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Abstract. Gettier’s famous examples intended to show that knowledge cannot always be 

equated with justified true belief.  The Gettier problem can also be considered as a problem for 

topological epistemic logic: If knowledge and justified belief are conceived as topological 

operators K and B on topological spaces (to be considered as universes of possible worlds), 

one may ask whether it happens that there is a proposition A such that KA ≠ A Ç BA or not. 

If this is the case, the epistemological logic defined by the topological operators K and B may 

be said to be non-traditional since there is for them a “Gettier proposition” where knowledge 

does not coincide with justified true belief. As far as we know, for the first time, this topological 

Gettier problem is discussed in Steinvold’s PhD dissertation (Steinsvold 2012). In Baltag, 

Bezhanishvili, Özgün, and Smets (2013), Steinvold’s co-derived set account is criticized since 

it can be easily “Gettierized”. Baltag et alii claim (without proof) that their topological account 

of Stalnaker’s logic KB of knowledge and belief does not have this flaw.    



   

 2 

In the following we will give some topological conditions that determine whether a topological 

KB model does or does not cope with the Gettier challenge. First, it will be shown that every 

KB model defines a (topologically slightly simplified) model that is rather similar to it but a is 

a model of traditional JTB (knowledge = justified true belief) logic of knowledge and belief. 

The existence of such doppelgangers of all KB models may be read as a qualified and partial 

topological rehabilitation of traditional JTB epistemology.   

Second, we consider the Gettier problem for a special class of models of Stalnaker’s combined 

logic of knowledge and belief KB, namely, for T0 Alexandroff spaces. We prove that, that 

almost all Alexandroff spaces do not face Gettier counterexamples.   

Third, we prove that the Stone spaces of Boolean algebras of regular closed subsets of 

Hausdorff (or T2) spaces X do not face Gettier counterexamples if the X are not pseu–

docompact, and these Stone spaces do face Gettier counterexamples for compact spaces X.   

Succinctly formulated, Stalnaker’s KB logic of knowledge and belief can avoid Gettier 

problems for some models, while it falls back to traditional pre-Gettier JTB epistemology for 

other models.  In contrast, co-derived set semantics is doomed to fail always in the sense that 

its models always fall prey to Gettier counterexamples.   

  

1. Introduction. Gettier’s problem for Topological Epistemology. Gettier’s famous examples of 

Gettier intended to show that knowledge cannot always be equated with justified true belief. In 

the past 60 years – beginning with Gettier’s paper (Gettier (1963)) a huge number of examples 

have been produced that intend to show that under certain circumstances we are inclined to 

deny that someone knows a proposition A, although he is justified to believe that A and A is  

true.1  

 

1 For a comprehensive collection of recent examples of Gettier cases see Borges, de Almeida, and Klein 

(2017). 
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The Gettier problem can also be considered as a problem for topological epistemic logic in the 

following way: If knowledge and justified belief are conceived as topological operators K and 

B on a topological space (X, OX) (to be considered as a universe of possible worlds, A Î PX 

as a proposition), one may ask whether it happens that  

KA ≠ A Ç BA  

for some proposition A, i.e., whether there is a true proposition A for which knowledge KA of 

A does not coincide with the conjunction of the propositions that A is true and that it is justified 

to believe that BA. In this case, the epistemological logic defined by the operators K and B 

may be said to be non-traditional since there is a “Gettier proposition” A that exemplifies a 

Gettier case of knowledge in which knowledge KA does not coincide with justified true belief 

A Ç BA.  

This topological Gettier problem for formal topological epistemology is of more recent vintage 

than the original Gettier problem. For instance, in the Handbook of Spatial Logic (2007) edited 

by Guram Bezhanishvili, Ian Pratt-Hartmann, and Johan van Benthem there are several 

chapters (e.g., 5, 6, 8, 9, and 10) that deal with topological logic of knowledge and belief, but 

the name of Gettier is not mentioned even once.  

Meanwhile, this has changed. In Baltag, Bezhanishvili, Özgün, and Smets (2013), the authors 

criticize the co-derived set account of Steinsvold (2012) since it always falls prey to Gettier’s 

counterexamples in the sense that according to it knowledge always coincides with justified 

true belief. More precisely, they observe (cf. Baltag et alii (2013, p.12)): 

There is another objection, maybe even more decisive, against the co-derived set 

semantics, namely that it can be easily “Gettierized”. As mentioned above,we have 

Int(A) = AÇt(A), which means that in the co-derived set interpretation, knowledge is 

exactly the same as true (justified) belief. So this semantics is easily vulnerable to all 
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the well-known Gettier-type counterexamples!  

In contrast, they seem to claim (without proof) that their topological account of Stalnaker’s 

combined logic KB of knowledge and belief which conceives belief as the possibility of 

knowledge (in their terminology B = <K>K := ¬K¬K) does not succumb to this flaw.  

To assess their claim, first, it is expedient to observe that both the co-derived set interpretation 

as well as the topological interpretation of Stalnaker’s semantics are defined for a class of 

models: co-derived set semantics is defined for the class of DSO spaces2, and the semantics of 

Baltag et al. (2013) is defined for the class of extremally disconnected (ED) spaces. It is well 

known that every DSO space is (hereditarily) extremally disconnected space but not every ED 

space is DSO. Thus, if one accepts Gettier counterexamples as genuine counterexamples for 

the traditional JTB semantics, Stalnaker’s semantics would be clearly better than the co-derived 

semantics if it is shown that there is an ED space that does not face a Gettier counterexamples. 

Baltag and his collaborators do not show this. Özgün’s simple example of an ED space (X, 

OX) that is not a DSO space is easily shown not to face Gettier’s problem in the sense that 

there is a proposition AÎ PX such that one has 

(G)     $AÎPX(KA ≠ A Ç BA) 

with respect to Stalnaker’s KB logic (cf. Özgün (2013)). Baltag and his collaborators seem to 

assume (without actually proving it) that more generally all models of KB do not face Gettier 

counterexamples. This, however, is not the case. As will be shown in this paper, there are 

infinitely many models (X, OX) of KB that do face Gettier counterexamples in the sense that 

all propositions A Î PX satisfy the negation (G)C of (G): 

 

2 A DSO-space is defined as topological space (X, OX) which is dense-in itself, i.e., for all x Î X ({x}Ï OX), 
and every derived set d(A), A Í X, is open, i.e., d(A)ÎOX.   
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(G)C      "AÎPX(KA = A Ç BA)           

Moreover, it will be shown that all models (X, OX) of KB can be topologically slightly 

modified to yield models (a(X), Oa(X)) that satisfy (G)C. These and other results, proved in the 

following, suggest that, in order to cope with the topological Gettier problem for KB, it is 

highly desirable to know more of the class of models of KB than just the fact that they have to 

be ED spaces. To offer some interesting results in this respect is the general aim of this paper. 

The first step for the realization of this project is the following distinction:  

 
(1.1) Definition. Let (X, OX) be a topological space that is a topological model of Stalnaker’s  

combined logic KB of knowledge and belief, i.e., K = Int and B = Clnt, Int the interior operator 

and Cl the closure operator of (X, OX). 

