)% = (@)%

2) {0ta) % v+.0 = (0.1} ° v+ 0, for every @, j—valuation v+;

3) e(loa)Py) = e({on 1))

4) €({0tn) °v+,0) = €([®n.1} v+ 0), fOF every i, j—valuation v+,

It follows that, for every o, s—valuation v*,

5) if ven-I>v* then ven>vt,

From the induction hypothesis, v is (p~ and © |—at,.)—normal, so we have:

6) for every p, every q,¢ <p < n sucht that A, = OA4 and ¥{(4,) =0 [Ap = OAq and v(Ap) = 1], there is an
Oy —valuation v such that vy(Ag) = 0 [vp(4g) = 1] and v<n-1>v,.

Now, for each p, let vp* be the canonical extension of v to &ty Obviously vp*(Ag) = vp(Aq), and, from
(1), vp* is an a,-valuation. From this, 5) and 6), then:

7) for every p, every g, ¢ < p < n sucht that A, = OA4 and wWAp) = 0 [A, = ©Ag and WAp) = 1), there is an
O,—-valuation vp* such that vp*(44) = 0 [vp(A,) = 1] and v<n>vp*.

On the other hand, since v is an ((,—valuation, we have:
8) there is an 0. —valuation v, such that va(Apm) = 0 and v<n-1>v,.

Now let v,* be the canonical extension of v, 10 ay. Obviously va*(Asm) = v4(A,), and, from (1), v,* is an
Qa,—valuation.

Thus we have from this fact, together with 5) and 8), and from the fact that A, # 0A:

9)forp=n,gq =}m.Ap = 0Aq and v(Ap) = 0 [Ap = ©A4 and v(Ap) = 1], there is an a,—valuation vp* such
that vp*(Ag) = 0 [vp(Ag) = 1] and v<n>vpe.

From 7) and 9), then, v is an [g~ and © 1-0,~normal.
Now, since v(4,) = 0.. v is trivially O~ and ©g—t,—normal (for systems other than K, KB and K45).
(HI) Let v(A,) = 1. We then have:

1) {@a)}O1 = {(®a-1)%1 U (AR):

85

Chapter 3

2) {otn}Ov+ 0= (On-1) °v+ 0, fOr every 0ty ;—valuation v+;
3 e({@a),1) = e({an-1)9,1) U (Am);
4) e((aa)®y+.0) = E({0ty-1) Oy+ 0), for every o, j—valuation v+.
Since v(Ap) = 1, we have from definition 1 that:
5) for every p, every ¢, ¢ < p Sn, such that A, = DA4 and v(Ap) = 0 [Ap = 0Ag and w(Ap) = 1] there is an
O j—valuation v, such that vp(Ag) = 0 [vp(Ag) = 1), vp(Am) = 1 and v<n-I >Vp.
For each p, let vp* be the canonical extension of vp to 0, Obviously vp*(Ag) = vp(Ay), and, from (1), vp*
is an oy—valuation, It follows that;
6) for every p, every g, g < p <n, such that Ap = DA, and v(Ap) =0 [Ap = OAq and v(Ap) = 1] there is an
a—valuation vp* such that vy*(Ag) = 0 {vp*(A4) = 1], vp*(Am) = 1 and vn-1>vp*,
We only need to prove now that v<n>vp*; the Up— and © 1—a,—normality follows. In order to do so we
need to consider some logics separately.
o) K, KD, KT:
Since vp*(Am) = 1, vp* =1 €({0n.1)Oy,1) U {Am); thus, from 3), vp* =1 €({@a) Oy 1). From 4), vp*
=0 €({0x} °v,0). Hence v<n>v,*, and v is Cp— and © 1—0t,-normal.
B) KB, KDB, KTB:
Since vp*(Am) = 1, vp* =1 €({0n.1]%,1) U (Am); thus, from. 3), vp* =1 €((®a) Oy 1). From 4), vp»
=0 e((@n})°v,0).
Since v<n-1>vp*, we have by definition that v =1 €((@ta-1}%p*,1), ¥ +=0 £([G.1) ° vpe 0). From 4), v
=0 €({aa) °v,'.0)-
Now, if vp*(An) = 0, €({0ta}Ovpe.1) = E({0n-1}Tp+,1). 50 v =1 €({@n)Oupe 1), I vp*(An) = 1, it
follows from the definition of canonical extension that for every o, ;j—valuation v*, if vp<n-1>v* then
v*(Am) = 1. But now, since v<n-I>vp*, it follows that vp*<n-1>v, and, since vp and v,* agree for i < n,
vp<n-I1>v, Thusv(Am) = 1, v =y €({0n)Pype,1). In any case, v<n>vp*; hence v is Op- and © |—0p—
normal.
1 KTS:
From 2), {@ta}®y+,0 = {@n-1}°y+ 0, for every @ap—valuation v*; so, since v<n-I>vp*, (0ta)®v 0=
(o) on‘,o-

f
A) i, now, Vp'(An) =1, (an]qu‘,l = (an-lluw‘,l U (A} (@)% = (anlnv,;‘,l and thus
v<n>vp*. Hence v is Op— and © 1—0t,—normal.

B) Suppose now vp*(An) = 0. We define, for every p, a new function vp" from FOR into (0,1) in the
following way: for every formula B,

1) if Ay is not a subformula of B, then v,*(B) = v,*(B);
2) if A, is a subformula of B, then

a) for B = A, v,*(B) = 1;
b) for B = —C, v,*(B) = 1 iff vp*(C) = 0;
c)forB=C— D, v!B)=1ilf ,*(C)=00r v,* (D) = 1;

86

Valuation semantics for normal modal logics

d) for B =0C or B = 9C, v,#(B) = v,*(B).

It is now easy to see (with the same reasoning as in Lemma L10) that vp' is a semi-valuation. Besides, for
1 <i < n, v#(A) = vp*(A)). Since vp* is an 0 j-valuation, vp# is an o, j-valuation. We prove that vp* is
an 0,,-valuation for KTS. First, we have that v,*(Am) = 1, 50 vp"(A,,.) = 1. Let us now suppose that there
isr, 5,5 <r<n, such that A, = A, and vp¥(A,) = 0. Now, {®tsg}%ype = {®tn-1)%,p8,1; and
{@n-1)°vp*,0 = (0ta-1)°vpa,0. Since v<n-1>vp*, we have that (@s.1)%,1 = (@s.1)Oy,,1; and
{@n1)vo= (a,..ll%ﬂ,@ Thus for every r, every 5, s <r S n, if A, = DA, and vp'(A,) =0 then v(4,) =
0. From D9 it follows that there is an o,_;-valuation v, such that v,(A;) = 0, v{A,s) = 1 and v<n-I>v,.
Thus vp*<n-1>v,, and vp¥ is an a,—valuation for KTS. Now, since vp¥(4n) = 1, {0t)0)1 = {aa) 1
and {0z) ®y,0 = (0ta) ®yp#,0. Thus v<n>v,¥ and it follows that for every p, every ¢, ¢ < p < n, such that
Ap = UAg and v(Ap) = 0 there is an ,—valuation vg¥ such that vy*(44) =0, vp¥(Am) = 1 and v<n>v ¥, If
now there is p, ¢, ¢ < p <n, such that Ap = ©A4 and v(Ap) = 1, the proof is similar. That is, v is Co— and
0 |—0,—nomal.,

§) K45, KD45:

We prove as in B) that vp* =1 £({®a)%,1), vp* =0 €({®4) ®y,0). From 2), {®ts) v+ 0 = (Cta-1} v+ 0.
for every an-y—valuation v*; 50, since v<n-I1>v,*, (0ta}°vo = {@a}vpe,0-

A) If, now, vp*(An) = 1, {@n}Type,1 = (@n.1)0pe,1 U (An); (02)9,1 = {®a]Oyye,1. Thus v<n>vpe,
and v is Op— and © ;—a,—normal.

B) Suppose now vp*(Ay) = 0. We define as in v), for every p, a new function v,' from FOR into {0,1}. It
is now easy to see (with the same reasoning as in L10) that v,¥ is a semi-valuation. Besides, for I Si <n,
vp* (A = vp*(A)). Since vp* is an a1, s—valuation, v,* is an o,.;~valuation. We prove that vp¥ is an o,—
valuation for K45 and KD45, First, we have that vp*(Am) = 1,50 v,'(A,,.) = 1. Let us now suppose that
there is 7, s, s <r < n, such that A, = DA, and v,*(A,) = 0. Now, {0tn-1)%pe,1 = (On.1]Oypn,1; and
(0n-1)%vpe0 = (An.1) °vp#,0- Since va<n-I1>v,*, we have that (®a.1)9y,; = {0ta-1)Pvpe,1; and
{@n-1)°v,0 = (®a1)°vpa,0. It also follows, thus, that €({®n-7),1) = €((®n.1)Typs,1); and
e({®n-1)%v0) = €([®n-1) ®vp# 0). Thus for every 7, every 5, s <r S n, if A, = DA, and vp'(A,) =0 then
v(A,) = 0. From definition 1 it follows that there is an a,_j—valuation v, such that v,{A;) = 0, v{A) = |
and v<n-I>v,. Thus vp¥<n-1>v,, and v,¥ is an at,-valuation for K45 and KD45. Now, since v,¥(4,) =
1, {0a)%,1 = (@x)Oyp8,1; and (@a)®y,0 = (@n) °yp#0. Thus v<n>v ¥ and it follows that for every p,
every ¢,q <p S na, such that Ap = OA4 and v(Ap) = O there is an a,—valuation v,,' such that v,,'(A,,) =0,
vp#*(Am) = 1 and'v<n>v,*. If now there is p, ¢, ¢ <p S n, such that A, = ©A4 and ¥(A,) = 1, the proof is
similar. That is, v is Op— and © 1—0t,—normal.

We prove now that v is 01— and © g—a,~normal (for the systems different from K, KB and K45, of
course). That v is ©g—0,—normal follows trivially from the fact that it is © g—01,.;—normal, because A, #
©Apm. By induction hypothesis, v is 0j—0,.;~normal, and, from D9, we have that v(Ay) = I (for KT,
KTB and KTS). That is, v is Oj—a,—normal. In the case of KD, KDB and KD45, from D9, for p = n,
¢ =m, there is an o, ;—valuation v, such that v,(A,) = 1 and v<n-1>v,. We take the canonical extension
vp* from vp to ot It is of course an at,—valuation, and, since vp*(A) = 1, it follows from 3) and 4) that
v<n>vp*. S0 v is O0j~0s-normal.

(3) Let us suppose that, for some m < n, Ap = OA,. Proof as in (2). ®

87

Chapter 3

As a direct result of combining this Lemma with Proposition P20, we have the following

Corollary. Let o, be a normal sequence, v an Oy_j—valuation and v, the canonical extension of v 10 O
Then v, is an Qu-valuation and, for 1 Si <n-1, v(A) = v(A;).

That is, now we are sure, if we have some a,—valuation, and if we build a normal sequence
Al...ApAny ... As, that it is always possible to extend this &,~valuation to the new sequence. The next
theorem puts all these fact together:

Theorem T18. v is an ay—valuation iff: 1) o, is a normal
normal.

Proof. Immediate.

q e; 2) v is a semi—valuation; 3) v is O

3.4 Correctness

Having thus proved these properties of (0t,—)vatuations, we are now ready to consider correctness.
The notions of satisfiabitity, validity and semantica! consequence are defined, as one could expect, in the
standard way: a formula A is satisfiable if there is some valuation v such that w(A) = 1. A is valid (=A) if
for ali valuations v, v satisfies A. Last but not least, if [is a set of wifs, we say that A is a semantical
consequence of T, or that T semantically implies A (I = A), if, for every valuation v such that vi= T,
v(A) = 1. (“v=I"", of course, means that v(B) = 1, for ali B € T. And, needless to say, all this is relevant
to some logic L.)

In the following, let L be one of K, KB, K45, KD, KDB, KD45, KT, KTB, KTS.

Lemma L12. Let v be an O ,—valuation; then, for 1 Si Sn, if A; is an axiom of L then v(A;} = 1.

Proof. If A; is an axiom of one of the said logics, then it is either an axiom from PL, and it follows from
the fact that v is a semi-valuation, that W{A;) = 1, or it is one of the modal axiom schemes. We consider
each case.

0 Ai=CA 6 4]—1A Suppose v(0A & —{1-A) = 0. Then we have, say, v(©A) = 1 and v(—~0—A)
=0, so v(C-A4) = 1. From the normality lemma it follows that for every p, every ¢, ¢ < p < n, such that
Ap = OAg and v(Ap) = 1, there is an at,—valuation vp such that vy(Ag) = 1 and v<n>vp. Thus vp(A) = 1.
Now we consider each logic:

a) K, KB, K45, KD, KDB, KD45, KT, KTB:

v<n>vp means (among other things) that v, =1 €({0s}Ty,1). Hence vp(—A) = 1, v5(A) = 0, what cannot
be, since we already had vp(A) = 1.

b) KTS:

88

Valuation semantics for normal modal logics

v<n>vp means (among other things) that ¢ =1 {a)%y,1. Hence v,(0—A4) = 1. Now, vp is O1—0ts—
normal, 0 vp(—4) = 1, vp(A) = 0, what cannot be.

If now v(0A) = 0 and v(—~O—A) = 1, the proof goes in a similar way. Hence WA ¢ —~0-A) = 1.

(b) A;=0(A — B) = (DA — 0OB). Suppose v(A;) = 0. Then we have w(XA — B)) = W(0A) = | and
»(0B) = 0. From the nommality lemma it follows that for every p, every ¢, ¢ < p Sn, such that Ap = DA,
and v(Ap) = 0, there is an @ —valuation ¥ such that vp(Ag) = 0 and v<n>vp. Thus vp(B) = 0. Now we
consider the logics in two cases:

a) K, KB, K45, KD, KDB, KD4S, KT, KTB:

v<n>v, means (among other things) that vp =1 €({0tx)y,1). Hence vp(A) = vp(A = B) = 1, vp(B) = 0,
what cannot be, since v, is also a semi-valuation.

b) KTS:

v<n>vp means (among other things) that vp =1 {0k} %,1. Hence vp(CHA — B)) = vp(QA) = 1 Now, v,
is D1~0,-normal, 5o vp(A) = vp(A — B) = 1, vp(B) = 0, what cannot be.

Hence W(4) = 1.

‘We must now consider the special axioms of each system.

(c) Ai=04 - oA, (KD, KDB, KD4S5) Suppose v(A;) = 0. Then we have v(0OA) = 1 and v(¢A) = 0.
From the normality lemma it follows that for every p, every q, ¢ < p S n, such that A, = DA4 and v(4p) =
1, there is an a,~valuation vp such that vp(Ag) = 1 and v<n>vp. Thus vy(A) = 1. Now v<n>v, means that
vp =0 €({®ta} °v,0). Hence vp(A) = 0, a contradiction. Thus w(A;) = 1.

(d) A;=0DA - A. (KT, KTB, KTS5) Suppose v(A;) = 0. Then we have v(0OA) = 1 and v(A) = 0. From
the normality lemma it follows that for every p, every ¢, ¢ < p Sn, such that Ap = 044 and v(Ap) = 1,
vAg) = 1. Thus wWA) = 1; a contradiction. Hence w(4;) = 1.

() Aij=A - DCA. (KTB) Suppose v(4;) = 0. Then we have v(A) = 1 and v(DCA) = 0. From the
normality lemma it follows that for every p, every ¢, ¢ < p Sn, such that A, = OA4 and W(Ap) = 0, there is
an 0i,~valuation v, such that vp(44) = 0 and v<n>vp. Thus vp(¢A4) = 0. Now v<n>v, means (among
other) that v =g £({@ts} °yp,0). Hence w(A) = 0, whal cannot be; thus v(4;) = 1.

(D Ai=04 - DOA. (K45, KD4S) Suppose v(A;) = 0. Then we have v(01A) = 1 and v(DOA) = 0.
From the normality lemma it follows that for every p, every q, ¢ < p <n, such that A, = U4, and v(Ap) =
0, there is an a,—valuation vp such that vp(Ag) = 0 and v<n>vp. Thus v,(0A) = 0. Now v<n>v, means
(among other) that {2} 1 = {04} %y, 1. Hence v(OA) = 0, what cannot be; thus v(4;) = 1.

(8) Ai=©A - 00A. (K45, KD45, KTS) Suppose v(A;) = 0. Then we have v(©A) = 1 and V(O A)
= 0. From the nommality lemma it follows that for every p, every ¢, ¢ < p S, such that A, = 044 and
WAp) = 0, there is an &,~valuation vp such that vp(Ag) = 0 and v<n>vp. Thus vp(©A) = 0. Now v<n>v,
means (among other) that {,) °y,0= {Cta}°y,,0- Hence v(0A) = 0, what cannot be; thus v(4)) = 1. &

Theorem T19. If A is an axiom of L and v is a valuation, then A) = 1.
Proof. Let A be an axiom of one of the said logics, and v a valuation. Let o, be a normal sequence such

that, for some i < n, A = A,. By definition, v is an o,~valuation and, from L12, v(A) = 1.®

89

Chapter 3

Lemma L13. For all n, all i, 1 i Sn, if v is an Qp-valuation and 1, A;, then v(Aj) = 1.
Proof. By induction on the number # of lines of a proof of A;in L.

A) r = 1. Then A; is an axiom, and the property follows from L12.

B) r > 1. If A; is an axiom, the property follows from L12; else:

{a) A; was obtained by MP from B and B — A;. We have that —B and -B —» A;. Let us form the
following set T = {C: C is a subformula of B — A; and C € {A),....As}). If T # @, let us put the
elements of 1t in a sequence Cj,...,Cy respecting the length of the formulas. If 1= ¢, let 6 = A;,... A, and
ve=v. Else let 6 = A},...,A5,C},...,Ck, and let us define a sequence vp,v;,...,vx where vg = v and, for 1
< j S k, let vj be the canonical extension of v;.;. Let us take ve = wp. Qbviously o is a normal sequence, and
vc a o—valuation. Since B and B — A;, we have by the induction hypothesis that v¢(B) = v.(B — A))
= 1. So ve(Aj) = 1. Since v(A;) = v(A)), v(A) = 1.

(b) A; = OB and was obtained by RN from B. Well, in every normal sequence ¢ in which A; occurs, B
occurs too; $o, by the induction hypothesis, for every g—valuation v, v(B) = 1. If now v(A;) were to be 0,
there should be an o,,—valuation v, such that v,(B) = 0, what cannot be. So v(A)) = 1. ®

Corollary. If A then=A.

Proof. Suppose i-A, and let v be a valuation. Let &, be a normal sequence in which, for some i <n, A =
Aj. By definition, v is an o,—valuation, so v(A) = 1 from L12, and thus =A. ®

Theorem T20. (Correctness Theorem) {f A then D=A.

Proof. Suppose T A, and let Dy,....D, be a deduetion of A from I', We prove the theorem by induction
onr.

A) r = 1. Then, either A € T, and we have nothing to prove, or A is an axiom, so A is valid (by corollary
toLI3and I'= A,

B)r > 1.If A ¢ I" and A is not an axiom, then:

(a) for some j<r,i<r,Di=D;j 3 A.SoT+D; T+ D;— A and, by the induction hypothesis, I' =
D;, U= D;— A, Thus, for every valuation v, if vi= ', D)) = WD; ~» A) = 1, and hence v(A) = 1. So T’
= A, !

(b) A =08 and, for somc'j <r,D, = B. In this case, —D, and -A. By the Corollary to L13, for every
valuation v, (A) = 1. So,if vi= I, v(A) = 1. ThusT=A. ®

3.4 Completeness

Completeness is now easy to prove making use of saturated sets—which are just MCSs. They are
defined in the very same way as in chapter 1, thus properiies like in P5 or P6 also hold:

90

Valuation semantics for normal modal logics

Proposition P21. If A is saturated, then:

(a) Ae A iff A A;
(b) -Ae A uf Ae A;
() A Be A iff Ae Aor Be A

Proposition P22, If I" v« A, then there is an A-saturated set A such that T C A.
We now consider some properties that we’ll need in the completeness proof.

Lemma L14. Let A, © be any saturated sets of wifs, I any set of wifs. Following properties hold:
a) L (that is, every normal logic):

i) If T v OA, then there is an A-saturated set A such that &(T9) U (™) C A.
ii) If U % —QA, then there is an —A-saturated set A such that (1) L e(IM°) C A,

b) KD, KDB, KD4S:

i) If T v —0A, then there is an —A-saturated set A such that e(FY) L €(T°) C A.
ii) If T4 OA, then there is an A—saturated set A such that e(T9) v e(T°) C A.

c) KT, KTB, KTS:

e(Am) CA;
ii) €(A™°) C A;

d) KB, KDB, KTB, KTS:

NeADCO iff eOICA;
) EA°)CO iff eO~°)CA;

e) K45, KD45, KTS:

i) ife(AT) U E(A™°) C B then AB= 8% and A~° = 8—°;

ii) AD C €(A9);

ili) A—° C g(A™°).
Proof. (a.i) Suppose I" * DA, Then TO U T ¢ (4, since both are subsets of ', By P19, e(T9H U
€(I'°) b A. Froth P21, there is an A-saturated set A such that ¢(I'0) U &(I°) C A.
(a.ii) If T+ —0A, then T b# (1-A. By (a.i) there is a —A-saturated set A such that &(I'0) L g(I"°) C A.

(b.i) Suppose T« —0OA. Since Df¢ and D are axioms of these logics, we have that 0—A — —0A as
theorem. So ' < 0—A. By (a.i) there is a —A-saturated set A such that e(T'9) L e(T°) C A.

(b.ii) Suppose I« ©A. Since D is an axiom of these logics, I' < (J4. By (a.i) there is a A-saturated set
A such that (T0) U &(I"°) C A.

(c.i) Let A € €(A0). So DA € A. Since T is an axiom, 4 € A,

(c.ii) Let -4 € &(A~°). S0 ~0A € A. Since T is an axiom, A — ©A is a theorem,s0A € A, ~4 € A,

9N

Chapier 3

(d.i) Suppose €(AU) C O, and let A € €(80). So DA € 8; ~0A ¢ 6 and O-DA ¢ A. But then
—O-0A € A; that is, ©[1A € A, and, since - 0004 — A, A € A. The other direction and (d.ii) are
similar.

(e.i) Suppose €(AT) U €(A—°) C 8, and let OA € A°. Thus DA € A and, since 4 is an axiom, OOA €
A - ThusOAe ©;0A€e O7. Letnow DA e OU. ThenDAe 6. If DA ¢ AD, 04 ¢ A, —DA € A,
Since 5 is an axiom we have as theorem —0A — 00-0A. So 0-0A € A. But then —0A € 8, because
€(AT) C 6, and this is a contradiction. So 04 € AC. Let now —~0A € A~°, Thus —~0A € A and, since
4 is an axiom, =0 0A € A. Since £(A—°) C ©, we have that -CA e ©; ~0A € 6—° Letnow —CA €
©—°, Then ~0A € 6.If ~0A ¢ A—°; ~OA ¢ A; OA € A. Since 5 is an axiom, we have as theorem
0—~0A -3 —0A, S0 ~00A € A; 00A € A; and thus ©A € 8, since €£(A%) C 6. But this cannot be,
s0 If ~0A € A™°,

(e.ii) If DA € A, then, since 4 is an axiom, O0A € A, DA € €(AD). (e.iii) is proved in a similar way, W

Theorem T21. For every A-saturated set A and every normal sequence ., the characteristic function f
of A is an 0u-valuation.

Proof. First of ali, it is easy to prove by P21 that

(1) The characteristic function fof A is a semi—valuation.

We now prove the theorem by induction on n. If n = 1, the property follows from (1) above. Let us
suppose n> 1.

(1) If, forevery m <n, Ay # DAy, Ay # OApm, fis trivially an o,~valuation.

(2) For some m < n, Ay = 0Ay.

(I fIAR) = 0. Then A, ¢ A, A DA, From L13, there is an A,,-saturated set © such that €(AT) U
€(A—°) C O. Let fg be the characteristic function of ©. By the induction hypothesis, f and fg are 0t,.j—
valuations, We also have, since © is A,-saturated, that fo(A,,) = 0. We consider now each logic:

o) K, KD and KT:

Now, (0ts.1)%,1 C A, thus €({as.7)%,1) C €(AC) C 8; thus fg =1 €({0tr-1)%;,1). Let now 0A €
(®a-1) °f0. Then fa(—0 A) = 1, so fa(—A) = 1, fg(A) = 0. Thus fo =9 €((0ts-1] °f,0). We can thus say
that f<n-1>fe; hence f is an ot,—valuation.

B) KB,KDB, KTB: '

We prove as in) that fo = €({aa.1}%,1) and fo =0 €((4.1} °£0). Now, from L13, e(A%) C O iff
€(80) C A; and €(A—°) € B iff £(@—°) C A. It is easy to conclude that fi=1 €({tr.;1T7g 1) and f=0
€((0n-1}°f0,0)- We thus can say that f<n-I>fg; hence fis an Ay,...,Ap-valuation.

HKTS:

We prove as in o) that f@ =1 €({®n.1)9,1) and fg =0 €((®n-1} °f,0), and as in B) that fi=y
€((®n-1}%9.1) and fi=g £({0tn.1} °19.0). Now, from L13, AD C €(A%) and A~° C (A™°). It is then
easy to see that (0n.)01 = (0ta-1} .1, and (01} °£0 = (®r.1}°f8,0. We thus can say that f<n-1>fg;
hence fis an at,—valuation.

5) K45, KD4s:

92

Valuation semantics for normal modal logics

We prove as in @) that fg =1 €({0tx-7)%;1) and fg =0 &([@ta-7) °£0), and it is easy to see, from (e.i) of
L13, that (0tn.1}9,1 = (@n-1]%e,1, and {Gn.1]}°£0 = (r-1] °e.0. We thus can say that f<n-1>fe;
hence fis an o, —valuation.

(II}) AAn) = 1. S0 OAm € A, A -OAp. Let us suppose there is some p, some ¢, ¢ < p Sa such that A,
= 0A4 and flAp) = 0. From L13, there is an Ag-saturated set O such that €(A%) U €(A~°) C 8. Let fg be
the characteristic function of 6. By the induction hypothesis, f and fg are (,.;—valuations. With an
analogous argument as in case I), we show that f<n-1>fg. Since 8 is Ag-saturated, fa(Aq) = 0 and, since
Am € €(A9), fo(Am) = 1.

Now, in the case of KD, KDB, KD4S5 it follows from L13, since A (A ,,, that there is an —A
saturated set © such that €(AT) U €(A—°) C 6. We prove in a similar way that fg is an o, j—valuation,
f<n-1>fg and fo(Am) = 1.

In the case of KT, KTB, KTS, it follows from L13, since A —0OAy, that A,y € A. SO flA;n) = 1.

If there is now some p, some ¢, ¢ < p Sn such that A, = ©Aq4 and f{Ap) = 1, the proof is similar. It
follows that f is an a,~valuation.

(3) Forsome m<n,Ap= OAp. Proofasin (2). m
With this result we come now to the following

Corollary. v is a valuation iff v is the characteristic function of some saturated set A.

Proof (a) Let us suppose that v is a valuation. Let [v]1 = (A : wWA) = 1}, and let [vlo = (B : w(B)=0]}.
Let C € [v]o; so C ¢ [v]) and we casily see that [} b< C. Let D be a formula such that D ¢ [v];. So w(v)
=0, WD) = 1 and —D € (v]1. But, since —-D-(DC), (—D—(D—C)) = 1; thus -D>D-C) e
[vhy. So [vhi + D—C, and, obviously, {viiu (D} + C.Let A = [v];. Hence A is a C-satusated set and,
by construction, v is its characteristic function.

(b) Suppose that, for some saturated set A, v is the characteristic function of A. Let a, be any normal
sequence: then (by T21) v is an at,—valuation. Since o, is any normal sequence, v is a valuation. B
Theorem T22. (Completeness Theorem) If I'=A then I'-A.

Proof. Suppose T'=A, and I'<A. Then there is an A-saturated set A such that I’ C A. Let v be the
characteristic fungtion of A. By the corollary to theorem 3, v is a valuation. SinceI' C A, vi=T; since A is
A-saturated, v(A) = 0. So I'#A, against the hypothesis. Hence I'-A. ®

93

4

Valuation semantics for classical modal logics

1 have yet 1o see any problem, however complicated,
which, when looked at in the right way, did not become
still more complicated.

POUL ANDERSON.

In this chapter we are then going to consider valuation semantics for classical modal logics.
A system of modal loglc is called classical if it contains DfO (i.e., ©A & —0-A), and if it is
closed under RE:

RE: A6 B | vOAonB42

The smallest classical modal logic is called E. To name other classical systems we write, as usual,
ES1...Sp 10 mean the extension of E through axiom schemas §;,...,S,. The axiom schemas which we
will be using here are the following:

M. AAB)> DA AOB
C. DAAOB - 0O(A AB)

Also at our disposal is the inference rule RN (A /- 0A), already known from the normal modal
logics. Thus ECN will mean the logic obtained by adding C as axiom schema and RN as inference rule.
Using all possible combinations of these axiom schemas and rule of inference, we arrive at the following
picture (cf. [Ch80], p. 237) of 8 non-equivalent logics (an arrow means that the logic on the arrow’s left is
a subsystem of the one on the right):

fig. 18

42 More about classical modal logics can be found in Chellas [1980], chapter 8, which I am going closely to follow.

94

Valuatic ics for classical modal logics

The logic EM is also called M in [Ch80], because it is the smallest monotonic modal logic, and
EMC has the denomination R t0o, because it is the smallest regular modal Jogic.#3 The system EMCN, by
the way, is the same K which we already knew—that is, the smallest normal modal logic.

Now in the case of classical logics, things work in a similar way to the normal modal logics: so we
have normal sequences and semi-valuations as before. Differences are, of course, to be expected in the
definitions of Aj,..., As-valuations.

5.1 Defining Ay,..,A,-valuations for classical loglcs

As usual, we need some definitions and abbreviations. Let o, be a normal sequence, and let us
suppose that a,~valuations, and valuations simpliciter, were already defined. We introduce the following
abbreviations (for 1 <k <n,and where T, A C {0g)):

A~y B iff for every ag—valuation v, v(A) = v(B);
A=y B iff for every oy—~valuation v, W(A) # v(B);
A=>B iff for every ay-valuation v, if WA) = 1 then v(B) = 1;
Aw>y B iff for every oy—valuation v, if WA) = 1 then w(B) = 0;
A<= B iff for every oy—valuation v, if WA) = 0 then w(B) = 1;

A=y <TLA> iff for every ag~valuation v, v(A) = 1 iff v=; T and vi=g A;
A wy <I, A> iff for every ay—valuation v, v(A) = 0 iff vi=g T and vi=) A;
<ILA>=~>k A iff for every og—valuation v, if vi=1 I" and w=g A then v(A) = 1;
<ILA>w>y A iff for every (u—valua'lion v, if =g I" and vi=1 A then v(A) = 0;

Now the following abbreviations, as in the case of “f<k>g” in normal logics, will be meaning
different things for the several systems. Let @, be a normal sequence, and let us suppose again that ot,—
valuations were already defined. We introduce the following abbreviations (for I <& S n, and where I', A
C (o))

(a) for E, EN:

t

EXA. T} =ar (BeT:BagA);

AIAT] =4 (BeT:BupAl;
(b) for EM, EMN:

EX[A,T] =4t {BeT:B~>A);

XA, T] =g (BeT:B<wA);

LKA, T] =4f (BeT:A=>B);

43 A systcm of modal logic is said to be monotonic iff it contains Dfo and is closed under RM, i.c.: A — B /DA — 0B.

A modal logic is said to be regular iff it contains Dfo and is closed und RR, thatis: A A B - C /oA AnB - DC.
(CI. [Ch80], p. 234.) .

95

Chaper 4

NKA,T] =gt (BeT:Ae>B);
(c) for EC, ECN:

EK[A, T, A] =4f (<0, ®>:0CT,dCAand A~ <8, &>);
XA, T,A] =qf (<6, 0>:8CT, 0 CAand A=y <0, 0>);

(d) for EMC, EMCN:

EX[A,T,A) =45 (<O, ®>:0CT,dC Aand <8, &> ~>y A};
YA, T,A] =¢r {<©,®>:8CT,dCAand <0, B> w>y A}.

Before we go into the details of what ali these definitions mean, let us take a look at the definition of
an au—valuation. Perhaps things will be clearer by then. I'll give first the definitions for E, and then we'll
see which changes are needed for the other logics.

Definitlon D11. v is an o,~valuation (for E) if a,, is a normal sequence and
1) n = 1 and v is a semi-valuation;
2) n > 1, v is an q,,.j—valuation and, if for some m <n,
A) Ap=DAp,
1) if (An) = O then EP-1[Ap, €({0n-1)%,1)) = X™1[Am, €((0n-1}°v,0)) = #;
1I) if W(A,) = 1 then for every p, every g, ¢ < p Sn, such that:
a.Ap = DAg and v(Ap) = 0, E"[Ag, €({0a.1) %, 1) U [Am)] = x™[Aq, €({0ta.1)°v0)) = 8
b. Ap = 0Ag and v(Ap) = 1, x™[Ag, €((0ta.1)%,1) U (Am)] = €7 1[Ag, €({0n1) °v0)) = 2
B)An=0Apm,
1) if W(Ap) = 1 then X" 1[Ap, €({%-1)%1)) = EF1[Apm, €({ 01} 00 0)] = 8
I1) if v(A,) = O then for every p, every q, ¢ < p <n, such that:
a. Ap = OA4 and v(4p) = 0, X"'][Aq- e((0n-1)%1)) = g""[Aqv €([0n-11%v,0) U (Am]] = 8
b. Ap = 0Ag and v(Ap) = 1, x™ Mg, €((an.1)%,1] = E1[Ag, E({0n.1) °v,0) U (Am)]) = 2.

This definition, too, looks scaring, but by now the reader has probably got a feeling of how things
work with valuation semantics. Everything is like in the normal logics case, but the way we treat the modal
operators. Let us consider the case where A, = UA,,. If v gives 0 to it, then the set of formulas belonging
to the scope of v's necessities which are equivalent to A,, must be empty. This is actually what is required
1o make RE validity-preserving: we would not want to have some 0A, getting value 1, and A4 being
equivalent to A,,—in which case giving 0 to A, would mess things up. So E™1[A,, £({0ts.1)0,,1)) must
be empty. Similarly, the requirement that En-1{A,, €({ts.7)°v,0)) should be empty guarantees the validity
of Dfo, because we are then sure there is no ©—A,y, for instance, such that v(© —A,,) = 0—in which case
¥(—0—A,y) would be 1, and it would be bad to have v(OA) = 0. The case with v(A,) = 1, as in the
normal modal logics, requires that v has had a good behavior. For possibilities, the picture is analogous.

Maybe it is a surprise for the reader that we are not requiring, in the case where w(GA,,) = 0, that
there is some “accessible” valuation giving 0 10 A,,. Actually this condition is the one that guarantees that

Valuati ics for classical modal logics

RN is validity-preserving. But RN doesn’t hold in E, so it doesn’t matter if there is or not another valuation
with v(Ap) = 0. (Things are different in EN, as one can see below.)

Having thus defined a,—valuations, the rest is standard: a function v from FOR into {0,1} isa
valuation iff for every normal sequence @, v is an o,,—valuation. Before going into canonical extensions,
normality and so on, [would like to show which kind of modifications are needed in order to get valuations
for the other classical modal logics. As in the preceding section, we need only some small changes, so 1 am
only going to repeat each time the most impoctant part of the definition. Thus we have:

« for EN:
A) Ap = 0Ap,
I) (as in E) ... and there is an @, j—valuation v, such that v,(A,) = 0;
I ..

a. (as in E) ... and there is an o, 7-valuation v such that vy(A4) = 0;
b. (asin E) ... and there is an 0, j—valuation vp such that vp(4g) = 1;

B) Ap=0Ap,
1) (as in E) ... and there is an @,.j—valuation v, such that va(A,z) = 1;
i ...

a. (as in E) ... and there is an o,.;-valuation vp such that v;(44) = 0;
b. (as in E) ... and there is an a,.;~valuation vp such that vy(Ag) = 1.

