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1. Introduction. The aim of this paper is to present a topological method for constructing 

discretizations (tessellations) of conceptual spaces. This method works for a class of 

spaces that the Russian mathematician Pavel Alexandroff defined some 80 years ago (cf. 

Alexandroff (1937)). Alexandroff spaces, as they are called today, exhibit a 1-1 

correspondence between their specialization orders and their topological structures.  

Recently, Ian Rumfitt used a special class of Alexandroff spaces to elucidate the logic of 

vague concepts in a new way (cf. Rumfitt (2015, chapter 8)). According to his approach, 

the color spectrum and other similar conceptual spaces that characterized concepts by 

prototypes or paradigms give rise to classical systems of concepts that have the structure 

of complete atomic Boolean algebras1.   

Rumfitt was not the first to study conceptual systems defined via prototypes. For some 

20 years or so Peter Gärdenfors and his collaborators have shown that conceptual spaces 

serve as a useful modeling tool in the fields of cognitive psychology, artificial intelligence, 

linguistics, and philosophy.2 The core idea of the conceptual space approach is that 

concepts can be represented geometrically as regions of (metrically structured) similarity 

spaces. Using prototypes and the metrical structure of similarity spaces, Gärdenfors 

constructed geometrical discretizations of conceptual spaces by so-called Voronoi 

tessellations. The topological account of conceptual spaces to be presented in this paper 

	
1 Complete atomic Boolean algebras are isomorphic to 2L, where 2L is the power set of a set L. 
2 For some interesting recent work on the role of prototypes in the theory of conceptual spaces see 
Douven and Gärdenfors (2019). Recent applications of the theory of conceptual spaces in linguistics, 
cognitive science and philosophy may be found in Zenker and Gärdenfors (2015), Kaipainen, Zenker, 
Hautamäki, and Gärdenfors (2019). 
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has several advantages over Gärdenfors’s geometrical account. For instance, the vexing 

question of choosing the “right” metric of a conceptual space (from infinitely many 

candidates) can be avoided.3 Moreover, the so-called “thickness problem” of Douven et 

al. can be dissolved. 

Gärdenfors’s meanwhile “classical” geometrical approach of conceptual spaces endowed 

with a convexity structure and the topological approach are not unrelated to each other. 

As will be shown, Gärdenfors’s geometrical construction of conceptual spaces gives rise 

to the construction of topologically defined Alexandroff spaces.4 More precisely, Voronoi 

tessellations are extensionally equivalent to topologically defined discretizations that rely 

only on the topological features of Alexandroff spaces. Furthermore, Rumfitt’s as well as 

Gärdenfors’s constructions turn out to be special cases of an approach that works for a 

more general class of spaces, namely, for weakly scattered Alexandroff spaces. For these 

spaces, the corresponding Boolean algebras of regular open regions yield natural atomic 

tessellations. This suggests that the class of Alexandroff spaces provides a convenient 

framework for conceptual spaces in general. Formulated differently an important task of 

cognitive science is to understand how conceptual spaces can be endowed with spatial 

structures that can serve as a basis for the elaboration of interesting classifications of 

	
3 This move does not solve, of course, the problem of determining the topology of the conceptual 
space in question. But at least, for the “conceptual engineer”, i.e., the scientist who is in charge to 
design appropriately structured conceptual spaces, the task of designing a topological structure is 
less demanding than to determine the full metrical structure of a conceptual space. After all, the 
topological structure is fully determined by the metrical structure. Moreover, it may be that a 
conceptual space has no metrical structure at all.  
For a fuller account of a “design theory” of conceptual spaces, see Douven and Gärdenfors (2019) 
and some remarks in section 5 of this paper. 
4 Thus, the topological approach and the geometrical approach of conceptual spaces should not be 
considered as incompatible alternatives. Rather, both the geometrical approach (based on the 
concept of convexity) and the topological approach should be considered as having a common 
conceptual root, namely, the concept of a general closure operator. In a formally precise way this is 
explained in appendix A. This generalized perspective on the task of how to represent experience in 
appropriately structure conceptual spaces should not be considered as an idle attempt of 
generalizing for the sake of generalizing. Rather, it should be taken as a proposal to find an adequate 
general framework for the task of presenting possible experiences in a rich and flexible way. 
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stimuli or experiences.5  