(i)  (X, OX) is a Gettier model of KB iff there is a proposition A Î PX with KA ≠ A Ç BA. 

 The class of Gettier models of KB is denoted by KB(G). 

(ii)  (X, OX) is a non-Gettier (or JTB) model of KB iff for all propositions A Î PX one has 

with KA = A Ç BA. The class of non-Gettier models of KB is denoted by KB(G)C.¨ 

In definition (1.1), (G) and (G)C are considered as possible axioms for models of Stalnaker’s 

combined logic KB of knowledge and belief.  Clearly, every model of KB (X, OX) is either a 

KB(G) model or a KB(G)C model.  

In the following we will give some topological conditions that determine whether a topological 

KB model (X, OX) is a KB(G) or a KB(G)C. Moreover, it will be shown that every KB model 

(X, OX) (be it KB(G) or KB(B)C) defines a (topologically slightly simplified) model (a(X), 

O(a)X) that is KB(G)C. Since (a(X), Oa(X)) is a topological space that is rather similar to (X, 

OX): In particular, the underlying sets X and a(X) coincide. (a(X), Oa(X)) is called the JTB 

doppelganger of (X, OX). The existence of such KB(G)C doppelgangers for all KB model may 
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be read as a qualified and partial topological rehabilitation of traditional JTB epistemology. In 

other words, from a topological perspective (traditional) JTB epistemology is a simplified 

version of post-Gettier epistemology where knowledge and true justified beli9ef are dis–

tinguished. Or, to see it from the opposite perspective, post-Gettier epistemology is a more 

sophisticated, but not essentially different version of traditional epistemology. 

(1.2) Theorem. For every KB model (X, OX) (be iit KB(G) or KB(G)C), there is a (KB(G)C 

model (a(X), Oa(X)) defined by  

                       X = a(X), Inta(X)(A) := A Ç ClInt(A), Oa(X) = {Inta(X)(A}; A ÎPX}.¨ 

 
This theorem may be considered as a genuine theorem of topological epistemology. It has no 

direct counterpart in non-topological informal epistemology. Its elementary proof depends on 

the formal properties of the topological model of knowledge used in standard modal logic S4. 

To prove the other theorems of this paper a certain amount of topology is necessary. For 

instance, several variants of the topological concept of compactness will be needed that may 

not be in the toolkit of all epistemologists. Nevertheless, before we come to present these 

technical details, let us state the general theorems of this paper in order that the reader can have 

an idea of what he may expect from this paper. 

First, we consider the Gettier problem for a special class of models of Stalnaker’s combined 

logic of knowledge and belief KB, namely, T0 Alexandroff spaces. It is well known that T0 

Alexandroff spaces are models of KB (cf. Özgün (2013)). We prove that sufficiently complex 

T0 Alexandroff spaces do not face the Gettier problem, i.e., they are models of KB(G). What is 

to understood as “sufficiently complex” will be explicitly defined in (Section 3, Definition 

(3.6). Only a small class of particularly simple T0 Alexandroff spaces turns out to be models of 

KB(G)C. The simplicity of Alexandroff spaces is measured in terms of their specialization 
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order. The proof of this theorem is elementary and uses only the fact that Alexandroff spaces 

are determined by their specialization order. 

The second theorem asserts (roughly) that the Stone space St(X(B)) of the Boolean algebra 

X(B) of the regular closed subsets of a Hausdorff topological space (X, OX) is a KB(G) model 

if (X, OX) is not pseudocompact, and St(X(B)) is a KB(G)C model if (X, OX) is compact. For 

instance, for (X, OX) the open unit interval (0, 1), St(X(B)) turns out to be a KB(G) model, 

while for X the closed compact interval [0, 1] St(X(B)) is a model of KB(G)C. More precisely, 

we will prove the following theorems: 

(1.3) Theorem. Let (X, OX) be a T0 Alexandroff space with specialization order ≤.  

(a)  If (X, OX) contains elements x, y, z with x < y < z then the KB model defined 

by (X, OX) is a KB(G) model, i.e., it does not face the Gettier problem. 

(b)  If (X, OX) does not contain a triple x < y < z then there are topologically 

nontrivial KB models defined by (X, OX) that are KB(G)C models, that face 

Gettier counterexamples, and there are other KB(G) models that are models of 

traditional JTB epistemology.¨ 

 
Informally expressed, (1.3) Theorem asserts that sufficiently complex T0 Alexandroff spaces 

(X, OX) do not face Gettier counterexamples. On the other hand, simpler Alexandroff spaces 

(X, OX) may fall prey to Gettier counterexamples. A similar qualitative pattern with respect to 

the axioms KB(G) and KB(G)C holds for general topological spaces. More precisely, we can 

prove: 

 
(1.4) Theorem. Let X be a compact Hausdorff space, and B(X) the complete Boolean algebra  

of the regular closed subsets of X. Then the Stone space St(B(X)) of B(X) defines a model of  

KB(G)C, i.e., St(B(X)) defines a JTB model for Stalnaker’s KB logic. ¨ 
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(1.5) Example. Let X = [0, 1] be the closed unit interval of the real numbers ℝ. Then the Stone 

space St(B(X)) of the Boolean algebra B(X) of regular closed subsets of X defines a model of 

KB(G)C, i.e., a model of traditional JTB epistemology.¨  

(1.6) Theorem. Let X be a locally compact Hausdorff space, and B(X) the complete Boolean 

algebra of regular closed subsets of X. If X is not pseudocompact, then St(B(X)) is a KB(G) 

model, i.e., St(B(X)) does not face the Gettier problem.¨ 

(1.7) Examples. Let X = (0, 1) be the open unit interval of the real numbers ℝ or any open 

subset of ℝn, for n ≥ 1. Then St(B(X)) is a model of KB(G) that does not face the Gettier 

problem.¨ 

For the proof of (1.4) one needs some knowledge of topological structure of the Stone space 

St(B(X)) of B(X) and some knowledge about the (Iliadis) absolutes of non-regular topological 

spaces. For the proof of (1.6), one needs detailed information of the Stone-Cech 

compactification bX of suitable non-pseudocompact spaces X. For this information we have 

to rely heavily on the pertinent mathematical literature. 

As already said, Baltag et alii (2013, 2019) present Stalnaker’s topological logic of knowledge 

and belief as if this logic (with the ClInt semantics) does not face the Gettier problem. But they 

do not prove it. They seem to believe that extremally disconnectedness of KB models is enough 

to ensure that their semantics does not face the Gettier problem. This, however, is not the case. 