What was added here was just a requirement like “and there is an 0,.7—valuation v, such that
va(Am) = 0" (or 1), what is, as [said, necessary to guarantee the validity of RN. If a necessity is false,
then somewhere its scope must get a 0. But this is all: no need that this other ,,_;—valuation be in any kind
of relation to v.

Let us now sec how things look in the case of the other classical logics.

« for EM:

A) An=An,
I) (asinE)
m ... !
a.(asinE)
b. Ap=0Agand v(Ap) =1, n""[Aq. e({aa)0 1) L (Am)) = Cn'I[Aq- €({0n-1)%y,0)] = 8;
B) Ay = CAp,
1) if v(An) = 1 then N [Apm, €({0n.1)%,1)] = (¥ Am. €((0tn-1}°v0)] = ;
Im ...
a.(asinE)
b. Ap = 0Ag and W(Ap) = 1, N Ay, €((0n.1) %, 1)) = {1{Ag, €({On. 1} °v0) U (Am)] = 0.

97

Chapter 4

+ for EMN;

The only difference in relation to EM is that one should add, as in previous cases, the “and there is
an (,.7-valuation...” story, which takes care of RN.
For the other logics, now, the differences are somewhat greater, so let us write them down whole.

« for EC, EMC:

A) An=0Ap,
Ty if v(An) = O then En 1A, €({0n.1)%,1), €({0a-1) °v.0)} =
II) if v(A,) = 1 then for every p, every ¢, g < p Sn, such that:
a. Ap = DAg and W(Ap) = 0, E™1[Ag, €([0-1}%,1) U (Am}, €((0n.1) °v0)] = 8
b. Ap=OAgand v(Ap) =1, ln'l“q' €({0n.1) °v,0), €({0n-1}Pv1) U {Apn)] = 85
B)A,=0CApm,)
1) if W(An) = 1 then ™ A, €((0tn.1)°v,0), €((On7)P, 1)] = 9
1) if w(Ax) = O then for every p, every q, ¢ < p <n, such that:
a.Ap = OAg and v(Ap) = 1, X" 1[Aq, €({0r.1} °v.0) U (Am}, €({0ta-1)T,,1)] = ©;
b. Ap = DAg and v(Ap) = 0, g""“qv €((@a-710.1), E((@n-1) 0L {Am]) = 8.

It is probably not necessary to say that, even if the definition looks the same for EC and EMC, ‘£€®
and 'y’ abbreviate different things! Now for ECN and EMCN ali we need is to add the “and there is an
Oy —valuation...” story, which takes care of RN (see the case of EN). I hope there is no need to repeat the
definition, because I won’t. By the way, since EMCN is the same logic K, we have here an altemative
definition of an a,,—valuation for K. It is a good exercise for the reader to prove the equivalence of this
defintion with the one given in the section on normal modal logics!

The next definition now considers the canonical extensions (first for the logic E).

Definition D12. Let o, be a normal sequence and v an 0,.7—valuation. We say that v, is the canonical
extension of v 10 O, if:
A)foralim<n Ay 20Apy,, Ap# CAyand ve = v; Or
B) for some m < n, Ay = DA OF Ay = OApy and v, is a function from FOR into (0,1} such that, for every
formula B,
1) if A, is not a subformula of B, then v(B) = wW(B);
2) if A, is a subformula of B, then .
a) for B = Ap= OAm, ve(B) = 0 iff E"1[Apm, €([0tn11%,1)) = X [Am, €((0tn.1} °v.0)1 = #;
&) for B=Ap= OAm, ve(B) = 1iff 1™ 1Am, €({0ts-1)%, 1)) = §¥{Am, e((0n.1) °v,0)] = 8
b) for B = —C, v.(B) = 1 iff v(C) = 0;
c)forB=C - D,v(B)=1iff v(C)=00rv.(D)=1;
d) for B =0C or B = 0C, v«(B) = v(B).

98

Valuati ics for classical modal logics

This definition now must undergo some changes, in order to be adequate to the other logics. We
have:

« for EN:

a) (as in E) ... and there is an @, ;—valuation v* such that v¥(4,) = 0;
') (as in E) ... and there is an o,.;—valuation v+ such that v*(Ap) = 1;

« for EM:

a) (as in E);
a) for B = Ax= OApm, vc(B) = 1 iff "1 [Am, €([0s-1}%,1)} = (¥ UAm, E((0a.1)°v,0)] = #;

« for EMN:

a) (as in EM) ... and there is an 0, g—valuation v* such that v*(4,,) = 0;
a") (as in EM) ... and there is an o, 7-valuation v+ such that v+(4,,) = 1;

« for EC, EMC:

a) for B = Ay = OApm, vc(B) = 0 iff E™1[Am, €((0ta.1)%,1), €({0tn-1]}°v,0)) = 8
a) for B = Ap= OAm, vo(B) = 1 iff X% 1{Am, &((0n-1) °v,0), E((Cn-1}Ty)] = &

« for ECN, EMCN:

a) (as in EC, EMC) ... and there is an &,,.;—valuation v* such that v+(A,,) = 0;
a') (as in EC, EMC) ... and there is an o, j—valuation v+ such that v+(A4,,) = 1;

In the next step, as usual, we introduce the notion of normality. Let v be an o,-valuation: for I Sk
S'n, we say that:

« for E:

[

(a) v is O-ag—normal iff for every p, every q, ¢ < p Sk, such that Ap = 0OA, and v(4p) = 0, §"[Aq,
e({ox) %, 1)1 = x¥[Aq. e((0x) °v,0)) = #;

(b) v is 0—oy~nermal iff for every p, every ¢, g < p Sk, such that A, = 0 A, and v(A4,) = 1, XK{A,,
e({ax)9,1)] = EX[Ag, e((ax) °y,00] = 8.

« for EN:

(a) (as in E) ... and there is an @,.;-valuation v, such that vp(Ag) = 0;
(b) (as in E) ... and there is an @, j—valuation v, such that vy(4g) = 1.

Chapter 4

* for EM:

(@) (asinE)
(b) v is O—og—normal iff for every p, every q, q < p Sk, such that A, = 0 A, and v(Ap) = 1, nk[4,,
({0 9,11 = (A4 e((0x) °v 00 = 8.

« for EMN:

(a) (as in EM) ... and there is an a1 ;-valuation vy such that v,(Ag) = 0;
(b) (as in EM) ... and there is an o, j-valuation v, such that vp(Ag) = 1.

o for EC, EMC:

(a) v is O-oux—normal iff for every p, every ¢, ¢ < p Sk, such that Ap = A4 and w(Ap) = 0, §"[Aq.
€((0)%,1), €({oe]) °v,0)] = &

() v is O —o—normal iff for every p, every q, ¢ < p Sk, such that Ap = OAg and v(Ap) = 1, x¥[A,,
e({ox) °v,0), E({ae}O,1)] = .

» for ECN, EMCN:

(a) (as in EC, EMC) ... and there is an 0.,.;—valuation v, such that v(44) = 0;
(b) (as in EC, EMC) ... and there is an a,.j—valuation v, such that v,(A,) = 1.

Now the story repeats itself, just like in normal modal logics. We prove that canonical extensions
are semi-valuations, and then that they are o,-valuations, if normal. Last but not least, we prove that o,
valuations are normal up to n.

Lemma L18. If v is an 0.j—valuation and v, is the canonical extension from v 1o G, then v is a semi-
valuation.

Proposition P23. Let o, be a normal sequence, v an 0, j-valuation and v, the canonical extension of v
10 0. Let us suppose that v is O~ and O-0ly.j~normal. In this case, v, is an 0y—valuation.

Proof First of ali, v, ig an 0. j-valuation, because it is a semi—valua!ion and, by construction, for I Si <
n, ve(A;) = v(A;). Now, if, for every m < n, Ap 2 0Apm, Ap # OAp, v fulfills every condition of
Definition D11, so it is an a,—valuation. Suppose, then, that for some m < n, A, = OA,,. We have two
main cases, and a lot of subcases:

(M ve(4n) = 0.
(A) E,EN,EM EMN:

By D12.B.2.a £ V[Ap, €({0n-11%.10] = X™ YA m, €((0tn.1}°y,0)] = 8 [EN, EMN: and there is
an o,,.;—valuation v* such that v+(A,) = 0). Since v and v, agree for i < n, E™1 (A, e({®a_1) 1)) =
X A, €((%n-1}°v,0)] = 8. So v, is an a,-valuation.

(B) EC, ECN, EMC,EMCN:

100

Valuaii ics for classical modal logics

By D12.B.2.a E™1{A,,, €((0n-1)9,1), E({®n-1)°v,0)] = 8 [ECN, EMCN: and there is an o, j—
valuation v+ such that v+(A,) = 0]. Since v and v, agree for i < n, 01 (A, €(({n-1) 0y, 1),
€((0n-1}°vc.0)] = 8. S0 v is an a,—valuation.

(ID vc(An) = 1. We consider the cases for the different logics:

(A) E,EN,EM, EMN:

By D12.B.2.a, we have:

(1) either 7 1[Ap, e({0t-}9,1)] # 8, Of X" [Am, £({®s-7) ®v,0)) # @, o (in EN, EMN) for every
O, j—valuation v, vH{(4,,) = 1.

Suppose first there is ¢ < p <n such that Ap = DA4 and vc(4p) = 0. Then v(A,) = 0 and, since v is O—

@y s-nommal, E81{A4, €((0ta-1)9y,1)] = X Ay, €((®4.1)°1,0)1 = ¢ [EN, EMN: and there is an oy.1—

valuation vp such that vy(A4) = 0). Since v and v agree for i < n, we have:

@ ErUAg, e((0ta-1)%, 0] = XN Ag, E({0n-1}°vc,0)) = 0.

We have now to prove that gn'l[Aq, €({an-1)%,1) U (Am}] = @. Let us suppose this set is not empty:

from (2) it follows that E2-1[Ag, €((0a.7)%,1) U {Am)] = (Am).

a.In E and EN, we thus have that A; ~;.1 Ay, and then it is easy to see, from (2) again and from the fact
that A and A, have the same value, that (i) E™ A, €({®h.1)9,1)] = # and that (ii) 42 An,
€({0n-1}°vc,0)] = @. In EN, since Ag =51 A, and there is an @, j~valuation v, such that vp(A,) = 0,
we also have (iii) vp(Am) = 0. Now (i) and (ii), and in EN (iii) too, contradict (1), so En1{Ag,
e({@n-1)% 1)U [Am)] = 9.

b. In EM and EMN, we thus have that A,y =>;5.1 Ag. Now let us examine the case where E83-1[A,
€({ts-1)9y,1)] # @. So there is some OAj, v(DAj) = 1, such that Aj =>;.1 Ap. It follows, since Any
=>n 1 Ag, that Aj =>4 3 Ag. So E0-VAg, €({0a.1)Ov.,1)) # 9, against (2). Well, then x™1[A,,
€({ 0.1} °v,0)) must be not empty. So there is some ©Aj, v(OA)) = 0, such that A; <= 3 Ap. It follows
that Aj <wsp_) Ag, and then x""[Aq, €((®ta-1)}°vc,0)) # @, again against (2). Now suppose, in EMN, that
for every o, j—valuation v*, v*(A,y) = 1. Since Ay =>5.1 Ag, we have that for every @,./~-valuation v+,
v*(Ag) = 1. So vp(Ag) = 1, what cannot be. Hence, in both logics, E™1[A4, e((®-11%1) U {Am]]) =
8.

Suppose now there is ¢ < p < n such that A, = 0A, and v(4p) = 1. Then v(Ap) = 1 and, since v is O—0iy.
1-normal, we'have: x™1{Ag, e((@s.7)9,,1)] = E™1[Ag, €((®n.1) °v,0)] = @ [EN, EMN: and there is an
O-7~valuation v, such that vy(A) = 1]. Since v and v agree for i < n, we have:

a.In E and EN:

B) A™MAg &((@n 1)%,1)] = E™1[Aq, &((0n-1)°y,0)] = @ [EN: and there is an ot,.~valuation v, such
that v(Ag) = 1].

Since v and v, agree for i < n, we have:
@ x"UAg, e([@a-1)%, 1)) = £ 1[Ag, ({01} ®vc,0)) = 9.

We have now to prove that x“"[A,,. €({0n-1)%c,1) Y (Am)] = @. Suppose it is not: it follows that
Ag=n.1 Am. Now, if En-1(A,, €((0tn-7)0y,1)] were not empty, there would be an A; € e((aa-1)0y,1)

101

Chapler 4

such that A; =y.) Ap. S0 Ag =y 1 Aj, and then x"-1(Ag, £((0tr-1)%,1)] # @, against (4). So (i) EM-1[A,
&((0r-1)%,1)] = #. Then ™A, €({0n.11°v,0)] must be not empty; so there is an A; € ([t} °v,0)
such that A; ep_1 Apm. It follows that A =, 1 A;. But then, against (4), §"-‘[Aq, €({0tr-1} °v..0)] # @, so (ii)
X" 1A, €((0tn.1)°,0)] = 8. Now, in EN, since A4 =n.1 Am, and since there is an o,.j—valuation vp
such that vy(Aq) = 1, we also have (iii) v,(Am) = 0. But (i) and (ii), and in EN (jii) too, contradict (1), so
A HAg. €((0t.1)%, 1) U (Am)] = 9.

b. In EM and EMN:

9 NAg e((0a.1)0,1)] = {- 1A, €({®tn.1) °v,0)] = ¢ [EMN: and there is an o,.;-valuation Yo

such that vp(Ag) = 1].

Since v and v, agree for i < n, we have:
©) N NAG e((0n-11%,1)] = { 1A e((@n.1) %y 0)] = 0.

We have to prove that n""[A,,, €({0tn-1)%,,1) U (Am)] # 9. Suppose it is not: it follows that A4
w>g 1 Am. Now, if E01[A, €({0ta.1]Py,1)]) were not empty, there would be an A; € €({cts.7)%. 1) such
that A; =>4 1 Am. It is easy 10 see that Ay #>q.1 A;, and then N™1[A4, €((0r.1)Oy,1)] # 8, against (6). So
(i) & 1{A,n, €({0tn-1)9y,1)] = @. Then Y- 1[Ap, €((tr-1}°y,0)) Mmust be not empty. Then there is an A; &
£({0n.1) °y,0) such that A; <=,) Ap. Tt follows easily that Ag ~>n.1 A;. But then, against (6), !;““[Aq,
€([(0ta-1}%ve,0)] # 8, 50 (i) X™1[Am, €([®a-1)°y,0)] = #. Suppose now, in EMN, that for every oty.j—
valuation v+, v¥(A,,) = 1. Since Ag »>y.1 A, we have that for every a,..;—valuati(zn v, vH(Ag) = 1. So
vp(Aq) = 1, what cannot be. So (iii) there is an o, j—valuation v+ such that v+(A,) = 0. However, (i) and
(i), and in EMN (iii) too, contradict (1), so n""[Aq, (01} 1) U {Am}] = ¢.
it follows, in case (A), that v, is an 0—valuation. Let us consider the other logics:

(B) EC, ECN, EMC, EMCN:
By D12.B.2.a, we have:
) EV[Ap, €({0n-1)0,1), €{On-1}° 20)] # 8, Or, in ECN and EMCN, for every ,.j—valuation

v vt Am) = 1].

Suppose first there is ¢ < p <n such that A, = UA4 and v (Ap) = 0. Then v(Ap) = 0 and, since v is O-
0ty.g—normat, §"“[Aq, €({0ta-1)%,1), €({0n.1}°v,0)) = # [ECN, EMCN: and there is an o, ;—-valuation
vp such that v,(A4) = 0]. Since v and v, agree for i < n, we have:

ed] gn-l(Aq, t:((uwl-l]nw:,])y e((0n.1) ®ve.0) =g

We have now to prove that E™1{A, €({0in.1)%,1) U (Am), €((0n.1) v 0] = B. Let us suppose
this set is not empty: from (2) it follows that, for some I' C €({0tn.1]%%,1), some A C e((0n-1) vc.0).
<TU(Am), 8> € EM1[Ag, €((®n-1)0,1) U (Am). E({0n.1}°vc0)). By definition, for every Oin.j—
valuation v*

@ [EC,ECN]v(A) = Liff v'iey T U (Am) and v'i=g A, ie: vi(Ag) = 1iff v =1 T and v’ =g

A and vi(A,,) = 1.

(® [EMC,EMCN]ifv =1 T U (An) and v’ =g A then v'(Ag) = 1, i if v'i=y T and v’ 1= A

and v(A,) = 1 then v(Ag) = 1.

102

Valuati tics for classical modal logics

Now, suppose, in ECN and EMCN, that £ 1{A,, €((0ts-1)%,1), €({0a-1) °v,0)} # @. (In EC and EMC
it is already so.) It follows that, for some © C €([®n.1)}P,.1), some @ C €((®r-1} °vc,0), <O. 0> €
En-1[A,, e({0tn.1)}%c,1), €((Qn1] °vc,0)). By definition, we have, for every a,.;~valuation v’

(ii*) [EC,ECN}v(An)=1iff v'=108 and v =0 D.

(iiY) [EMC,EMCN]ifv'i=1 0 and v’ =9 @ then v'(A,y) = 1.

From (i-ii*) and (i-ii®) we get, for every a,,.;—valuation v";

(ii) [EC,ECN]v(Ag)=1iff v'i=; T and v'i=gA and v' =1 © and v’ =g ®.

(iii®) (EMC,EMCN]ifv'i=)T and v’ A and v’ =1 6 and v’ =0 ® then v(dg = 1.
But this, for every @, j—valuation v', is the same as;

(ivY) [EC,ECN]v(A) =1iffv'=jTUBand v'icgA U D.

(ivt) [EMC,EMCN}if v T U ®and v =gA U O then vidg =1

But then there is a pair <I'U 6, A U ©> € §31[Ag, €({n-1),1), €([®n-1) °vc,0)), What cannot be.
Thus:

W) EUAL €((Ga.1)%1) U [Am), ((0n.1) %vc,0)] = @

In ECN and EMCN we still have to consider the other half of the disjunciion in (1). So suppose that for
every Q-j—valuation v', v(4,4) = 1. From (i*%) we have, for every a,_;—valuation v":

(vi*) [ECN)v'(Ag) = 1iff v =1 I" and v’ =g A.
(vi®y [EMCN]if v'=) T and v’ =0 A then v(Ag) = 1.

But then there is a pair <, A> € ﬁ""[Aq, €({0tr-1)%c,1), ([An-1] ®vc,0)), what cannot be. Thus also
here we have that

(vii) @""[Aq. €({0-1)%1) U (Am), €({0a-1} %y 0)) = 2.

Suppose now there is ¢ < p Sn such that Ap = 0 A4 and vc(Ap) = 1. Then v(Ap) = 1 and, since v is O
0y —normal, X 1A, e({0n-1}°v,0), €{(®a.1)%,1)] = 8. Since v and v, agree for i < n, we have:

3 x™UAg, &((0n-1}%v,0), €L 1) D)] = 0.

We have now 10 prove that X% 1[Ag, €(1 0.7} ®vc,0), E([0-71%,1) U (Am)] = 8. Suppose it is
not: it follows that, for some I' C ({1} °vc.0), for some A C e({®a.1}%,1), <I, A U {Ap)> €
25 1Aq, €({0tn-1)°vc 0), €({0a-1}T%c,1) U {Am)]. By definition, for every ax.s—valuation v';

(¥ [(EC,ECN]v(Ap)=0iff v'=gT and v'i=1 A U {Am), ie: v(Ag) =0iff v'i=g [and v' =

Aand v(Am) = 1.

@i®» [EMC,EMCN)ifv'i=gT and v'=1 A U {Ap} then V(A =0, ie:if vi=gTand v' =1 A

and v'(Am) = 1 then v'(Ag) = 0.

Now suppose, in ECN and EMCN, that £71[A,, £({0n_1) 9y 1), €({0tn-1} °1,0)} # @. (In EC and EMC
it is already so.) It follows that, for some 8 C €({®-1}9,,1), some @ C e({®n.1) °vc,0), <O, 0> €
§“‘1[A,,, €({0tn-1)%c,1), €({ -1} °vc.,0)). By definition, we have, for every a,.;~valuation v":

103

Chapter 4

(ii® [EC,ECN}v(Ap)=1iff v'=1 0 and v'i=9 D.

(i) [EMC,EMCN]ifv'i=1 0 and v' =9 ® then v’(Am) = 1.

From (i*-%) and (ii*®), then, for every 0. j-valuation v*

(iii*) [EC,ECN]v'(Ag)=0iff v'=gT and v'=y A and v’ =) @ and v’ =9 ®.

@iii® [EMC,EMCN}ifv'i=gT and v'i=1 Aand v’ =1 © and v' =g ® then vi(Ag =0.
That is, for every 0.1—valuation v',

(iv) [EC,ECNlv(AQ)=0iff viroT U dandv'=1AU 6.

@iv*) [EMC,EMCNJifv'=oT U ® and v’ 1=y A U B then vi(A)) = 0.

But then there is a pair<T U B, AU ®> ¢ x“"[A,. €([0r-1)° ve.0)s €[®n-7)c,1)], what cannot be.
Thus

(v) 1“"[Aq, €((0n-1)°ve,0) E({0n-)P) U (An)1 = 0.

In ECN and EMCN we still have to consider the other half of the disjunction in (1). So suppose that for
every O,.j—valuation v', v{A,) = 1. From (i*®) we have, for every o,.;—valuation v',

(viY) [ECN]v(Ag) = 0iff v'i=g T and v’ =9 A.
(vi®) (EMCN}if v’ =0 T and v’ =1 A then v'(4) = 0.

But then there is a pair <I", A> € xﬂ~‘[A,,, €([®r-1}°vc,0), €({®n.1}0yc,1)], what cannot be. Thus also
here we have thai

(vil) X" 1Ag, €((0tn-1]°vc,0). €((On.1) T, 1) U [An}] = 8.
it follows, also in case (B), that v is an o,-valuation.

The proof for A, = OA,, is analogous.®

We have thus proved that canonical extensions are o,—~valuations on the hypothesis that the o, j—
valuations they are extending are normal. With the next lemma, we can show that ¢,~valuations are normal
without restrictions.

Lemma L16. (Normali‘t'y Lemma) Let v be an O-valuation. Then v is O- and O—0y-normal.

Proof. By induction on n. For n =] it holds trivially, so let n > I and let us suppose that every @,.j—
valuation is O- and O—0,.j-normal. it follows then from P23 that

(1) The canonical extensions of ¢, y—valuations to 0, are a,—valuations.
Moreover, it is trivially true that, for i < n,and I’ C {tta-1),

() Er1[A;, T =&AL T,

@ x"AL T =x"4 T);

@ AT = EAL T,

104

Valuati ics for classical modal logics

@ AL T =04, T

(5) ElA,T,A]=EM AT, AL

© x™UA;, T, Al =y"[A; T, AL

because every o,~valuation is an @,.;-valuation.

We have now three main cases:

(A) Forevery m < n, Ay # QA Ay # OAp. So v is trivially O- and O—ay-normal.

(B) Let us suppose that, for some m < n, Ay = OAp.

(I) Let W(A,) = 0. We have:

M e({ea)) = e({onr)%0);

® e({aa)®v0) = &({0tn.1}°v,0)-

From the induction hypothesis, v is (Hx,.j-nommal, so we have:

(9) forevery p, every ¢, ¢ < p < nsuch that A, = DAg and W(A,) = 0,
(O E, EN,EM, EMN: £0 1A, e({0n.1}9,1)) = X* HAg, €({0.1) °v0)] = 8
(9%) EC, ECN, EMC, EMCN: §"[Aq, &({a5.1)%,1), £({an-1}° 40)] = #;
moreover, in EN, EMN, ECN and EMCN, there is an &,.;—valuation v, such that vp(Ag) = 0.

From (1), (2), (7) and (8), we get:

(100 E, EN, EM, EMN: £MA,, e({0a) %y, 1] = XA g, €(10ta) ®v0)] = 9.

(10%) EC, ECN, EMC, EMCN: E"[Ag, &((an)%,1), €({an} ° 5,0)) = 9.

In EN, EMN, ECN and EMCN, for each p, let v,* be the canonical extension from v, to a,. Obviously
Vp*(Ag) = vp(Ag), and, from (1), vp* is an a,,~valuation. From this, (9) and (10), then:

(11) for every p, every ¢, ¢ < p < nsucht that A, = DAg and w(4,) =0,

(113 E, EN, EM, EMN: §“[A,,, e({an)Oy,1)] = LA g e({aa) °y,0)] =

(11%) EC, ECN, EMC, EMCN: £MAy, e({0ta) P 1)), €({ 04} °v,0)) = #;

moreover, in EN, EMN, ECN and EMCN, there is an a,—valuation vp* such that vp*(44) = 0.
On the other hand, since v is an o,~valuation, we have:

(12%) E, EN, EM, EMN: £ [Ap, ({0a.1} T, 1] = X" [Am, E({0tn-1}°v,0)] = ¢ [EN, EMN: and
there is an Ol j—valuation v, such that v4(A,,) = 0).

(12®) EC, ECN, EMC, EMCN: E™ 1Ay, €({0tr_1}%,1), €({®n.1}°v,0)] = # [ECN, EMCN: and
there is an O, j~valuation v, such that va(A,) = 0.

From (1), (2), (7). (8), and from the fact that Ay € (0.1}, we get:
(133 E, EN,EM, EMN: £MA,,, €({0,)9,,1)) = XMAm. E({0ta) %y 0)) = 8.
(13*) EC, ECN, EMC, EMCN: EP[Ap, ({02} 9y,1). E((2t) °v,0)] = 8.

105

Chapter 4

In EN, EMN, ECN and EMCN, let v,* be the canonical extension from vy (0 (ty. Obviously v,*(Am) =
Vn(Am), and, from (1), v,* is an (t,-valuation. Thus we have

(149) forp =n,q=m,A,=DAgand WAp) =0,

(149 E, EN,EM, EMN: ﬁ;‘lAq. e({an)%,1)) = X [Aq, €({0tn) °v,0)) = #;

(14%) EC, ECN, EMC, EMCN: EMAg, €((ta} O,1), €({0n} °v,0)] = &

moreover, in EN, EMN, ECN and EMCN, there is an &t,-valuation vp* such that vp*(Ag) = 0].
From this, together with (11), then, v is an O-0t;—normal.

Now, from the induction hypothesis, v is O —0ty.;—normal, so we have, together with the fact that A, =
OA m:

(15) forevery p,every ¢, ¢ <p < nsuch that A, = OA and w(Ap) = 1,
(15%) E, EN: ™ {Ag, €((0n.1}%,1)] = E™1[A¢q, €((n-1) °v,00] = 8;
(15%) EM, EMN: n5-1[Ag, €({0tn.7)%,1)) = {7 A g, €((@n.1) 0] = 8;
(15°) EC, ECN, EMC, EMCN: x™[Ag, €({0t.1}°v,0), €({0a-1)5,1)] = #;
moreover, in EN, EMN, ECN and EMCN, there is an 0,,.;—valuation vp such that vp(Ag) = 1.
From (1), (2), (7) and (8), we get:
(16") E, EN: N"[Ag, e((0a) D, 1)) = {"[Aq. e({0n) °v0) = 8
(16") EM, EMN: x"[Ag, e((02) %, 1)) = £l A, €({0tn) °v,0)) = #;
(16°) EC, ECN,EMC, EMCN: x"MA,, e({as)°v0), €({aa) 05 1)) = 0.
In EN, EMN, ECN and EMCN, for each p, let vp* be the canonical extension from vp to a,. Obviously
vp*(Ag) = vp(Ag), and, from (1), vp* is an a,-valuation. From this and (16*-), then, v is O—0,,—normal.
(I1) Let XAp) = 1. We then have:
O e({on)%,1) = €({0tn-1]%,) U {Am);
® e({ar)°v,0) = &({An.1)°v,0)-
Since v(A,) = 1, we have from D11 that:
) foreveryp, evc;y ¢, 4 < p < nsuch that:
i. Ap = OA4 and v(Ap) = 0,
® E,EN,EM, EMN: §n1[A,, €((0n.1)%,1) U [Am}] = X7 1[Ag. e((0n-1) °v,0)) = 8
() EC, ECN,EMC, EMCN: E*[Ag, e({0ta-1)9,1) U (Am). €({0n.1) °v,0)) = #;
moreover, in EN, EMN, ECN and EMCN, there is an . ;—valuation vp such that v5(Ag) = 0;
ii. Ap = 0Agand v(Ap) = 1,
® E,EN: XA €({0tn.1)%1) U {Am)] = E™1[Ag, €((0n.1)°v0)) = #:
() EM, EMN: 0 HAg, e({0a-1)%,1) U (Aml) = {™1[Ag €((0n11°v0)] = 8

106

Valuati ics for classical modal logics

) EC, ECN,EMC, EMCN: x™1[A,, €({0ts-1]°1,0), €({0n.1)%,1) U {Am)] = 95
moreover, in EN, EMN, ECN and EMCN, there is an 0,.-valuation vp such that vy(Ag) = 1.

In EN, EMN, ECN and EMCN, for each p, let vp* be the canonical extension from v to @, Obviously
vp*(Ag) = vp(Ag), and, from (1), vp* is an a,—valuation. From (1), (2), (7), (8) and (9), and from the fact
that A,y € {0y-7], we get:

(10) forevery p, every q, ¢ < p Snsuch that:
i.Ap =DAg and v(Ap) = 0,
*) E,EN,EM, EMN:E(Ag, e({0a}9,1) U (Am}) = x"[Aq. €({0a) *v,00] = 85
(*) EC, ECN,EMC, EMCN: EvfAq, e({0a} Ty 1) U (Am), E({0t) °v,0)] = #;
moreover, in EN, EMN, ECN and EMCN, there is an a,-valuation vp such that vp(4,) = 0;
ii. Ap = 0Ag and W(Ap) = 1,
® E,EN:yoAg e((2ta)%1) U {Am)] = EM[Ag e({atn) °v0)) = 95
(®) EM, EMN: n"[A, e({0)0y,1) U [Am)]) = {MAg €(104) ®0,0) =
(©) EC, ECN,EMC, EMCN: x™A4, e({ta) °v0), €({ 0}y, 1) U (Am)] =
moreover, in EN, EMN, ECN and EMCN, there is an a,—valuation vp such that vp(4g) = L.
That is, v is - and O—a,—normal.

(C) Let us suppose that, for some m < n, Ay = OAp,. Proof as in (B).®

As a direct result of combining this Lemma with P23, we have the following

Corollary. Let o, be a normal sequence, v an 0n.j—valuation and v the canonical extension of v to 0.
Then v¢ is an O—valuation and, for 1 <i Sn-1, v (Ai) = WA}).

The next theorem makes use of all we got until now:

Theorem T23. y is an Op-valuation iff: 1) 0, is a normal sequence; 2} v is a semi—valuation; 3) v is O~
and O—ou—normal.

5.2 Correctness

Having then proved these properties of (o,~)valuations, we are now ready to consider correctness.
The strategy is analogous to the case of normal logics.

107

Chapter 4

Lemma L17. Let v be an 0q-valuation; then, for 1 <i <n, if A is an axiom of some classical modal logic
L thenv(A;)) = 1.

Proof. The axioms of said logics are either those from PL, and it follows from the fact that v is a semi—
valuation, that v(4;) = 1, or they are one of the modal axiom schemes. We consider each case.

(a) A; = ©A & —~0-A. Suppose v(©A & —3A) = 0. Then we have, say, v(OA) = 1 and v(—0—A) =
0, so W0—A) = 1. From the normality lemma it follows that, for every p, every ¢, ¢ < p <n, such that A,
= OAgand v(Ap) = 1

(i) E,EN:

A"Ag €((xa) Ty, 1)] = EP[Ag, e({014) °v0)) = ¢. But, for every semi-valuation, and, consequently, for
every Q,—valuation, A »y —A, 50 —A € X"{[Aq, £({®4) D, 1)), what cannot be.

(ii) EM, EMN:

A, e({oa)9y,1)] = {PlA, €({aa) °y,0)] = @. But, for every semi—valuation, and, consequently, for
every O,—valuation, A =»>, —A; hence, since —A € €((a,)P,1), -4 € N"[A, €({a4)5,,1)), what cannot
be.

(iii) EC, ECN:

XA, €((an) °v,0), €((a)} Oy 1)] = 9. Let us take the pair <g, (—A4}>. Obviously ¢ C €({0tn) °v,0).
(—A) C &({ay}?y,1) and for every a,—valuation v, v'(A) = O iff v'i=g # and v={ [—A}; that is, A =,
<@, {~A]>. Hence <p, {—A}> € xM[A, e({®tn}°y,0), €({@a)Oy,1)], what cannot be.

(ivy EMC, EMCN:

X"[A, €({0tn) ®v,0), €({0s) Oy, 1)) = @. Let us take the pair <@, (—A4)>. Obviously ¢ C e({aa) °y0),
(—A) € €((0x} Oy 1) and for every a,-valuation v, if vi=g @ and vi=y (—A] then v'(A) = 0; that is,
<@, (—A)> =>, A. Hence <g, (—A}> € XMA, €((a]°y0), €((0)5,1)]), what cannot be.

If now v(©A) = 0 and v(—~0O~A) = 1, the proof goes for every logic in a similar way. Hence v(0A &3
-0-A)=L

We must now consider the special axioms of each system.
(b)A;=0DA A OB - O(A A B) (EC, EMC, ECN, EMCN).

Suppose v(A;) = 0. So v(O(A A B)) = 0 and v(DA) = v(DOB) = 1. Lel us take the pair <{A, B}, #>.
Obviously {A,B) C e{(aa}9y,1), 8 C €({0a} °v,0), and for every o,—valuation v',

[EC,ECN] vi{(A A B) = 1iff vi=1 {A,B) and v'=¢ @, that is, A ~, <[A.B}, ¢>.

[EMC, EMCN] if vi=1 {A,B) and v=¢ g then v'(A A B) = 1; that is, <{A,B}, #> ~>, A.
Hence <{A,B}, #> € EP[A, e({ata}Py,1), E({0n) °y,0)]. what cannot be. So v(4;) = 1.

(c)Ai=0(A A B)—> 0A A 0B (EM, EMC, EMN, EMCN).

Suppose wA;) = 0. So v((XA A B)) = 1 and v(0A) = 0, or v(OB) = 0. We consider the logics scparately:

[EM, EMN] Obviously A A B ~>, A, and A A B ~>, B. Since A A B € €((a,)5y,1), we have that
EniA, €({ma)0y,1)] # @, and EN[B, £({n)Oy,1)] # 8, s0 v(0A) = w(DB) = 1, what cannot be. So v(A;)
=1, '

108

Valuation semantics for classical modal logics

[EMC, EMCN] Let us take the pair <{A A B}, ¢>. Obviously (A A B} C e({a,)9,,1). 8 C
€({®y) °y,0), and for every a,—valuation v', if vi=} (A A B} and v'=g ¢ then v'(A) = v'(B) = 1; that is,
<{AB), 8> =>4 A; <{A,B), 8> ~>, B. Hence <{A A B}, #> € EMA, e({xa)0y,1), e({0a) °v 0)), <(A
A BY, ¢> € EP[B, ({014} Oy 1), €({0tn) ®v,0)], What cannot be. So v(A) = 1.m

Theorem T24. If A is an axiom of L and v is a valuation, then WA) = 1.