For defining a spatial structure on a set of experiences, Gärdenfors proposed to employ 

so-called Voronoi tessellations based on a Euclidean structure and a finite set of 

prototypes of the underlying conceptual space:    

 
A Voronoi tessellation based on a set of prototypes is a simple way of 

classifying a continuous space of stimuli. The partitioning results in a 

discretization of the space. The prime cognitive effect is that the 

discretization speeds up learning.  …  [A] Voronoi tessellation is a cognitively 

economical way of representing information about concepts. Furthermore, 

having a space partitioned into a finite number of classes means that it is 

possible to give names to the classes. (Gärdenfors (2000, 89)) 

 
As will be shown in the following, the topological essence of Gärdenfors’s and Rumfitt’s 

discretizations of continuous conceptual spaces is based on a structural correspondence 

between the specialization order and the topological structure discovered by Alexandroff in 

the 1930s. 

A geometrically defined Voronoi tessellation uniquely determines a topological tessellation 

that is extensionally equivalent to a regular open tessellation constructed by Alexandroff’s 

method. The constructions of Rumfitt and Gärdenfors boil down to different, very special 

cases of Alexandroff’s method of constructing topological spaces from partial orders. Thus, 

Alexandroff spaces may be considered a natural topological habitat of conceptual spaces. 

They provide a natural framework for conceptual spaces that deal with empirically 

	
5 With some good will, the “attribute spaces“, introduced by Carnap long ago, may be considered as 
forerunners of conceptual spaces in Gärdenfors’s sense (cf. Carnap (1971)). In contrast to attribute 
spaces, regions of conceptual spaces that correspond to concepts are non-homogeneous in the sense 
that some (generating) points are more prototypical than others. While Rumfitt and Gärdenfors 
assume a strict dichotomy between prototypical and non-prototypical elements, this paper shows 
how to define a gradual distinction between more or less prototypical (central) elements of a 
conceptual space. This is done by using the so-called “specialization order” that is characteristic for 
Alexandroff spaces. More precisely, in the framework of Alexandroff spaces, prototypical elements 
are characterized as maximal elements of the specialization (quasi-)order, while all other elements 
have a more or less high degree specialization (prototypicality).  
For a more detailed comparison of the similarities and differences of Carnap’s and Gärdenfors’s 
approaches, see Sznajder (2016, section 6).  
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meaningful concepts. More precisely, this claim can be explicated as follows:   

 
(1)   Empirically meaningful concepts must be stable in the sense that if such a 

concept applies to a situation x, it also applies to minor variations x’ of x. 

This stability is accompanied by a certain degree of conceptual vagueness. 

Stable concepts do not single out empirical objects with absolute precision. 

This should be considered a virtue rather than a vice. Otherwise, concepts 

would no longer be empirically applicable. 

 
(2)    Arbitrary conjunctions of stable concepts should be stable. This requirement 

expresses a reasonable conceptual modesty. Otherwise, we could eliminate 

the inherent vagueness of empirical concepts by purely logical means by 

forming (infinite) conjunctions of more and more concepts that eventually 

result in an absolutely precise conceptualization of reality.  

 
Topologically, (1) and (2) can be satisfied by requiring that a conceptual space S has the 

structure of an Alexandroff space (S, OS) such that concepts are characterized as 

elements of the Boolean algebra O*S of regular open subsets of S. In this paper, we rely 

on a topological account of concepts, i.e., concepts are characterized as topologically well-

formed regions in contrast to Gärdenfors’s geometrical approach to conceptual spaces, 

which represents natural concepts as convex regions with convexity defined geometrically 

with the aid of the Euclidean space of an underlying conceptual space. In comparison to 

the geometrical account, the topological one to be presented in this paper is more austere 

insofar as different geometrical structures may be considered realizations of one and the 

same topological structure.6   

	
6 From an abstract point of view, topological structures and convex structures are not unrelated to 
each other: Both may be mathematically characterized as closure structures (cf. van de Vel (1994)).  
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The topological concepts used in this paper require a conceptual apparatus that likely not 

all philosophers are acquainted with. Topology, as used in this paper, goes beyond the 

vague idea that “topology” is just a sort of “generalized geometry” as expressed in the 

well-known pun: “A topologist is someone for whom the shapes of a coffee mug and a 

donut do not essentially differ.” Thus, for the reader’s convenience, the necessary 

rudiments of the mathematical theory of topology are briefly recalled in Appendix A.7  