In Mormann (2023) it is shown that for every topological model based on a topological space 

(X, OX) one can construct a topological model based on a “doppelganger” (a(X), Oa(X)) (with 

the same underlying set X) for which knowledge is justified true belief. In other words, formal 

topological epistemology does not get rid of Gettier counterexamples as Williamson seems to 

suggest (cf. Williamson 2015).  
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At least one achieves the following: ClInt-semantics can sometimes avoid Gettier problems if 

appropriate models are chosen, on the other hand, it falls back on traditional JTB epistemology 

if the models are simplified appropriately. In contrast, co-derived set semantics is doomed to 

fail always, in the sense that the topological models for co-derived set semantics always fall 

prey to Gettier counterexamples. This may be expressed as the assertion that co-derived set 

semantics of belief amounts to traditional pre-Gettier JTB semantics in the sense that in its 

models necessarily knowledge always coincides with true justified belief. In contrast, for ClInt-

semantics one can go beyond traditional JTB semantics by choosing topological models where 

knowledge und justified true belief can be distinguished. This is a substantial advantage of 

ClInt semantics of belief over Steinsvold’s co-derived set semantics. 

The ClInt semantics defines belief as “possibility of knowledge”. This definition is plausible 

for ED spaces, but it does not guarantee that the space X is not nodec, i.e., does not fall prey to 

the Gettier problem: Mormann’s results (2023) are easily strengthened to show that for any ED 

space X its doppelganger (a(X), Oa(X)) is an ED space as well. The move from (X, OX) to 

(a(X), Oa(X)) is shown to be topologically “small” in the sense that it amounts only to a slight 

simplification of the space’s topology. Hence, someone, who accepts Gettier examples as 

compelling arguments against traditional standard epistemology and at the same time takes 

topological epistemology seriously should look for topological models that are not based on 

nodec spaces. Thus, for partisans of Stalnaker’s KB logic it is highly desirable find ED spaces 

that are not nodec. Up to now, this task has been rather ignored in the literature.   

The simplest example of a Stone space that is not nodec is St(Pℕ), Pℕ the complete Boolean 

algebra of subsets of ℕ with ℕ a topologically discrete and countable set (that is as usual 

identified with the natural numbers ℕ).  
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In order to show that the ClInt semantics of Baltag et alii is “really better” than the co-derivative 

semantics of Steinsvold et alii one has to show that at least some ED spaces are not nodec   

spaces.       

Stalnaker (2006) did not deal with the Gettier problem for KB logic. Baltag et al. (2013, 2019) 

seem to assume that the Gettier problem does not concern Stalnaker’s combined logic of KB 

of knowledge and belief, since then models for which the equation “Knowledge = True 

Justified Belief” holds, had not been found for belief = ClInt and ED. In this paper we show 

that for many topological models the Gettier equation can easily be derived for some ED 

models.  

The organization of the paper is as follows: In section 2 we prove (1.2) Theorem. We show 

that all topological models of Stalnaker’s logic KB have topological doppelgangers that are 

models of KB(G)C, i.e., models of traditional JTB logic for which knowledge coincides with 

true justified belief. In section 3 the Gettier problem for Alexandroff spaces is treated in detail. 

In sections 4 and 5 the Gettier problem for topological models of KB based on Stone 

representation spaces is discussed. We conclude with some general remarks on the role of 

compactness for topological logic in section 6. 

 

2. Every model of KB has a doppelganger that is a model of traditional JTB epistemology.  

In this section we prove Theorem (1.2) that every model of KB has a KB(G)C doppelganger, 

i.e., a model of KB that is also a model of traditional JTB logic.  

First, for the sake of definiteness, let us recall the  basics of the syntax and  semantics of the 

modal language to be employed in the following. We consider a bimodal extension LKB of 

standard propositional logic defined by two modal operators K and B. The formulas of the 

language LKB are defined on a countable set of propositional letters PROP, Boolean operator 

¬, Ù, and the modal operators K and B by the following grammar:  
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              j:= p | ¬p | j | j Ù j | Kj | Bj |         ,            p Î PROP.                                                     

Abbreviations for the connectives Ú, ®, and « are standard. The unimodal fragments of LKB 

defined by K and B are denoted by LK and LB, respectively.   

Now, the axioms and the inference rules of Stalnaker’s system KB of a combined logic of 

knowledge and belief can be formulated as follows (cf. Stalnaker (2006), Baltag et al. (2017, 

2019): 

(2.1) Definition (Axioms and inference rules of Stalnaker’s  logic of knowledge and belief).  

(CL)  All tautologies of classical propositional logic. 

(K)   K(j → ψ) → (Kj → Kψ)         (Knowledge is additive). 

(T)   Kj → j            (Knowledge implies truth). 

(KK)   Kj → KKj            (Positive introspection of K). 

(CB)   Bj →  ¬B ¬j           (Consistency of belief). 

(PI)   Bj → KBj            (Positive introspection of B). 

(NI)  ¬ Bj → K¬ Bj          (Negative introspection of B). 

(KB)   Kj → Bj           (Knowledge implies belief). 

(FB)   Bj → BKj           (Full belief). 

Inference Rules: 

(MP)   From j and j → ψ, infer ψ.         (Modus Ponens). 

(NEC)   From j, infer Kj.          (Necessitation).¨ 
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In the topological approach to knowledge and belief, the axiom (NI) plays a special role. It has 

been shown that (NI) holds only for topological models of a very special kind, namely, models 

based on extremally disconnected spaces (ED)3 (cf. Baltag et al (2013, 2019), Stalnaker 

(2006)). All other axioms and rules of KB are satisfied by all topological spaces. The validity 

of (NI) guarantees unique definability of the belief operator, i.e., for extremally disconnected 

spaces, the belief operator is uniquely determined by the knowledge operator as ClInt (cf. 

Baltag et  alii). 

Now we going to prove Theorem (1.2). The proof is based on a result of Mormann (2023) and 

some results of Reilly and Vamanamurthy (1985) and Jankovic (1985). To set the stage, let us 

start with the following definition: 

(2.2) Proposition. Let (X, OX) be an arbitrary topological space. Define    

     a(X) := X   ,   Inta(X)(A) := A Ç IntClInt(A)       ,      Oa(X) :=  {Int a(X)(A); AÎPX}. 

Then (a(X), Oa(X)) is a topological space. The topology Oa(X) is at least as fine as the topology  

OX, i.e., Oa(X) Í OX. It may happen that Int = Inta(X). In this case, (X, OX) is called a nodec 

space. 

Proof. Check the definitions.¨ 

Obviously, the procedure of constructing doppelgangers can be iterated: from X we may move 

to a(X), a(a(X)), a(a(a(X))), … , etc. This iteration yields nothing new, however. More 

precisely, one obtains:   

 

3 Recall that a space (X, OX) is extremally disconnected (ED) iff the closure of every open set is open: ClInt(A) 
= IntClInt(A) (cf. Willard (2004, 15.G, p. 106)). 
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(2.3) Lemma. Let (X, OX) be an arbitrary topological space. Then: 

(i) Inta(a(X))(A) = Inta(X)(A)  and a(a(X)) = a(X).                   

(ii)   Inta(X)Cla(X)Inta(X)(A) =  IntClInt(A).       

Proof.  This is directly calculated from some well-known properties of the Kuratowski 

topological operators Int and Cl, see Jankovic and Hamlett (1990), Mormann (2023).¨ 

(2.4) Corollary. Let (X, OX) be an arbitrary topological space.  