Proof. Let A be an axiom of one of the said logics, and v a valuation. Let ., be a normal sequence such
that, for some i $n, A = A;. By definition, v is an a,—valuation and, from L12, v(4) = 1.®

Lemma L18. Forall n, all i, I Si <n, and L a classical modal logic, if v is an ,-valuation and 1 A;,
thenv(Aj) = 1.

Proof. By induction on the number r of lines of a proof of A;in L.

A) r = 1. Then A; is an axiom, and the property follows from L12.

B) r > 1.1f A; is an axiom, the property follows from L12; else:

(a) A; was obtained by MP from B and B — A;. Proof as in the case of normal logics, since valuations
here also are semi-valuations.

(b} A; =08 <> OC and was obtained by RE from B & C. We have that -8 > C. Obviously, for every
normal sequence to which OB & OC belongs, B, C, 0B and OC belong too, so they belong to o,. If B
© C also occurs in Oy, let 6 = 0ty and ve = v. Else let 6 = Ay,...,ApAp+j, Where Ap, =B & C. 0 is
obviously a normal sequence, so let v be the canonical extension of v 10 0. v, is thus a o—valuation. Since
+B & C, we have by the induction hypothesis that for ali n, if v is an a,—valuation and —8 & C, then
v(B ¢ C) = 1. So ve(B ¢» C) = 1; besides, B ~y4) C. If now v (OB & OC) were 10 be 0, we would
have, say, w(OB) = 1 and v(OC) = 0. From the normality lemma, EM1[C, €({ctn4 1)O,1)] should now
be emply, but it isn't, because B =41 C and thus B belongs 1o it. Thus v.(DB & 0OC) = 1, and hence
vwOB & 0C)=1.

(c) Ai = OB and was obtained by RN from B (for EN, ECN, EMN, EMCN). Well, in every normal
sequefice ¢ in which A; occurs, B occurs t00; so, by the induction hypothesis, for every g-valuation v,
v(B) = 1. If now v(A;) were o be 0, there should be an u,—valuation v, such that v,(B) = 0, what cannot
be.Sov(A)=1.m

Corollary. If - A then =A.

Proof. Suppose A, and let v be a valuation. Let o, be a normal sequence in which, for some i n, A =
A;. By definition, v is an a,—valuation, so v(A) = 1 from L18, and thus =A. ®

Theorem T25. (Correctness Theorem) If T'—A then T=A.

&roof Suppose I' - A, and let Dj,....D, be a deduction of A from I". We prove the theorem by induction
onr. '
A) r = 1. Then, either A € T, and we have nothing to prove, or A is an axiom, so A is valid (by the
corollary to L18) and I = A.

Chapier 4

B)r>1.1{ A ¢ T and A is not an axiom, then;

(a) forsomej<r,i<r,Dy=Dj— A.SoI'- D, T+ D; = A and, by the induction hypothesis, I = D,
I'&= D; -3 A. Thus, for every valuation v, if v= T, w(D;) = (Dj - A) = |, and hence v(A)= 1. So T =
A.

(b) A =B & 0C and, for some j < r, D, = B & C. In this case, D, and A, so, for every valuation
v,A) = 1. Hence T = A.

(c) A = OB and, for some j < r, D, = B (for EN, ECN, EMN, EMCN). In this case, +-D, and +-A. By
the Corollary to L18, for every valuation v, W(A) = 1. So, if vi=T,¥(A)= 1. ThusT = A. &

5.3 Completeness

Completeness will now be easily proved in the same way of normal logics—that is, making use of
saturated sets. In the following, let L be a classical modal logic, and let us understand ‘' as referring to
L. We are now able to prove some results about saturated sets, showing some of their properties which
will be of use in completeness proofs.

Proposition P24, If A is saturated, then:

@ AeA ff A A;

b -AeA iff Ae A;

€0 A-BedA iff A¢ AorBe A;

d A©Bed if AeAandBe A;orAe AandB ¢ A.

Proposition P25, IfT 1« A, then there is an A-saturated set A such that T C A.

Definition D13. Let T, I be any sets, A and B wifs, and 6, ® finite sets of wifs:

rcol” = foreveryAel Ael

roo = (CAeT);

€(I'°0) = (A:0Ae T}

A=~sB (ff for every saturated set A,A € AiffBe A;
AwgB iff for every saturated set A, A€ Aiff Be A;
A~>sB iff for every saturated set A, if if A€ AthenB € A;
Ae>s B iff for every saturated set A, ifif A€ AthenB ¢ A;
A <ws B il for every saturated set A, if if A ¢ A then B € A;

A g <O, 0> iff for every saturated set A, A€ Aiff@ CAand ¥ Cp A;
A wg <9, 0> iff for every saturated set A, A ¢ AIfO CopAand D CA;
<0, d>a>gA il for every saturated set A, if @ CAand ® CopAthenA € A;
<Q,0>wu>gA ilf for every saturated set A, if @ CoAand D C AthenA ¢ A;

110

Valuati ics for classical modal logics

Definition D14. Let T, A be any set of wifs. We define:

(a) for E, EN:
EA. T =g (BeT:B~sA);
XA,] =g (BeT:BmgA).

(b) for EC, ECN:
E[A,T,A) =4 (<0,D>:0CT,dCAand A ~5 <6, d>});
%A, T,4A) =4¢ (<6,9>:0C T, O CAand A =5 <6, O>);

(c) for EMC, EMCN: .
E[A,T,A] =4 (<0, 9>:0CT, ®CAand <0, ®>~>54);
A T,A] =46 (<0, 0>:0C IO CAand <O, 0>=>54);

(d) for EM, EMN:
ElA, T} =qf (Be:B~>sA};
XA, T) =g (BeTl:B<wsA};
LA, T =4 [{BeT:A~>sB};
WA, T =¢¢ {BeTT:A=>sB).

Lemma L19. Let A be a saturated set.
If A v OA, then:

) E, EN,EM,EMN: E[A, e(AD)] = X[A, €(A°0)] = 0.
(i) EC, ECN, EMC, EMCN: E[A, £(AD), £(A°0)] = p.

Gii)) EN, ECN, EMN, EMCN: there is an A-saturated set A'.
If A+ ©A, then:

Gv) E,EN: ElA, e(A°0)] = x{A, e(AD)] = o.
) EM, EMN: ClA, e(A°0)) = 1[4, e(AT)] = g.
(vij EC, ECN, EMC, EMCN: X[A, €(A°0), e(AD) = p.

(vii) EN, ECN, EMN, EMCN: there is a ~A-saturated set &',
Proof.

(i) Suppose A r;‘ D4, and let B € E[A, e(AD)]. So 0B € A. We then have:

(i*) {E, EN] Since B ~5 A, B & A is a member of every saturated sct, so B ¢> A€ A,and0B ¢2 0A €
A,

(i%) [EM, EMN)] Since B ~>5 A, B — A is a member of every saturated set, so B 3 A€ A, 0B — 04
€ A; and then OA € A. .

But then, in both cases, it cannot be that A + [IA. So E[A, €(AD)] = g. Now let C € X[A, €(A°0)]. Thus:
() [E,EN]C=sA,and OC¢g A . Hence C» —A. S0HC © —A; -O0C > 0—A4; 0C 3> O—~A € A.
Since 0C ¢ A, 0-A ¢ A, 50 ~0-A € A Since HFOA «» 04,04 € A,

(id) [EM, EMN] C <=5 A, 0C ¢ A. Hence —C ~>5 A. So ~C — A is a member of every saturated set,
so U~C = 0A € A Since 0C & A, —~00-C ¢ A, thus 0--C € A. It follows that 0A € A.

m

Chapter 4

Hence, in both cases, A +— 0A, what cannot be. it follows that ([A, €(A°0)]) = .

(ii) Suppose A b DA, and let © = (6;,....6t), ® = {@),...,Pm]} such that <8, ®> e E[A, £(AT),
€(A°0)]. Then, since © «» £(AT), {00;,....06;) C A. Since ® C £(A°0), (0 @y,....0) Co A. Le.,
[(—O®1..... O Pm) C A. It follows then that 087 A ... AOO; € A, and that O(87 A ... A Bx) € A.
Similarly, ~O @1 A ... A 2O @ € A, and that ~O —~(—Pp A ... A Pm) € A; X—P7 A ... A ~Pp) € A.
From axiom C, then, (X0 A ... A Oy A =@ A ... A) € A. Thus we have:

(ii*) [EC, ECN])

Since A ~g5 <0, ®>, for every saturated set A', A€ A'iffl © C A" and ® Co A'. That is, for every
saturated set A, A e A iff (6;,...,6;) C A" and (@y,....pm) Co A" ie, {-@7,....—~Pm) T A" It
follows that for every saturated set A',A € A'iff 87 A ... A Og A ~Pr A ... A ~Pm € A’ Thus, for every
saturated set A\ A S O A . AOAPIAAPn€E A.ByRE DA OB A ...AOA @1 A
e APm) € ATOA QOO1A .. AOA —QIA ..A—Py)E A

(ii*) [EMC, EMCN])

Since <8, ®> ~>g5 A, for every saturated set A, if ® C A’ and ® Co A’ then A € A'. That is, for every
saturated set A', if {0;,...,0¢) C A’ and {@/,...,¢m} Co A’ then A € A% ie, if (0),....6¢) C A' and
{—9¢1,...mPm) C A’ then A € A'. It follows that for every saturated set A',if &7/ A ... A O A @7 A ...
A —@m € A'then A € A'. Thus, for every saturated set A, 87 A ...A Ok A ~@Qp A ...A Py A€ A

By RM,O(01 A .. AOLA=PIA .. A—Pm) FDOAE ASTHO A . AOR A QI A . APm) — OA
€ A,

In both cases, since (0 A ... A O A QI A ... A ~Pm) € A, UA € A, A+ OA, what cannot be. Thus
EiA, £(AD), e(A°0)] = o,

(iii) Suppose there is no A—saturated set A'. So, for every A', A € A'. Let B be a theorem: so, for every
saturated set A, A'— B, B € A'. Thus B ~s A. Further, since -B, we have —0OB and, for every
saturated set A", A"+ 0B, 0B e A'. But then OB € A, B € £(AD), and, in this case, E[A, e(AD)] # o,
what cannot be. So there is an A-saturated set A',

‘The proof of cases (iv) — (vii) is similar to cases (i) — (jii). ®

Theorem T26. For every A-saturated set A and every normal sequence On, the characteristic function f
of A is an Oq—valuation.
Proof. First of ali, it is easy to prove by P24 that

(1) The characteristic function fof A is a semi—valuation.

We now prove the theorem by induction on n. If n = 1, the property follows from (1) above. Let us
suppose n > 1.

(1) If, for every m < n, Ay # DA, Ap # OAm, fis trivially an a,,~valuation.

(2) For some m < n,Ay = OAp.

DRA) =0.Then A, ¢ A, A DA,y

From L19 we have now the following:

112

Valuati ics for classical modal logics

(i*) E, EN, EM, EMN: §[A,,, €(AD)) = 1[Am, €(A°0)] = ¢.

(i%) EC, ECN, EMC, EMCN: E[An, £(AD), £(A°0)] = ¢.

We have then that {@,./)%; € A®and {0s.1) °f0 C A®O, thus:

(ii*) E, EN, EM, EMN: £"1[Apm, €((0a.1) %)) = X" YA m, €((0n-1)} °£0)] = 8.
(ii®) EC, ECN, EMC, EMCN: -1 [A,, €({0ta-1) %7 1). e((on-1)°r0)] = 0.

Now, in EN, EMN, ECN and EMCN, from L19 there is an A-saturated set A'. By the induction
hypothesis, the characteristic function £ of A' is an a,,.j—valuation. So there is an a,.j—valuation f such
that f(Am) = 0. Hence fis an o,—valuation.

1) AAn) = 1. So 04y € A. Lel us suppose there is some p, some ¢, ¢ < p < n such that A, = DA, and
fAp)=0.
From L19, we have

(i*) E, EN, EM, EMN: §[A,, €(A9)] = [Aq, €(A°0)] = ¢.
(i%) EC, ECN, EMC, EMCN: §[A, €(A9), £(A°0)] = ¢.

By the induction hypothesis, fis an &,.7—valuation, so it is 0-0,.;-normal. Thus for every p, every ¢, ¢
< p Snsuch that Ap = DA4 and fid,) = 0, '

(ii*) E, EN, EM, EMN: §™1[Ag, €((0tn.1) 1)) = X" 1[Ag, £((0tn.1}°£0)] = 9.
(ii®) EC, ECN, EMC, EMCN: §"“[Aq, €({0n-1}91), €({@n.1)°10)) = 8.

Now, since f{A,) = 1, €({@n.1}9;1) U {Am) = €((014)571); and since (o,)T; € AD,
(iii*) E, EN, EM, EMN: E" Ay, e((0tn-1)%1) U [Am)] = X" V[Ag. €({0-1)°10)) = 2.
(iii*) EC, ECN, EMC, EMCN: §“"[Aq, e((an-115 1) v (Am), e((u,..;]";,o)] =@

Now, in EN, EMN, ECN and EMCN, from L19 there is an Ag-saturated set A’ and, by the induction
hypothesis, the characteristic function f of A’ is an Ot,.;—valuation. So there is an o,.s—valuation f such
that f(Ay) = 0. If there is some p, some ¢, ¢ < p S n such that Ap = 0A4 and f{A;) = 1, the proof is
similar. Hence, fis an a,—valuation.

(3) For some m < n, Ay = OA,,. Proof as in (2). ®

s
Corollary. v is a valuation iff v is the characteristic function of some saturated set A.

Proof. As in normal modal logics ®

Theorem T27. (Completeness Theorem) If T=A then I'-A,

Proof. As in normal modal logics.

113

GTTs for K

Brady's First Law of Problem Solving:

When confronted by a difficult problem,
You can solve it more easily by reducing it to the question,
"How would the Lone Ranger have handled this?".

Now that we have secen how a valuations semantics looks like, let us look for a way of obtaining
GTTs out of it. I'm going here to take K as an example; changes for other logics are more or less
straightforward.

If we have a wif A, it is easy to construct a finite normal sequence Aj,...,A, where A is the last
term—one just takes A and its proper subformulas. Now let V(Ay,...,A,) be the class of all Ay,.... A,-
valuations. Let us define an equivalence relation over this class as follows: v = v'iff, for I Si <n, W(A}) =
v'(Aj). Since Ay,...,A, is a finite sequence, V(Al,...,An)7g is obviously finite too. Thus a decision
procedure for K consists in a procedure which allow us to reduce, for every W e V(A},...,A)=, the
restriction v* of some v’ € W to the set (Aj,....An). Such construction, which we will designate by
T1A;,....Ap], and call the GTT for Ay,...,A,, will decide on the validity of any formula belonging to the
sequence (and, consequently, of the property of being a theorem). In particular, of the formula A.

Let us first examine, by means of an example, how things are supposed to work. Let A be the
formula O—~—p—0p, where p is a propositional variable. We'll construct a normal sequence Aj,..., A,
where A, = A by listing ali subformulas of A. As a resull we get the sequence p, —p, —p, Op, O—~—p,
O—~—p—0p, which has six elements. The procedure 1 am going to show consists in constructing the table
for A;—i.e., T{A;) and then extending il successively to the rest of the sequence: T{A;,A3l....,
TIA,...,Asl. At the end, the table looks like the following:

112 3 4 5 6
pip|~r|0p O~y | Oy~ 0Op
1) 1}10] 1 1 1 1
2 0j1j o0 1 0 0
3) 10 1 0 1 1
49 01 0 O 0 0
fig. 19

114

GTTs for K

T{A), T{A};.A2] and TiAl,Az,AJ] are constructed in the usual way, i.e., like in classical
propositional logic: you assign values to the variable(s), and then proceed by calculating the value of more
complex formulas. In the picture, this correspond to lines 1) and 2), rows 1 to 3. But in T{A;,....A4) two
new lines were added: 3) and 4). I'll try to explain why. T{A;,A2,A4 3}/ has obviously just two elements:
Iv;l and Ival. The elements of Iv;l and lvyl, restricted to A7,A2,A3 are represented in the table by lines 1) and
2). Now, since (A;,A2,43)0= (A;,A2,A3)° = ¢, we have, forie (1,2):

D vi(p) =0, vi= e((A1.A2,43)0,,1), vi=o €({A1,A2,43) v, 0), ie., vi<I>vy. In this
way are fulfilled the necessary conditions which justify the existence of v’ and v” in
T[Aj...,A4) such that ¥’ € lvjl, v" € lvzl and v'(Ag) = v"(A4) = 0.

1) vacuously, for every p, every ¢, ¢ < p S4 such that A, = DAg and vi(Ap) = 0 [Ap = OA,
and vi(Ap) = 1), there is aj € (1,2} such that v{Ag) = 0 {= 1], v(A4) = 1 and v;<3>v;. So
are fulfilled the necessary conditions for the existence of v*, v** in T{A;,... A4] such that
v* e lvyl, v** € Ival and v*(Ay) = v¥*(Ag) = 1. ‘

By I) and II), it is plausible that T[A;,...,A4)/= has thus four elements Ivsl...lvgl, such that the
restriction of each one to Aj,.. A4 is represented by lines 1) to 4) of the GTT. This is how and why we got
these two extra lines.

Such an unfolding, now, doesn’t happen in the construction of T{A},...,A5}—which was to be
expected, since we p and —p are equivalent, and in consequence [p and O—~—p should get the same
value. Let us see, for instance, how O——p cannot possibly take the value 0 in line 1). Let v € lvjl, whose
restriction 10 Aj,...A¢ is represented by line 1). We have that {Af,...,A¢})°yo=p and (A},....A¢)T) =

_{Op); ie., €({A}.....A4)%1) = (p). If we had v(D1—~—p) = 0, we should have a v;, i € (1,....4) such
that v{——p) = 0 and v<d>vi—ie., vi=| €((A[,...A4)% 1), 50 vi(p) = 1. But vj(-~—p) = 0 and vi(p) =
1 is in every valuation (and so in every line) an impossibility; hence O—~—p cannot get a 0 in line 1).

On the other hand we can sce that W(O——p) = 1 is possible, for, vacuously, for every p, every q, ¢
< p <5, such that Ap = OA4 and v(Ap) = 0, there is aj € (/,....4) such that vj(Ag) =0, vi(A3) = | and
v<4>v;

This situation also happens in line 2), where once again (O——p cannot take the value 0, only 1. In
lines 3) and 4) it’s the other way round: O—~—p can only take a 0. So these are the reasons why we don’t
get a splitting of lines in the construction of T{A;.,...,As). And by T[A},...,Ag] we are again in the realm of
things classical.

1 hope that this example has helped to make things a little bit more clear, because now we will have
to define everything rigorously, and this is far from being easy—the definition of a GTT is a very big one.
I'll state the definition first and give some explanations later on.

Definition DIS. Let o, be a normal sequence. A generalized truth-table (GTT) for a, is a function
Tlo,] : (0n) x J(aa) = {0,1), where:
Dforn=1,Joy)={1,2), Moyl(A;, 1) =1 and TTa; (A1, 2) = 0;
2)for n> 1, and J(ap-s) = (1,....9):
(a) if A, is a propositional variable, then J(a,) = (1,...,2¢) and:
i) fori < n,j€ Jon.p), Toal(Ai,) = TT0a-1}(Ai J):
i) fori<n,j € Na.p) andj = q + f, Tl0l(A;, /) = TI0t- 114, §):

1S

Chapier 3

iii) for i = n,j € J(oa.), TlaalAiL) =1;

iv)fori=n,j € o) and j = g + j', TTo)(As,) =0;
(b) if Ay = —Ax, k < n, J(0ty) = J(0.7) and:

i) for i < n, T{anl(Ai,) = TTO-11(AL)

ii) for i = n, TIaa)(Aj, /) # T10-1)(A, J);
©)if An=AroA. k <'n, e < n, J(a,) = Joty.7) and:

i) for i < n, T{aal(Ay,) = T)AL)

ii) for i = n, TIow)(Ai,) = 1 iff TTot-1](Aw, /) = 0 of T{ota-1}(Ae.) = 1;
(d) if Ap = DAy, k < h, then for every j € }On.1):

D) let a(j, n-1) = (j' € Xtn-p): T[0tn.1)(Ar. j?) = O and, for every r, 1 S7 <n,if A, = OA, and
T0n-1)(Ar. j) = 1 [Ar = OA; and T{0n1)(Ar, j) = 0, then TT0tn-1)(A,, /) = 1 [= 0]);

1) for every p, every q, ¢ < p < n such that Ap = 0Aq and T(0tp.11(Ap, f) = 0 [Ap=0A, and
Tl 11(Ap, /) = 1), let B(p. j, n-1) = {j" € J(On-1): TI®r.1)(Aq,) = 0 [= 1), T(®n-1}(AR, j) = 1
and, for every r, I <7 S, if A, = OA; and T{ota 1 J(Ar,) = L [A, = O A, and TTots1)(A, j) = 0],
then T{0-1)(As, j) = 1 [= 0]):

1) let {j;....Jm) < J(0ty-7) such that:

1) jm' < jm=if m" <m",

2) jm € Uteoodm) if O jm, n-1) 2 @ and, for every p < n, B(p, jm', n-1) 2 9.

Then J(a) = (1,....q,....g+m) and:

i fori < n,j<q, TIoa} (AL,) = T01)(AiL /);

i) fori < n,j=q+m', TIaal(Aj, /) = T{tta- 1Al)i

iii) for i = m, j such that a(/, n-1) = @, T{ctal(A;, /) =1;

iv) for i = n, j such that of j, n-1) # ¢ and, for some p < n, B(p, j, n-1) = 8, TIow}(A;,) =0;

v) for i = n, j such that o j, n-1) # ¢ and, for every p < n, P(p. j, n-I) # @, in which case, for some
me (l,.m)j=jmorj=q+m, '
1) ifj = jm: then TTota)(A.) =1;
2)if j = g + m’ then T{o,}(A;, §) =0.

(€) if Ay = Ay, k < n, then for every j € J(0.p):

Dlet ¥, n-1) = {j’' € J(0tp1): T{0a-11(As. j) = 1 and, for every r, I Sr <n,ifA, = OA, and
No-1)Ar, /) = 0 [Ar = DA, and TT011(Ar, /) = 1], then TTo.1](A,, /) =0 [= 1));

IN) for every p, every q, ¢ < p < n such that Ap = 0 A4 and T{a,.1)(Ap, j) = 1 [Ap = DA, and
T{0tn-1NAp, j) = 0}, let 8(p, j, n-1) = (j € J(0tn-1): TIOn-11(Aq, i) = 1 [= 0), T[Ctn-11{AR, j) = 0
and, for every r, I Sr Sn,if A, = 0A; and T[an1}(Ar, /) = 0 [A, = OA; and TTae)AL) = 1),
then T{0t.1)(As, j) = 0 [= 1]);

1) let (j1....dm) € J(Gn.7) such that:

1) jm' < jm= if m <m",
2) jm' € (j1,...dm) i0 Y jm, n-1) 2 9 and, for every p < n, 8(p, jm', n-1) 2 9.
Then J(atn) = {1.....q.....g+m]} and:
i) for i < n, j < q, TI0}(Ai, /) = TI0-11(A4 j);
ii) for { < n, j = q + m’, T{otal(Ai, /) = T\OA- 1 1A fm')
iii) for i = n, j such that ¥(j, n-1) = @, TTow)(A;, /) = 0;
iv) for i = n, j such that Wj, n-1) + @ and, for some p < n,8(p, j, n-1) = 8, TIOA}(A;,) = 1;

i

116

GTTs for K

v) for i = n, j such that Y(j, n-1) # ¢ and, for every p < n, 8(p, j, n-1) # 8, in which case, for some
me (l,...m),j=jmorj=q+m,
1)if j = jm then TIxa)(Ai, /) = 0;
2) if j = ¢ + m’ then T(0,1(4;, /) =1.

Now to the explanations of this all. Intuitively, a GTT is a function with two arguments, the first
being a formula (in a normal sequence), what would correspond to a row in a “normal” table, and the
second pointing to a line: thus for instance we can express the fact that in our example the formula Op gets
the value O on line 3) by stating that T[A,...,A4)(Qp, 3) = 0. Of course, as the table expands, the number
of rows and lines increases, but formulas in the expanded table preserve the value they already have. Thus
T[Ay,... Al (Op, 3) = T(Ay,...,As)(Op, 3) = 0.

Back to the explanations. J(o,) denotes the set of lines of the GTT. When n = I we have a normal
sequence with just one element, which must in this case be a propositional variable (or the sequence
wouldn’t be normat). So J(o;) = (1,2): that is, we have two lines in our table, and the variable gets value
1 in line 1) and O in line 2).

Clause a) just states the fact that when we found another propositional variable, we must double the
number of lines (from (1,....4) o [1.,...,2¢)). The new variable gets value 1 in lines I up to g, and 0 from
g+l upto2q.

Clauses b) and c) offer no problem: the new function T[A;,...,A,] get the same values as
T(A}.....An.1] for wils whose index is smaller than n; for A, the classical conditions must be preserved: so
for instance in b), for i = n, Ay = —A; gets the opposite value of Az. Similarly for implication.

Let us then coasider clause d), where we handle the case where A, = QAy, for some k < n. First
we define for each line j a certain sets of lines called ouj, n-1)—this is just the set of those lines j* who give
0 to A; and which satisfy all A; such that DA; have value 1 in line j, and reject all A; such that ©A; have
value 0 in line j. In a similar way we define, for each p such that for some ¢, A, =04, [= 0Ag] and which
gets value 0 [1] on line j, the set B(p, j, n-I).

Now o IlI): {jy,...Jm)} marks a subset of the set J(xts-s) of lines, namely those lines which
potentially lead to splittings: that is, there are two possible ways of extending them, one in which OA; gets
1, the other in which it gets 0. These splitting character of some lines comes from the fact that their o-sets
are not empty (i.c., some line j* gives 0 to A; and satisfies/rejects the scope of j), the same holding of their
B-sets: for every p which is a false necessity there is a line ensuring that and giving 1 to A;. Now m is the
number of linesswhich split, so the table gets m extra lines: J(0ty) = (1,....q.....g+m}.

The formulas whose index in the sequence is less than i conserve their values in the extension:
clauses i) and ii) (for i < n). Clause iii) states that, if no line satisfying the scope of line j gives 0 1o Ay, then
DAy gets 1 in j. In clause iv) there is such a line, so DA, gets 0, and, since the f3-set is empty, for some p,
0 is the only possibility. Compare this to clause v): there both sets are non-empty, so the line has to split.
The “old” line (jn') gives 1 (0 DAy, and the new one (jg+r), the value 0.

All clear? Then let us try to prove some results about this all.

Lemma L20. Let o, be a normal sequence. For every j € J(oy), I Sk Sn, there is j* € J(ot,) such that,
for every i, I <i Sk, TIowl(A;,) = T{ax)(Ai, j*).

17

Chapter 3

Proof. This lemma can be easily proved by induction on n-k, based on conditions i) and ii) of D15.1.a
through D15.1.d.

Lemma L21. Let o, be a normal seq e, and v a valuation. Then there is j € ¥(ay,) such that, for I Si
<n, v(A) =T(aal(A4, J)-

Proof. By induction on n. Let v be a valuation,
(1) n = 1. By D15.1, J(ay) = {1, 2). There are two possibilities:

1) (A7) = 0. From D15.1.1 we have that T[ot;)(Ay, 2) = 0. Hence there is j = 2 such that v(A;)
=TMos)AL f.

1) v(A;) = 1. From D15.1.1 we have that T[a;](Ay, I) = 0. Hence there is j = I such that v(A;) =
Tloy)AL j)-

(2) Letn > 1, and let Xaung) = (1,...,q).

Induction hypothesis: for every valuation v there is j € J(0,.7) such that, for I Si < n,v(A)) =
Toa. 1A, /). That is, for every valuation v there is a line j of the table umil #-1, such that j and v agree for
i < n. We need now to prove there is a line j such that v and j agree until n, what we’ll do examining the
construction of the GTT. :

By D15.1, for i < n, TT0ta)(A, /) = T{0a-1)(A, 7). Tt follows from L21 that:

(1) For every valuation v there is Jj € J(o,) such that, for 1 i < n, wA)) = TIoLJ(A;).
(a) Let A, be a propositional variable. By D15.2.3, J(0) = (1,...2q).

1) ¥(An) = 0. From (}) there is j € J(ot) such that, for I <i < n, W(A;) = T{ot,)(A4, j). Let us suppose that j
€ Nap.f)—ie., je j[l,...,q]. By D15.2.a.ii, there is j* € J(oty) such that, for i < n, T{aa)(A}, j*) =
Tl (A, j); hence, for i < n, W(A;) = T{o,)(A;, j*). By D15.2.a.iv, for i = n, T{o,)(A;, j*) = 0. Hence
there is j* € J(0t,) such that, for I <i <n, T{aa)(A;, j*) = v(Ai). Let us now suppose that j = ¢ + j". By
D15.2.a.iv, T{Ox)(An, j) = 0—thus there is j € J(a,,) such that, for I Si <n, v(A;) = TTow](A},).

1I) ¥(An) = 1. Proof as in case 1).

(b) Let A, = —Ay, for some k < n. By D15.2.b, J(a,) = J(0t.1).

1) v(Ap) = 0. Then v{(Ax) = 1, since v is also a semi-valuation. By (1) there is j € J(t,) such that
Taal(Ar, /) = W(Ax) = 1, By D15.2.bd, T(@a)(Ar, /) = T{0a-11(Ax, /), and, by D15.2.b.ii, T{0a)(An, /) #
Tlop-1)(Ag, j). That is, T{a4)(Aa, /) = 0. Hence there is j € J(a,) such that, for I Si <n, v(A) =
Maa)Ai).

11) v(A,) = 1. Proof as in case I).

(c) Let Ay = Ag > A, for some ¢, k < n. By D15.2.b, J(0ty) = X0ty p).

1) W(Aa) = 0. Then v(Ay) = 1 and v(A,) = 0, since v is also a semi-valuation. By (1) there is j € J(tty) such
that T{0ta](Ar. j) = 1 and T{aa)(A,,) = 0. By D15.2.bii, T[0a)(Ar, /) = TI0-1)(Ar,), T(2ta)(A,, j) =
Tloa-)(Ae, j)- By D15.2.b.ii, TI®x)(An. /) = 0. Hence there is j € J(tt,) such that, for I <i<n, w(A)) = .
Toa)(Ai, f)-

11) W(An) = 1. Proof as in case I).

118

GTTs for K

(d) A, = OA, for some m < n.

(I) WA,) = 0. By definition, v is an a,,—valuation, and thus there is an o,. j—valuation v, such that va(4,,)
=0 and v<n-I1>v,. By (1) there is jx € J(Qty) such that, for i < n, TI0,)(A;, jn) = va(A}). Then T{0}(Apm,
Ja) = 0 and, for every r, I Sr < nsuch that A, = OA, and v(4,) = 1 [A, = OA; and WA,) = 0], T{a,}(A,,)
= | [= 0] and T[as)(Ag, ja) = 1 [= 0). By definition, a(j, n-1) # ¢. If we now check D15.2.d.iv and
D15.2.d.v we sce that, whatever the case, there is always a j* such that, for i < n, T{ota}(A;, j) = TIOL)(A;,
J*), and, besides, TTas}(A,, j*) = 0. Hence there is j* € J(a,) such that, for 1 <i <n, v(A;) = T{aa}(A;,
*)-

(II) ¥(Ap) = 1. By definition, v is an o,,~valuation, and thus for every p, every ¢, ¢ < p Snsuch that Ap =
DAg and v(Ap) = 0 [A, = 0A4 and v(Ap) = 1], there is an @, j—valuation vy such that vp(Ag) = 0 [= 1],
vp(Am) = 1 and v<n-1>vp. By (1) there is j € J(xtn) such that, for i < n, T[aa}(A}, j) = v(A;). That is,
T{0a)(Ap, j) = O [= 1]. Besides, for every r, I Sr < n such that A, = 0A, and v(A,) = 1 [A, = OA; and
v(A;) = 0], T[aa)(Ar, j) = 1 [= O]. Also by (1) there is j, € J(oty) such that, for i < n, T[a,}(A}, ja) =
va(Aj). That is, TTaa)(Ag, jn) = 0 [= 1], TIGA}(Am, ja) = 1 and, for every r, I Sr < nsuch that A, = 0A;
and v(A,) = 1 [A, = OA; and v(4,) = 0], T{0x)(As, js) = 1 {= 0). Thus it follows that, for every p < n, that
B(p. j, n-1) # . By D15.2.d.iv, there j € J(Q,) (j = jm’) such that, for 1 Si < n, v(A)) = T[0ta)(A}, /) and
T[0w}(An,) = 1. Thus, for I Si S n, v(A;) = T[oR)(Ai, f).

(€) Ap = OA,,, for some m < n. Proof as in (d). @

Lemma L22. For every normal sequence Q,, if, for some i S n, —x A, then for every j € J(Q.n),
Toal(A. j)= 1.

Proof. By induction on the number r of lines of a proof of 4; in K.
(1) r = 1. In this case, A; is an axiom.

(a) Let A; = A — (B — A). Let us suppose that, for some j € J(a,), T[,)(A), /) = 0. By DI5.2.c.ii,
Tloa)(A,) = 1 and T{aa}(B — A, f) = 0. Again by D15.2.c.ii, T[a,}(B, /) = 1 and T[x,)(A, j) = 0, what
is not possible. Thus for every j € Ja,), TIo,l A, /) = 1.

(b) If now A; is an instance of A2 or A3, the proof is analogous as in (a).

(¢) Let A; = O(A - B) - (DA — 0O8). Let us suppose that, for some j € J(a,), T[a,)(A;, j) = 0. By
D15.2.c.ii, T[as} (XA — B), j) = T{a,}(DA,) = 1 and T[o,)(08B, j) = 0. By D15.2.d we see that, since
T{o,)(1B,) = 0, that a(j, n-1) # @ (if not, by D15.2.d.iii, we would have T{a,](Q8, j) = 1). From this
fact it follows that there is j, € J(t,) such that T{o,}(B, jn) = 0 and, for every r, I Sr < nsuch that A, =
DA, and T[04])(Ar, /) = 1 {A, = OA; and T[aal(A,, j) = 0], T[®al(As, jn) = 1 [= 0]. Well, TTa,J(0(A —
B), j) = T{on)(OA, j) = 1, thus T{ata](A — B, ja) = Tlas)(A, jn) = 1, and it cannot be that T{a,)(B, j,) =
0. Thus for every j € J(&t), TT0R)(A, j) = 1.

(2) r > 1. In this case, either A; is an axiom, and the property is already proved in 1), or:

(a) A; was obtained by MP from B and B — A;. We thus have that B and —B — A;. Let us take a
normal sequence Oy, k 2 0, where Ay = B — A;. Of course B occurs in this sequence. Since —B and
B —» Aj, we have by the induction hypothesis that, for every j* € J(Oy k), T[Qn+£}(B — A}, j*) =

Chapter 5

Tio+2}(B, j*) = 1. It {ollows that, for every j* € J(Oasr), TION42)(A;, j*) = L. Now, by 1.20, if, for
some j € J(0y), TIaal(As, /) = O, then, for some j* € J(n4z), T0r+£1(Ai, j*) = 0, and this cannot be.
Thus for every j € Jan), TIa)(A,) = 1. .

(b) A; = 0Ax and was obtained by RN from Ag. We thus have that A and, by the induction
hypothesis, for every j € J(0ty), TT0}(Ax. /) = 1. But then, by D15.2.d.1, for every j € J(ty), 0f, n-1) =
@. Thus; by D15.2.d.iii, for every j € Ka,), T, }(AnH=1.9

Theorem T28. A iff for every normal sequence @y, where A = A;, 1 SiSn, and for every j € J(,),
NoalAL) = 1.

Proof. A) If A the proof follows immediately from L22.

B) Let us suppose that for every normal sequence ,, where A = A;, I Si <, and for every j € J(0in),
Tlonl(A4, j) = 1. Suppose that &2A;. Then »A;; thus, there is some valuation v such that v(A)) = 0. By
L21 there is a j € J(0,) such that T{aal(A;, /) = 0, against the hypothesis. Thus =A;. B

As we see, K is decidable by GTTs. And, as the reader certainly noticed, the definition of the GTT
was exactly “copied” from the definition of an a,,~valuation. Defining GTTs for the other logics, thus, is
not that difficult. I am not going to do it here for reasons of space and because it is really straightforward.
(It is a good exercise, though.) 4

My, are, however, going o take a look at GTTs for $4 and for the EDL Z5, from which definitions one can have an idea of,
for instance, how reflexivity or cuclideanity are handled.

120

©

The S4 problem

Nobody knows the troubles I' ve seen...

6.1 The problem...

In this chapter we are going to consider, albeit briefly, the problems that valuation semantics have
with some normal systems of modal logic. Actually S4—i.e., KT4— is not alone the problem, as the title
of this chapter could suggest, but, since it is the most known logic among the problematic cases, it takes the
blame. To tell the truth, the problem concerns axiom schema 4; so many systems containing this axiom are
bound to make trouble. (This also includes, by the way, intuitionistic logic, which is not surprising at ali
when one thinks that there is a translation function relating it and KT4.)

As I said in a previous chapter, there is a “natural” definition of an a,-valuation for KT4. I will
show how it looks like, but, for simplicity reasons, I'll let possibilites out of the picwre. It goes like this, if
we consider the case where A, = (A,

1) if v(Ap) = 0, there is an a,;_s-valuation v, such that v,(A,,) = 0 and v, =1 {0,-7}9, 15

II) if v(An) = 1, then v(Am) = 1 and for every p, every q, such that Ap = OA4 and wW(Ap) = O, there is an
0. -valuation vp such that vp(Ag) = 0, vp(Am) =1 and vp =1 (04-7)9,1.

Now why is this definition natural? Well, for the one part, it takes care of the characteristic axiom of
KT4; that is, atiom schema 4. Suppose (DA — O0A) = 0. Then v(OA) = 1 and v(1IOA) = 0. By the
definition, there is an a,.;j-valuation v, such that v,(0A) = 0 and v, =1 (@ts.7)9y,1. But, since 0A €
{A1,....An-1}%,1, we also should have v,(0A) = 1, and this is a contradiction. So v(QA — 0OA) = 1.
It is easy to see¢ that this definition renders also the other modal axioms true.

So it seems that this definition would take care of KT4. But it is not the case, as far as I can tell.
The problem is, one cannot prove—to be hones, I couldn’t prove, with this definition, the normality
lemma, that is, that 0i,-valuations are Og—0t,-normal. The proof comes to a hait because in KT4 we have,
as a derived inference rule, the following one:

0A - B

0A — 0B,

121

Chapter 6

Suppose now we have the normal sequence A, B, OB, IA; and let us suppose that, for every O,-
valuation v, if v(OA) = 1 then v(B) = 1. Let us suppose further that there is some v, such that v(0A) = 1
and v(0OB) = 0. In the example, our Ap = 1B, and A, = DA. By clause II) of the definition, we should
have an 0. ;-valuation vp such that vp(B) = 0, vp(A) = 1 and vp =1 {0y 1) 0, 1. But this is not sufficient
to derive a contradiction! In fact, we would need the following:

(*) there is an ty-valuation v, such that vp(B) = 0, vp(A) = 1 and vp =1 (®ta) Dy, 1.

If that were the case, we would have vp as an 0,-valuation, and we would have v,(0A) = 1. Since
the hypothesis was that for every o,-valuation v, if W(04) = 1 then v(B) = 1, then we would have vp(B) =
1, a contradiction. The rule would be validity-preserving.

However, writing the definition this way is obviously something we are not allowed to do, since it
would amount to trying to define o,-valuations by means of themselves.

A similar problem occurs with axiom schema 5, and also because we then have, as a derived
inference rule, the following one:

CA—-B

©A -» OB.

The reasons why the natural definition (for 5 alone, like in K§) doesn’t work are pretty much the
same.

Why, then, do we have valuations semantics for logics such as KTS, K45, KD45? Well, in these
logics the requirements are that, for instance, if f<k>g, then {0)% 1 = (0k)%%,1; and {ok) p0 =
{02} °g,0. This is enough to guarantee that things work. (See proof of the Normality Lemma L11,
particularly in the case of the mentioned systems.)

But maybe we can find a way out of the KT4 predicament. Let us think a bit about K'T4-models,
and let us consider some world in it: call it 0. Because the accessibility relation is transitive, we notice that
every world x which occurs “under” 0—that is, which is accessible to 0-—has either the same number of
true necessities as 0, or more. It doesn’t happen that in x has less necessities are true than in 0. Witness the
following example picture (black circles denote true necessities):

fig. 20

As one can seg, the set of true necessities increases. One can also see that there is a world, namely
2, which gives truth 1o every necessary wil (at least, to every one of the three here represented). That is, if

122

The S4 problem

we consider only a finite set of formulas, there is a point where every new accessible world has the same
set of true necessities as the one 1o which it is accessible.This would be a world with a “maximal” number
of true necessilies.

6.2... and a solution

It is now clear how this characteristic could help us: with valuation semantics, or GTTs, for that
matter, we are also working with a finite set of formulas. So we would also have some “maximal” o,
valuation, or a “maximal” line in a table. Now to solve the KT4 problem we could make an induction
within our already inductive definition: in the case of modalized formulas, we begin by defining the
maximal ones—the basic case—and then proceed “upwards” to the other ones, until we reach the levei
zero.

In this chapter, we wilt try to put this idea into practice. Since our main interest is the construction
of GTTs, I'll skip the definitions of valuation semantics and go directly to the GTT definition itself, after
what we’ll prove that a wff is a theorem of KT4 iff it gets 1 in every line of the wable.

A next remark is: for reasons of simplicity, we’ll let the possibilities out of the picture. But the
method here described can be extended to cover them too.

1 will introduce two conventions. Let (¢, be a normal sequence. For 1 < i < n, we say that 7; denotes
the cardinality of (@&;.;}2,if A; = DAj, for j < i. If i = 1, or if A; # DAj, then 7; = 0. The second
convention—actually an abbreviation—has to do with the GTTs we are going 10 define below. Let j be
some line of of a GTT for KT4: we will use 1;(j) to denote the cardinality of the subset of {@;.;}°
consisting of those wffs which are given the value 1 in line j. In other words, 1) denotes the number of
necessary wifs, for k < i, which are true in line j.

Now we can go to our definition. But, instead of a GTT being a function T[a,], it will now be
T 0 f), where the [parameter takes values from T, (maximum) down to zero.

Definition D16. Let o, be a normal sequence. A generalized truth-1able (GTT) for o, is a function
Ten]2 (0n) X J(ata) > {1,%,0), where:

Dforn=1,1=0J(a) =12}, Mo lAn 1) = 1 and T{ay,l}(A;,2) = 0;
2) for n> 1, and J9(ata.1) = (1.....):
(a) if A, is a propositional variable, then 1, = = 0, J(ay) = (1,...,2¢], and:
iYfori<n,je (0. 1), TIO, 11(Ai, j) = TIatn-1, O)(Ai,);
i) fori < n,j € J90n.1) and j = q + j', Tlota, 1WA,) = Tl0t. 1. OV(As,)
iii) for i = n, j € J(ty.7), Tl 1)(Ai, j) =15
iv)fori=n,j e J0a,s) andj = q + j', TTo, lI(Ai,) =0;
(b) if Ap = —Ag, k < n, Ty =1=0, Iy = JOay. 1), and:
i) for i < n, T{ap, 1A},) = TIO-1, O)(Ai,)i
i) for i = n, T, 1)(Ai, j) # T1ta- 1, O)(At, j):
(©) if Ap=Ag—Ag k < n, e < n, J(04) = 90ty 1), T =1 =0, and:
i) for i < n, T{o,, I}(AG, /) = (0.1, OXAGL J);
ii) for i = n, T{tn, N(Ai,) = 1 iff T{®n.1, 0)(A.) = 0 of T[Ctn.7, O)(Ae) = 1;

123

Chapter 6

(d) if Ap = OAg, k < n, then, fort, 2120:

For every j € ¥(atq.1), B

1) let a(j, n-1) = (j* € JO(tn.;): TItn.;, 0)(Ar, j) = 0 and, for every r, 1 Sr < n, such that A, = OA,,
T0n-1, ONAr, /) = TTOA-1, O)(Ar J))i

1T) where I < 1,(), let V{7, n-1) = (j" € J+1(tn): T{0, 1+ 1}(Ar, j) = 0 and, for every 7, | Sr < m, if
A, = OA; and T(0ta.1, 0)(Ar, /) = 1, then Tata, I1+1)(Ar, j) = 1):

1II) for every p, every q, q < p < n such that A, = OA, and T{as.1, 0)(Ap, /) = 0, let B(p, j, n-1) = [’
€ 19(Qn.1): T(0tn.1, 0)(Agq. /) = 0, TIO.1, 0)(Ax, j) = 1 and, for every r, 1 Sr < n, such that A, =
OAy, TI®n-1, 0(Ar,) = T{0s.1, OKAL J)):

1V) for I < T,(j), for every p, every q, g4 < p < nsuch that A, = DAg and TT0n-1)(Ap, j, 0) = 0, let §(p,
Jon-1) = (j € ¥+ (o) To, 1+11(Aq, j) = 0, T[0tn, 1+11(Ag, j) = 1 and, for every r, 1 Sr <n, if
A, =0As and 7101, 0J(Ar,) = 1, then T, 141¥A, j) = 1}

(o) Let us take the case where I = 1,. For every j € J%(0,.;) such that 1,() = 1,

V) let Ui1,...dm) © JO(0ty.1) such that 1,() = I and:

1) jo < jm= im0’ < m";
2) jm' € {j1,..dm) if O(jpy, n-1) # @, for every p 2 n, B, jm, n-1) # 8, and T{ots g, 0Y(Ax, N = 1.

Then J(w,) = (},....9,....g+m) and:
i)fori < n, j Sq. T{o, [1(A;, /) = TTOa-1, O)AG)

ii) for i < m,j = q + m’, Tlow, 1A,) = TI0-1, OWAi, jm):
iii) for i = n, j such that o j, n-1) = @, Tl 1)(Ai,) =1;
iv) for i = n, j such that o(j, n-1) # ¢ and, for some p < n, B(p, j, n-1) = 8, Tiot, [1(A;, /) =0;
v) for i = n, T{atn. 1, 0X(Ar,) = 0, T, IJ(AL) = 0;
vi)'fori = n, j such that a(j, n-1) # @, for every p < n, B(p, j, n-1) # ¢, and T[0ty. 1, 0}(Ag, /) = 1, in
which case, for some m’e {1....m),j=jmorj=q+m,
1}if j = jm then Tlow, INA;, /) =1;
2)if j = q + m’ then (o, 1(A;, /) =0;
Now, for those j € J%(0ty. 1) such that T,() <1,
vii) for i < n, T{0ta, I)(A;, /) = TT0-1, O)(Ai /)
vili)fori = n, j = ¢ + m’, T(0a, [(Ai.) = *;
(B) Let us now take the case where ! < 1,,. Forevery j € J9(0t-7) such that T,() = I,
Vi) let (j1,...¢m) C J9(0tn. 1) such that:
1) jm < jm-ifm’'.<m”,
2) jm' € (j1o.dm) if OCjme, n-1) # @ Or ! jm:, n-1) # 9; for every p < n, B(p, jm, n-1) # @ ot
PP, jm, n-1) # 8, and T{0w.1, O}(Ar,) = 1.
Then J(x,) = {1,....q,....g+m) and:
i) for i < n, j S q, Tlotn,)(Ai, J) = TT0ta1, 1+1)(As, J);
iiyfori < mj=q+m', Ton, (A, /) = TIO-1, I+1)(Ai, jm?):
iii) for i = n, j such that & j, n-1) = ¢ and ¥(, n-1) = @, T{ctn, l(Ai, /) =1; _
iv) for i = n, j such that a(j, n-1) # @ or ¥'(j, n-1) # ¢, and, for some p < n, B(p, j, n-1) = ¢ and®
8(p, j. n-I = 8, Tlotn, 1)(Ai) = O;
v) for i = i, T{n-1, OJ(AL, /) = 0, T{0ta, 1)(A;,) = 0;

124

The S4 problem

vi) for i = n, j such that o j, n-1) # @ or ¥(j, n-1) # @; for every p < n, Pip, j, n-1) # ¢ or 8(p, j, n-
1) # 9, and T{o,.1, 01(Ag, /) = 1, in which case, for some m’ € {I,..m),j=jmworj=q+m,
« 1) if j = jm' then Ty, ((Ai,) =15
2) if j = ¢ + m’ then T,)(A;, /) =0;
Now, for thosej € JO(aty.7) such that T,(j) </,
vii) for i < n, T{Qa, I/(A}, /) = T{Ota-1, O}A;, /):
viiyfori = n,j=q + m’, T(0a, J(Ai,) = *%;
And for j € J%(a,.) such that 14() > I,
ix) for i < n, T{0,, (1A, j) = T{0w, +1)(A, j).

So the main idea of the definition is to first extend 10 A, the lines which have a maximum number of
true necessities, and then proceed stepwise until we reach the “10p” lines—the ones which have a minimum
number of true necessities. It is also to notice that we introduced a third, dummy truth-value. This is so just
in order to have the GTT function giving a value 10 every line on every step.

The next steps are now quite straightforward. We first piovc that lines in a GTT which extends
another preserve the values the wifs get:

Lemma L23. Let o, be a normal sequence. For every je J0(ow), 1 Sk < n, there is j* € J(a,) such
that, for every i, 1 S i< k, Ty, 0)(Ai, j) = T(n, O)(A;, /*).

Proof. This lemma can be easily proved by induction on n-£, based on conditions i) and ii) of D16.1.a
through D16.1.d.

The first important result here is to show that saturated sets “coincide” with lines of a GTT, giving
some finite set of wifs.

Lemma L24. Let 0, be a normal sequence. For every saturated set A there is a j € YO(0,) such that, for
1<SisSn Aje Aiff Tla,, 0)(A;, j) = 1.

Proof. Let A be a saturated set, and let Aj,.... A, (i.c., 0ty) be the longest initial segment of , in which
no wif occurs whose main operator is a necessity. We make first an induction on m.

(1) m = 1. By D16, J%(a;) = (1,2}. If A; ¢ A, from D16.1 there is j = 2 such that T[a, 0)(A;, /) = 0;
and, if A; € A, from D16.1 there is j = 1 such that T{oy,, 0)(A;, j) = 1.

(2) Let m > 1, and 300, 7) = {1,....9). Induction hypothesis: for every saturated set A there is aj €
JO(0m-1) such that, for 1 i< j, Aj€ A iff TIOm.7, 0)(Ai,j) = 1. Now we have in this segment only
propositional formulas, and the cases are where A; is a variable, a negation or an implication, which are
treated in a similar way as in the proof of Lemma L21. Thus we conclude

() for every saturated set A there is a j € JO(0y) such that, for 1 Si<m, A; € A iff T{Cm, O1(Ai) = 1.
We now proceed with the main proof of this lemma, which goes by induction on n. For n = 1,....m, the
lemma is proved, so let us consides n > m.

(A) n =m+1. Here we have the first occurience of a modalized wiff, that is, for some k < n, Ap = 0Ag.
Obviously enough, Ty = 0.

125

Chapler 6

(1) Suppose A, ¢ A. By P22 (which also holds for KT4) we have an Ag-saturaied set © such that (A9
C 8. From (1) there is a line j € J%(wts.7) such that, for*1 S{<n, A;e A iff Tlay7, OXAs j) = 1; and
also that there is a line j' € J9(ai,.7) such that, for 1 Si<n, Aje © iff T[0s.1, 0)(Az, /) = 1. That is,
T(0n-1, 0N(Ag, J) = 0. Thus a(j, n-1) # @. By D16.2.d.oiv (or vi), T{atp, 0)(An,) = 0.

(11) Suppose A, € A. From (1) there is a line j € J%(0n.1) such that, for 1 Si<n, Aj€ A iff T{otn1,
0}(A4, j) = 1. Ali we have 10 show (since there are no other modalities) is that 7o, 0)(Aa, /) = 1. Since k
< n, and since Ax € A, T[0n 0)(Ag, j) = 1; then it follows from D16.2.d.auvi.1, that T[x,, 0)(An, /) = 1.
(B) n>m+1. Having thus proven the lemma for the base case of the first occurrence of a modal fom\ula..
we arrive (o the following first inductive hypothesis:

(IH1) for every saturated set A there is a j € JO(0t.1) Such that, for 1 Si<n, Aj€ A iff TIoy,. 1, 0XALJ)
=1)

The cases in which A, is a propositional variable, a negation or an implication are proved as usual. Let us
again consider the case in which, for some k < n, A, = 0. Suppose also that 1, # 0. Now let I denote
the cardinality of {0ts-7)9 M A. We proceed by making a new induction on /.

(Wi=1,

(1) Suppose A, ¢ A. By P22 (which also holds for KT4) we have an Aj-saturated set © such that ¢(AD)
C 6. From L14.e.ii, A C €(A"); thus AP C 8. From (1) there is a line j € J%(at,.;) such that, for 1 <
<n, A€ Aiff TIO,.1, 0)(Ai, /) = 1; and also that there is a line j* € JO(0t,. ;) such that, for 1 <i<n, Aje
0 iff T{o. 1, 01(A;, j') = 1. Then we have that, for every A, = A, such that A, € A, T(0y-1, 0)(A,,) =
1. Now, since ! = t,—i.e., | is maximum—{0t,.1}2 N A = (0.7 }O N O. Thus T{0ty. 7, 0)(A,, /) = TIO.
1, 0)(A,, j'). Moreover, T{,_1, 0)(Ag. j') = 0, since © is Ag-saturated. This means that a(j, n-1) # ¢,
hence, by D16.2.d.a.iv (or vi), T{0,, [](An, j) = 0.

(11) Suppose A, € A. From (1) there is a line j € JO(0,.7) such that, for 1 Si<n, A;e A i]fT[a,..I..
0)As j) = 1. Since k < n, and since Ax € A, T{0n 0)(Ay, j) = 1. Since 1 is maximum, there are no
necessities in {01,.7}2 which doesn’t belong to A, $0 T, [J(An, i) = 1 and we are dong with the base
case.

(B) ! < Tp. We have the second inductive hypothesis:

(1H2) for every saturated set A, if the cardinality of (0,7} " A is greater then [, there isa j e ¥+i(a,)
such that, for 1 Sisn, A;je Aiff T{o, I+11(A;,) = 1.

(1) Suppose A, £ A. By P22 (which also holds for KT4) we have an A-saturated set © such that €(AY)
C 8. From L14.eli, AU C £(AT); thus AS C ©. From (1) there is a line j € JO(0t,.7) such that, for 1 <i
<n Aie Aiff Moy, Oi(Ai.j) = 1. Now, if the cardinality of {(,.7)}0 N © is equal to /, the proof goes
as in (ou1). So suppose it is bigger than I. From (IH2) there is a line j’ € J'*/(a,) such that, for 1Si<n,
Ai € O iff T, I+11(A;, j') = 1. Then we have that, for every A, = OA,, such that A, € A, if T{0ta-1,
0)(A,, j) = 1, then T[0t, 4+ 11(A,, j') = 1. Moreover, T{oy, [+11(Ag, j') = 0, since © is Ap-saturated. This
means that ¥(j, n-I) # ¢, hence, by D16.2.d.B.iv (or vi), TIats, [}(An, /) = 0.

(I1) Suppose A, € A. From (1) there is a line j € J%(oty./) such that, for 1 Si<n, Aj€ A iff Tlan-1,
0)(A;, j) = 1. Since k < n, and since Ax € A, T[®, 01(Ax, j) = 1. Suppose now there is some A, = OA,4
such that A, ¢ A. Similar to case (1), there is an Ag-saturated set 8 such that A” C 8, It is casy to see that
Apn € ©. A similar reasoning as in case (I)—now considering §§ and & will prove the lemma. ®

126

The S4 problem

This lemma is important because, as we can easily prove (like in chapter 2 for EDLSs, or chapter 3
for normal modal logics) that a wff A is a theorem of KT4 if and only if it belongs 10 every saturated set.
We are not going to prove it here, but will make use of this.

Lemma L25. If A then, for every normal sequence 0y where, for some i, A = A;, and for every j €
1%ais), Tlon, 0}(A;) = 1.

Proof. By induction on the number of lines of a proof of 4; in KT4.
(1) r = 1. The cases in which A; is an axiom of PL are straightforward. Let us consider the other cases.

(a) Let A; =0(A — B) — (0A — 0B). Let us suppose that, for some j € J"(a,l), T{a,, 0)J(Ai. N =0.
By D16.2.c.ii, T{oa, 0HO(A — B), j) = Tla,, 0)(OA,) = 1 and T[a,, 0)(0B, j) = 0. By D16.2.d we
see that, since T[a,, 0)(0B,) = 0, that a(j, n-1) @ or ‘)‘(i. n-1) # ¢ (if not, by D16.2.d..iii, we would
have T{®,, 0)(3B, /) = 1). From (his fact it follows that there is j, € JO(at,) such that T{a,, 0](B. ja) = 0
and, for every r, 1 Sr < n such that A, = 0OA, and T{a,, OK(A,, /) = 1, Ta,)(Ars, jn) = 1. Well, T[a,,
0)(O(A — B), j) = T[,, 0)(DA, j) = 1, thus T{os, 0J(A — B, ju) = Tl 0}(A, ju) = 1 (else, by
D16.2.d.B.v, T[ot,, OIHA — B), j) = T[ata, O)OA, j) = 0). It thus cannot be that T, 0J(B, ja) = 0.
Thus for every j € J9(a,), TIot, 0)(A,) = 1.

(b) Let Aj = DA — A. Let us suppose that, for some j € JO(a,), T[xtn, 01(4;, j) = 0. But then T[a,,
0)(0A, /) = 1 and T[w,, 0](A, j) = 0—against D16.2.d.8.v.

(c)LetA;=0A - CX0A. Let us suppose that, for some j € J%(a,), T[ats, 0)(A;, j) = 0. By D16.2.c.ii,
T{as, 01(A,) = 1 and T{a,, O)(D0A,) = 0. By D16.2.d we see that, since T[a,, O}(0OOA, §) = 0, that
a(j, n-1) # ¢ or ¥'(j, n-1) # @ (if not, by D16.2.d.f.iii, we would have T[a,, 0)(00A, j) = 1). However,
in both cases we'll supposing there is a line j° of the table in which OA has value 0 (since T{a,, 0)(00A,
J) = 0), but which also has to give value 1 to this formula (since T{a,s, 03(0A, j) = 1 and, by definition of
(i, n-1) and Y(, n-1), they satisfy the necessities of j). Since this is impossible, it cannot be that T{dt,,
0)(Ai, ja) = 0. Thus for every j € JO(at,), T{et, 0)(A, /) = 1.

(2) r > 1. In this case, either A; is an axiom, and the property is already proved in 1), or it was obtained by
one of the inference rules MP or RN, in which case the proof is analogous to the case of K in the preceding
chapter. @

Theorem T29.*-A iff for every normal sequence @, where, for some i, A = A;, and for every j €
1%ata), Tleta, 03(A;,) = 1.

Proof. One direction is the preceding lemma, so suppose that, for every normal sequence ¢, where, for
some i, A = A;, and for every j € JO(atn), T[0tn, 0)(A;, j) = 1. Suppose furher that & A. It is easy to prove
that, for some saturated set A, A ¢ A. By L25 there is a j € J%(x,) such that T{a,, 0](A;, /) = O—against
our hypothesis. Thus —-A. B

As we just saw, we have then used sucessfully GTTs for S4. A similar technique can be uscd then
with the other normal modal logics like K5.

127

7

Valuations, possible worlds, and tableau systems

Non ovum tam simili ovo,
quam hic illi est.

I guess it would be interesting, now that we just finished our jouney through the (alethic modal)
Valuation Semantics Jungle, to say a few words comparing this semantics to other ones. Thus, in this small
chapter, we’ll give some thought to two questions, namely: what is the relation (if any) between valuation
semantics and the ordinary Kripke or possible-world semantics, on the one side, and, on the other, what is
the relation between GTTs and tableau systems.

7.1 Valuation and Possible World Semantics

1 already mentioned in chapter 4, while introducing the subject, that there is some kind of relation
between valuation and possible world semantics. If we want, we can certainly see a valuation as a world,
or as a function describing a world. Remember, we have proven that valuations are characteristic functions
of maximal consistent sets, and what is an MCS, one could ask, if not a world? From this point of view,
the only model we have to consider is the class of all MCSs—we don’t need anymore to introduce
acessibility relations as primitive elements of the model. To be precise, in the first chapter of this work,
where we were discussfng semantics for EDLs, we came exactly across this fact: that the class of all
saturated sets (which are maximal consistent), and the class of sets of wffs true in some world of some
(EDL) model, were the same. For the sake of completeness, let us write everything down here, taking a
normal modal logic as an example, say KDB.

The first step is to define a possible-world model for KDB. As usual, it is a structure <W, R>,
where W is a non-empty set (of worlds) and R a binary relation over W which has the properties of seriality
and symmetry. To this structure we add an interpreiation function / which assign a truth-value 1 or 0 to the
atomic formulas, In the usual way we extend / to a function from W x FORkpp into {0, 1}, such that, for
somewe W:

128

Valuations, possible worlds, and tableau systems

(A, w)=1 iff A, w)=0;
IA-B,w)=1 iff KA, w)=0o0rI(B,w)=1;
oA, w)=1 iff for every v € W such that wRv, I(A,v) = 1.

Now this tuple <W, R, I> is a possible-world model for KDB. I am not going to prove that it is:
the interested reader can consult, say, {Ch80], or any good textbook on modal logic.

Now, in a similar fashion as we did in Chapter 1 with respect to EDLs, we define an equivalence
relation among KDB-models. Let K be the set of all KDB-models. If M and Ae K, we say that M = A
in case M= A iff N= A, for every wif A. If M is a model, iM will denote equivalence class of M (thus
1M € Ki.). Let now M= <W, R, I> be a model. For each w e W, let [Mw] = [A: [(Aw) = 1). Let W =
(FC FOR : T = [M,w], for some M, some w}. And finally, let S be the class of all KDB-saturated sets.

We can now prove the following resutts:

Lemma L26. If [M.w] + A then (Aw) = 1.
Proof. Analogous to the proof of L2.

Lemma L27.W =S8,

Proof. Similar the proof of L3, or, by that matter, of L7.

Theorem T30. There is a bijective function h from the set V of all valuations into the set K. such that if
ve V,h(v) = 1M, and if M = <W.RI> then for every A € FORkps, v(A) = I(A,w).

Proof, Follows from the Corollary to T21, and from L3.45 m

So this is the way in which valuation and possible-world semantics are related. But I would like to
stress again that, in spite of the similarities, they are not the same thing, specially because it is the inductive
definition of an Aj,... A,—valuation, for some normal sequence Aj,....A,, which allows us to easily obtain
a decision procedure via GTTs.

7.2 GTTs and Tableau Systems

It is very likely that the first thing that comes (o your mind, if you are familiar with lableah-slylc
theorem provers for nonclassical logics, is the question whether GTTs are just the same as these. What they
aren’t, as little as, in classical propositional logic, truth-tables are the same thing as tableau sysicms. But of
course they are related. To give a short answer—I'm going to explain it later on—they tackle the decision
problem from opposite ends.

45 1. [Lo77), Pp- 152, where this theorem is proven in the case of K.

129

Chapter 7

The history of tableau systems (cf. [Fi83], pp. 3-10) could be said to begin in 1935, with the
introduction by Gerhard Gentzen of the proof systems nowadays known as “Gentzen's sequent cafculus”,
The nice feature of these proof systems (once you‘ve proven that a certain inference rule named cut can be
disposed of without losses) is that they obeyed the so-called subformula property: that is, in a proof of
some formula A we only need to consider subformulas of A. That this is an awfully nice property should
be clear to everyone who spent some time trying to find proof of theorems in a “get it from the axioms”
way.

Gentzen's work was developed first by Beth, and later by Smullyan (for classical logic). The result
were “upside down” Gentzen type systems, which consists in what we now call tableau systems ([Fi83],
p. 5). In the modal logic case, we have the contributions of Hintikka, Kripke, Hughes and Cresswell, and,
of course, Fitting himself.46

Now the main feature of tableau proof procedures is that they are refutation systems. That is, one
tries to generate a countermodel for the formula in question: the formula is assumed to be false, and one
proceeds by computing which value its subformulas would have under this assumption. Since at each step
we reduce a formula to its subformulas (which are smaller), and since formulas have a finite length, the
method is sure to tcrminate: somewhen there are no more subformulas to be processed, and atoms, of
course, cannot be further reduced.

The whole construction is made in an inverted-tree manner: we write at the top (of a sheet of paper,
for instance) the formula A to be (dis)proven, preceded by a sign: T or F, which informs us whether the
formula is true or false. Sir:cc the first wif is the one we are trying to refute, it gets an F. Now we proceed
way down on the paper by adding new nodes to this seed of a tree: at each node there is going to be a
signed subformula of A. In other words, we enlarge the tree using a set of extension rules ([Fi83], p. 29).

In this adding of subformulas to the tree we can distinguish two cases. First, sometimes there is
only one possible way of assigning values to subformulas, like when we have a true conjunction A A B:
both conjuncts must be true, if their conjunction is; so we extend the tree by adding both TA and TB.
Sometimes, however, we are confronted with two possibilities: with a true implication A—B, for instance,
one has that either the antecedent is false, or the consequent is true. In order to account for these two
possibilities, the branch we are working on must be split into two new branches, each of them representing
a way of going on (a possible assignment). Branches can of course split further into sub-branches, and
sub-sub-branches, and this is why the tableau ends up being a tree.

For the classical propositional logic, the tableau extension rules are the following (cf. [Fi83],
pp. 29-30):

Ta: T(AAB) Fa: F(AAB)
- TA FA | FB
TB
Tv: T(AvB) Fv: F(AvB)
TA | 1B FA
FB

46 More historical details can be found in [Fi83).

130

Yaluations, possible worlds, and iableau systems

T-: T(A-B) F-: FA-B)
FA | TB TA

FB

T T4 F~ F-A
FA TA

Afler having applied the extension rules, we find that, in the end, two things can occur:

(1) We find that every branch leads to a contradiction, i.e., for some atom p, Tp and Fp belong to
the branch. In this case, the branch is said to be closed. All branches being closed, the supposition that the
original formula could be false is absurd, hence it must be valid.

(2) Some branch remains open, i.c., there is no more complex formulas in the branch which we
have still not processed, and no contradiction arose. In this case, what we have done amounts 0 actually
creating a model which falsifies our formula—hence it is not valid.

Since a picture is better than ten thousand words, let us look at a tableau for A =
(a—b)(—b—o—a):

<

* F (a—b) = (mb——a)
* T a-b
* F~boa
* T
* F-a
Fb
Ta

[- SV -

~
e -}
o
<>

*|
H
|

fig. 21

We began by writing down ‘FA'—this is what line 0 means. It is a false implication, so its
antecedent must be true and its consequent false; hence we add both of them, with the corresponding signs,
and cross FA out (we put a star in front of it to show it was already reduced). Now we have (wo new
formulas to which we can apply the rules: Ta—b and F—b——a. Since the first of these would entail a
branching in the tableau, we reduce first the second one, that is how we obtain T—b and F—a on lines 3 and
4. This is the First Very Important Tableau Rule: if you can avoid branching, then do it, else you'll be
complicating things unnecessarily. After further reducing we get the atoms Fb and Ta (lines 5 and 6). Now
we come (o the point where there are no more non-branching formulas, so we work on Ta—b. An
implication is true either if its antecedent is false, or its consequent is true: these two possibilities are
represented by branching the tableau in line 7. Each node begins a possible continuation. Now in each

131

Chapter 7

branch we find a contradiction (the underlined atoms in the tree), so both branches are closed (denoted by
the "X’ at the bottom). Since every possible way of assigning values to the propositional variables of A led
to an absurd, it must be a tautology. And it is.

Summing it ali up, we say that a tableau is closed iff every one of its branches is closed. And a
closed tableau for a wif A is then said to be a proof of A. (Cf. [Fi83), p. 30)

Now, how are we going 10 extend this construction to modal logics? An answer is to be found in,
for instance, [HC72], or, more complete, in {Fi83). I'm going to take here K as an example, since we are
wanting to make a small comparison to GTTs, and we did that for K in a previous chapter. What we need
are, obviously enough, extension rules for the cases in which we want to reduce some modalized formula.
For this we could use some intuitions from the semantics. Drawing again on metaphors, we can say thata
tableau (for PL) is (part of) a world. In a modal logic, to evaluate a formula we have sometimes to consider
formulas in other worlds as well. So the answer should be something along the following line: when you
find a modalized formula, say FOA, create another, alternate tableau (Cf. [Fi83], p. 34). For the general
case, as Fiting points out, the difficulty with this idea is that “in practice it gets rather messy keeping track
of the alternatives in a tableau proof of even a moderately complex formula” ({Fi83), p. 34). But for some
systems, K included, that will do nicely. Now one just has to define what to carry on to the aliemate
tableau, when we create one.

Again, the semantics gives the answer. Having found a FOA, of course we are going to create an
alternate tableau (“an accessible world”) in which we have FA. And since, if 08 is true in a world, then B
is true in ali accessible worlds, we have 10 add TB to the new tableau for every TOB we had in the older
one, the case of (im)possibilitics being handled in a similar, mirroring way. Thus, if S is the set of
formulas in a branch, we define S¥ = {TA: TOA € S) U {FA: FOA € S). Then we have the following
two rules (in K we don’t have rules for FO and TO):

To: S, ToA FO: S, FOA
SHTA SKTA
An example:
w 0 * FO(aob)AOa-1b] V 5 f_k_
1 * TO@-b)ADa 6*T arb
2 * FOb —__——— 7 Ta
3 T O(a—b)
4 TCa 8 Fa T._b—
X X
fig. 22

In the picture we see that we could work on tableau w until we were only left with modalized
formulas (lines 2-4). Since K has no rules for FO and T, our only possibility was to process line 3. We
thus opened a new tableau v, into which we carried Fb and the scopes of the true necessities in w: Ta—b

132

Valuations, possible worlds, and tableau systems

and Ta. With these three lines we were then able to find a contradiction in v, closing both branches. Thus
original wff is valid in K.

One can now show that the tableau proof procedure just described for K in fact works. That is, a
wil A is valid in K iff there is a closed tableau for A. (I'm ot going to do this here, because it is a standard
result; the reader can consult e.g. [Fi83], chapter 2.) What is of concem to us here is the fact that a branch
of a tableau is satisfiable iff there is a world w in a Kripke model 2 such thai all wffs on the branch get are
true in w. Since a world in a Kripke model corresponds to a saturated set (cf. L28 above), and thus to a
valuation (Corollary to T21), and thus (by L21) to a line of a gencralized truth-table, we conclude that a
branch of a tableau is satisfiable iff there is a line on some GTT which gives 1 (o every formula on the
branch.