(i)      Then a(X) satisfies (G)C, i.e., Inta(X)(A) = A Ç Inta(X)Cla(X)Inta(X)(A). 

(ii)     The Boolean algebra of regular open subsets of X is isomorphic to the Boolean algebra 

of regular open subsets of a(X): OX* = Oa(X)*. 

Proof. (i)    By (2.2) one has Inta(X)(A) = Inta(X)Inta(X)(A) = Inta(X)(A) Ç Inta(X)Cla(X)Inta(X)(A))                   

                =  Inta(X)Ç Inta(X)(Inta(X)Cla(X)Inta(X)(A))  = Inta(X)(A) Ç (Inta(X)Cla(X)Inta(X)(A))   

                =   Inta(X)(A)  =   A Ç IntClInt(A) = A Ç (Inta(X)Cla(X)Inta(X)(A))  by (2.2)(ii). 

           (ii)     By definition of the set of regular open subsets O*X and (2.2)(i)we have 

                      O*X = IntClInt(PX) = Inta(X)Cla(X)Inta(X)(PX) = Oa(X)*.                         ¨  

Informally expressed, (2.3) asserts that any topological space (X, OX) can be refined in such a 

way that the refined topological space (X, Oa(X)) satisfies the axiom (G)C. If (X, OX) already 

satisfies (G)C then X = a(X)).   

It is well known (see Bezhanishvili, Esakia, Gabelaia (2007)) that the modal logic corres–

ponding to nodec spaces is the extension of the standard unitary modal logic S4 by the axiom  

(Zem)      ¨p = p Ù ¨¸¨p 
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This logic is to be denoted by S4.Zem (for Zeman). The axiom (Zem) was introduced for the 

first time by J.J. Zeman (1969) as an axiom of modal logic without any reference to topology 

and epistemology.4 

The modal logic S4 may have been the first word of modal logic on the epistemological concept 

of knowledge. It has certainly not been the last one. Most epistemologists consider it as too 

weak. Instead of S4, they prefer some normal extension of S4. For example, according to 

Lenzen (1979), the “correct” logic of knowledge is isomorphic to a modal system at least as 

strong as S.4.2 and at most as strong as S4.4.  

 If one follows this line of thought, one observes that for models of KB, i.e., ED topological 

spaces (X, OX), (Zem) coincides with (G)C:  

(2.5) Lemma. Let (X, OX) be a topological model of of Stalnaker’s combined logic KB, i.e., 

an ED space. Then  

IntClInt(A) Û ClInt(A) for all A Î PX.¨ 

For extremally disconnected spaces (X, OX) the operator B := ClInt can be intuitively plausible 

interpreted as a formal model of justified belief (Stalnaker (2006)). More precisely, it is well 

known that the tandem of operators Int and ClInt satisfies for ED spaces the axioms of 

Stalnaker’s combined logic KB of knowledge and belief, in particular, the axiom of negative 

introspection (NI) (Baltag et alii (2019), Stalnaker (2006)).      

On the other hand, if one subscribes to a traditional (JTB) epistemology for which knowledge 

coincides with justified true belief and observes (2.2) one may wish to take into account also 

 

4 Another name for S4.Zem is S4.04, see Segerberg (1971, Ch.II, 7, p. 153). Further results on S4.Zem  
can be found in the papers Sobocinsky (1970) and Georgacarakos (1976).    
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(Zem) (or, equivalently KB(G)C)). That means, a traditional epistemologist may be inclined to 

favor S4.2.Zem as a good candidate for the office of the “correct” topological epistemology.  

Surprisingly, this is a path that has not been taken up to now. In order to tackle Lenzen’s 

problem of finding the “correct” logic of knowledge seriously, we have, of course, to consider 

the question: Do non-trivial models of S4.2.Zem exist? The answer to this question is Yes. 

More precisely, in Mormann (2023) it has been shown that for any space X a space a(X) exists, 

with a topology Oa(X) at least as fine as OX, that satisfies Zem. The space a(X) has very similar 

topological properties as the space (X, OX). For instance, the sets of regular open subsets of X  

and a(X) coincide. Therefore, (a(X) may be called a doppelganger of X. It will be shown that 

the doppelganger a(X) of an ED space X is also an ED space and, moreover, a KB(G)C space. 

This fact entails that also the Clnt semantics is not immune against the Gettier problem: Some 

topological models of Stalnaker’s combined logic KB of knowledge and belief do face the 

Gettier problem in the sense that for them knowledge coincides with justified true belief. Thus, 

the natural question arises: Are there any models of KB that do NOT have this weakness and 

do satisfy the “Gettier axiom” KB(G) instead of the “anti-Gettier axiom” KB(G)C ( = Zem)?  

Fortunately for partisans of ClInt semantics, who subscribe to a post-Gettier, non-traditional 

epistemology of knowledge, this is the case. In contrast to Steinvold’s co-derived set semantics 

of belief, the ClInt semantics does not always face the Gettier problem but only sometimes. To 

prove this is, however, not totally obvious, but requires some work.  

Now, we will prove (1.2) Theorem according to which for any ED space (X, OX) its 

doppelganger (X, Oa(X)) is an ED space with respect to its interior operator  

Inta(X)(A) = A Ç IntClInt(A) 

It is well known that ED spaces and nodec spaces can both be characterized in topological terms: 

(2.6) Definition (Jankovic (1985, Section 2, p. 83). Let (X, OX) be a topological space, A Í X.  
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(i)     The set A is said to be semi-open iff A Í ClInt(A). The class of semi-open sets of (X,     

OX) will be denoted by SOX. 

(ii)     The set A Í X is said to be pre-open iff A Í IntCl(A). The class of pre-open sets of (X,     

OX) will be denoted by POX. 

Clearly, open sets are semi-open and pre-open. The opposite implication does not hold in 

general. For instance, consider the half-open interval A := [0, 1) of the Euclidean real line. 

Then one has [0, 1) = A Í ClInt(A) = [0, 1] and IntCl(A) = (0, 1) Í A = [0, 1), i.e., A is semi-

open and pre-open. A is not, however, open. Rather, we get: 

(2.7) Proposition (Jankovic (1985, Proposition 2.1, Corollary 2.5), Reilly and Vamanamurthy 

(1985, Theorem 3)).   

(i)  SO(X, Oa(X)X) = SO(X, OX). 

(ii)  PO(X, Oa(X)X) = PO(X, OX). 

(iii)  Oa(X) = SO(X) Ç PO(X).¨ 

(2.8) Proposition ((Jankovic (1985, Proposition 4.1). A space (X, OX) is ED iff SO(X, OX) Í 

PO(X, OX).¨ 

Putting (2.6) and (2.7) together we eventually obtain: 

(2.9) Proposition. A space (X, OX) is ED iff (X, Oa(X)X) is ED.¨ 

(2.3) immediately implies that O*X and O*a(X) coincide. This and (2.8)) may be considered 

as compelling arguments that (a(X), Oa(X)) is called a (topological) doppelganger of (X, OX).     
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Thus, many topological models of KB logic do face the Gettier problem: Just take any ED 

space (X, OX) as a model of KB and consider its doppelganger a(X). Then a(X) is also a KB 

model that is also a model of (G)C! In a(X) knowledge Inta(X)(A) of any A always coincides 

with true justified belief A Ç ClInt(A) = A Ç Cla(X)Inta(X)(A).   