What is then the difference? As I put it before, these methods tackle the decision problem from
opposite ends. Whereas tableau systems are refutation procedures—one tries to build a countermodel,
reaching a contradiction if none exists—GTTs try to examine all relevant models, and see whether the
formula is true in ali of them. This is the same situation which obtains between truth-tables and tableau
systems for classical propositional logic. As I said in the introduction, they are the two sides of a coin.47

47 There is still another way of doing tablcau sy , which is hat diffe from Fitting's formulation: | mcan the
way G.E. Hughes and M.J. C 1l present ical tabl in their {HCT2}. Their formulation is different from
Fitting’s in that they use a more graphical approach: worlds are rep d through boxes ining fo las, and the
ibility relations holding among them arc rep d through arrows. M L in sy like KTS or KTB, onc goes
back and forth between worlds, a feature that Fitting trics to elimi b it the plexity of the computati

HC’s formulation is what Fitting has in mind when he says (quotation above) that it is rather messy kecping track of a lot
alicmate tablcaus.

In the case of valuati ics, they have i more similitudes to 1IC's way of doing things than to Fitting’s,
because, if we try to generate a tableau procedure out of a GTT (like we do in a next chapter on implementations) we'll see that
we will also be going back and forth between “worlds”, or between tablcaus, using results from a “newer” one o derive a
contradiciton in an “older” one.

133

Valuations & GTTS for 25

Kinkler's Second Law:

All the easy problems have been solved.

After having developed in the preceding chapters the method of valuations for several systems of
modal logic, now it has come the time to turn our attention again to epistemic-logical matters. In this chapter
we are going (o apply to EDLs what we have learned so far. I will choose here just one EDLogic as an
example, and give for it the valuation definitions, GTT construction, and then proving that they are correct.
After that we’ll be ready to consider some implementation questions.

The logic I have chosen to take as an example is Z5, for the very simple reason that it is the system
HM already mentioned. The strategy of this chapter is pretty much the same as in the modal logics case.
Some things are of course going to stay the same—for instance, semi-valuations, and valuations
simpliciter. Hence the main point is again finding a nice definition of an Aj,...,A—valuation for Z§.

8.1 Defining Ay,...,Ap—valuations for 25

Before we get thipgs rolling, it is worth mentioning that the situation here, on the one hand, is going
to be more complicated than in the modal case, since we have two strong primitive operators (‘B” and ‘K’),
in comparison to ‘0’. On the other hand, we won't be considering weak operators (like ©), so things get
in this aspect simpler. As a first consequence of this we don’t need anymore the distinguishing subscripts
in =1’ and ‘=g, because we'll be considering just the satisfaction case, and not rejection. That is, plain
‘=" will be meaning our old "=y’.

Just to remember, we'll continue 10 use ‘o’ as a typographical substitution for ‘Ay,...,A’, s0 ‘og.1"
means actually ‘Aj;,....Az.;’, and so forth.

But let us now begin by introducing the Z5 analog of f<k>g: we’ll have here actually two analogs,
since we have two strong operators (which has already given us, in the possible world models, the two

134

Valuations & G1Ts for 25

accessiblitiy relations § and R). So let o, be a normal sequence and f, g two functions from FOR into
{0,1). We say that, for I <k <n,

" (a) (belief) f<Bk>g iff g =e((on)®r0),
(o)1 = (0} B0, and
(o) ¥py = (ow)¥g 13

() (knowledge) f<xk>g iff (0¥ 1 = (o)X 1.

A few words on this. The belief case is, firstly, similar to KD4S5 one (with ‘B’ instead of ‘0')—
that’s what the first two clauses say (cf. Abb2 on chapter 4). Now the additional requirement that the true
knowledge formulas of fand g must be the same is there in order to capture the idea that knowledge implies
belief (or, in possible world semantics talking, that the belief accessibility relation is included in the
knowledge one). The knowledge case, as one can see, is just plain KTS (with ‘K’ instead of ‘0).

We can now go immediately to the definition of an ai—valuation.

Definition D17. v is a ot,~valuation (for Z5) if a, is a normal sequence and:
1) n =1 and v is a semi-valuation;
2) n > 1, v is an @i, s~valuation and, if for some m < n,
A) A, =BA,,
1) if v(A,) = O then there is an @,_;-valuation v, such that vx(Ap) = 0 and v<f, n-1>vy,;
II) if v(Ay) = 1 then there is an o, j—valuation v, such that v,(A,,) = 1 and v<f, n-1>v,; moreover,
for every p, every q, ¢ < p Sa, such that A, = BA; and v(Ap) = 0 there is an o, y~valuation v,
such that vp(Ag) =0, vp(Am) = 1 and v<f, n-1>vp.
B) An=KApm,
I) if v(A,) = O then there is an 0, ;~valuation v, such that v,(A,) = 0 and v<x, n-1>v,;
II) if v(A,) = 1 then v(A;n) = 1 and for every p, every ¢, ¢ < p Sn, such that Ap = KA, (A, = BAj)
and v(Ap) = 0 there is an @, j—-valuation v, such that vp(Ag) = 0, vp(Am) = 1 and v<k, n-1>v,
fv<B, n-1>vp .

As one can see, precious littie has changed from the cortesponding definitions for the normal modal
logics—we just needed some minor adjustments. It is however worth noticing that, in the knowledge case,
ﬁlse belief formulas (the requirement “... {A, = BA,] and v(4p) = 0...”) must also be taken into account
(they entail that the corresponding knowledge wff will also be false). Having now defined a,~valuations,

the rest follows as usual. First we make the necessary changés in the definition of a canonical extension:

Definition D18. Let @, be a normal sequence and v an O,.j—valuation. We say that v, is the canonical
extension of v (0 O, if:

A)foralim<n,Ay#BAp, Ay 2 KA, and ve = v; o1

B) for some m < n, Ay = BA,y [Aq = KAp,] and v, is a function from FOR into (0,1} such that, for every
formula B,

35

Chapter 8

1) if A, is not a subformula of B, then v(B) = WB);
2)if A, is a subformuta of B, then
a) for B = Ap, vo(B) = 0 iff there is an o,_s-valuation v* such that v*(A,) =0 and v<p, n-1>v*
[vex, n-1>v*];
b) for B=—C,v(B)=1iff v(C) = 0;
c)forB=C D, v(B)=1iff v{C)=0o0rv (D)= 1;
d) for B = BC or B = KC, v«(B) = v(B).

We only need now the definitions of normality, and then things can get going. Let v be an o,
valuation: for 1 Sk <n, we say that vis Bo-oy—normal [Ko-0g—normall} if for every p,every q,q<p <
k. such that A, = BA, [= KAg] and v(Ap) = 0, there is an oy—valuation vp such that v,(A,) = 0 and v<p,
k>vp [v<X, k>vp]. We say that a valuation v is Bj-ou—normal if for every p, every ¢, ¢ < p <k, such that
Ap = BAg and v(Ap) = 1, there is an ay—valuation vp such that vy(Ag) = 1 and v<f, k>vp; vis Kj—o—
normal if for every p, every q, ¢ < p Sk, such that A, = KAg and v(Ap) = 1, v(Ag) = 1. (By—and K-
normality, remember, are the conditions which take care of axiom schemas k? and k.)

We are now ready to get our results. That canonical extensions are semi-valuations should be by
now obvious—it i3 proved exactly in the same way as in the normal modal logics case, so nothing new
here.

Proposition P26. Let o, be a normal sequence, v an o,.1—valuation and v, the canonical extension of v
10 0. Let us suppose that v is Bo—, B1—, Kg— and K1—0y.;—normal. In this case, v¢ is an o,—valuation.
Proof. First of ali, v, is an ,.;—valuation, because it is a semi—valuation and, by construction, for I i <
n, ve(A;) = W(A}). Now, if for every m < n, Ay # BAp, Ag # KA, v, fulfills every condition of D17, so it
is an a,—valuation. So suppose that, for some m < n, Ay = BA,y or A, = KA,,. We have two cases:

(1) v(A,) = 0. By D18.B.2.a there is an oL,.;—valuation v* such that v*(A,,) = 0 and v<B, n-1>v*, or
v<K, n-1>v*, Since v and v, agree for i < n, ve<f, n-1>v*, of ve<k, n-1>v*, S0 v, is an a,—valuation.
(A0 v(An) = 1. We get first that:

(1) By D18.B.2.a, for every @, j-valuation v* such that v<f, n-1>v* [or v<K, n-I>v*], v(A,) = 1.

We consider now separately the belief and knowledge cases:

o) Belief:

Suppose there is ¢ < p Sn such that A, = BAg and vc(Ap) = 0. Then v(Ap) = 0 and, since v is Bo—0p.1—
normal, there i3 an a,.j-valuation vp such that v<f, n-I>v, and vp(Ag) = 0. Since v and v, agree for i <n,
we have that v <f3, n-lSv,,, and, from (1), that v;(A,) = 1 (else we would have vc(A,) = 0). We have now
to prove that there is an 0t,.j—valuation v, such that va(Am) = 1 and v<pf, n-I>v,. If there is some g <p <
n such that Ap = BAg and v(Ap) = 0, then we have already got this 0t.;-valuation v, such that v<f,

n-1>vp and vp(Am) = 1. Suppose then there is no ¢ < p S n such that A, = BA, and vc(Ap) = 0. We have
two possibilities:

136

Valuations & GTT's for 5

(i) there is some ¢ < p < such that Ap = BAg and v(Ap) = 1. Then w(A) = 1 and, since v is By—0ty. /-
normal, there is an 0. ;-valuation vp such that v<f, n-1>v, and vp(Ag) = 1. Since v and v, agree for i < n,
we have that v<f, n-1 >vp; it follows from (1) that vp(Am) = 1.

(ii) there is no ¢ < p <n such that A, = BAg and v(Ap) = 1. Well, in this case, {0}B = g, in which case
ve = €((04)By,,1), and obviously enough (o) Byt = (0k}Buc1i [0k} Kve,1 = [0k} Ky, 15 50 ve< B,
n-1>v. and, from (), ve(Am) = 1.

It follows, in both cases, that v, is an ot,~valuation.
B) Knowledge:

If there is ¢ < p < n such that A, = KA, and v.(A,) = 0, the proof goes as in a). If now thereis g < p <n
such that Ap = BAg and v(Ap) = 0, then v(Ap) = 0 and, since v is Bo—t,.j—normal, there is an & j-
valuation vp such that v<f, n-I1>v, and vp(Ag) = 0. Since v and v, agree for i < n, we have that v.<f,
n-1>v,. Now this means, among other things, that {ox)Kyo1 = luk]KVp,l- That is, vc<X, n-1>vp. From
(1), we then get vp(Am) = 1 (else we would have v(A,) = 0).

We have now to prove that v(A,) = 1. Since, for every 0. s—valuation v+ such that v<x;, n-1>v+, v+(A,,)
=1, we only need o prove that vc<K, n-1>v.. But this is immediate, because {0}y, 1 = (0)}¥y, 1.
Hence v, is an o,~valuation.®

Now 1o the next lemma, where we can show that a,~valuations are normal without restrictions, and
thus that they can be exiended as long we we want them to be.

Lemma L26. Let v be an aq-valuation. Then v is Bg-, B—, Ko- and Ky~0,-normal.

Proof. By induction on n. For n = I it holds trivially, so let n > I and let us suppose that every ®t,.;—
valuation is Bg—, B1—, Kg- and K-,,.;-normal. It follows then from P26 that

(1) The canonical extensions of o, ;—valuations to o, are o,,—~valuations.
We have now our usual three cases:

(1) For every m < n, Ay # BA,,, A, 2 KA. So v is trivially Bg-, By—, Ko- and K;-0,—normal.
(2) Let us suppose that, for some m < n, A, = BAp,.

(I) Let v(A,) = 0. We have:

1) {(®a)By1 = (0)By;

2) (0a}®vt 1= (0 1)Ko+ 1, for every @, j-valuation v+;

3) e(lanlBya) = e({otn1}By0).

It follows that, for every a,.j—valuation v+,

4) if v<B, n-1>v* then v<f, n>v+.

From the induction hypothesis, v is Bo—Q,.;-normal, so we have:

5) for every p, every ¢, ¢ < p < n sucht that Ap = BA4 and w(Ap) = 0, there is an @,_s-valuation v, such
that vp(Ag) = 0 and v<f, n-1>vp.

137

Chapter 8

Now, for each p, let vp* be the canonical extension of vp to 0ty. Obviously vp*(Aq) = vp(Ay), and, from
(1), vp* is an a,~valuation. From this, 4) and 5):

6) for every p, every q, g < p < n sucht that Ap = BA4 and v(Ap) = 0, there is an 0,-valuation vp* such that
vp*(Ag) = 0 and v<f, n>vpe.

On the other hand, since v is an o,~valuation, we have:
7) there is an Oy j—valuation v, such that va(An) = 0 and v<B, n-1>v,.

Now let v,* be the canonical extension of v, to 0t,. Obviously v,*(A,,) = va(Am), and, from (1), v,* is an
O—valuation.

Thus we have from this fact, together with 4) and 7):

8) for p = n, g =m, Ay = BAg and v(A) = 0, there is an t,~valuation v,* such that v,*(Ag) = 0 and v<f,
n>vp®,

From 6) and 8), then, v is an Bo—0,,~normal.

Now, sifice Ay = BA,, and v(A,) = 0, v is trivially Bj—, Ko, and Kj—0,-normal.

(ID) Let v(A,) = 1. We then have:

1V (0)Bo,1 = (a1} By1 U (An);

2) (o)X 1 = (01)¥y+ 1, for every o, p—valuation v*;

3 e(0a)By1) = e((an1)By1) U (Am).

Since v(A,) = 1, we have from definition 1 that:

4) for every p, every ¢, ¢ < p <n, such that Ap = BAg and v(Ap) = O there is an 0t ;—valuation vp such that
vp(Ag) =0, vp(Am) = 1 and v<f, n-1>vp.

For each p, let vp* be the canonical extension of vp to 0. Obviously vp*(Ag) = vp(Ay), and, from (1), vp*
is an o,—valuation. It follows that:

5) for every p, every q, q < p Sn, such that Ap = BAg and W(Ap) = 0 there is an 0,~valuation vp* such that
vp*(Ag) = 0, vp*(Am) = 1 and v< B, n-1>v,*.)

We only need to prove now that v<f3, n>vp*; the Bo-0,—normality follows.

First, since vp*(Am) = 1, vp* =1 €({0ta.7)By,1) U (Ap); thus, from 3),

6) vp* =1 &((aa) By 1).

We have now two cases 1o consider:

(A) If, now, Vp‘(An) =1, (an]va'.l = [an-l]BvP'.l U (Aa); (an)nv.l = (an)BVp‘.l and since (from 2)
(Oln)"v,,'.l = [a,,_,)K,p._l, we have, together with 6), that v<f, n>v,*. Hence v is Bg— 0t,—normal.

(B) Suppose now v,,'(A,) = 0. We define, for evety p, a new function v,* from FOR into (0,1} in the
following way: for every formula B,

1) if A, is not a subformula of B, then v,*(B) = v,*(B);
2) if A, is a subformula of B, then

a) for B = An, vp*(B) = 1;

b) for B = —C, »,*(B) = 1 iff v,*(C) = 0;

138

Valuations & G1Ts for Z5

¢) for B =C — D, vy*(B) = 1 iff vy¥*(C) =0 or vp*(D) = |;

d) for B = BC or B = KC, vp¥#(B) = v,*(B).
It is now obvious that v,* is a semi-valuation. Besides, for 7 S{ < n, vp*(A;) = vp*(A;). Since vp* is an
o,,.y—valuation, vp‘ is an Qi,.—valuation. We prove that vp' is an a,—valuation. First, since we have v<p,
- n>vp*, and since vp* and vp' agree for i < n, it follows that v<f, n>vp#—from what we get that
{0a-1}By,1 = (0tn-1)Bypw,1 and (0tn.1)%y3 = (@41}, p0,1. Let us suppose now that there isr, s, s <r <n,
such that A, = BA; and v,,'(A,) = 0. Then v(A,) = 0. Since v is an o,—valuation, from D17 it follows that
there is an 0. ;—valuation v, such that v{A;) = 0, v/(A,,) = 1 and v<pB, n-1>v,. Since the set of true belief
and knowledge formulas of v and v,¥* is the same, it follows that v#<f, n-1>v,. If now there isnor, s, s
< r $n,such that A, = BA; and vp"(A,) =0, we gel, since v is an a,—valuation, that there is an . j—
valuation v, such that va(Am) = 1 and v<f, n-1>v,. Thus vp¥<f, n-1>vy. It follows that v,¥ is an o~
valuation.
Now, since vp*(An) = 1, (0ta)By,1 = (0} Bupa1; and (@a)®y,1 = (@) Kipp,1, and, since vp*(Am) =
vpl(Am) = 1, vp¥ 1= e({@a) By 1). Thus v< B, n>v ¥ and it follows that for every p, every ¢.g<p Sn,
such that A, = BA and w(Ap) = O there is an o,—valuation vp* such that v,#(A,) = 0 and v<f, n>v,*. That
is, v is Bo-o,-normal.
We prove now that v is B)— and Kj—a,,—normal. That v is Kj—a,—normal follows trivially from the fact
that it is Kj—0,.j—normal, because A, # KA,,. By induction hypothesis, v is B)-Q,.j—normal, and, from
definition l,. we have that for p = n, ¢ = m, there is an Ot,.j—valuation vp such that vp(An) = 1 and v<f,
n-1>vp. We take the canonical extension vy* from vp to @, It is of course an sx,,—valualion, and, since
vp*(Am) = 1, it follows from 3) and 4) that v<f, n>vp*. So v is B1—0t,—normal.

(3) Let us suppose that, for some m <n, A, = KA,,.

We prove as in KTS§ (with ‘K’ for ‘0’) that v is Ko~ and K—0,—normal. What we should show is that v
is Bo— and Bj—a,—normal as well (remember, true knowledge formulas are also involved, and here we can
have one more).

We have again two cases, but, if v(A,) = 0, the proof goes as usual. So let us consider the case where
v(A,) = 1. We then have:

D (= ()% v (4a);

2) {0)Bys 1 = (0.1} By+ 1, for every O, j—valuation v+;

3) €({0ta)}Bo+ 1) = €([0t-1} By+ 1), for every @, j—valuation v,
Since v(Ap) = 1, we have from D17 that

4) for every p, every ¢, ¢ < p Sn, such that Ay = BAg and v(Ap) = 0 there is an . j—valuation v, such that
vp(Ag) =0, vp(Am) = 1 and v<f, n-1>v,.

For each p, let vp* be the canonical extension of vp to ;. Obviously vp*(Ag) = vp(Ay), and, from (1), vp*
is an a,—valuation, It follows that;

5) for every p, every q, ¢ < p S, such that A, = BAg and v(Ap) = 0 there is an 0,,~valuation vp* such that
vp*(Ag) =0, vp*(Am) = L and v<f, n-1>vp*.

We only need to prove now that v<f3, n>v,*; the Bo-at,-normality follows.

First, since vp*(Am) = 1, vp* =1 €((0tr-1}B),1) U (Am); thus, from 3),

139

Chapter 8

6) vp* =1 £({ata) B,1).
We have now two cases to consider:

(A) IE, now, vp*(An) = 1, {0n)Kype 1 = (0) K050 0 U {A44): {04)%, 1 = (04)®ype,1 and since (from 2)
{®n)Byp*,1 = [0tn-1)Bype 1, and since (from 3) €(10ta) By,e,1) = €([0tn_1)Byys,1), we have, together with
6). that v<p, n>vp*. Hence v is Bo- 0,—normal.

(B) Suppose now vp*(A,) = 0. We define, for every p, a new function v,," from FOR into {0,1} in the
following way: for every formula B,

1) if A, is not a subformula of B, then v,,'(B) = vp*(B);

2) if A, is a subformula of B, then

a) for B = Ap, v,*(B) = I;

b) for B = —C, v,*(B) = 1 il v,/(C) = 0;

¢)for B=C - D, v,*(B) = 1 iff v,C) = 0 or v} (D) = 1;

d) for B = BC or B = KC, vp*(B) = vp*(B).
It is now obvious that v,¥ is a semi-valuation. Besides, for I i < n, vp*(A;) = vp*(A)). Since vp* is an
0, j—valuation, v,* is an ot,,_;-valuation. We prove that v,* is an o,-valuation. First, since we have v<p,
n>vp*, and since vp* and v,¥ agree for i < n, it follows that v<f, n>v,#—from what we get that
{0th.1)By1 = (u,..”"vp;,l and (0s.7)%y1 = ((x,,.,]"vp”. Let us suppose now that there isr, 5,5 <7 Sn,
such that A, = BA; and v,,'(A,) = (. Then w(A,) = 0. Since v is an o,~valuation, from D17 it follows that
there is an o, ;—valuation v, such that v(A;) = 0, v{A,,) = 1 and v<f, n-1>v,. Since the set of true belief
and knowledge formulas of v and v,¥ is the same (for i < n), it follows that v,#<p, n-I>v,. Now suppose
there is a r, 5, s < 7 S, such that A, = KA, and v,#(A,) = 0. Then v(A,) = 0, and from DI7 we get that
there is an a,_s—valuation v, such that v(A;) = 0, v(Ap) = 1 and v< K, n-1>v,. Since the set of true
knowledge formulas of v and v,," is the same (for i < n), it follows that v,,”<x', n-1>v,. And finally, we
have that vp*(Am) = 1, 50 vp#(Am) = 1. It follows that v,,’ is an o,~valuation,

Now, since Vp'(An) =1, ‘un)Bv.l = (un)BvPU.I; and lun)xv.l = (an)xv‘;’.l- and, since vp*(Am) =
vp#(Am) = 1, vy® 1= €((@a) By 1). Thus v<p, n>v,* and it follows that for every p, every q,g <p <n,
such that A, = BA4 and v(Ap) = 0 there is an o,—valuation v ¥ such that v,*(A,) = 0 and v<B, n>v,*. That
is, v is Bo—0t,~nomal. In a similar way we can prove that v is Bj— oi,—normal, and this completes the
proof of the lemma. ®

B

Now we have, as consequences of this and the other lemmas the following two propositions:

Corollary. Let @ be a normal sequence, v an (tn.j~valuation and v, the c ical e ion of v (0 Olp.
Then v, is an ap—valuation and, for I Si Sn-1, v{A;) = v(A)).

Theorem T31. v is an aa~valuation iff: 1) 0 is a normal sequence; 2) v is a semi-valuation; 3) v is Oy~
normal,

Proofs are exactly the same as in the normal modal logics case, so there is no need to repeat them
here.

140

Valuations & GTTs for 2§

8.2 Correctness

Having then proved these properties of (at,—)valuations for Z5, we can now move 1o considering
correctness. The notions of satisfiability, validity and semantical consequence are defined in the standard
modal logical way (cf. chapter 4). Actually the only big difference now is to prove that the axioms of Z§
are valid under this semantics; the rest follows in the same old way. So let us get to the following

Lemma L27. Let v be an 0,~valuation; then, for 1 Si S n, if A; is an axiom of Z5 then v(A;) = 1.

Proof. If A; is an axiom, then it is either an axiom from PL, and it follows from the fact that v is a semi—
valuation that v(A;) = 1, or it is one of the modal axiom schemas. Now, if A; is one of the pure belief
axioms, the proof is the same as in KD45 (with ‘B’ instead of ‘0’), and, if A; is one of the pure
knowledge axioms, the proof goes as in KT5 (with ‘K’ instead of ‘0’). We consider then only the cascs
of the mixed axioms. In ZS$ there is just one of them, m, so suppose A; = KA — BA. Suppose v(A;) = 0.
Then we have v(KA) = 1 and v(BA) = 0. From the normality lemma it follows that for every p, every ¢, ¢
< p < n, such that A, = BAg and v(A,) = 0, there is an &t,~valuation v, such that v;(Ag) = 0 and v<f,
n>vp. Thus vp(A) = 0. Now v<f, n>v, means, among other things, that {as}¥y) = (u,.]K.,pvl. So
vp(KA) = 1. Since, now, vp is Kj—0,-normal, we have vp(A) = 1, a contradiction. So, for every valuation
v,vAp=1m

Now we have no trouble to show thal, if A is an axiom of Z5§ and v is a valuation, that v(A) = 1.
For the next lemma and its corollary, too, the proof is the same as in the normal logics case (with the care
of substituting ‘B’ for ‘0’). The same holds, finally, for the Correctness Theorem, so we can jump
without delay to the next section.

Lemma L28. For alln, all i, 1 Si<n, ifvis an a4-valuation and v A;, then v(A;) = 1.
Corollary. If —A then=A.

Theorem T32. (Correctness Theorem) [fT—A then '=A.

¥

8.3 Completeness

Completeness is again casy to prove making use of saturated sets—which we already have defined
for knowledge and belief on part 1. The main task here is to proof that characteristic functions of saturated
sels are (,—-valuations; the rest follows smoothly in the good old way. So let us consider our

Theorem T33. For every A-saturated set A and every normal sequence O, the characieristic function f
of A is an a,-valuation.

141

Chapter 8

Proof. First of all, it is easy 10 prove by P5 that

(1) The characteristic function fof A is a semi—valuation.

We now prove the theorem by induction on . If n = 1, the property follows from (1) above. Let us
suppose n > 1.

(1) If, for every m < n, A, # BA,y, Ay # KAy, fis trivially an o,—valuation.

(2) For some m < n, Ay = BA,,.

(1) (Ay) = 0. Then A, € A, A v BA,,. From P7, there is an A,,-saturated set © such that e(AB) C ©.
Let fg be the characteristic function of . By the induction hypothesis, f and fg are o, j—valuations. We
also have, since © is A-saturated, that f(Am) = 0. Now, {0ta.1}873 C A, thus e({oa_1)Br1) C €(AB) C
8; thus fo = €((0a-1]Bf1). Now, from P8, AP C €(AB). It is then easy to see that (a,.1}B,) =
(@n.1)Bg,1. Now, from P8, AK CC £(APB) (because KA — BKA). It is then easy to see that (0ty.1}K7) =
{0n-1)Kf,1. We thus can say that f<n-I>fe; hence fis an &,~valuation.

(ID) flAn) = 1. So BA;n € A, A —BAyy,. Let us suppose there is some p, some ¢, ¢ < p < n such that Ap =
BAg4 and AAp) = 0. From P7, there is an Ag-saturated set © such that €(AB) C ©. Let fg be the
characteristic function of 8. By the induction hypothesis, f and fg are 0. ;~valuations. With an analogous
argument as in case I), we show that f<n-I>fg. Since © is Ag—saturated, fo(Aq) = 0 and, since Ay €
€(AB), fo(Am) = 1.

Now it follows from lemma 5, since A+-BA,,, that there is an —A,,—saturated set © such that e(AB) C ©.
We prove in a similar way that fg is an 0,_s—valuation, f<n-1>fg and fe(Am) = 1.

(3) For some m < n, A, = KA. Proof similar to (2) and to the KTS case. ®

Finally, the proof of this lemma’s corollary, and of the Completeness Theorem, suffer no change
from the modal logic case:)

Corollary. v is a valuation iff v is the characteristic function of some saturated set A.

Theorem T34. (Completeness Theorem) If '=A then T'-A.

8.4 GTTs for Z5

The last thing needing consideration in this chapter, before we go on, is the definition, based on the
semantics just seen, of GTTs for Z.8. There are of course differences in comparison to what we have done
io K, but they show up only in the case of the modal operators, that is, cases (d) and (¢) of the old
definition wilt have to be changed. 1'll give only the important part of the defm;ion:

142

Valuations & GTTs for Z5

Definition D19. Let o, be a normal sequence. A generalized truth-table (GTT) for oy is a function T[]
1 (o) % J(a,) — (0,1}, where:

D forn=1,Jap) = (1.2}, lasl(Ag, 1) = | and TTo1)(A1. 2) = O;
2) forn > 1, and J(an.g) = {1....q}:

(a) propositional variables: as in K;

(b) negation: as in K;

(©) implication: as in K;

(d) if Ay = BAyg, k < n, then for every j € J(0q-1):

1) forue (1,0}, let afu, j, n-1) = ('€ J(0n.;): TI0-1)(Ax, j) = u and, forevery r, I Sr<n,ifA, =
BA; and T{0a-1](Ar, f) = 1, then T{0t1 Ay, j) = 1, if Ap = BA, or A, = KA, TT0-1)(Ar, /) = TTO-
1¥An)

II) for every p, every ¢, ¢ < p < nsuch that Ap = BAg and T{a1)(Ap,) = 0, let B(p, j, n-1) = (' €
J(0tp-1): T{0tp-11(Ag,) = 0, T{0tn-1)(AR, j) = 1 and, for every r, I S7 S, if A, = BA; and T(ot,.
1¥Ar) = 1, then T0-1](As, j) = 1; if A, = BA, or A, = KA, T{04-1)(Ar,) = TIOA-1)(Ar, §))3

M) let {f1....dm) < J(Qtx-1) such that:

1) jm’ < jm~if m <m”;

2) jm' € Ujb-.dm) if @(jnye, n-1) # ¢ and, for every p < n, B(p, jm, n-1) # 9.

Then J(ay) = (1,....q,....g+m) and:

i) for i < n, j < q, TIow)(A;, /) = T{ota-1)(A)

i) for i < n, j = g + m", T)(Ai, /) = TIO. 1) (A, jm)s

iii) for i = n, j such that (0, j, n-1) = @, Tla)(Ai,) = |;

iv) for i = n, j such that o 1, j, n-1) = 8, T(04)(Ai, /) = 0;

v) for i = n, j such that a(0, j, n-1) # @ and, for some p < n, B(p, j, n-1) =9, or (1, j, n-1) = @,
ToalA: j) =0;

vi) for i = n, j such that a(0, j, n-1) # @, a(l, j, n-1) # ¢ and, for every p < n, B(p, j, n-1) # 8, in
which case, for some m’€ (1,...m},j=jmOrj=q+m’,
1)if j = jm then T(n)(A;,) =15
2)if j = ¢ + m’ then T{a,)(A;, /) =0.

(e) if Ay = KAy, k < n, then for every j € J(a,.1):

D let Y, n-I) = (j' € J(0n-1): TIOA-11(Ak, j) = 1 and, for every r, 1 Sr Sn, if A, = KA, T0, 1 KA,
N =T)4 /)

1) for cvcrf p.every q,q < p < nsuch that Ap = BAg and T{ats.1)(Ap,) = 0, let 8(p, j,n-1) = (' €
W 1): Tlan-1}(Ag, j) = 0, T[0n.11(Ak, j) = 1 and, for every r, I <r <n, if A, = BA, and
Tiaa 1)(Ar,) = 1, then T{ata1)(A;, j) = 1; if A, = BA; or A, = KA, T[0-1)(Ar,) = T{oa- 1A,
Nk

110 let (j1,...Jm) € J(0tn-1) such that:

1) jom' < jm= i M’ < m"”;
2) jm € Ut.-dm) if O jou, n-1) # @, for every p < n, B(p, jm, n-1) # 0, and T{o, 1) (Ag,) = L.

Then J(w,) = (1,....4.....g+m)} and:

i) for i < n,j <q, Tlan)(Ai,) = T(-1)(Ai,);
i) fori < n, j = q + m’, Naa)(Ai, /) = T0a-1NAi, jm);
iii) for i = n, j such that ¥, n-1) = 8, To,)(Ai.) = 1;

B

143

Chapter 8

iv) for i = n, j such that a(j, n-1) # ¢ and, for some p < n, 8(p, j, n-1) = @8, TIOL}(A;,) = 0;

v) for i = n, and TG 1)(As, /) = 0, TioI(Ai,) = O;

vi) for i = n, j such that a(j, n-1) # @, for every p < n, 8(p, j, n-1) # @, and T{o, s }(Ax,) = 1, in
which case, for some m’ e (J,...m), j=jworj=q+m’,
1) if j = jm then T{0](A, /) =1;
2)if j = ¢ + m’ then T{oa)(As, /) =O.

Now there is probably not very much to explain: this definition just mirrors what we’ve already
done in the valuation definitions for Z$ in the preceding sections. We only have to prove that things work,
and the only result we have 10 get is the following

Lemma L29. Let o, be a normal seq e, and v a valuation. Then there is | € J(Qtn) such that, for 1 <i
<n, v(A)) =Tlaal(As J)-

Proof (cf. the normal modal logics case.) ®

Lemma L30. For every normal sequence oy, if, for some § S n,\—g Ay then for every j€ Non),
NaalA.) =1.

Proof. (cl. the normal modal fogics case.) @

Theorem T35. A iff for every normal sequence O.,, where A = Aj, 1 Si Sn, and for every j € J(On),
Moa)Ai N =1.
Proof. (cf. the normal modal logics case.) @

As we then see, Z5 is also decidable by GTTs.

144

Intermezzo 2

So Pant I is finished, and now, with our thus acquired knowledge
about valuation semantics and generalized truth tables, we can move (o the
third Part of this dissertation, where we are going to try puiting into practice
a little bit of what we learned. The next three chapters will thus discuss
some implementations. Chapter 9 presents a GTT-builder for an example
EDL (ZS5). Building a whole table, however, is something costly in time
and memory, so in Chapter 10 we take another EDL (ZPS) and present for
it a tableau-like theorem prover. The last Chapter, 11, shows an
implementation of the algorithm for characterizing minimal belief states
from Part I.

JLILN

Implementations

9

Implementing a GTT Builder for Z5

Oh, I am a C programmer and I m okay
I muck with indices and structs ali day
And when it works, I shout hoo-ray
Oh, I am a C programmer and I' m okay.

In this chapter we are going to examine a simple C program which implements the construction of
GTTs for Z5 formulas. This is going to be a very straightforward implementation of the GTT definition
which we have just given in chapter 8. It is not intended to be a real, fast theorem prover for Z5, even if its
performance it’s not that bad—it is more a 1 to 1 implementation of the semantics, mainly pretending to
show how things can be done. It has been chosen o be close to the definition, not to be fast. (Surprisingly,
however, it can be very fast in certain cases, when compared to other implementations.)

The program, which is called GTT. 25, has three main parts, which are split over several files. The
main loop of the program does the following things:

. reads a formula (string) from the standard input;

. parses the formula, that is, the read string is transformed into a tree-like intemal representation;
. calls a function which construcis the table;
. and, finally, printes the output on the screen.

1 am not going 1o discuss every litlle thing on the program (for example, parsing and printing
routines are just going (o be mentioned), but rather the building of the table. So let us begin.

9.1 Data Structures and main ()
We examine first the macros and globals, which are o be found in the file “macros.h”.

9.1.1 Macros
tdefine STR_LEN 256

This is the maximum allowed length of the input strings.

149

Chapter 9

f#define MAX_ LINES 64
#define MAX_ROWS 30

Ditto for the maximum number of lines and rows in the GTT. We are going to have the tables
statically defined as a bidimensional array, where the rows will held places for the wffs. Another
altemative, of course, would be using dynamic memory.nllocation. but I think that with a statically defined
array things are easier to grasp.

The next lines define, first, a “pointer” to NuLL: since arrays in C begin with 0, and since, as we’ll
see, contents of fields will be pointing to other places of the arrays, we have to know when we are
meaning, say, location 0, or meaning nothing. In the other lines connectives are given an internai
representation code by means of integers. For atomic propositions (*a’ till ‘t’) we’ll use its ASCII-code.

fdefine CNULL (-1) /* a "pointer” to NIL */
fdefine UND 5 /* conjunction */

§define ODR 6 /* disjunction */

fdefine IMP 7 /* implication */

#define NEG [:] /* negation */

fdefine EQU 9 /* biconditional */
fdefine KNW 10 /* knowledge */

fdefine BEL 11 /* belief */

In the next lines we define two kinds of “atomic propositions™: on input, when the wiT is being read
and parsed, atoms are small letters. But internally, after that, they'll be everything but conneclives—we
have to make just one check, instead of two. Thus the program will run a little bit faster.

#define P_ATOMIC(c) (c >= 'a' &% c <= 't') /* atoms on input */
#define ATOMIC(c) { ¢ > BEL) /* atoms internally */

The last macro line is just a definition for the parsing mechanism. 1'll explain that later.

tdefine INIT_NODE(a,b,c) WFF[wf_ptr)[0) = a; \
WFFwf _ptr) (1] = by \
WFF[wf_ptr](2] - ¢

9.12 Globals
We'll also be using some global variables, which we get on the next lines:

short WFF([STR_LEN] (3],
wf ptr,
TBL[MAX_ROWS] [MAX_LINES];

char theWff[STR_LEN]:
long k1, k2, k3, k4:

* WFF (STR_LEN] [3] is our bidimensional arrray where the internal tree-like representation of
formulas is stored; wf_ptr points to the next free place on it. The parsing mechanism takes as input a
string, like

150

implementing a GTT Builder for 25

asb->-av-b

and converts it into a tree, which is stored in wrF like

af bfs}-]~|v ->
ojoj1 2
1 4 15
fig. 24

The rightmost used place is, of course, the “iop” node of the tree. Numbers under each operator
denote the row in the array where the arguments are to be found. So, for example, the disjunction in 5 has
as the left disjunct the wff of row 3, and as the right disjunct, the one in row 4,48

The table (TBL) is also a bidimensional array. I have chosen a small number of rows and lines, but
this can be easily changed (o suit one’s needs.

Finally, the 1ong integers are used for performance measurements.

Now the main () function has the following code:

main()
{
short i, 3§, k, u;

PLINEE (AN AR A A AR A AN A R AR A AR AN R R A AR AN AN AR AR N KRR AR R kAR A AN RN o

printf{“\n* GTT BUILDER FOR 25 *M);
printf ("\n* Cesar A. Mortari "y
printf {"\n* V1.0, May 1990)

Printf(n\n...‘.......ﬂ.......ﬂt..t.tth.lh.ﬁ..tt..ttttttiiﬁ...ll)I.
printf ("\n\nSyntax:\n a..t (variables), -, K, B, &, v, ->, <->\n");
printf{"\nTo exit type ';°'<CR>\n"};

printf ("\nPlease type in a formula:\n");

This was just printing startup information. Now we enter the main program loop (with for
(+:)).First we have (wo initializations: wt_ptr is set to 0 {(next free row in wrF), and wFF (0) (0] is Set 10
cNULL (1o ensure that the parser won't think that this place, automatically filled with a o on startup®, is
pointing to row zero...)
wf _ptr = 0;
WEF (0} [0] = CNULL;
The next step is to read the formula of which we want to have a table. If the input is *;’, that means
“end the program”, 30 else a small routine remove all blanks from thews £:

gets{ theWff);

if (theWff{0]) == *; ")
return 1 ;

i = 0;

48, reality we don't have, for instance in row 6, the characiers -* and ‘>* stored there, but rather the value 6, which, by
macro definition, represents the arrow. Similarly for the other symbols.

Y9rm implementing this with the THINK C Compi ler, version 4.0, which has this characteristic.

50 With the THINK C Compller this is actually ¥, b a standard le window is provided, together with
a "Quit” menu option. With other pilers which don’t provide this option, one has to introduce a way of i ing the
main loop.

151

Chapter

- 07
while (theWff(i] != *\0°)
(

if (theWwff{l] != ' ')
theWff[J++] = theWff(i);
+4lg

}
theWff{j) = *\0';

Next we initialize the time counting, and call the parser (with formula()) to convert the string into a
tree, at the same time checking if the syntax was correct. If everything is OK, we get the time used in
parsing and go build the table (make_table ()). After that the contents of the wrF array are displayed
(displayWrF ()) and the table is printed. The last lines print then the time used for the different routines on
the screen.

k1l = TickCount{); /* initialize time counting */

if (formula(O, su, &1) & theWff(u] == *\0')
{

k2 = TickCount{);

k = make_table();

k3 = TlickCount ();

displayWFF{)

print_table{ wf_ptr, k }:

k4 = ({ TickCount() - k3) * 100} / 6;

k3 = ((k3-k2)*100)/6;

k2 = ((k2-k1)*100)/6;

printf("Parsing time: %1d ms™, k2);:

printf("\tMake table: %ld ms”,k3);

printf ("\nPrint table: Sldems", kd);

printf("\tTotal time: %ld ms\n\n",k2+k3+kd)
}

If we had a syntax error, of course, nothing applies, so we print an error message and start again.

else
printf ("\nSyntax error...\n\n");

We are now ready to consides more details of the program. The other routines are in different files,
which are included (with #1nclude <f11e>) just before main (). They are

tinclude "macros.h"
tinclude "prototypes.h"
#include "parser.h"
tinclude "outputs.h"
#include "table.h" ,

prototypes.h is just a small file containing the prototypes of all GTT.ZS5 functions—similar to the
“forward” declarations in Pascal procedures and functions. In C it is normally not needed, but see listing in
Appendix B.

93 parser.h

This is the file containing the parsing functions. I won't discuss it here in detail, just give generaf
information, It is an adaptation from a parser once written in Prolog by Franz Guenthner. I've changed it
‘

152

Implementing a GTT Builder for Z5

here to use my data structures, as well as introducing a mechanism to check if a node is already there. For
instance, if we had a formula like asb -> acb, we could end up having a tree with twice the same node, as
following:

ﬁ/ -)\&
NN

In order not to get repeated wifs when building the tables, which is totally unnecessary, we need a
checking routine that looks, before creating a node, to see if it is maybe already there. We would then have
the following representation:

()

/N
LY b
fig. 26

And that’s all about parsing. See listing in Appendix B, if you are interested. It needs some
improving, t00.

9.3 outputs.h

Liutle to say about this: just two functions which, first, display the contens of wrr and, second, print
the table (that is, the T8L array). See listing in Appendix B.
94 table.h

And finally, the routines to build the table. We first have the code of the make_table () function,
which we are going to discuss now:

short make_table() /*

int i, row, line, ad_lines;

-

153

Chaprer 9

1 is a loop variable; row and 1ine denote, respectively, the current row and line which we are
computing. ad_lines is the number of added lines in the case of knowledge and belief formulas
(correspond to the m parameter in the definition of GTT (as in D19.d, for example).

Now the first step is to initalize the first row and first two lines of the table (the first row is always a
propositional variable...). The current (bottom) line number is then set 10 1, and ad_11ines is initialized to
0. Just note that the actual number of lines in the table is equal to 11ne + 1, because lines are numbered
from 0 to line.

TBL{0} ({0} = 1;

TBL[O]) (1} = O;

line = 1;
ad_lines = 0;

Now we enter the Main Table Loop: wedo a loo‘) creating each new row, starting with 1 (the row
0 already contains a propositional variable) and going until wf_pt r-1 (which points to the top node of our
formula). If the number of rows or lines gets greater than MAX_ROWS or MAX_LINES, the loop is stopped and
we exit with 0. Else we make a switch on the main (current wil) connective, and act accordingly.

for { row = 1; row < wf _ptr; ++row)
{ if (row >= MAX ROWS || line >= MAX_LINES
(printf ("\n\n****+* ERROR : TABLE TOO LARGE! ##*##&%in},
return 0;
lwitch(WEF [row) {0])
v

The cases in which the operators are boolean ones, we just do a booleant computing of its
argument(s), starting with line 0 and going until 11ne.

case NEG :
for { 1 = 0; 1 <= line; ++1)
TBL[row] {1] = !TBL(WFF([row][1]])(i];
break;
case UND :

for (1 = 0; {1 <=~ line; ++i)
TBL(row) [1] = TBL(WFF(row][1)] (1]
&& TBL(WFF{row][2)])([4};
break;
case ODR :
for £t 1 = 0; 1 <= 1line; ++1)
4 TBL{row) (1] = TBLIWFF(row][1]](1]
I'i TBL[WFF[row][2]])(1]);

break;
case IMP : °
for (4 = 0; 1 <= llne; ++1) -
TBL[row} (1] = !TBL(WFF[row] [1]][4) L
I'Y TBL(WFF[row}(2]}(1];
break; *
case EQU :

for (1 = 0; 1 <='llne; ++1)
TBL{row) {1} = (TBL{WFF{row)[1})4}
== TBL[WFF(row] [2)])(i}}:
break;

Now we have to consider the epistemic operators, where things are slightly more complicated. Let
us begin with knowledge (and let’s begin on the left margin, for clarity):

154

Implementing a GTT Builder for 25

case KNW :
{
for (§ = 0; 1 <= line; ++1)
if (TBL(WFF(row}({l]][1] == 0)
TBL{row) {1) = 0;
else
{
1f (gammaNE(row, line, WFF{row){1), 0, 1})
{
1f (deltasNE{ row, line, WFF{row])(l}, 0, i))
{
split_lines(row, line+l+ad_lines, i);
++ad_lines;
}
else
TBL{row] (1] = 0;
}
else
TBL[row] (1] = 1;

line = line + ad_lines;
ad_lines = 0;
break;

Let us examine ali that. Let us suppose we have some KA as our wif in the current row. First, of
course, we do a for loop to compute the value of KA in each line 1. And this goes as follows: first, if
TBL{WFF[row) [1}][1) =« o—that is, if A has a value 0 in line 1, obviously KA will have to get o,
because we are in S5 for knowledge, and reflexivity holds. This corresponds to clause (e.iii) in the GTT
definition D18. Else, if A has a value 1, there is more that we have to check. The function gammaNE ()
checks if ¥(i, row) is not empty (cf. D18.c.iii-v). That is, wheter there is a line giving 0 to A and being
“accessible” to the current line 1. If there is not, then KA gets the value 1 (cf. D18 ¢.iii). Else we check the
normality conditions (for every p, every ¢, ¢ < p < n, which is a modal wff and gets zero, eic). This is
what the function deitasNE () (8 is non empty) does. If it fails, then KA gets 0 (cf. D18.c.iv). Else
everything checks, and we then arrive o the case where we have to split the line, what we do with
split_lines (): the cusrent line is copied at the bottom of the table, and KA gets then 1 in the old line, and
zero in the new one. Just like the definitions. We then increment ad_1ines (o signal that a line was added.

Exiting the for loop, we set the global line number to its old value, plus the added lines, and
reinitialize ad_11nes to zero.

I am not going to discuss here the code of subroutines like gammaNE ¢) , and so on. But see listing in
AppendixB. . ’

The case of belief is now similar. We have of course the belief correspondents of gammaNE () and
deltasNE (), that is, aiphaNE () and betasNE (). The first check does not more cares for reflexivity,
because here we have seriality. The rest is pretty much the same.
case BEL :

{ for ({ = 0; 1 <= llne; ++1)
if (talphaNE(row, line, WFF(row)([1l}, O, i, 1))
TBL(row} (1] = 0;
else
f tf { alphaNE(row, line, WFF[row}(l], O, i, 0)

- if (betasNE(row, line, WFF(row){l}, 0, §{))
t

‘155

Chapter 9

split_llnes(row, llnesl+ad_llnes, i);
++ad_llnes:;
)
else N
TBL[row] {1]) = O;
)
else
TBL{row] {i] = 1;

line = 1line + ad_lines;
ad_llnes = 0;
break; i

And, last but not least, we have to consider the case where new propositional variables appear!

default : /* Atomic proposltions */
{
copy_llnes{ row, line + 1);
for { 1 = 07 1 <= line; ++41i }
TBL{row] [1] = 1;
1ine = 2 * (line + 1) - 1;
while { { <= line)
TBLirow] [1++] =~ O;

When we get a variable, we have of course to double the number of lines. This is what the routines
do: copy_11ines () make of course a copy of the old lines; then the values 1 and 0 are set, and the numbef™
of lines is updated.

After exiting the main table loop, we return the number of lines, which will be needed by
print_table().

}
return ({(short) 1llne+l);

And that's it.

9.5 A working sesslon with GTT.Z5

Now some examples from what happens when the program runs: let us type some formulas and see
what happens. I ran it on my Macintosh Plus, with IMB RAM:

ARANRER A RN R AR A AR AR A AR D R AR A AR AN AR AR R A AR R AR A RN RN AR A Rk R

* GTT BUILDER FOR 25 *
* Cesar A. Mortari *
» . V1.0, May 1990 .

AR RA R AN R A AR KR A NN AR R AR AR RN AR AR N A AR AR R AR R A Ak h

Syntax:
a..t (variables), -, K, B, &, v, ->, <>

To exlt type ';'<CR>

Please type in a formula:
Ka->Ba

156

LES 4 TABLE #*»
(01011 12}(3)

[RYARYRRINRY}
LRI RBYNBY
[BYRLINPERRY}
10110110111}
11510110111}

Parsing time: 0 ms
Print table: 1550 ms

—Ka~->K—Ka

Rk TABLE *#*#

[0} (11121{3]1{4])
FLERLI011011L]
(R RERRANEY]
(BN NI RANDUREY]

Parsing time: 0 ms
Print table: 1066 ms

Ba->a

(a) {B] [>]

{ 1{0] (1}
(e 1roj

k&% TABLE *%%
(oj{1] (2]
[BURBRRRY]
10111110}
11110411t
10410111}

Parsing time: O ms
Print table: 1133 ms

LA TABLE Rk
(01 (1]11[2)(3])

[BYRRSRRYNRY]
101111 EL Y
11110410411
101101104111
[RIRRSRIIRET
ortr1o110y

Parsing time: 0 ms
Print table: 1316 ms

Ka->BKa

[a] (K] [BI (>}
(1ol

Make table: 0 ms
Total time: 1550 ms

Make table: 16 ms
Total time: 1082 ms

Make table: 16 ms
Total time: 1149 ms

Make table: 0 ms
Total time: 1316 ms

i57

Implementing a G1T Builder for 25

Chapter 9

Tttt i)

LEE] TABLE LER]
{oj[1y121103)

(BN SNRARRY
10110110411
114404101111
Parsing time: 0 ms Make table: 0 ms

Print table: 1050 ms Total time: 1050 ms

LR TABLE LER

(0111121131 (41
[BSARRRRRRRY DY
101t1y101101104
PSR ERUREONRY]
torjotjoltori]

Parsing time: 0 ms Make table: 16 ms
Print table: 1116 ms Total time: 1182 ms

As we see, the right results are coming out. Some formulas are theorems of Z8, and others not, as
we can see b. I suggest the reader try him- or herself the program.

158

10

A tableau-like theorem prover for ZP5

Third Law of Computer Programming:

Any given improvement costs more and takes longer.

In this chapter we'll also be discussing a C program which implements a theorem prover for ZPS,
but in a more efficient way than what was done in the last chapter for ZS. The idea is (o adopt a refutation
proof procedure, instead of building a whole truth table. Basically we'll take the tableau extension rules for
the classical case, and enlarge them adding rules to cope with the knowledge and belief operators. The
intuition for these rules comes to the conditions defined in valuation semantics.5!

This program is called TTP.ZP5, and it is very similar, on the overall structure, to the one
considered in the previous chapter (GTT . 25). The parsing mechanism is not exactly the same—{wo
important changes were made because the proof procedure makes other assumptions. The big change,
ofcourse, is that we no longer build and display a GTT, but use this tableau procedure to get a simple “yes”
or “no” as whether some wif is valid in ZPS or not. The main loop of the program does the following
things:)

. reads a formula (string) from the standard input;

. parses the formula, transforming the read string into a tree-like internal representation;
. runs the tableau proof procedure; and
. prints the answer on the screen.

10.1 Data Structures and main ()

We examine first some macros and the globals.

51 pTp . 2p5 is bascd on an older version of FTL, a tablcau theorem prover (or the classncal proposmonal logic writicn by J.
udclmaier and myself, ([HdMB89)), but it underwent extensive iting to cope with m ies. In lar, 1 would like to
mention that some tricks to cut branches uscd in later versions of FTL are not being implemented here.

159

Chapter 10

10.1.1 Macros

Some things are going to remain the same as in the previous program (like length of strings). We
don’t need Max_LINES and MAX_RoWws anymore, but as new stuff have the following:

d#define EMPTY (-2)

#define LMK -3 /* left marker */
#define RMK (~4) /* right marker */
tdefine L_SUB 1

fdefine R_SUB 2

fdefine UND 6 /* negation */
fdefine KNW 7 /* knowledge */
fdefine BEL 8 /* belief */
fdefine U_KNW 9 /* knowledge, used */
fdefine U_BEL 10 /* bellef, used */
tdefine USD 11

As the reader may have noticed, also the “codes” for the operators has changed: first, from the
classical functors, only conjunction remained. The reason is that formulas will be being rewritten on
parsing, so we eliminate negations, disjunctions and implications. As a side effect of this policy, I'll be
Icaving equivalences out & simplicity (cf. latcr on parsing). And second, for knowledge and belief we also
have an y_knw and a u_BEL: this shall show the search mechanism that the corresponding wffs were
already processed in the branch. usp has the same function, but for other wiTs. :

Now, if we take a look at the listing of macros.h (in Appendix C) we'll find that there is much
more. I'll discuss some of them macros when opportunity arises; I can’t do this here without first
explaining how the program is supposed to work.

10.12 Globais

The global variables which we’ll be using are:

short WFF [STR_LEN] [3],
PRF {STR_LEN] [3],
ALT{STR_LEN],
BLF {STR_LEN],
BCKT{STR_LER]} {4},
MOD{STR_LEN] (2],
wf _ptr, ¥
prf_ptr,
mod_ptr,
alt_ptr,
beckt_ptr;

char theWff(STR_LEN); /* ipnput formula */

long kl, k2; /* for time measurement */

wrr and wf_pt r are know from the last program. But, as one can see, there are some arrays more,
in place of a1 (which stored the table). prr is where we are going to store the current branch. ALt (with
help of BLF) has to do with the possible alternate worlds we still have to consider. sckT has to do with
backtraking: when we get some branching, we store the other possibility (together with the actual state of

160

A 1ableau-like theorem prover for ZPS

affairs) on BCkT and, after geiting a contradiciton, return to it and try the other continuation. M0D stores the
modalized formulas of the branch. The other short integers are place-pointers for each of these arrays, and
the long integers are used for performance measurements.

The code of the main () function is very similar to the one in the previous program, so I won’t
bother 10 repeat it here whole. Basically, there is some startup information being outputed on the screen,
after what one reads a wif (or *;’ to end the program), and proceeds to parse it. The only change worth
mentioning appears in the following piece of code:

1f (formula(0, &su, &1) && theWfflu] == *\0')
: if { KB(WFF[1](0)))
: ++mod_ptr;

MOD(0) (0] = -WFF(1][0);
MOD[0) [1) = &;

else
{
++prf_ptr;
PRF(0]) [0]) ~ -WFF(1])[0];
PRF(0]) {1) = 1;
PRF([0] [2] = O;
}
if { tableau()}) /* all branches were closed... */
{
k2 = ({ TickCount{() - k1l) * 100) / 6;
putchar{ ‘y');
putchar(‘e');
putchar(*s');
}
else /* some open branch - tableau() returned zero */

k2 = ((TickCount() - k1l) * 100) / 6;
putchar(*n');
putchar{ ‘o');

}
printf ("\nTime: %1d ms\n\n\n", k2);

After having succesfully parsed the wif, there is a call to the proof procedure with tableau (), but,
before this, we have to add the formula Lo be (dis)proven to the branch. As I explain later on, the program
keeps modalized and unmodalized formulas of the branch in different places. That explains the line 1f (
KB{ WFF(1])[0)))..in which 1 is the address of the wif. The macro kg only checks whether the wif’s
main operalor is a modal one. If yes, the branch begins in MoD, ¢lse in PRF. Now tableau () is called, and
runs as long as there is something to do, only stopping and returning 1 if all branches are closed, or 0 if
there is an open branch which cannot be further processed.

If we had a syntax error, of course, nothing applies, so we print an error message and start again.

We are now ready 10 consider more details of the program. The other routines are in different files,
which are included (with #1nclude <file>) just before main (). They are

#include "macros.h"
#include "prototypes.h”
#include "parser.h"
#include "tableau.h®

:é}

Chapter [0

10.2 parser.h

Here we find the parsing functions. I won’t discuss it again in detail, just remark that there is two
important changes in comparison to the parser on GTT.Z5. The first one concemns the rewriting of
formulas. Why that? Simple. When processing a branch, there are three things that we can do, supposing
we take the (reasonable) strategy of processing non-branching formulas (like true conjunctions, false
implications...) first: (i) we can go through the branch and look for a true conunction. If there is none, go
again and Jook for a false implication. If there is none, etc. (i) we can go through the branch and look for
the first wif which is a true conjunction or a false implication or... (iii) we can rewrite wifs on parsing,
eliminating all booleans but, say, conjunctions. For instance, avb is equivalent t0 — (—~at—b) . So instead of
creating a new node with v ta, b), we create a node with -¢ (-a, -b). It uses the same place, and we
don’t have to care for disjunctions anymore. By the way, I'll also be using positive number to represent
true wifs, and ncgative numbers for false ones. Thus, finding 97 in a branch means we have Ta there,
whilst finding -¢ means we have a false conjunction.

The side effects of this approach are two. First, we don’t check anymore if some node is present.
For instance, if we had a formula like asb -> acb, we will end up having a tree with twice the same node,
as following:

&/ -)\&
AN AN

And it should be clear why: take the formula —a&a. On parsing, we will have a conjunction between a
positive wif a and a negative one—we have to store them in different places, so there is no need to (actually
one cannot) check whether some subformula is already there. And second, as I explained before,
equivalences are being left out—since a<->b is equivalent to, say, —{as—b) s {bt—a) one would have 1o
copy the two subformulas somewhere else, because they occur with different signs.32

10.3 tableau.h |

Let us now discuss how we implemente the tableau procedure. Before we dive inio’(parts of) the
code of the tableau () function, let us talk a little while about the way things are supposed to work.

In the semantics for ZPS, we leamned (hat, since the knowledge branch is S5, that every knowledge '
formula has the same value in all worlds, the same holding (witness monoclustered models) for belief
formulas. So we don’t have in principle to care in which world a modalized formula holds, or not. This is
the reason why 1 introduced a new stack, Mo, which is like Pre (where we store the branch), only with
modalized formulas, to begin with. But not only do modalized formulas hold in every world. Suppose we

52 But of course one can use this copy mechanism. See the function copy() on the program in the next chapter, which could
be used to accomplish this.

162

A tableau-like theorem prover for ZPS

have a true kp WIT: then p is also true in every world. So, when we process kp, we won't add p to PRF, but
equally to Mop. The only wffs which go to eRrF are those whose truth is not “universal”, so to speak, or
those which lead to branchings. I explain: suppose we have k (avb) true. Then avb is true in every world.
But we must be careful not to confuse this with either a is true in every world, or b is true in everyl What
would happen if we would add avb 1o the MoD stack and process it there. So I decided to put wffs like avb

o PRF, where we process it in every existing world, if needed. Suppose that we have the worlds 0, 1 and
2. We begin adding avb to PRF with index 2, and then store in a field in ALT that there is also 2 worlds
more to be checked, if needed. If we don’t get a contradiction with avb on world 2, we *“backirack” and try
again, adding it to PRF with index 1. If somewhen a contradiction is found, the other alteratives don't need
to be considered anymore.

Speaking of contradictions, some words about how we find one. First, we have in prF that all wffs
have an index (in the field PRF {x) {2}, x being a line). Thus, finding a and -a in PRF such thal the index of
a is equal to the index of -a means that is some world an atom is getting both truth and falsity, hence we
have a contradiction. But another possibility is when we have an atom in Moo—like processing a true kp
and adding p to Mop. So, if we find a -p in Mo, or, for that mauter, in PRF with any index, we also have
contradiction. Or not?

Would that it were so simple. Remember, we are also putting belief wffs in Mop. To see why this
constitutes a problem, suppose one has -a in world 0 (taken to be the initial one), and Ba true in MoD: a is
added to mop. Now if we say this is a contradiction, we’ll end up having Ba->a true. So here is where the
special array BLF comes into picture: there we store for each wif whether it has a “belief antecedent” or not.
(Or, to put it more precisely, whether the reduced formula belongs to an open world, or not.) Thus, when
adding a to MoD because Ba is true we make sure that we put a 1 inlo BLF (location of a). The
contradiction function also checks for this, so we won’t have problems. '

But let us take a look at parts of the code.

tableau{)
{
short gt, val, done;

done = val = 0;
bckt_ptr = CNULL;

gt is a loop variable, which we use whilé we are looking for a special wif (say, Jooking for a true
conjunction); val denotes the current number of valuations (worlds), and done is there to indicate whether
we are through with the tableau construction or not. They are set to 0 on the beginning, and bekt_ptr (the
counter in BCKT) 10 CNULL.

Now we enter the Main Tableau Loop: while not done, or as long as there are complex formulas in
a branch, we try to reduce them.

while { !done)

(if (CONTRADICTION)

(if (bckt_ptr == CNULL)
SUCCEED

else
restore_statel();

163

Chapter 10

First thing we do in a branch is 0 check where there is a contradiction. In this we call two
functions: first, iw_contrad(), which examines whether there is an “inter_world” contradiction, that is, it
begin looking the atoms in Mop. If not, we call a “normal” contradiction, cont rad (), which proofs only
the atoms in pRF.)

Now, supposing we found a contradiction, we have to look whether there is another branch in store
which we need to consider. If yes (bckt_pt r is greater than cNuLL), we restore the state as it was before
the branching, and go on. If not, this one was the last (or only) branch, so we ave done and cableaut)
returns 1.

Now suppose we didn’t find a contradiction. So we have to look for complex formulas which we
are going to process. We first Loox_FoR a true conjunction in MoD (this is what this macro does). Suppose
we find one (that is, Founp holds) at location gt. Now we have to examine which kind of formulas this
conjunction’s subformulas are. First we examine the left one: if it’s modal (x5...) then we add it to Mop. If
this is also true of the right one, same procedure. Now in this case we have to remove the old wil from
PRF, what can be accomplished in two ways: if gt is the bottom line of the branch, we just reduce the
prf_ptr by one, Else we set gt’s operator to UsD, to indicate there is nothing worth looking in this fine.33

But we also have the other possibilites. If the right subformula is not a modal one, we simply
replace the conjunction with it. Similar if the right one is modalized and the left not. Now in case both are
not modals, we have to increase the pointer in PRF by one and put the left subformula there, replacing the
conjunction with the right one.

LOOK_FOR{ UND)
i1f { FOUND) /* a true conjunction was found */
{

if (KB{ OP(gt, L_suB)))

{

T_ADD_2 MOD(LOC{ gt, L_SUB));

if (KB{ OP({ ot, R SUB)))
{

T_ADD_2_MOD(LOC(gt, R_SUB)});
UPDATE_PRE;

else
REPL_WITH(R_SUB);

}
else
if (KB({ OP{ gt, R_SUB)))
{
. T_ADD_2 MOD(LOC{ gt, R_SUB) };
REPL_WITH(L_SUB):

else

ADD_TRUE{ gt, R_SUB);
REPL_WITH(L_SUB);

33 Working with dynamic memory allocation, e.g. with a linked list, you would just remove the wif: no “blanks” between.

164

A tableau-like theorem prover for ZP5

1If we couldn’t find a true conjunction in prRr (only atoms and false conjuntions are there), the next
case is LooK_M_FOR(UND), which does the same procedure as before, only looking in Mop. (See listing
on Appendix C)

Suppose now there is also no true conjunction in mop: then we go back to pRF and try to find a false
one.

LOOK_FOR{ -UND };
1f (FOUND) /* a false conjunction found */
{

STORE_RIGHT WFF;

save_state(gt);

if (KB{ OP{ gt, L_SUB })))

{

F_ADD_2_MOD{ LOC(gt, L_SUB));

F_REPL WITH(L_SUB };

If we succeed with the search, we store the right subformula (which hold in the other branch) on
8cKT. That means increasing bckt _pt r and also storing some information there: for instance, how many
world there are, which value have the different pointers {(prf_ptr, mod_ptr, alt_ptr...), which formula
gave rise to this branch, which modals were still unprocessed, and so on. This is what STORE_RIGHT_WFF
and save_state () accomplish; see the listing in Appendix C for the actual code. Now we check which
kind of wff the left subformula is: if a modal, add to 1op, else replace the false conjunction in pRF with it.
- Now the next step, if there were no false conjunctions, it’s processing knowledge and belief wifs,
if any. So we Look_4_kB(-kNW, -BEL)—first trying the false ones:

LOOK_4_KB(-KNW, —-BEL);
Af (FOUND) /* a false modality was found */
{

1€(MOD[gt) [0) == -KNW)

{

MOD[gt) {0) = -U_KNW;
if (KB(OP_M(gt, L_SUB }))
{
F_RDD_2 _MOD(LOC_M(gt, L SUB) };
}
else
{
, ADD_SCOPE(++val, gt, -NEXT{(prf_ptr) };
1f (!KB(OP_M(gt,L_SUB)))
{ BLF(LOC_M(gt,L_SUB)] = 1; }
)

else /* == -BEL */
MOD[gt) (0] = ~U_BEL;
1f (KB(OP_M(gt, L _SUB)})
(
. F_ADD_2_MOD{ LOC_M{ gt, L_SUB));

else .

ADD_SCOPE(++val, gt, -NEXT(prf_ptr) };

Chapter 10

Having found something, we first check whether is a false knowledge or false belief wff, and act
accordingly. Suppose it is a false xNw: we replace the operator with -USD_K, to show it was already
processed (so we won't try it again!) We then look at the subformulas. If modal, add to modal, with the
care of updating BLF if necessary. That is, the scope of this false knw can be a closed world, so we have to
indicate it. Else (left subwf(T is not modal), create a new world: this is done with ADD_scoPE: val is
increased, and we add to PRr the false subwff with a new index. Then ALT is updated, as 1 mentioned in
the beginning of this section.

The case of belief is handled in a similar way.

If there were no false knowledge or beliefs, then look for true ones.

LOOK_4_KB(KNW, BEL);
1f (FOUND) /* a true modal was found */
{

1£(MOD{gt) [0) =~ KNW)

(

MOD (gt) [0]) = U_KNW;

if (OP_M{ gt, L_ SUB) != -UND }

{
T_ADD_2_MOD(LOC_M(gt, L_SUB } };

}

else

{
ADD_SCOPE{ val, gt, NEXT{ pxf_ptr));
UPDATE_ALT;

) .

else /* == BEL */

MOD (gt] [0) = U_BEL:
i1f (oP_M(gt, L_SUB) != ~UND)
t
T_ADD_2_MOD(LOC_M{ qt, L _SUB));
1f (!KB(OP_M(gt, L_SUB)))
{
BLF [LOC_M(qgt,L_SUB)] = 1;

else

ADD_SCOPE(vai, gt, NEXT(prf ptr));
UPDATE_ALT:

First we decide u‘rhelhcr we're dealing with kaw or BeL, and set the operator (o “used”. And we go
to a similar song-and-dance as before, checking for what the subformula is to see where to put it and
remebering to update ALT and BLF if need arises.

Now suppose that after this long search we found just nothing: no contradictions, and no more
formulas to be reduced in this branch. We are on our last hope:

else
if { OTHER_WORLDS)}
{

GO_NEXT_WORLD;
}
else

done = 1;

A tableau-like theorem prover for ZPS

OTHER_WORLDS looks whether ALt has another indices stored: if yes, go to the next alternative, This
results, as | mentioned above, of having added a false conjunction which is “universally true”. We have 10
check each world to see whether we get a contradiction there. The loop continues. If there are no more
worlds to be checked, (a certain field in ALT was set to 0) we are done.

And that's it.

10.4 A working session with TTPZP5

Now some examples from what happens when the program runs: let us type some formulas and see
what happens:

AARARRRR R A AN A AR AN R R AR AR AR R A AR R R AR R RN AR AR AR AT R AN R AR R RN &

* TABLEAU THEOREM PROVER FOR ZIP5S *
* Cesar A. Mortari *
* V1.0, July 1990 »

AR A RARR A AN AR AR AR R AR A RA RS R AR AR AR N AR A AR A AR AR R AR R AR RA

Syntax:
a..t (varlables), -, K, B, & v, ~>

To exit type ';'<CR>

Please type in a formula:
Ka->a

yes

Time: 0O ms

Ba->a
no
Time: 16 ms

a->Ka
no
Time: 16 ms

K{a->b)->(Ka->Kb)
yes
Time: 16 ms

B(a->b)-> (Ba->Bb)
yes
Time: 16 ms

—Ba->B—Ba
yes
Time: 0 ms

—K—Ka->K—K-a
yes
Time: 16 ms

Ka->KKa
yes
Time: 16 ms

Ba->KBa
yes
Time: 0 ms

167

Chapter 10

Ba->BKa
no
Time: 0 ms

—Ka->K-Ka
yes
Time: 0 ms

—Ba->K-Ba
yes
Time: O ms

K (avb) ~>KavKb
no
Time: 16 ms

KavKb->K {avb}
yes
Time: 16 ms

11

Implementation of the algorithm

C, n.:
A programming language that is sort of like Pascal except more
like assembly except that it isn't very much like either one,
or anything else. It is either the best language available 10
the art today, or it isn’t.

RAY SIMARD

In this chapter i'1l present a C program which uses the theorem prover for ZPS5 from the last
Chapter in order to implement the algorithm (see chapter 2) which decides whether some formula belongs
to a minimal Izelicf state or not. The algorithm itself is not very hard to implement, once we have a theorem
prover for the logic in question.

The program, which is called ALG . ZP5, is an extension of TTP.ZP5. Thg big change is that now
we first type a wif, which describes everything that Angela believes, and then we are asked for another
one. The program then checks whether the second formula belongs to Angela’s belief state, given that she
believes only the first one. The program calls the tableau procedure and retumns an “yes” or “no” . The main
loop does the following things:

. reads a formula (string) from the standard input;
. parses the formula;

. reads a second formula (string) from the standard input, and parses it;
. runs the algorithm we discussed on chapter 2; and
. prints the answer on the screen.

11.1 Data Structures and main ()

The macros I added to TTP.ZP5 are only a few of minor importance. With regard to global
variables, the only changes are:

short WFF{STR_LEN] (4],

162

Chapier 11

e;

As one can see, WFF now has another line, where we store the modal degree of the formulas. And a
global e was added, because we'll have now and then to add to WFF some new formulas. Remember, the
algorithm states that a formula A belongs to Angela’s belief state, when everything she believes is o, if
believing A is a consequence of believing a and also of the modalized subformulas of A which have
already been decided. So it’s likely that we'll end up having to store these subformulas somewhere:
suppose we get some subformula Kp of A which it doesn’t belong to Angela’s belief state. We have to
build a conjunction of Ba and —Kp, before checking whether this implies BA, and this means copying this
Kp (now with a minus sign) somewhere else.

Now the main () function has a similar code as in the previous programs, but our goals here are
other, so let us look at it. Basically there is again some startup information being outputed on the screen,
after what one reads a wif (or *; * 10 end the program), and proceeds to parse it. Then a second wiT is read
in, and it goes on like:

1f { formulaf{ 0, &u, &i) && theWff{u] == "\0')
(
printf ("\nNow type the next wff:\n");
gets{ theWff);
k1l = TickCount{);
1f (formula(0, &v, €3) && theWff[u] == °*\0')
{
a_ptr = 1;
e = wf _ptr;
WFFfe] [0) = BEL;
WFF(e][1] ~ a_ptr;
p_ptr = §;
1f (WEF(p_ptr][3) > 0)
for { 3 = 1; s <= WFFip_ptr){3}; ++s)
loop(s);
prf_ptr = bekt_ptr = mod_ptr = alt_ptr = CNULL;
e = p_ptrﬂ;
add_fi psi{ p_ptr);
prepare_tab(p ptr, 0);
for (i = 0; i < STR_LEN; ++{)
BLF{i) = 0:
if { tableau())

After having succesfully parsed the first wff, we read the second one. If it is also OK, one adds Ba
to the wrF stack, and |0(;k which degree the second wif (pointed at by p_pt r) has. Starting with 1 and
going until degree, we apply the algorithm on subwffs of the wif in p_ptr, as the algorithm
prescribes. This is what 1oop () does (we’ll discuss it afterwards). Then we add a 1 or O to of
WFF [subwff] (2], for each examined subformula, in order to inform whether it belongs or not to Angela’s
belief state. After having considered ali subwffs, we run the algorithm on the main wif: we add the
conjunctions of modalized subformulas (with add_fi_ps1 ()); the initial information for the tablcau proof
procedure is set (that is, Ba, the wff we are examining,.and 50 on, are added to the stacks PRF or MOD,
depending on their main operator). Finally, tableau () is called, and the answer is printed.