In other words, (1.2) Theorem holds and many models of Stalnaker’s logic KB satisfy the 

axiom KB(G)C (= Zem)! Stalnaker’s logic KB turns out not to be per se immune against Gettier 

counterexamples. In other words, it is neutral with respect to the problem whether traditional 

JTB logic or post-Gettier logic should be considered as the “correct” logic of knowledge and 

belief. The best of what we show we can is that there are some topological models of KB that 

are models of KB(G)C. This is indeed the case as we will show in the next section in which 

most Alexandroff spaces will be shown to have this property. In the subsequent sections we 

will prove analogous results for another class of ED spaces that may be preferable for certain 

reasons (to be explained in due time) over Alexandroff spaces, 

 

3. The Gettier problem for Alexandroff spaces. In this and the subsequent sections we will 

prove theorems (1.3) – (1.7)). To set the stage let us first recall the exact definition of 

Alexandroff spaces:  

(3.1) Definition. A topological space (X, OX) is an Alexandroff space iff the interior operator 

Int distributes over arbitrary intersections, i.e., Int(ÇAl) = ÇInt(Al).¨ 

(3.2) Definition. Every T0 topological space (X, OX) defines a partial order ≤ on X defined by 

x ≤ y := x Î cl(y). This (partial) order is called the specialization order of the topological space 

(X, OX). For A Í X define  
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        ­A := {y; $x (x Î A and x ≤  y}    and     ¯A := {y; $x (x Î A and x ≥ y}.¨ 

 
It is well known that for a T0 Alexandroff space (X, OX) its open sets OX are just the upper 

sets of the specialization order ≤, i.e.:  

(3.3)                                                 AÎ OX Û A = ­A.    

In Özgün (2013) the following proposition is proved that is very useful for KB logic: 

(3.4) Proposition. Let (X, OX) be a T0 Alexandroff space. Then (X, OX) is an ED space.  

Proof. Özgün (2013, (Proposition 3, p. 22))¨ 

Thus, by a well-known result of Baltag et al. ((2019, (Theorem 5, p. 223)) T0 Alexandroff 

spaces provide a rich arsenal for KB models.  

In order to show that ClInt semantics is more general than the DSO semantics of Steinsvold et 

alii, let us reconsider an example of a small T0 Alexandroff space (X, OX) given by Özgün to 

show that not all ED spaces are DSO spaces. Her example can be easily shown to cope also 

with the challenge of Gettier counterexamples: 

(3.5) Proposition. Let (X, OX) be defined by X = {1, 2, 3} and OX = {Ø, X, {2}, {1, 2}}. Then 

(X, OX) is a KB(G)C model, i.e., (X, OX) does not face Gettier counterexamples.¨    

Proof. Consider A = {2, 3}. Then Int(A) = {2} and ClInt(A) = Cl({2}) = {1, 2, 3} = X. 

Therefore A Ç Cl(Int(A)) = {2, 3} ≠ {2} = Int(A), i.e., (X, OX) does not satify S4.Zem = (G).¨ 

 
This toy example shows that there are ED spaces that are not nodec. It may be considered, 

however, as not fully convincing to show that the ClInt semantics of KB does not always fall 

prey to Gettier counterexamples, since its small underlying space (X, OX) of three elements is 



 19 

certainly unrealistic for a topological universe of possible worlds. However, Özgün’s result can 

be easily generalized for many T0 Alexandroff spaces: 

 

(3.6) Definition. Let (X, OX) be a T0 Alexandroff space with specialization order ≤. The space 

(X, OX) satisfies the xyz-condition iff there are elements x, y, z Î X such that x < y < z.(X 

 
(3.7) Proposition. Let (X, OX) be a T0 Alexandroff space with specialization order ≤. Assume 

(X, OX) satisfies the xyz-condition. Then (X, OX) is not a nodec space.  

That is, A is not nodec.  

Proof.  Let x, y, z ÎX and x < y < z, and ­z :=  {w; z ≤ w}. Then we calculate:  

       Int({x} È ­z)) = ­z, and ({x} È ­z) Ç ClInt({x} È ­z)  

                               = ({x} È ­z) Ç Cl(­z)  = ({x} È ­z) Ç ¯­z)   =   ({x} È ­z).   

Hence, for A := Int({x} È ­z) one has Int(A) ≠ A Ç ClInt((A), i.e., (X, OX) is not a nodec 
space.¨ 
 

Clearly, there are many T0 Alexandroff spaces that satisfy the premise of (3.). Hence, we can 

be certain that many T0 Alexandroff spaces can cope with Gettier’s challenge. But it may be 

further observed that (3.7) is not a necessary condition for coping with Gettier. Even some 

Alexandroff spaces with a simpler specialization order turn out to be not nodec. An important 

example is the so-called “digital line” or “Khalimsky line”. The Khalimsky line may be 

considered as a starting point for digital topology (cf. Kong et al. (1991), Kopperman (1994), 

Melin (2008)). It is a polar space (Mormann (2021)) that can be defined as follows:  

(3.8) Proposition. Let ℤ = {..., -2, -1, 0, 1, 2, ...} be the set of integers. Denote the set of odd 

numbers by 2ℤ + 1 = {...-3, -1, 1, 3, ...}. Define the map m: ℤ®2ℤ +1 by                      

                        m(2n) := {2n-1, 2n+1} ,               m(2n+1) := {2n+1}. 
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For A Í ℤ define  

                                  x Î Int(A) := x Î A and  "p(p Î m(x) Þ p Î A) 

Then Int defines a topology on ℤ (cf. Rumfitt (2015, p. 243), Mormann (2021, Proposition 

2.2)). The corresponding topological space (ℤ, Oℤ) is called the “digital line” or the 

“Khalimsky line”. (ℤ, Oℤ) is not nodec.  

Proof. To prove that (ℤ, Oℤ) is not nodec, consider the following example. By definition, the 

singletons of the points 2n+1are open, while the singletons of the points 2n are closed. Now 

consider the subset A Í ℤ defined by A := {2, 3, 4, 5, 6}.  One calculates: 

Int(A) = {3, 4, 5}         ,         IntCl{3, 4, 5} = {2, 3, 4, 5, 6}.   

Hence one obtains  

Int(A) = {3, 4, 5} ≠ A Ç IntCl(A) = {2, 3, 4, 5, 6} Ç {2, 3, 4, 5, 6}.   

That is, Int(A) ≠ A Ç IntCl(A), i.e., the Khalimsky line (ℤ, Oℤ) is not a nodec space.¨ 

Some simple but non-trivial Alexandroff spaces, however, are nodec spaces. Consider the 

following example: Denote by ℤ again the set of integers. Define a topology on ℤ as follows. 