We are now ready to consider more details of the program. The other routines are in several files,
which are included (with #include <f11e>)just before main (). They are

170

#include "macros.h®
#include "prototypes.h™
#include "parser.h®
#include "tableau.h"
#include "subf.h"

Implementation of the algorithm

Everything is (almost) the same; the new functions which implement the algorithm were added
. together in subf. h. A small change was made in parser. h: now the modal degree of a wif is automatically
computed on parsing. (See listing on Apendix D.) The file tableau.h is the same. So let us look at what is

new.
112 subf.h

We have three functions in this file. The first one is 1cop:

void loop{ s) /*
______________ ./
short s;

short p, 3:

p = a_ptr+l;
while (p <= p ptr)
{
prf_ptr = bckt_ptr = mod_ptr = alt ptr = CNULL;
if (WFFIp)l[3) == s && KB{ WFF(p] (0]))
{
add_fi psi{ WEF(pl(1l});
prepare_tab(p, 1);
WFF(p] {2) =~ tableau();

+4p;

Loop runs with an index s which denotes the degree which we are interested in. It makes a loop
with index p from the place where our @ is stored until p_pt r, which points to the second wff (the one we
are trying 1o decided wheter it’s in Angela’s belief state). If the wif at p is a modalized one and its degree is
equals to s, we add to wFF its already decided modal subformulas (for degree 1 this is just nothing),
prepare the stacks and call tableau (). Then set WFF{p] {2) to whichever value (1 or 0) tableau ()
returns. And go.on until all wffs of degree s have been processed. Back to the main loop, loop is called

again with s+1, and so on.

Let us now look at add_£1_psi (), which is responsible for adding to wrr modal subformulas (of a

certain wff) which have already been decided.

vold add_fi psi(p) /*

short p;
(
short 1, r;

if (ATOMIC(WFF(p] (0]))
return;

i1f { KB(WFF{p] (0])

{

r = e;

171

Chapter 11

1 = copyt{ WFFpl {1}):
tie;
1f (WFF[p}[2) == 1)
WFF[e] (0] = PST(WFF(pl(0])
else
WEF (e] (01 = NGT{ WEF(pl (0]);
WFF{e)[1) = 1;
+ie;
WFF[e] (0] = UND;
WFF{e] (1) = r:
WFF{e}[2] = e-1; N
add_fi psl(WFF(pl(l))s

else /* conjunction */

add_fi_psi(WFF{pl (1]);
add_f1_psl(WFFip][2]);

If the wif p points at is atomic, it has obviously no modal subwifs, so we exit. Else, if we are
considering some knowledge of belief formula, make a copy of it in the wrF array (we have to work with
copies, of course). And call add_£i_psi () on the subformulas. If the formula being considered is a
conjunction, call add_fi_psi ()on its subformulas.

The other two function sin subf . h are, first, copy (), which just does what its name says. (Why
this is needed was already discussed. See its coding on Appendix C.) And the other is prepare_tab (),
which just add wffs to the cormect arrays (PRF ot MoD) before calling tableau ().

And that's it.

11.3 A working session with ALG.ZP5

Now some examples from what happens when the program runs: let us type some formulas and see
what happens:

R R ST R TS R Y

* BELIEF STATE ALGORITHM FOR ZP5 *
* Cesar A. Mortari *
. V1.0, Auvgust 1990 *

AR AN AR R RN R AN R R R R AR R AR AN RN R N A AR AR R R R AR A RN R A AN IRk h ok
s

Syntax:
a..t (varlables), —, K, B, &, v, ->, <>

To exit type ';'<CR>

Please type in your ‘'alpha’:

a

Now type the next wff:

Ba .
yes

Time: 16 ms

Please type in your ‘alpha':
agb

172

Now type the next wff:
Be

no

Time: 16 ms

Please type in your 'alpha':
akb

Now type the next wff:
=Bc

yes

Time: 16 ms

Please type in your ‘'alpha‘:
aéb

Now type the next wff:
B—Bc

yes

Time: 16 ms

Please type in your ‘alpha':
aéb

Now type the next wff:
KBa

yes

Time: 16 ms

Please type in your 'alpha':
aéb

Now type the next wff:
K—Kc

yes

Time: 16 ms

Please type in your ‘'alpha':
—~Kc

Now type the next wff:
Ke

no

Time: 16 ms

Please type in your ‘alpha':
—Ke

Now type the next wff:
B—Kc

yes

Time: 16 ms

Please type in your 'alpha':
avb

Now type the next wff:
" Ba

no

Time: 33 ms

Please type in your ‘alpha’:
avb

173

Implemeniation of the algorithm

Chapier 11

tow type the next wff:
Bb

no

Time: 16 ms

Please type in your. 'alpha':
avb

Now type the next wff:
—Ba :

yes
Time: 16 ms i

Please type in your ‘alpha':
avb

Now type the next wff:
-Bb

yes

Time: 16 ms

Please type in your ‘alpha':
avb

Now type the next wff:
B{avb)

yes

Time: 16 ms

174

Final remarks

A conclusion is simply the place where someone
got tired of thinking.

A few words to conclude this work. We set out with the goal of characterizing belief states in cases
where agents have only partial information about some domain. In the course of the investigation, we saw
that there were different alternatives which enabled us to reach this goal. Not every one of them worked, or
worked equally well, for every logic, but a nice feature was that we obtained an algorithm with which to
characterize the belief states. This lead us to the other two parts of this work, which dealt, first, with
decision procedures via valuation semantics for modal and epistemic logics, and second, with
implementations of these procedures.

What could we now say more about our original goal? As the old saying goes, every solution
immediately raises more questions than we had former. So it is not surprising that this should be the case
here 100. So let me mention some open problems, or rather, some directions to further investigations.

First, it is still open whether one can find a reasonable characterization method for the logics Z, ZG
and ZP via rying to find the smallest stable set. Chances are small, because of the infinile number of
modalities, but it would be nice to have a definite answer.

Second, one should also investigate whether formulas like B(~KA—B) really behave like default
rules, which was one of the motivations to use logics of knowledge and belief. I left this question
untouched, because a thorough research on it would constitute by itself another dissertation. Supposing
thus we have an affirmative answer, one could then investigate, with respect to the different EDL-systems,
the resulting default logics.

Third, until now, as we have seen, I have kept to the case in which we consider only one agent, but
the most interes(ing situations would be of course the ones involving more, interacting agents—as, for
instance, in a distributed system. A strong suspicion, not (o say certainty, is that things will be a lot more
complicated, witness Halpern and Moses’ remarks with respect to a multi-agent, 85-based knowledge
logic.

And fourth, what happens if agents are not ideal, either not logically omniscient, or not fully
introspective? Working on this problem presupposes first of all the existence of EDLogics with respect to
which agents have these desired characleristics, and, as I had opportunity to mention, we are far from
having, for instance, reasonable non-omniscient logical systems. So an important direction for further
research is the development of “more realistic” logics of knowledge and belief—a topic which particularly
interests me, and which I pretend to consider in future works.

Appendices
and
References

A1.Z5 and Z5* are the same logic:

(25 C 75%)

1. KKA - BKA
2. KA - KKA
3. KA - BKA

(Z5* C Z5)

LKA A

2. BKA - BA
3. KA = BKA
4 KA - BA

A2. p and p* are equivalent:
@ =p%

BBA — -B-BA
B-BA'— -BBA
KB—BA — K-BBA
. B—BA -» KB—-BA
. ~BA - B-BA
—-BA - KB—BA
BA — BBA

BA - —B-BA

. B-BA = —BA

10. KB-BA — K-BA
11. -BA — K-BA

CE NS AW~

A

Some derivations

One should not clutter one’' s mind with trivialities.

G. HARMAN, Change in View

1.2 TR

1, RB, kb
m*
23 TR

db

1, Fransp
2,RK, k
p

sb
451TR
4b

1,7 TR
8, Transp, DN
9. RK, k
6,10 TR

179

Appendix A

* =p)

1. BA - BBA 4

2. BBA 5 —-B-BA db

3. BA &5 -B-BA 12 TR
4. -B—-BA - K—-B-BA p*

5. BA - K—-B-BA 34 TR
6. -BA - B—BA sb

7. -B-BA - BA 6, Transp
8. K-B—BA — KBA 7, RK, k
9. BA = KBA 58 TR

A3.+—zcp BA & —K-KA

1.KA - BA m

2. -BA 5 —KA 1, Transp

3. K(—BA — —-KA) - (K—BA - K—KA) k

4. K(—-BA - —KA) 2, RK

5. K—-BA - K—-KA 34MP '

6. -K—KA —» —K—-BA 5, Transp

7. ~BA — K—BA p*

8. -.K—BA — BA 7, Transp, DN
. 9. -K—-KA — BA 68 TR

10. K—-KA — B—-KA m

11. -B—KA -+ -K-KA 10, Transp

12. BKA— —-B—KA db

13. BKA —» —-K—-KA 11,12 TR

14. BA — BKA [

15. BA -5 —K—-KA 13,14 TR

16. BA & —K—KA 9,15, Dfes

Ad. -zcp B(BA - KA) .

1. B(KA — (BA — KA)) o (BKA — B(BA = KA)) kb

2. B(KA — (BA — KA)) Taut, RB
3. BKA -» B(BA - KA) 12 MP
4.BA - BKA c

5. BA - B(BA — KA) 34 TR
6. B(-BA — (BA - KA)) - (B—BA —» B(BA - KA)) kb

7. B(—BA - (BA — KA)) Taut, RB
8. B-BA — B(BA — KA) 6,7 MP
9. —BA -3 B-BA 5b

10. =BA - B(BA — KA) 89 TR
11. BA v —BA — B(BA — KA) 5,10 Taut
12. B(BA — K4) 11, Taut, MP

180

GTT.Z5 Listings

Real progr sdon't ¢ their code. It was hard
to write, it should be hard 1o understand.

Bl. Flle: macros.h

/" MACROS */

fdefine STR_LEN 256 /* length of strings */

fdefine MAX_LINES 64 /* max ar. of lines in a table */

ddefine MAX_ROWS 30 /* max nr. of rows in a table */

fdefine CNULL -1) /* a "pointer” to NIL */

fdefine UND 5 /* conjunction */

tdafine ODR 6 /* disjunction */

#define IMP 7 /* implication */

tdefine NEG 8 /* negation */

#define EQU 9 /* blconditional */

f#define KNW 10 /* knowledge */

#define BEL 11 /* belief */

#define P_ATOMIC(c) {c >~ 'a' && c <= 't') /* atoms on input */

#define ATOMIC{ c) {c > BEL) /* internally, atoms are

everything but connectives */

#define INIT_NODE(a,b,c) WEF{wf ptr][0] = a; WFF{wf ptr][l) = b; WFF{wf_ptr](2) = c

/4 e GLOBALS ~ —=r==s—m——mm o — %/

short WFF|STR_LEN] (3}, /* stores the tree representation of the wff #/
wf_ptr, /* pointer to current location in WFF */
TBL{MAX_ROWS) [MAX_LINES); /* the GIT */

char theWff([STR_LEN]; /* input formula */

long k1,k2,k3,k4; /* for time measurement */

B2 File: prototypes.h

/* ———— e FUNCTION PROTOTYPES ———————-———=~=-= &/

/* -— parser.h — */

tnt formula(short, short *, short *);

int form_and_or(short, short *, short * });

int rest_fd(short, short, short *, short * };

181

Appendix B

2
int rest_form(short, short, short *, short * };
int forml (short, short *, short *);
short get_place(short);
int unify (short, short);
/* -~ table.h -~ */
short make_table(veid):
volid copy_lines(short, short);
vold ., print_table(short, short j;
void displayWFF(vold });
void copy_lines(short, short);
int alphaNE({ short, short, short, short, short, short);
int gammeNE (short, short, short, short, short):
int accesK(short, short, short, short);
int accesB(short, short, short, short);
int deltasNE(short, short, short, short, short };
int batasNE(short, short, short, short, short };
int gammaP (short, short, short, short, short, short):
int alphaP{ short, short, ‘short, short, short, short j;
void spiit_lines(short, short, short);
B3. File: parser.h
/* PARSER FUNCTIONS */
,*
The parser —- formula() -- processes the input string and store it

if a wff) in the WFF array, in a treelike representation. This parser
1s based In a Prolog one developed by Franz Guenthner. The overall
structure 1s the sama, but of course we adapted it to our data
structures here.

*/

formula(xi, %o, z) /*

_____________ — ./

short xi, *xo, *z; *

short xn, zn;

if (form_ and or(xi, &xn, &zn))

{
if (rest_form{ xn, zn, %0, z) }
return 1; .
else
return 0;
}
else
return 0;

!

form and or(xit, xo, zo) /*
*/

short xi, *xo, *zo;
{
short zl, xn;

1f (form 1¢ x1, &xn, ¢zi))
{

if (rest_fd(xn, zi, %o, zo))
return 1;
)
else
return 0;

}

rest_fd(xi, zi, %o, zo) /*
*/

short x1, zi, *xo, *zo0;

(
short z, 1, old ptr;
old ptr = wf _ptr;

1f (theWff(xil) == '¢' ¢ form and or(xi+l, xo, 6z))

182

]

INIT_NODE(UND, zi, z);
1 = get_placel wf_ptr-1 };
1f (1 == CNULL }

*zo = wf_ptr++;

else
(
*z0 = 1}
wf_ptr = old ptr;
}
return 1;

else
1f (theWff([xl) == 'v' && form and_or{ xi+l, xo, &z)}
{

INIT_NODE{ ODR, zi, z};
1 = geot_place(wf ptr-1 };
1f (1 == CNULL)

*z20 = wf_ptrt+;

olse
{
*z0 = i;
wf_ptr = old ptr;
}
return 1;
else
(
*x0 = xi;
*z0 = z4;
return 1;

rest_form{ xi, zi, xo, zo) /*

short
{

*

xi, z1, *xo, *zo;
short z, old ptr, 1;
old ptr = wf _ptr;

1f ((theWff[xi] == '-') && (theWff[xl+l] == ¢>*)
& formula(xi+2, xo, &z))
{
INIT NODE{ IMP, zi, z };
1 = get place(wf ptr-1);
if (1 == CNULL)
*20 = wf_ptr++;

else
{
*z0 = 1;
wf_ptr = old ptr;
}
return 1;
}
else
1f ({ theWff[xi] == '<' } && (theWff(xi+l]) == '-')
&6 (theWff[xi+2} == '>') && formula(x1+3, %o, &z
{
INIT_NODE{ EQU, zi, z };
1 = get_place(wf_ptr-1 });
if (1 == CNULL)
*zo = wf_ptr++;
olse
{
*zo = {;
wf ptr = old ptr;
}
return 1;
}
else
{
*x0 = xi;
*zo = zi;
return 1;

183

GTT.ZS Listings

Appendix B

form_1{ xi, %o, zo)} /*
————————————— ./

short f, 1, old ptr;

old ptr = wf ptr;
1f ((unsigned char) theWwffi{xt] == (unsigned char)
{

1f (form_1(x1+1, xo, &f }}
(
INIT_NODE(NEG, f, CNULL);
1 = get_placel wf ptr-1);
if (1 == CNULL)
*z0 = wi_ptris+;

else
(
*zo = {;
wf ptr = old ptr:
}
return 1;
}
else
return 0;

}

1f { theWff[xl] == 'K'}

{
1f (form 1(xi+1, xo, &f))
{

INIT_NODE(KNW, f, CNULL);
1 = get _place(wf ptr-i);
1f (1 == CNULL)

*z0 = wf_ptr++;
else
{

*z0 = 1}

wf ptr = old ptr;
}
return(l);

}

else
return(0);

)
1f (theWff[xi] == 'B')

{ .
1f {form 1{ xi+l, xo, &f)}
{
INIT_NODE(BEL, f, CNULL);
i ~ get_place(wf ptr-1 };
if (1 == CNULL)
*20 = wl_ptr+s;
else
{
*z0 = 1;
wf ptr = old ptr;
}
return(l);
'
else

return{0);

}
1f (theWff[xi] == *(')
{
1f { formulal xi+l, xo, &f))
{
if (theWff(*x0] == ')¢)
{

++{*x0);
*z0 = f;
return 1;
}
else
return 0;

184

GTT.Z5 Listings

}
}
1f { P_ATOMIC(theWff(x1i])})
{
1 = wf_ptr-1;
while { { != CNULL && WFF[1] (0]} != theWff([xi]) }
—1;
if (1 == CNULL)
{
WEF (wf_ptr] (0] = theWwff({xi};
*z0 = wf_ptr++;
}
else
*z0 = {;
*x0 = xi+1; ’
return 1;

return 0;

short get place(ptr) /*
*

/
short ptr;

while { ptr I= CNULL ¢& WFF(ptr) (0] 1= WFF{wf_ptr}(0})
——ptr;

1f (ptr == CNULL)
return ptr;

1f (unify(WFF(ptr}(1l), WFF(wf ptr}([1])}

{

1f (WFF(WFF(ptr}(1}]1(0) == NEG)
return 1;

1f { unify(WFF{ptr) (2], WFF(wf_ptr)(2)))
return ptr;

else
return{ get_place(ptr-1 });

else
return(get_place{ ptr-l });
}

unify(x, y) /*
*

————————— /
short x, y;
{
1f (WEF(x] (0] |= WFF{y] (0])
return 0;
else
{
if (ATOMIC({ WFF(x] (0]))
return 1;
else
{
if (lunify(WEF(x) {1}, WFF(y)(1) })}
return 0;
olse
{
if (unify(WEF(x]{2], WFF[y]{2})})
return 1;
else
return 0;
}
}
}
} .
B4 Flle: outputs.h
1" ---—— Functions for printing results -----— */
void displayWFF{) /* —-- shows the contents of WFF ——
——————————————— !/

185

Appendix B

short J;

printf(~\n");
for (3 = 0:] < wf ptr: ++3)
{

swiltch{ WFF{})[0])
(

case NEG :
potchar{’ {*} ;putchar(*-*) ;putchari’])*};
break;
case KNW :
putchar(* (') ;putchar{'K’) ;putchar(*}');
break;
case BEL :
putchar (' (') ;putchar('B’') ;putchar{’)’);
break;
case UND:
putchar(*'{');putchar('s*) ;putchar(*)*);
break;
case ODR:
putchar('[*) ;putchar(*v') ;putchar{')');
break;
case IMP:
putchar{'[') ;putchar(*>*);putchar(')');
break;
case EQU: .
putchar('{*);putchar{'=");putchar(']*);
break;
default:
putchar('{*);putchar{ WFF[J}) (0] };putchar('}');
)

)

printf(™\n");

for (§ = 0; § < wf ptr; ++3)

{

switch(WFF({{] (0])
(

case NEG
case KNW
casa BEL:

case UND:

case ODR:

case IMP:

case EQU:

printf (*[%d)*, WFF[J](1]);

break;

default:

putchar(* (') ;putchar{* 'j;putchar(*'}*};

)

)

printf(*\n");

for (3 = 0; J < wf ptr; ++3)
{

switch (WFF{3) (0]
{

case UND:

case ODR:

case IMP:

case EQU:

printf (*i%d) =, WFF13)12));

break;

daffult:

putchar (' [') ;putchar(' ');putchar(’])’');

§

vold print_table{ rows, lines) /*
*/

short rows, lines;

{
short 1, §;

printf (*\n\n*** TABLE ***\n\n*});
for (§ = 0; J < rows; ++1}

186

GIT.ZS Listings

printf(*(sd)”, 3);
printf{*\n");
for (§ = 0; J < rows; ++3)
{
putchar (*-*);putchar ('-*) ;putchar(*~');

}
printf(*\n%);
for { 1 = 0; 1 < lines; ++i)

{
for {(J = 0; J < rows; ++3)
printf{=|sd|®, TBL(3}(1]);
printf (*\n%);
1
printf("\n"); .
}
BS5. File: table.h
short make_table() /*
- ./
{
Int 1, /* run variable */
rom, /* current row in the table */
line, /* current line in the table */
ad lines; /* in the modal operator cases, nr. of lines

which were added */

TBL[0}{0) = 1
TBL(0){1) = 0
line = 4;

ad lines = 0;

/* initialize first row, two lines (prop var) */

H
H

/* MAIN TABLE LOOP */
for { row = 1; row <= wf_ptr-1; ++row)

! if (row >= MAX ROWS || line >= MAX_LINES)
! printf ("\n\n*##4+ ERROR : TABLE TOO LARGE! *#awsxw).
return 0; .
:witch(WEF [row] [0]) /* swltch the connectives */
! case NEG :

for (4 = 0; 1 <= lina; ++1)
TBL(row] (1) = I'TBL{WFF{row)(1]])(1]);
break;
case UND :
for (1 = 0; 1 <= lina; ++1)
TBL{row] (1) = TBL[WFF [row) [1}](1) && TBL(WFF[row](2])](1];
break;
case ODR :
for (1 = 0; 1 <= line; ++i)
TBL{row} (1} = TBLIWFF(row){1}](1) |{ TBL(WFF(row](2]](1);
break;
casa IMP :
for (1 = 0; 1 <= 1line; ++i)
TBL(row] (1) = ITBLIWFF(row) (1)) (1) | TBLIWFF(row}(2}](1];
braak;
case EQU :
for (1 = 0; 1 <= line; ++1)
TBL{row] (1] = (TBL{WFF(row) (1]} (1] == TBL(WEF [row] [2}}[1]);
break;
case KNW :
(
for (1 = 0; 1 <= line; ++1)
1f (TBL[WFF[row]{1}][1]) == 0)
TBL[row) [{) = 0;
else
{
if (gammaNE(row, line, WFF([row]([l], 0, 1))
(
1f (deltasNE(row, line, WFF([row){1l], 0, 1))

187

Appendix B

split lines(row, line+l+ad lines, 1).
++ad_lines;
}
else
N , TBL(row] (1) = 0;
else
TBL(row] (1] = 1;

1ine = line + ad_lines;
ad_lines = 0;

break;
}
case BEL :
{
for (4 = 0; i <= line; ++1)
1f { talphaNE(row, line, WEF{row){l}, 0, 4, 1))
TBL(row) (1) = 0;
else
{
if (alphaNE(row, line, WFF[row}[1], 0, 1, 0))
{
1f (betasNE(row, line, WFF(row](1l), 0, 1))
{
split_lines{ row, line+l+ad lines, &);
++ad_lines;
I
olse
TBL(row] (1) = 0;
}
else
TBL{row] (1) = 1;
}
line = line + ad lines;
ad_lines = 0;
break;
)
default : /* Atomic propositions #/

i
copy_lines(row, line + 1);
for (1 = 0; 1 <= line; ++1 }
TBL(row) (1] = 17
iine = 2 * (line + 1) - 1;
while (i <= line }
TBL(row) (1++] = 0;

)

return ((short) line+i);

vold copy_lines{ row, lines } I:
short row, lines; !
short 1, j:
for { 1 = 0; % < lines; ++1)

for (1 = 0; J < row; ++3
TBL(3) {1 + lines] = TBL{J] (1)

alphaNE(r, 1, am, b, currLine, value) /*
*/

short r, 1, am, b, currline, value;
{
while (b <= 1 &¢& TBL[am] [b] != value)
++b;
if (b>1)
return 0; /* else we're at a line with am=value #/
if { accesB(r, 1, currline, b }}
return 1;
alse
return{ alphaNE{ r, 1, am, b+l, currlLine, value));

188

GTT.ZS Listings

}

gammaNE(r, 1, am, b, currline } /*
*/

short r, 1, am, b, currline;

{
while (b <= 1 ¢& TBL{am}{b]} t= 0) /* b is where to begin the search #*/

++b; .
if {b>1)
return 0; /% eise we're at a line with am=0 */
if (accesK{ r, i, currline, b)) /* b satisf scope of cur_line */
return 1;
else
return{ gammaNE(r, 1, am, b+l, currLine)});
’ .
accesK(r, 1, v, vn)} /* -~ that is, v<k,r>vn —
e
short r, 1, v, vn;
short 1; :
1=0;

while (1 < r &6 (WFF[{1}(0] != KW || TBL{i)[v] == TBL{i}[vn])
&6 { WFF[1](0] != BEL]| TBL{WFF(1]{1)]l(vn) == 1 }}

++1;
1f (1> 1)
return 1;
else
return 0;
}
accesB{ r, 1, v, vn)} /* -~ that 1s, v<b,r>vn —
D amt e ﬂ/
short r, 1, v, vn;
{
short 1;
1=0;

while (1 < r &6 (WFF[1}[0)} != BEL || (TBL[1}(v] == TBL[4){vn]
&6 { TBL(1}[v] != 1 || TBLIWFF{1]){1)){vn} == 1))
66 (WFE[1)[0] != KNW || { TBL{1][v] == TBL{ijivn])))

++1;
1f (1 >= 1)
return 1;
else
return 0;

}

deltasNE(r, 1, am, b, v) /*

*/
short r, 1, am, b, v;
{
short 1}
1 =0;

while (1 < r && (WFE[1) [0} != KNW || TBL{i}{v) == 1 ||
gammaP(r, 1, WFF[1){1}, O, v, am))}

+41;
1f (1> 1)
return 1;
else
return 0;

}

betasNE(r, 1, am, b, v) /*
./

short r, 1, am, b, v;
{
short i; .

1=0;
while (1 <r &6 (WEF(1]([0] != BEL || TBL{1]{v) == 1 ||
alphaP(r, 1, WFF(1){1), 0, v, am)} }}
++1;

189

Appendix B

if (1 >=1)
return 1;
else
return 0;
}
gammaP(r, 1, aq, b, v, am) /*
*/
short r, 1, aq, b, v, am;
{
while { b <= i ¢& TBL[aq}(b] i= 0)
++b;
Ifib>1)
return 0; /* elsa we're at a
if (TBL[am](b] ~= 1 && accesKk{ r, 1, v,
return 1;
else
return{ gammaP(r, 1, aq, b+l, v,
}
alphaPf{ r, 1, aq, b, v, am } /*
*/
short r, 1, aq, b, v, am;
{
while (b <= 1 && TBLlag}ib) != 0)
++b;
if (b>1)
return 0; /* else we're at a
if { TBLlam](b] ==~ 1 && accesB{ r, 1, v,
return 1;
else
return{ alphaP{ r, 1, aq, b+l, v,
}
void split lines(r, 1, v) /*
*/
short r, 1, v;
{
short J;
for { 3 =0; J < r; ++3)
TBL[J) {1] = TBL{J]Iv};
TBL(r}{v] = 1;
mLi{rl{l) = 0;
}
B6. File: main.c

1ine with aq=0 */
b) .

am));

line with aq=0 */
b))

am));

JRARARN SRS RARR AR AR AR AR IR RN AR AR R A RARREAR AR NN RN AR ARARA RN R RO

GTT.2Z5 —- Version 1.0

*
*
«
»
*
&
®
*

#1nclude
tinclude
tinclude
#include
#include

*macros.h"
"prototypes.h®
*parser.h"
*outputs.h”
“table.h*

main{)
{
short 4, 3, k, w;

*
“

Cesar A. Mortari -- May 1990 *

*

This program implements the construction of a generalized *
truth-table for the epistemic-doxastic logic Z5.

*

LT T e

GTT.ZS Listings

PEANLE (F\RAA NN AR R AR AR NG RN AL AR AR R RN AR AR RN RRRUNRRRARRR R AR A AR RO NER) o

printf (*\n* GTT BUILDER FOR 25
printf (*\n* Cesar A. Mortari
printf ("\n* V1.0, May 1990

printf{"\n\nSyntax:\n
printf ("\nTo exit type ';'<CR>\n");
printf(*\nPlease type in a formula:\n%);
for (;:)

*u)e
;
PEANLE (F\R SN AEE RO AR AR AN AR AR R RA AR RR AN AR RN R R RRA KN R AR NRK A RRN) o

a..t {variables), —~, K, B, &, v, ~>, <=>\n");

/* to take care of first input atam...*/
/* input the formula to be (dis)proven */

inftialize time counting */

time use in parsing */

make_table time */
print the contents of WFF */

/* printing time */

.

{

/* Some initializations... */

wE_ptr = 0;

WEF[0] {0] = CNULL;

gets(thewff);

1f (theWff(0) == *;) /* program ends... */
return 1 ;

/* ELSE remove blanks from theWwff */

1=0;

1=0;

while { thewff{i] != '\0']
1f (theWwff(i) != ' ')

theWff(j++] = thewff(i];

++1;

)

theWff(J] = *\0';

k1l = TickCount(); /*

1f (formula{ 0, &u, &1) && theWff(u] == '\0')

{
k2 = TickCount(); YAl
k = make_table();
k3 = TickCount(); /*
displayWrF () ; /*
print_table(wf_ptr, k);
k4 = ({ TickCount{) - k3) * 100) / &;
k3 = ((k3-k2)*100)/6;
k2 = ((k2-k1)*100)/6;
printf(*Parsing time: %id ms“, k2);
printf(“\tMake table: %ld ms*, k3);
printf {(*\nOutput time: %Sld ms=, kd4);
printf{*\tTotal time: %ld ms\n\n®,k2+k3+kd);

}

else /* 1t was not a wff, so try again..
printf (*\nSyntax error...\n\n%);

}

191

Ci.

i

fdefine

tdefine
tdefine
ddefine
tdefine
fdefine
fdefine
tdefine
fdefine
fdefine
fdefine
fdefine
idafine
#define

tdefine
idef ine
fdefine
tdefine
fdefine
tdefine

fdefine
tdefine

#define

ddefine

fdefine

fdefine T

fdefine

tdefine

File:

macros.h

MACROS

STR_LEN 256

CNULL {-1)
EMPTY {-2)

0 1
58

°'§E%§§

c'w

m
[
O D U

-

P_ATOMIC(¢)
ATOMIC(¢)

NEXT{ 1)
NEXT M{ 1)
oP(1, x)
oPM(1, x)

oc(1, x)
Loc_M(1, x)

KB(x }

INIT_NODE{a,b,c)
F_MOD{ x }
_MOD{ x)
SUCCEED

LOOK_FOR(x)

/* length of strings

TTP.ZP5 Listings

Lubarsky's Law of Cybernetic Enthomology:

There is always one more bug.

*/

*

/* a “polnter” to NIL */

/* left marker */
/* right marker */

/* biconditional */
/* negation %/

/* knowledge */

/* belief */

/* knowledge, used */

/* balief, used */

(c> 'a' &6 c <= 't')
{c>USD If ¢ <-USD)

WEF [PRF (1] (1]](0]
WEE (MOD (1] [1]] (0]

WEF (WEF [PRF[4] [1]] (x]](0}

WEF (WFF (MOD (1] (1]1(x]110]

WEF [PRE (1) (11) [x])
WEF[MOD{1) (1)) x]

{ % == KNW || x == ~-KNW || x == BEL || x == -BEL)

WEF [wf_ptr] (0] = a;
WEF [wf ptr}(1} = b;
WEF (wf_ptr}(2] = c

{ MOD([x] (0] == -KNW

\

11 MoD(x] [0) == -BEL)

{ MOD{x]) [0) == KNW || MOD[x][0] == BEL }

{ done = 1; return 1; }

gt = prf_ptr;

192

\

#define LOOK M FOR{ x)

TTP.ZP5 Listings

while { gt != CNULL && PRF{gt) [0} != x) \
—gt

gt = mod_ptr; \

while (gt != CNULL && MOD[gt]{0] != x } \
—gt

fdefine LOOK 4 KB(x, ¥) gt = mod ptr; \
while { gt != CNULL && MOD([gt]{0) != x && MOD(gt} (0] != y)
—gt
tdefine FOUND gt != CNULL
#deflne ADD TRUE(i, x } ++prf_ptr;
PRF [prf_ptr](2) = PRF(U(Z), \
PRF(prf_ptr){1) = LOC{ 4, x); A

#define REPL WITH(x)

tdefine F_REPL_WITH{ x }

#define ADD MODAL(i, x }

#dafine ADD_SCOPE(a, 1, o }

#define T_ADD_2 MOD(x)

#define F_ADD_2 MOD(x }

#define TM_REPL WITH(1, X)

#define STORE_RIGHT WFF

#define UPDATE_PRF

fdefine UPDATE_ALT

#define OTHER_WORLDS

#define GO_NEXT_WORLD

PRF(prf_ptr){0) = NEXT{ prf_ptr)

PRF[gt]) (1)
PRF[gt] [0]

= wc(gt, x };: \
= NEXT{ gt)

PRF{gt]) [1)
PRF (gt] [0)

= wcigt, x); \
= -NEXT(gt }

++prf_ptr; \
PRF(prf_ptr]{2] = 0; \
PRF(prf_ptr]{1) = LOC M{ {, x); \
PRF(prf_ptr) (0] = NEXT{ prf ptr)

++prf_ptr;

PRF [prf _ptr)(2) =
PRF (prf_ptr) (1) =
PRF (prf_ptr)[0) =

++mod_ptr; \
MOD [mod ptr)il) =
MOD [mod_ptr) (0) =

\

a; \

LC M1, 13;
o

x 0\
NEXT_M(mod_ptr }

umod_ptx} \
MOD [mod _ptr) i1} =
MOD [mod_ptr) [0} =

x; \
-NEXT_M({ mod_ptr)

MOD(1] (1) = LOC_M{ 1, x); \
MOD([1] [0] = NEXT M(1);

++bckt_ptr; \
If { KB{ OP{ gt, R_SUB)) } A
BCKT [bckt_ptr][3) = KNW; \
else \
BCKT[bckt_ptr) (3] = PRF(qt](Z], \

BCKT (bekt_ptr] (0] = gt;
BCKT (bekt_ptrl (2] = HFF(PRElgtl {111¢21;
BCKT([bckt_ptr] {1} = -WFF[BCKT[bckt_ptr](2]] (0]

1f { gt == prf_ptr)
else PRF[gt] (0] = USD

--prf_ptr; \

ALT(++alt_ptr] = val; \
ALT[++alt_ptr] = prf_ptr-1; \
\
\

ALT(++alt_ptr] = mod ptr;
ALT[++alt_ptr] = bckt ptr;
ALT(++alt_ptr] = prf ptr; \
ALT(++alt_ptr] = PRF(prf_ptr](1);\
ALT[++alt_ptr] = PRF([prf_ptr] (0]

ALT{alt ptr-6] > 0

—-ALT[alt_ptr-6]; \

prf_ptr = ALT[alt_ptr-5]; A\

mod_ptr = ALT[alt_ptr-4]; \

bckt_ptr = ALTlalt ptr-3}; \

PRF (ALT[alt_ptr-2]) (0] = ALT[alt_ptr-1]; \
PRF [ALT{alt_ptr-2]]}{1] = ALT[alt ptr}; \
PRE(ALT{alt_ptr-2)}(2} = ALT(alt_ptr-6]

193

Appendix C

fdefine CONTRADICTION iw_contrad(mod _ptr, prf ptr) |{ contrad(prf_ptr }

fdefine NON CONTRAD p2 i= CNULL && (PRF[p2}{0} + PRFi{p}{0} i= O [I PRF[p2][2) != PRFip}[2))

/¥ ——=————w——- GLOBAL§ ——m—————mre——— ./

short WFF{STR_LEN] (3], /* stores the tree representation of the wff */
PRF [STR_LEN) {3],
ALT[STR_LEN],
BLF[STR_LEN},

BCKT (STR_LEN] (4], /% where to save states in branching */
MOD [STR_LEN] (2],
wi_ptr, /* pointer to current location in WFF *7
prf_ptr,
mod_ptr,
alt_ptr,
bekt_ptr;
char thew(f {STR_LEN}; /% input formula */
long k1, k2; /* for time measurement */
C2. File: prototypes.h
A ———————— e FONCTION PROTOTYPES -————————~m——mme L
Al —~ parser.h ——-- #/
int formula{ short, short *, short *);
int form and_or{ short, short *, short *);
int rest _fd(short, short, short *, short *);
int rest form(short, short, short %, short *);

int forml(short, short %, short *);
A ~—- tableau.h —-—— #/

int tableau{ void);

int contrad{ short };

int iw_contrad(short, short):

vold save_state(short }:

void restore state(vold);

A —- main.¢ —-— */

int matin(void);

C3. File: parser.h

"+ PARSER FUNCTIONS */

formula(xi, xo, z) /*
_____________ *f
short i, %*xo, *2;

{

short xn, zn;

if (form and_or{ »i, &xn, &zn } }
{

if (rest_form{ xn, zn, xo0, z))

return 1;
else
return 0;
}
else
return 0;

194

TTP.ZPS Listings

foom_and or{ xi, xo, zo) /*
*/

short xi, *xo, *z0;
(
short z1, xn;

if (form 1{ xi, &xn, &zi))

{
. 1f (rest _fd(xn, zi, x0, 20))
return 1;
}
else
return 0; .