Let 3ℤ, 3ℤ +1, 3ℤ + 2 the equivalence classes of integers mod 3 of rest 0, 1, and 2, respectively. 

Define the numbers 0, 1, and 2 as paradigmatic representants of 3ℤ, 3ℤ +1, 3ℤ + 2, respectively. 

Subsets of 3ℤ, 3ℤ +1, 3ℤ +2 are defined to be open iff they contain 0, 1, or 2, respectively. 

Then we obtain: 

(3.9) Proposition. The space (ℤ, Oℤ) is a polar space that is nodec.¨ 

 (3.6) ensures that Stalnaker’s KB logic possesses a class of models that do not face the Gettier 

problem. This argument may perhaps be considered as not fully satisfying for coping with 
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Gettier’s challenge, since being Alexandroff is a very strong assumption and for (X, OX) to be 

interpreted as a universe of possible worlds. It seems difficult to render plausible. Moreover, 

as Steinsvold has argued compellingly, the epistemic capacity of an agent that is based on an 

Alexandroff space, may be assessed as unrealistically high (“immodest”).  

Indeed, if an epistemic agent is represented by a T0 Alexandroff topology this agent’s epistemic 

capacities are assumed to be very powerful. That this agent’s topology is closed under infinite 

intersections of open sets suggests that she is able to put infinitely many pieces of evidence 

into a single one single piece. Compared with the closure of non-Alexandroff topology that is 

limited to deal only with finitely many pieces of evidence we may say that the Alexandroff 

agent’s epistemic capacities are rather unlimited and “immodest”. Thus, following Steinsvold 

(2020) we may conclude that we should not use Alexandroff topologies if we want to represent 

an epistemic agent with (more or less) realistic and modest epistemic capacities. Or, to put it 

differently, ClInt semantics scores better than co-derivative semantics with respect to the 

challenge posed by Gettier situations, the price to pay for this advantage is considerably high. 

It would be highly desirable to have a class of KB models that do not exhibit the weakness of 

immodesty and are able to cope with Gettier’s counterexamples as well.  These KB(G) models 

could be considered as really better than those based on DSO spaces.  

In the following two sections we will tackle this problem and eventually identify a class of KB 

models that are not Alexandroff but nevertheless can cope with Gettier’s challenge. 

 

 

4. The Gettier Problem for Stone Spaces I. In this section we begin with studying the Gettier 

problem for another class of models of KB logic, namely, models of KB based on Stone 

representation spaces of certain complete Boolean algebras. In this section, we will determine 

a class of Stone spaces which do face Gettier counterexamples.   
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The simplest example of a completely regular, compact Hausdorff space is probably the closed 

unit interval X = [0, 1]. Applying (1.6) to [0, 1] we get that the Stone space St(B[0, 1]) is a 

KB(G)C model that faces the Gettier problem for Stalnaker’s KB logic. For this model, 

traditional epistemology is valid, i.e., one has always that KA = A Ç BA.  This proves (1.7).  

(4.1) Definition (Porter and Woods 1988, Ch. 6.5 (a), p. 452). Let X and Y be topological 

spaces and let f be a (not necessarily continuous) surjection from X onto Y. f is called 

irreducible iff for A a proper closed subset of X, always f(A) ≠ Y.¨ 

(4.2) Definition (Mioduszewski and Rudolf (1969, I, §6, 7). A (not necessarily continuous) 

map f:X®Y from (X, OX) to (Y, OY) is called an HJ-map (Henriksen-Jerison map) iff 

             IntXf -1(ClY(V))  Í ClY(f-1(V)) for each regular open subset VÎ O*(Y).¨ 

(4.3) Lemma. The map ida:X®a(X) is a HJ-map. 

Proof.   One has to prove IntX(Cla(X)(V))  Í Cla(X)(V)). That is obviously true.¨    

(4.4) Definition (Mioduszewski and Rudolf (1969, I, §5). A (not necessarily continuous) map 

f:X®Y from the topological X into the topological space Y is called q-continuous iff for each 

x Î X and each open neighborhoood V of f(x) there exists an open neighborhood U of x such 

that f(ClX(U)) Í ClY(V).¨ 

(4.5) Lemma. The map ida:X®a(X) is q-continuous for all topological spaces (X, OX). 

Proof. Assume x Î Inta(X)(V) = V Ç IntClInt(V). Define U:= IntClInt(V). Then clearly x Î U. 

and Cl(U) = ClIntClInt(V) = Cla(X)Inta(X)(V) Í Cla(X)(V). Hence, id is q-continuous.¨                     
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Clearly, a continuous map f:X®Y is q-continuous. The converse does not hold in general. In 

particular, the map ida:X®a(X) is not continuous but only is q-continuous. Rather, we get: If 

Y is a regular space, then a q-continuous map is continuous.    

(4.6) Definition. An ED-resolution of a Hausdorff space (Z, OZ) is an irreducible q-continuous 

map p:(E(Z), OE(Z))®(Z, O(Z)), such that (E(Z), OE(Z)) is ED and Hausdorff.¨ 

The existence of an ED-resolution for each Hausdorff space was given by Iliadis (1963). A 

detailed presentation of Iliadis resolution can be found in Iliadis and Fomin (1966) and Csaszar 

(1991). Iliadis’ construction can be briefly described as follows. Let (Z, OZ) be a Hausdorff 

space. Denote by E(Z) the set of all convergent open ultrafilters of Z. The sets OU :={x Î E(Z), 

U Îx} form, by definition, a base of open sets in E(Z).This defines a topological space ((E(Z), 

OR(Z))). Since Z is Hausdorff, there is a well-defined natural map p: E(Z)®Z defined by  

p(x}) := Ç{Cl(U); U Îx}.  

Moreover, it can be proved that p is irreducible and q-continuous and E(Z) is ED. The space 

E(Z) is compact iff if Z is almost compact (Csaszar (1991a, Theorem 2.6)). 

Mioduzewski and Rudolf (1969) constructed a modified Iliadis resolution p:E§(Z)®Z by 

improving the topology E(O(Z)) of the original resolution (E(Z), O(E(Z)) in such a way that 

the natural map  p is rendered continuous. This improved resolution will be used to prove 

Theorem (1.5). 

To obtain the topology O§(E(Z)) of the improved Iliadis resolution E§(Z):= (E(Z), O§(E(Z)) 

of Z, Mioduszewski and Rudolf enlarged  O(E(Z)) by the sets p-1(U), U Î OZ. Then they 

proved in detail that E§(Z) = (E(Z), O§(E(Z)) is still an ED-resolution of Z (see Mioduszewski 

and Rudolf (1969), (3.1) – (3.3)), i.e., p: (E§(Z), O§(E(Z))®(Z, O(Z)) is irreducible and 

continuous (and not only q-continuous).  
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This improved resolution has a universal property for certain ED spaces E. This property we 

will exploit for ED spaces of the form E = a(E(X)), with X being a compact Hausdorff space. 