}

rest_fd{ xi, zl1, xo, zo } /*
*/

short xi, zi, *xo, *zo;
{
short z;

1f { theWff(xi) ==~ '¢' && form and or{ xi+l, xo, &z))
{

INIT NODE(UWD, 21, z);
*20 = wf_ptr++;
return 1;

else
1f (theWff(xi} == *v' && form and or(xi+l, xo, &z)}

INIT NODE(-UND, zi, z); /* avb = —~{—at-b) */
WEF([21)(0) = -(WFF{21)(0));
WEF([2] [0) = -(WFF[z][0]);
*20 = wi_ptr++;
return 1;

else

*x0 = xi;
*z0 = z1;
return 1;
}
)

rest _form{ xi, 21, xo, zo0) /*
»

short x1i, zi, #*xo, *zo;
{

short z;

Af ((theWffixi) == '=') && (theWff[xi+l] == *>')
&& formula{ x1+2, xo, &z))
{
INIT NODE{ -UND, z1, z); /* a->b = —({ae—b) */
WEF{z) [0) = -(WFF[z][0))};
*z0 = wf_ptr++;
return 1;

}

elsa
if ((theWff(xl] == '<') && (theWff([xi+l) == '-')
& (theWff[xi+2] == '>') && formula{ xi+3, xo, &z })

INIT NODE(EQU, 21, z);
*20 = wi_ptr++;
return 1;

*x0 = xi;
*z0 = zi;
return 1;

}

form 1{ x1, xo, zo) /*
________________ !/

s
bl
A

Appendix C

short

Cé.

/e

x1, *xo0, *z0;

short f;

1f { (unsigned char) theWff[xi] == {unsigned char} '—°)
{

1f (form 1(xi+1, xo, &f }}
{
WEE[f) (0) = -(WFF(£]{0]) };
*z0 = f;
return 1;
}
else
return 0;

}
1f (theWwff(xi] == 'k')
(

if (form 1(xi+l, xo, &f })
{
INIT_NODE(¥nw, f, CNULL);
*20 = wf_ptré+;
return(l);
}
else
return 0;

}
1€ (theWwff[xi] == *B')
{
if (form 1(xi+l, xo, &f })
{
INIT _NOOE(BEL, f, CNULL);
*z0 = wf_ptre+;
return 1;
)
else
return 0;

}

1€ (theWff[xi]) == *(*)

{
1f (formula{ xi+1, xo, &f))
{

1f (thoWff{*xo} == *)' }
|

++(*x0);
*z0 = f;
return 1;
}
else
return 0;

¥
}
Af (P_ATOMIC(theWff[xi]))
i

WFE (W _ptr) (0] = theWff(xi);
*z0 = wf_ptr++;
*xo = xi+1;

return 1;

else
return 0;

Flle: tableau.h

PROVER STUFF */

I*

tableau(} is the function whoe does the job. As long as there are
branches closlng and backtracking points, it will run. It stops
(returning zero} when some branch is kept open -~ i.e., no
contradictions and no more wffs to split —- or {then returning one)
when ali branches led to contradictions and there is nothing more
to do (no more stored branches}.

196

*/

tableau ()

short

TTP.ZPS Listings

gt, val, done;

done = val = 0;

bckt_ptr = CNULL;

while (fdone)
{ /*dabug(); */
1f { CONTRADICTION)

{

if (bckt_ptr == CNULL) /* and nothing ls stored on BKCT; i.e., */
SUCCEED /* no more branching...

else

restore_state();

LOOK_FOR(UND);
if { FOUND) /* a ture conjunction, found */

{

1f (
{

}
else
if (
{

KB{ OP{ gt, L SUB)))

T_ADD_2 MOD(LOC(gt, L_SUB))¢
if | (op(gt, RSUB)))
{

T_ADD_2_MOD(LoC{ gt, R_SUB));
UPDATE_PRF;

eise

REPL_WITH(R_SUB);

KB(OP{ gt, R SUB }))

T_ADD_2_MOD(LOC(gt, R_SUB));
REPL_WITH(L_SUB);

ADD_TRUE(gt, R_SUB);
REPL_WITH(L_SUB);

LOOK_M_FOR(UND);

if
{

FOUND)

1€ { OP_M(gt, L_SUB) != -UND)
{
if (OP_ M(gt, R SUB) !~ -UnD)

T_ADD_2_MOD(LOC{ gt, L_SUB });
™ _REPL_WITH(gt, R_SUB);

else

ADD_MODAL{ gt, R_SUB };
TM_REPL WITH(gt, L_SUB);

}

else

1f (OP_M{ gt, RSUB) != -UND }

{
ADD_MODAL(gt, L_SUB); ®
T™M_REPL_WITH(gt, R_SUB);

else

ADD_MODAL(gt, L_SUB);
ADD_MODAL(gt, R _SUB);

197

Appendix C

LOOK_FOR(-UND };
it (FOuND) /* a false conjunction found */
{

STORE_RIGHT_WFF;

save_stato(gt):

if (XB{ OP{ gt, L_SUB)))
{

F_ADD_2_MOD(LOC{ gt, L SUB });
}
else
{

F_REPL WITH(I_SUB };
}

else /* now we have modals */

LOOK_4_KB{ -XNW, -BEL };

Af (FOOND }

{
1£{ MOD{gt) (0] == ~KNW)
|

MOD[gt] [0} = -U_law;
1f (KB(OP_M(gt, L_SUB)) }
{
F_ADD_2_MOD(LOC_M{ gt, L SUB) };

else

{
ADD_SCOPE(++val, gt, -NEXTt prf _ptr));
1f { !KB(OP_M(gt,L _SUB)))
{

)

BLF[LOC_M(gt,L SUB)] = 1;
i
else /* == -BEL */

MoD{gt] [0) = -U_BEL:
3f (XB{ OP_M(gt, L _SUB)))
i
F_ADD' 2_MOD{ LOC_M(gt, L_SUB));

else
{
ADD_SCOPE(++val, gt, -NEXT(prf ptr))

LOOK_4_XB(MNW, BEL);
if { FOUND) /* a true pl was found */
{

1f(MOD([gt) [0) == KNW)

i

HoD{gt] (0] = U ¥,
1f { OP_M(gt, L_SUB } != —UND)
i

)

alse

{

T_ADD_2 MOD{ LOC_M{ gt, L _SUB) };

ADD_SCOPE{ val, gt, NEXT{ prf ptr } };
UPDATE_ALT;
}

else /* == BEL */
MoD[gt][0] = U BEL;

1f (OP_M(gt, L SUB) != -UND)
(

198

TTP.ZPS Listings

T_ADD_2 MOD(LOC_ M{ gt, L SUB));
if ¢ 'KB{ OP_M(gt, L SUB }) }

BLF [LOC_M(gt,L SUB)} = 1;

ADD_SCOPE (val, gt, NEXT{ prf_ptr });
UPDATE_ALT;

}

else

Af (OTHER_WORLDS }
{

}

else

GO_NEXT_WORLD;

done = 1;

}
)
return 0;

}

contrad{ p) /*
D ———— l/
short p;

short p2, 1;

while (p != CNULL && IATOMIC{ PRF{p) (0]))

P
if (p == CNULL)
return 0;

p2 = p-l;
while { NON_CONTRAD)
--p2;
if (p2 != ONULL)
return 1;
else
return{ contrad{ --p)};
}

iw contrad(m, p) /*
o e e e e st e e e e e R
short p;
{

short p2, 4;

while (m != CNULL && !ATOMIC(MOD([m)[0)))

—m;
if (m == CNULL }
return 0;

p2 = m~1;
vwhlle (p2 != CNULL &6 (MOD([p2) (0} + MOD[m]{0) != 0))

--p2;
if (p2 != CNULL)
return 1;

P2 = p;
while{ p2 != CNULL && { PRF([p2) {0} + MOD[m){0) != O || ((BLF[PRF(p2] (1)) == 1 ({ PRF(p2] (2}
== 0) & BLF[MOD(m](1}} == 1)))
-p2;
if (p2 != CNULL)
return 1;
else
return{ 1lw_contrad{ --m, p));

199

Appendix C

void save_state{ r) /*

short r:
{

short {;
* ++bckt_ptr;

BCKT[bckt_ptr] (0] = LMK;

BCKT[bckt _ptr) {1} = PRF[r](0):

BCKT[bckt_ptr]{2] = PRF[r}(1):

BCKT[bekt_ptr) {3] = PRE([r][2):

if (r == prf ptr &6 XB{ OP(r, R SUB)})
-—prf_ptr; /* beta is last line on PRF */

/* now save the modals */

{f (mod_ptr > CNULL)
for (1 = 0; 1 <= mod ptr; ++1)
{

++bckt_ptr;

BCKT (bckt_ptr) [0) = USD;
BCKT{bckt_ptr]ll] = 1i;
BCKT([bckt_ptr] (2] = MOD(1](0);
BCKT[bckt_ptr) (3) = MOD{1]{1];

}

++bckt_ptr;

BCKT [bckt_ptr) (0) = RMX;

BCKT[bckt ptr] (1) = prf_ptr;

BCKT([bckt_ptr] (2] = mod ptr;

BCKT{bckt_ptr) {3] = alt_ptr;
}

vold restore_state() /*
__________ ./

prf_ptr = BCKT{bckt ptr){1];
mod_ptr = BCKT[bckt_ptr]{2]);
alt_ptr = BCKT[bckt ptr){3];
—bekt,_ptr;
while (BCKT(bckt ptr}(0) != IMK)
{
1f { BCKT[bckt _ptr) {0) == USD)
{
MOD {BCKT [bekt_ptr) (1)) (0) = BCKT(bekt_ptr)[2];
MOD [BCKT [bekt_ptr) (1)) (1) = BCKT([bckt_ptr) [3]):

else
{
PRF [BCKT [bckt_ptr) [0)) [0) ~ BCKT[bckt ptr)(1):
PRF [BCKT [(bckt_ptr}(0)) [1) = BCKT[bekt_ptr)(2);
PRF |BCKT [bekt_ptr) [0)112) = BCKTibckt_ptr](3);
)
--bckt_ptr;
}
~—bckt_ptr;

1f (xB(BCKT{bekt _ptrl{l] })

{
PRF {BCKT {bckt_ptr) [0]1(0) = USD;
+smod_ptr;
MoD{mod ptr) [0) = BCXT[bckt _ptr)(1):
Mop{mod_ptrl(1] = BCKT [bekt_ptri(2):

PRF[BCKT [bckt_ptr] (0]) [0] = BCKT[bckt_ptr) (1);
PRF(BCKT [bckt_ptr] (0]) (1] = BCKT[bckt _ptr])(2]);

}
1f { bekt_ptr > 0)
{

BCKT{bckt_ptr) (1) = BCKT[bekt_ptr-1) (1};
BCKT(bckt_ptr)(2) = BCKT(bcke ptr-1)(2};
BCKT{bckt_ptr) {3) = BCKT{bckt_ptr-1}13);
BCKT(bekt_ptr-1][0) = BCKT[bokt_ptr) [0];
BCKT[bekt_ptr-1){1) = BCKT(bckt_ptr+l](1]:
BCKT(bekt_ptr-1]{2] = BCKT(bckt ptr+l](2];

200

TTP.ZPS Listings

BCKT(bckt_pte-1] [3) = BCKT[bekt_ptr+l)[3);
BCKT[bekt_ptr] [0] = RMK;

}
olse
~—bckt_ptr;
}
C5. File: main.c

JRRAAAR R AR SRR R AR AR AR KRR AR A AN A AR AR AR KRR SRR AR AR AR A AR R AR AR

TTP.ZP5 -- Version 1.0
Cesar A. Mortari -~ July 1990

prover for the eplstemic-doxastlic loglc ZPS.

N

*
*
*
*
* This program implements a tableau-like theoram
*
*
*
*

AR R AR AR AR R AR AR AR R AR A AA R R AR R LR R R AR AR NN AR R RN R Rk k)

/¥ e e TTP.ZP5 INCLUDES ——mwmmmmm— e #/

#include “macros.h*
#include “prototypes.h®
#include “parser.h*
#include "tableau.h®

main ()
{
short 1, 3, u;

PLANEL (TARA A AR AR A AR AR AR AL RN AN ARARRR AN AR AR RARARARA RN AR R AR)

printf(*\n* TABLEAU THEOREM PROVER FOR ZPS)
printf(*\n* Cesar A. Mortar} ")
printf ("\n* v1.0, July 1990 *e) .
PLANLE (AN AR AR AN A AR AN AR ARSI AR AR RN AR A AR AR RS NE R AR R RN R RN RRRAARD) o
printf {(*\n\nSyntax:\n a..t (variables), —, K, B, &, v, —>\n%);

printf ("\nTo exit type ';'<CR>\n");
printf(*\nPlease type in a formula:\n"};
for (;:
{

/* Some initializations... */

wf_ptr = 0;
prf_ptr = bekt _ptr = mod_ptr = alt_ptr = CNULL;

for { 1 = 0; 1 < STR_LEN; ++1)

BLF[1]) = 0;
gets(thewff }; /* input the formula to be (dis)proven */
1f { theWff[0] == ';) /* program ends... */

return 1 ;

/* ELSE remove blanks from theWff */

1 =0;

j=0;

while (theWff[i) != *\0')

(
if (theWff[1) I= "' *)

theWff(3++] = theWffiil;

+41;

)
theWff{j] = *\u';

kl = TickCount(}; /* initlalize time counting */
1f (formula(0, &u, &1) && theWffiu) == '\0')
{

1f (KB{ WFF[4}10)))
(

01

spperdin C

else

++mod_ptr;
MOD[0) (0] = -WFF(4](0];
won{o} {1} = 4;

else

+prf_ptr;

PRF(0] (0] = -WFF[1][0};
PRE(0} (1) = 4;

PRF[0] (2} = O;

}
1f (tableau()) /* all branches were successfully closed...
{

k2 = {{ TickCount{} - k1 } * 100) / 6;

putchar{ 'y* });

putchar{ ‘e);

putchar(°s*);

else /* some open branch - tableau{) returned zero
k2 = {(TickCount{() - k1) % 100) / 6;
putchar{ 'n' });
putchar{ ‘o' };

printf(*\nTime: %1d ms\n\n\n*, k2};

/* 1t was not a wff, so try again... */
printf(*\nSyntax error...\n\n*);

202

*/

D

ALG.ZP5 Listings

434 Law of Compusing:
Anything that can go wr
Error: Seg ion violation — Core dumped

DI File: subf.h

vold loop{ s) /*
———— e e —ae !/
short s;
(

short p, J;

P = a_ptr+l;

while { p <= p ptr)

{
prf_ptr = bckt_ptr = mod ptr = alt_ptr = CNULL;
1f (WFF[p) (3] == s && KB{ WFF[p] (0] } }
{

add_f1 psi(WEF(pl(l});
prepare_tab(p, 1 });
/td wEE(): %/
1f (tableau())

WEE [p) (2] = 1;
else

WEF [p) (2] = 0;

+4p;
}
vold add f1 psi{ p) /*

if (ATOMIC{ WEE(p} (0] 1}
return;
if (KB(WEF{p){0] }}
{
r=e;
1 = copy(WEF([p] [1]):
++e;
1f (WFF(p)[2) ==~ 1)
WEF [e] [0) = PST(WFF(p] (0]);
else
. WFF{e]{0] = NGT(WFF(p]{0));
WEF (0] [1]) = 1;
++a;
WEF[e] (0] = uND;
WEF[e] (1) = r;
WFF{e]{2]) = e-1;

202

Appendix D

short
short

}

add_f1 psi(WFF(p) (1] }:
else /% conjunction ¢/

add_f1 psi(WEF{pj{1] }:
add fi_psi(WrF(p) (2) s

copy(1}
1

short i, r;

1f (ATOMIC(WEF(1][0] })

{
++o;
WFF [e] [0] = WFF(1)(0};
return e;

}

alse

if { KB{ WFF[1][0])}

{
1 = copy(WFF[1}(1]);
++0;
WEF{e}{0) = WFF(1}{0]):
WFF{e) (1] = 1;
return e;

1 = copy{ WFF{i}[1]):
r = copy{ WFF(1][2]);
++a;

WFFle]{0) = WFF{1]{0);
WEF [e] [1] ~ 1;
wrFle]) [2] = ;

return e;

p:

short §;
if { WFF{e}|0) == BEL) /* Ba 1s alone ; no fi psil
{

++mod ptr;

oD [mod_ptr] {0) = WFF[e] {0):
MOD [mod_ptr] {11 = e;

alse

{
++prf_ptr;
PRF {prf_ptr]) (0] = WFF{e](0];
PRF [prf_ptr) (1] = e:
PRF{prf ptr](2] = 0;

i

J=copy (P

):
if (x ¢& WEF(J](0] < 0)
WFF[31(0] = -WFF[]](0);
Raa-H
WEF(e] [0} = BEL;
WEF(e]) [1] = 3;
++mod_ptr:
MoD {mod_ptr} (0] = -BEL;
MOD[mod_ptr] (1) = e;

204

ALG.ZPS Listings

D2 - File: main.c
/lﬂl't."l.'ﬂ‘."..'.ﬂﬁﬂ.llﬁl‘.ﬁ.'ﬁ...ﬂ.ﬂ.".‘l.l!l'll.il!"ﬂlﬂl.

ALG.ZP5 ~- Version 1.0
Cesar A. Mortarl -~ August 1990

whether some wff belongs to some bellef state
in the epistamic-doxastic logic ZPS.

P R

*
*
*
*
* This program implements the algorithm to decide
*
~
*
*
*

ARNNARRRR R RN AR KRR AR RN NN AR AR R AR AR A RN RARARR R AR RN ANR R ANk R)

I e ALG.ZPS5 INCLUDES ——mm-~mmm— — #/

#include “macroa.h®
#include “"prototypes.h®
#include "parser.h”
#include *tableau.h*
#inciude "subf.h*

main(}
{
short 1, 3, u, s;

PLANCE (SANAR AR AR RN A RN R AR R AR R AR A AR R AN AR AN AR RN R IR AR AR R RN NI AAD)

printf{"\n# BELIEF STATE ALGORITHM FOR ZP5 **=);
printf {"\n#* Cesar A. Mortari *=);
printf{*\n* V1.0, August 1990),
ptlntf(-\nlﬁil.!!!!!tllllt..tﬁﬁi'.l'ltt!!!!!ttﬂﬁtﬁtﬁttlﬁtﬁﬁﬁﬁ!ll")’-
printf{"\n\nSyntax:\n a..t (variables), -, K, B, &, v, =>\n%);
printf ("\nTo exit type ';°'<CR>\n"};

for {::

/* Soma initializations... */

wf_ptr = 0;
prf_ptr = bckt_ptr = mod ptr = alt ptr = a_ptr = p ptr = CNULL;

for (1 = 0; 1 < STR_LEN; ++1)
WEF(1)(2) = WFF(1)(3) = BLF(1] = O;
printf{~\nPlease type in your ‘alpha':\n%);

gets{ theWff);
1f { theWff{0] == ';")
return 1 ;

/* ELSE remove blanka from theWff */
1=0;
3=0;
while { theWffii] != '\0')
{
if (thewff(i) != ' *)
theWEf (J++]} = theWff{l);
++1;

}

theWwtf{j) = *\0';

if (formula{ 0, &u, &1 } && theWwffiu] == *\Q')
{

printf{"\nNow type the next wff:\n");
gets(thewff);

k1l = TickCount(); /* initialize time counting */
1f (formula(0, &u, &)) && theWff[u] == *\0*)
{

aptr = {; /* add Ba to WFF */

e = wf ptr;

WFF [e]} [0] = BEL;
WEFle] (1) = a_ptr;

205

Appendix D

p_ptr = 32
if (WFF[p_ptri[3) > 0)
for { 8 = 17 3 <= WFF[p_ptr)[3]); ++s)
loopl s };
pri_ptr = bekt_ptr = mod_ptr = alt ptr = CNULL;
e = p_ptr+l;
add_fi psi{ p ptr };
prepare_tab(p ptr, 0);
for { 1 = 0; 1 < STR_LEN; ++1 }
BLF(i) = 0;
/4d_wEE () s/
if (tableau())

{
k2 = ([TickCount{} - k1) * 100) / 6;
putchar{ °y°® };
putchar{ ‘e*);
putchar{ 's®);
}
else
{

k2 = {({ TickCount() - k1)} * 100) / 6;
putchar{ *n*);
putchar{ ‘o');

1
printf (*\nTime: %1d ms\n\n\n*, k2):

else printf(*\nSyntax error...\n\n"};

206

[AB75]

[A183]

[Bar63}
[Bi65]

[BL82]

(BS84)
[Ch80]
(Chi63]
(Eb74)
(FH85)

[Fi83]

[Fu88]

[FV85])

E

References

A bibliography is usually a list of dull, dry books
placed at the end of a dull tedious book, assuring the reader
that if he reads the listed books he will be more bored still.

MURRAY LEINSTER, The Forgotten Planet

ANDERSON, AR. & BELNAP, N.I). Entailment, the Logic of Relevance and Necessity.
Princeton, Princeton University Press, 1975.

ALLEN, James F. “Maintaining Knowledge about Temporal Intervals”. Communications of the
ACM, 26(11): 832-843, 1983.

BARNES, W.H.F. “Knowing". The Philosophical Review, 72(1): 3-16, 1963.

BINKLEY, Robent. “A Theory of practical reason”. The Philosophical Review, 74: 423-448,
1965.

BRACHMAN, Ronald & LEVESQUE, Hector. “Competence in Knowledge representation”.
Proceedings of the National Conference on Artificial Intelligence, 1982, pp. 189-192.

BuLL, R. & SEGERBERQ, K. “Basic Modal Logic™. In [GG84], pp. 1-88.

CHELLAS, B. Modal Logic. Cambridge, Cambridge University Press, 1980.

CHISHOLM, R. “The Logic of Knowing”. The Journal of Philosophy, 60(25): 773-795, 1963.
EBERLE, R.A. “A Logic of Believing, Knowing and Inferring”. Synthese 26: 356382, 1974,.

FAGIN, R. & HALPERN, 1.Y. “Belief, awareness, and limited reasoning”. Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, 1985, pp. 491-501.

FITTING, Melvin. Proof Methods for Modal and Intuitionistic Logics. Dordrecht, D, Reidel,
1983,

FUHRMAN, André. Relevant Logics, Modal Logics, & Theory Change. Department of
Philosophy and Automated Reasoning Project, Research School of Social Sciences, Australian
National University, 1988.

FAGIN, Ronald & VARDI, Moshe Y. “An internal semantics for modal logic: preliminary report”.
IBM Research Report RJ 4656 (49664), 1985,

207

Appendix E

{Fv86]

{Ga86)
(GG84)

[Gi8T)
[GLBSS5)

[Go87)
[Ha86a)

[Ha86b)
[Har86]

{HC72}

[Hek78)
[HdMB89)

[Hi62)

[Hi70)
[Hi73)

(Hi75}
[Hi86)
{(HM84]

[HMBS}

FPAGIN, Ronald & VARDIi, Moshe Y. “Knowledge and implicit knowledge in a distributed
environment: Preliminary Report”. In [Ha86a), pp. 187-206.

GALLIER, Jean H. Logic for Computer Science. New York, Harper & Row, 1986.

GABBAY, D. & GUENTHNER, F. (eds.) Handbook of Philosophical Logic, Vol. II. Dordrecht,
D. Reidel, 1984.

GINSBERQ, Matthew L. (ed.) Readings in N ic R ing. Los Altos, Ca., Morgan
Kaufmann, 1987.

GEGROEFF, M., LANSKY, A., BESSIERE, P. “A procedural logic”. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, 1985, pp. 516-523.

GOLDBLATT, Robert. Logics of time and computation. CSLI1 Lecture Notes 7. Stanford, 1987.
HALPERN, 1.Y. (ed.) Proceedings of the Conference on Theoretical Aspecst of Reasoning about
Knowledge . Los Altos, Ca., Morgan Kaufmann, 1986.

HALPERN, J.Y. “Reasoning about knowledge: an overview™. In [Ha86a], pp. 1-17.

HARMAN, Gilbert. Change in View: Prlncipl!s of Reasoning. Cambridge, Mass., The MIT
Press, 1986.

HUGHES, G.E. & CRESSWELL, M.J. An Introduction to Modal Logic. 2" ed. London,
Methuen, 1972.

HAACK, Susan. Philosophy of Logics. Cambridge, Cambridge University Press, 1978.

HUDELMAIER, J. & MORTARI, C.A. “FTL: a theorem prover por classical propositional logic”.
Unpublished manuscript, 1989.

HINTIKKA, Jaakko. Knowledge and Belief: an introduction to the logic of the two notions.
Ithaca, N.Y., Comel University Press, 1962.

HINTIKKA, Jaakko. “Knowledge, Belief, and Logical Consequence™. Ajatus, 32: 32-47, 1970.

HINTIKKA, J. “Surface Semantics: Definition and Its Motivation". In: LEBLANC, Hughes (ed.)
Truth, Syntax and Modality. North-Holland, Amsterdam, 1973, pp. 128-147.

HINTIKKA, J. “Impossible possible worlds vindicated™, Journal of Philosophical Logic 4: 475-
84, 1975.

HINTIKKA, Jaakko. “Reasoning about knowliedge in Philosophy: the paradigm of epistemic
logic”. In [Ha86a), pp. 63-80.

HALPERN,). & MOSES, Y. “Towards a theory of knowledge and ignorance”. IBM Research
Report RJ 4448 (48136), 1984.

HALPERN, J. & MOSES, Y. “A guide to the modal logics of knowledge and betief: preliminary
draft”. Proceedings of the Ninth International Joint Conference on Artificial Intelligence, 1985,

-
pp. 480-90.

SRY SR

208

[HM86)

(HMcB4)

[HS86]

(1sr}

[KK62)
{Ko82)

[Ko84]

[Ko85a)

[Ko85b]

[Ko86)

[Ko87)

[La86)

{Lem77)

[Len78]

[Len80)

[Levd4)

{LM84]

[Lo77)

References

HALPERN, J. & MOSES, Y. “Knowledge and common knowledge in a distributed
environment”. IBM Research Report RJ 4421 (47909), 1984. (Revised version, 1/2/86)

HALPERN, Joseph & MCALLESTER, David. “Likelihood, Probability, and Knowledge”.
Proceedings of the National Conference on Artificial Intelligence, 1984, pp. 137-141.

HALPERN, J.Y & SHOHAM, Y. “A propositional modal logic of time intervals”. IBM Research
Report RJ 5130 (53241), 1986.

ISRAEL, David. “A Weak Logic of Knowledge and Belief: Epistemic and Doxastic Logic for the
Yuppie Generation”. SRI International, Technical Note 359.

KNEALE, W. & KNEALE, M. The Development of Logic. Oxford, Clarendon Press, 1962.

KONOLIOE, Kurt. “Circumscriptive Ignorance”. Proceedings of the National Conference on
Artificial Intelligence, 1982, pp. 202-4.

KONOLIOE, K. “Belief and incompleteness”. SRI Artificial Intelligence Note 319, SR1
Intemational, Menlo Park, 1984.

KONOLIGE, K. “A computational theory of belief introspection™, Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, 1985, pp. 502-508.

KONOLIGE, K. “Experimental Robot Psychology”. SRI International, Technical Note 363,
1985.

KONOLIGE, K. “What Awareness isn’t: a sentential view of implicit and explicit belief”. In
(Ha86a), pp. 241-250.

KONOLIGE, K. “On the Relation Between Default and Autoepistemic Logic”. CSLI Report
CSLI-87-105, 1987.

LAKEMEYER, Gerhard. “Steps toward a first-order logic of explicit and implicit belief”. In
[Ha86al, pp. 325-340.

LEMMON, E.J. The “Lemmon Notes” : ;An Introduction to Modal Logic. (In collaboration with
Dana Scott. Edited by Krister Segerberg.) Oxford, Basil Blackwell, 1977.

LENZEN, W. “Recent work in epistemic logic”. Acta Philosophica Fennica 30, 1978, pp. 1-
219.

LENZEN, W. Glauben, Wissend und Wahrscheinlichkeit. Wien, New York, Springer Verlag,
1980.

LEVESQUE, H.J. “A logic of explicit and implicit belief”. Proceedings of the National
Conference on Artificial Intelligence, 1984, pp. 198-202.

LOPARIC,’, A. & MORTARI, C.A. “Valuations in temporal logic.” The Journal of Non-Classical
Logic, 2(1): 49-60, 1984.

LOPARIC,", A. “The method of valuations in modal logic.” In ARRUDA, A.L; DA COSTA,
N.C.A; CHUAQUI, R. MATHEMATICAL LOGIC: Proceedings of the First Brazilian
Conference. New York, Marcel Dekker, 1977.

200

Appendix E

[LR86]
{Ma66}
[MB83}

Mc8l1)

[McH69]

{MoB1]
Mo83]

[Mo84

{Mor82a}

[Mor82b]

[Ni83]
[Pel89)

[Pr68]
(Pu70]
(Qu80)

LADNER, Richard E. & REIF, John H. “The Logic of Distributed Protocols (Preliminary
Report)”. In [(Ha86a], pp. 207-222.

MAKINSON, D.C. “There are infinitely many diodorean modal functions”. Journal of Symbolic
Logic, 31(3): 406-408, 1966.

MALIK, J. & BINFORD, T.O. “Reasoning in time and space”. Proceedings of the Eighth
International Joint Conference on Artjficial Intelligence, 1983, pp. 343-345,

MCCARTHY, John. “Epistemological Problems of Artificial Intelligence”. In: WEBBER, BL. &g
NILSSON, Nils. Readings in Artificial Intelligence. Palo Alto, Tioga Publishing Co., 1981, pp.
459-465.

MCCARTHY, J. & HAYES, P.J. “Some philosophical problems from the standpoint of artificial
intelligence”. In MELTZES, B. & MITCHIE, D. (eds.) Machine Intelligence 4. Edinburgh,
Edinburgh University Press, 1969, pp. 463-502. (Reprinted in [Gi87), pp. 26-45)

MOORE, Robert C. “Reasoning about knowlege and action”. In: WEBBER, B.L.. & NILSSON,
Nils. Readings in Artificial Intelligence. Palo Alto, Tioga Publishing Co., 1981, pp. 473-477.

MOORE, R.C. “Semantical considerations on nonmonotonic logic”. Arrificial l)ntelligence. 28:
75-94 1985. (Reprinted in [Gi87], pp. 127-136.)

MOORE, R.C. “Possiblé-world semantics for autoepistemic logic™. Proceedings 1984 Non-
monotonic Reasoning Workshop. New Paltz, N.Y., 1984, pp. 344-354. (Reprinted in [Gi87],
pp- 137-142)

MORTARI, C.A. Valoragdes para alguns sistemas de l6gica do tempo. (Valuations for some
systems of temporal logical) Master dissertation, Universidade Estadual de Campinas,,
(UNICAMP), 1982,

MORTARI, C.A. “On a system of modal-temporal logic.” In ALAS, O.T., DA CosTA, NCA.,
HONI0, C.S. Collected Papers dedicated to Professor Edison Farah on the occasion of his
retiremens. S30 Paulo, Instituto de Matemética e Estatfstica da Universidade de S3o Paulo, 1982,
pp. 21-36.

NILSSON, Martin. “A logical model of knowledge™. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, 1983, p.374-376.

PELLETIER, F.J. “Automated Modal Logic Theorem Proving in THINKER”. Unpublished
manuscript, 1989.

PRIOR, Arthur, Past, Present and Future. Oxford, Clarendon Press, 1968.
PURTILL, Richard L. “Believing the Impossible”. Ajarus, 32: 18-24, 1970.
QUINE, W.V.O. From a Logical Point of View. 2", ed., revised. Cambridge, Harvard

. University Press, 1980.

[Ra82}

RANTALA, V. “Impossible worlds semantics and logical omniscience”. Acta Philosophica
Fennica 38, 1982, pp. 106-115.

210

[RB79]
[Ro85)

[RU71]
[Sa87)

{Tho84)
(Va8s]

(Va86]
[XW83]

References

RESCHER, N. & BRANDOM, R. The Logic of Inconsistency. Rowan and Littefield, 1979.

ROSENSCHEIN, Stanley J. “Formal theories of knowledge in Al and Robotics”. SR/
International, Techincal Note 362, 1985. ‘

RESCHER, N. & URQUHART, A. Temporal Logic. New York, Wien; Springer Verlag, 1971.

SAUNDERS, Ruth Ann. Knowledge without belief: Fodor versus Piaget on cognitive
explanations of cognitive change. Ph.D. Thesis, University of Wisconsin—Madison, 1987.

THOMASON, Richmond. “Combinations of tense and modality”. In [GG84], pp. 135-165.

VARDI, M. “A model-theoretical analysis of monotonic knowledge”. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, 1985, pp. 509-512.

VARDI, M.Y. “On epistemic logic and logical omniscience”. In [Ha86a], pp. 293-305.

XIWEN, M. & WEIDE, G. “W-JS: a modal logic of knowledge”. Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, 1983, pp. 398-401.

213

Curriculum Vitae

I was bom in 1957 in Santa Maria, Rio Grande do Sul, Brazil, where 1 lived until |
was fifteen. In 1973 1 moved to Floriandpolis, capital of the state of Santa Catarina, where 1
began, in 1976, to study Philosophy at the Federal University of Santa Catarina (UFSC).

After concluding my studies in 1978, I moved in the following year to Campinas, Sdo
Paulo, where I began doing research in Logic for a master degree at the State University of
Campinas (UNICAMP). 1 got my M.A in Logic and Philosophy of Science in 1983, with a
dissertation called *“Valuation Semantics for some systems of lemporal logic™.

Even during my studies there I began teaching at the UFSC, mostly Logic, sometimes
Philosophy of Mathematics. Soon I got tenure at the Philosophy Department, and I remained
there until the end of 1985, when I got a special leave of absence to come to Tiibingen and
work for a Ph.D. at the Philosophy Faculty.