Explicitly, it can be proved: 

 
       (4.7) Theorem (Mioduszewski and Rudolf (1969)). Let p:E§(a(E(X))®a(E(X)) be the conti–

nuous improved Iliadis resolution of the ED Hausdorff space a(E(X))), and let 

ida:E(X)®a(E(X)) be the (q-continuous) HJ-map defined in (4.2). Then there exists a unique 

continuous map h§: E(X)®E§(a(E(X)) such that 

                                   E§(a(E(X))  

                 ida = h§• p                                        h§                 ¯ p      

         E(X)¾¾ida¾®a(E(X))   

Thus, the map id:E(X)®a(E(X))  is not only a q-continuous, but even a continuous map.¨ 

Since ida-1:a(E(X))®E(X) clearly is a continuous 1-1 inverse of ida:E(X)®a(E(X)) we get the 

following corollary which quenches the proof of (1.5): 

(4.8) Corollary. The map id:E(X)®a(E(X)) is a homeomorphism. Thus, E(X) is nodec space, 

i.e., Int(A)= Inta(X)(A) = A Ç IntClInt(A) for all A Í E(X). ¨ 

In a sense, Thorem (1.5) confirms the general idea that compact topological spaces are less 

complicated and better behaved than non-compact ones. Consequently, their logic of 

knowledge and belief should be simpler than that of non-compact spaces. In the next section 

we will prove the complementary part of the assertion, this conjecture will be – grosso modo 

– further confirmed by the theorems proven in the next section, where we prove that the 

epistemological logic corresponding to non-compact spaces is a non-traditional post-Gettier 

logic that does not face Gettier counterexamples. 
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5. The Gettier Problem for Stone Spaces II.  In this section we will consider some non-

compact Hausdorff spaces X for which their Boolean algebras B(X) of regular closed subsets 

of X have Stone spaces St(B(X))) that are not nodec, i.e., their models of Stalnaker’s combined 

logic of knowledge and belief are post-Gettier logic. Thereby, finally, we will have shown that 

an important class of dense-in-themselves topological universes of possible worlds do not face 

the Gettier problem. For technical reasons we assume that X fulfils, besides of not being 

pseudocompact, certain further conditions. Examples of such spaces include the countable 

topologically trivial space ℕ of natural numbers, the Euclidean spaces ℝn with their standard 

Euclidean topology, and many more.  

More precisely, in this section it is assumed throughout that X is a locally compact and 

completely regular, but not compact space.5 These assumptions ensure that the Stone-Cech 

compactification bX of X is well behaved, and the following holds: 

Let RC(X) the complete Boolean algebra of regular closed subsets of X. Then it is well-known 

that B(X) is isomorphic to the Boolean algebra of regular closed sets RC(bX) of the Stone-

Cech compactification (bX) of X. Let E(X) be the projective cover (Iliadis absolute) of X. Let 

St(X) be the Stone space of RC(bX).  According to Wheeler (1979, p. 568) one has  

(5.1)     St(X) = bE(X) = E(bX)) 

By Theorem 1(e) and (1)(i) of Wheeler (1979) we have E(X) is locally compact and not 

pseudocompact, since X is assumed to be locally compact and not pseudocompact. As 

discussed in the previous section for each completely regular Hausdorff space X there is an ED 

 

5 A paradigmatic example of such a space is the open unit interval (0, 1) of the real numbers ℝ. 
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space E(X), called the (Iliadis) absolute of X and a perfect irreducible map E(X)®X. 

Moreover, E(X) is completely regular (Iliadis and Fomin 1966, Note 3, p.44). 

(5.2) Definition. A set A Í X is C-embedded in (X, OX) iff for every continuous function 

f:A® ℝ there is a continuous extension f:X® ℝ.¨ 

(5.3) Proposition (Theorem 1.1.3, (7), p. 2, Angoa-Amador et al. 2018). X is pseudo-compact 

iff X does not have C-embedded copies of ℕ.¨ 

 
(5.4) Proposition (Theorem 1.3.8), p.16, Angoa-Amador et al. 2018, Encyclopedia d-16, p. 28). 

Let c be the cardinal of ℝ. If X is not pseudocompact, then the remainder X* = bX – X has at 

least 2c elements.¨  

After these preparations we can prove theorem (1.6) as follows. First, we observe that not all 

points of X* are isolated, since by (5.4) this would contradict the compactness of X*. Hence, 

there is a non-isolated point a Î X*.6 The open neighborhoods of a point a Î bX - X have the 

form U(a) Ç (bX - X) with U(a) Î O(bX). The point a ÎbX - X is non-isolated in bX – X iff 

for all open neighborhoods U(a) of a there is a point a* Î U(a) with a* Î bX - X and a ≠ a*. 

Then a Ï Int(X È {a}) since = X È {a} does not contain a*. Hence Int(X È {a}) =  X. Since 

X is open and dense in bX (Gillman and Jerison (1960, 6.9(d), p. 90) one obtains:  

 
X   = Int(X È {a}) ≠ (X È {a}) Ç ClInt(X È {a})  =  (X È {a}) Ç ClInt(X)  

= (X È {a}) Ç Cl(X) = (X È {a})  Ç bX = X È {a} 

 

6 For specific cases of X much stronger assertions hold. For instance, for ℕ we have that ℕ*- ℕ has no isolated 
points at all. 
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In other words, there is subset X È{a}Í bX with Int(X È{a}) = X such that  

Int(X È{a}) ≠ (X È{a}) Ç ClInt(X È {a}) = X È {a} 

That is, bX is not a nodec space. In other words, bX is a KB(G) model of Stalnaker’s combined 

logic KB of knowledge and belief. By Wheeler (General remarks (3), p. 567, (1979)) we have  

(5.5)     E(bX) = bE(X) = St(X(B))).  

By Theorem 1 (Wheeler (1979, p.569) X is locally compact, pseudocompact etc. iff E(X) is 

locally compact, pseudocompact etc.   

Hence, we can rehearse the same argument just presented for X for the absolute E(X). Thereby 

we get that E(X) È {a} is not open for some a Î E(bX) – E(X). Thus, St(X(B)) is not nodec. 

This proves Theorem (1.6). It should be noticed that this proof essentially depends on the fact 

that for non-pseudocompact spaces the Stone-Cech compactification b(X) is extensionally 

much larger than X. It is well known that for metrical spaces compactness is equivalent to 

pseudocompactness (Angoa-Amador et al. ((2017, Proposition 1.1.13, p.8). Thus, we have 

proved (1.7). 

 

 6. Concluding Remarks. In order to determine whether the Stone space of a Boolean algebra 

is nodec or not, several variants of compactness have been essential. For metrical spaces 

compactness and pseudo-compactness are equivalent. (Angoa-Amador et al. ((2017, 

Proposition 1.1.13, p.8) 

Compactness is a sort of topological finiteness. Compact spaces are topologically more easily 

dealt with than non-compact spaces. This fact should also have logical consequences. One is 

that (roughly speaking) that non-compact spaces X do not face the Gettier problem for 

St(B(X)). 
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Gettier situations described by propositions A for which knowing that A does not coincide with 

the conjunction of believing that A and the truth that A are exceptional and rare. Topologically, 

the exceptional character of such a Gettier proposition is shown by the fact that the extension 

of A is nowhere dense in the universe of possible worlds.  

Gettier counterexamples to traditional JTB epistemology may be said to be a result of  to a kind 

of inexhaustibility of the universe of possibilities.   
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The Topology of Knowledge and Belief. To set the stage, in this section we recall the 

necessary basics of elementary set-theoretical topology that are needed for the formulation of 

the interior semantics for epistemic logic of knowledge and belief as presented by Baltag, 

Bezhanishvili, Özgün, and Smets (cf. Baltag et al. (2013, 2015, 2016, 2019)). This semantics 

is used throughout this paper. First of all, recall the definition of a topological space:	

 

(A.1) Definition. Let X be a set with power set PX. A topological space is an ordered pair (X, 

OX) with OX Í PX that satisfies the following conditions: 

(i)      Ø, X Î OX. 

(ii)     OX is closed under finite set-theoretical intersections Ç and arbitrary set-theoretical     

unions È. 

(iii)   (X, OX) is an Alexandroff space iff OX is closed under arbitrary intersections.¨ 

The elements of OX are called the open sets of the topological space (X, OX). As usual, a 

topological space (X, OX) is denoted by X, if no misunderstanding concerning the topology 

OX is possible. The set-theoretical complement AC of an open set A Í X is called a closed set. 

The set of closed subsets of (X, OX) is denoted by CX. The interior kernel operator Int and the 

closure operator Cl of (X, OX) are defined as usual: The interior kernel Int(A) of a set A Î PX 
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is the largest open set that is contained in A; the closure Cl(A) of A is the smallest closed set 

containing A.7  

(A.2) (Separation axioms). Let (X, OX) be a topological space, x, y Î X, x ≠ y. 

(i) T0 axiom: There exist an open set UÎOX such that either x Î U and y Ï U, or y Î U  

and x ÏU. 

(ii) T1 axiom: There exists open sets U, VÎ OX containing x and y respectively, such y Ï U,  

and x ÏV. 

(iii) T2  axiom: There exists disjoint open sets U, V Î OX containing x and y respectively.¨ 

Each of these axioms is independent of the axioms for a topological space, T2 implies T1, and 

T1 implies T0, the reverse does not hold. 

       

Topologies on a set X can be partially ordered set-theoretically:  

 
(A.3) Definition. Let (X, OX) and (X, O’X) two topologies on the same set X. Then OX is said  

to be coarser than O’X iff OX is a subset of O’X, i.e., OX Í O’X. If OX is coarser than O’X 

this is also expressed by saying that O’X is finer than OX.¨ 

Clearly, the coarsest topology on X is O0X = {Ø, X} and the finest topology is O1X = PX. For 

all topologies OX one has  

 

7 For details, see Willard (2004), Steen and Seebach Jr. (1982), or any other textbook on set-theoretical 

topology. 
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(A.4)                                           O0X Í OX Í O1X.                                                                 ¨ 

The topological operators Int and Cl are well-known to satisfy the Kuratowski axioms (cf. 

Kuratowski and Mostowski (1976)):  

(A.5) Proposition (Kuratowski Axioms). Let (X, OX) be a topological space, A, D Î PX. 

Define the interior kernel operator Int of (X, OX) by Int(A) := È{U ; U Î OX and U Í A}. 

Dually, the closure operator Cl is defined by Cl(A) := Ç{K; K Î CX and A Í K}. The operators 

Int and Cl satisfy the following axioms: 

(i)                  Int(A Ç D) = Int(A) Ç Int(D).                                    Cl(A È D) = Cl(A) È Cl(D). 

(ii)                 Int(Int(A)) = Int(A).                                                   Cl(Cl(A)) = Cl(A). 

(iii)                Int(A) Í  A.                                                                A  Í Cl(A). 

(iv)                 Int(X) = X.                                                                 Ø = Cl(Ø).¨ 

In the following the Kuratowski axioms are used without explicit mention. Moreover, we will 

use freely the fact that the operators Int and Cl are inter-definable:  

(A.6)                         Int(A) = Cl(AC)C  and Cl(A) = Int(AC)C. 

Often, it is expedient to conceive the operators Int and Cl as operators Int:PX®PX and 

Cl:PX®PX defined on PX in the obvious way. Hence, the concatenation of these operators 

makes perfect sense.   

(A.7) Definition. Let (X, OX) and (Y, OY) be two topological spaces. A map f:X®Y is a 

continuous map from (X, OX) to (Y, OY) iff for all A Î OY f-1(A) Î OX.¨ 
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(A.8) Definition. An open cover of a space ((X, OX) is a collection A of open subsets Xi ÎOX 

whose union ÈXi  is all of X. A subcover of a cover of X is a subcollection of a cover of X. 

(i) A space X is compact iff each open cover of X has a finite subcover. 

(ii) A space is X is locally compact iff each point of X has a neighborhood base consisting of   

compact sets. 

(iii) A space is almost compact iff every open cover contains a finite set F such that the closures  

of F cover X. 

(iv) A space X is pseudocompact iff every continuous real-valued function f:X®ℝ is 

bounded.¨ 

(A.9) Definition. A compactification of a space (X, OX) is we a compact space (Y, OY) in 

which X is dense.  

 (A.10) Definition. A topological space (X, OX) is extremally disconnected (ED) iff the closure 

of every open is open, i.e., Int(Cl(Int(A))) = Cl(Int(A)) for all subsets A of X.¨ 

(A.11) Definition. A topological space (X, OX) is a nodec space iff its operators Int and Cl 

satisfy for all A Í X the equation Int(A) = A Ç IntClInt(A).¨ 

(A.12) Definition. (i) A topological space (X, OX) is regular iff whenever A is a closed set in 

X and x Ï A then there are disjoint open sets U and V with xÎU and A Í V. 

(ii) A topological space (X, OX) is completely regular iff whenever A is a closed set in X and 

x Ï A there is a continuous function f:X®[0, 1] such that f(x) = 0 and f(A) = 1, I = [0,1] the 

unit interval.¨ 
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(A.13) Proposition. Let (X, OX) be a topological space with interior kernel operator Int and 

closure  

operator Cl, and A, D Î PX. Then 

(i)   IntClIntCl(A) = IntCl(A) and ClIntClInt(A) = ClInt(A).     

(ii)  IntCl(Int(A) Ç D) = IntClInt(A) Ç IntCl(D). 

Proof. The identities (i) are well known, (ii) is also well known for A and D Î OX. The proof 

of (A.12)(ii) can be found in Kuratowski and Mostowski (1976, Ch.I, §8).¨ 

(A.14) Definition. Let (X, OX) a topological space. For A Í X the set of limit (or accumulation) 

points of A is called the derivative of A and denoted by dA.¨ 

(A.15) Definition. A topological space (X, OX) is a DSO space iff it is dense-in-itself and for 

all A Í X the derivative dA of A is open.¨ 