The topology employed in this paper for elucidating the structure of conceptual spaces 

can be characterized as “nonclassical”. This topology considerably differs from “classical” 

topology emerging from the study of Euclidean spaces and their relatives. While “classical” 

topological spaces may be succinctly characterized as spaces that satisfy the Hausdorff 

axiom8 and often even stronger separation axioms, “nonclassical” topological spaces such 

as Alexandroff spaces do not satisfy the Hausdorff axiom. Formulated in a positive way, 

“nonclassical” topology is characterized by the fact that it is strongly related to a certain 

order structure (called the specialization order9) such that the topological structure is 

characterized completely by the order. For “classical” topological spaces, the 

specialization order is trivial (cf. Goubault-Larecq (2013), Kuratowski and Mostowski 

	
7 All terms defined in the appendix are underlined when they are used for the first time in the main 
text. 
8 The Hausdorff separation axiom for topological spaces requires that two distinct points x and y of 
the space have disjoint open neighborhoods U(x) and U(y), or, in other words, that x and y can be 
separated from each other topologically. Many of the familiar topological spaces such as Euclidean 
spaces, and, more generally, metrical spaces satisfy the Hausdorff axiom. For a precise definition of 
the axiom and other separation axioms, see A11. 
9 Since this structure is very important for the rest of this paper, it may be expedient to give a 
preliminary informal description just now. Given a topological space (X, OX), the elements a Î OX 
may be interpreted as properties that the elements x Î X may or may not possess (“x has the 
property a” iff x Î a). Then an element x may be defined as “more special”, “more central” or “more 
typical” than an element y (denoted by y ≤ x) iff x has at least as many properties as y. In many 
papers dealing with conceptual spaces such a (quasi-)order of specialization is implicit assumed when 
geometrical illustrations by Venn-like diagrams are used to distinguish between central and not-so-
central cases of concepts. See, for instance, the “bird space” where “penguin” occupies a less central 
position than “robin” (Osta-Vélez and Gärdenfors (2020, p.6)).  
As will be explained later, this order structure is based on the topological structure of X, it is called 
the specialization quasi-order of the topological space (X, OX) and denoted by (X, ≤). A precise 
topological definition of (X, ≤) is given in A6. 
. 
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(1976), Steen and Seebach Jr. (1978)). For Alexandroff spaces, it is, however, highly non-

trivial and suffices to characterize the topological structure. 

Now and then, topology has been mentioned in the literature about conceptual spaces as 

is, for instance, exemplified by Gärdenfors’s books (2000, 2014). There, topology is 

understood in a vague sense as a kind of generalized Euclidean geometry. This attitude is 

not to be criticized per se. The only point we want to emphasize is that this is not the 

way in which topological concepts are used in the following. The topologies that we use in 

this paper are essentially different from the Euclidean topology. Nevertheless, the 

topological approach put forward in this paper may be considered as a contemporary 

attempt to respond positively to the admonition that Plato is said to have engraved above 

the door to his academy:  

 
(1.1)                                AGEWMETRIKOS MHDEIS EISITW10 
 
Those of us, who consider this maxim still relevant for contemporary philosophy, have no 

reason to restrict our attention to classical geometry of Euclid. Rather, we should attempt 

to make sense of it in terms of a modern understanding of geometry. To put it bluntly 

then, today, geometry understood as a theory of space in general, is topology.  

Up to now, geometrical methods in this modern sense, i.e., in the sense of topological 

methods, have been an under-exploited resource in many areas of philosophy and related 

disciplines such as cognitive psychology, and cognitive science in general. This holds, in 

particular, for the issue of how (possible) experiences or stimuli are represented in 

appropriate formal structures aka conceptual spaces. Following a recent proposal of 

Douven and Gärdenfors, let us conceive a conceptual system as   

 

	
10 Ageometrikos maedeis eisito: Let no one untrained in geometry enter. 
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an agreement between the members of a community that a particular 

meaning domain be partitioned in a particular way. A concept is then a 

particular element of such a partitioning. (Douven and Gärdenfors (2019, 2)) 

 

In a very simplified way, then, a conceptual system - as a method of partitioning a domain 

of events, possible experiences - can be described as a partitioning of a domain of 

experiences, stimuli or something similar. Without giving criteria to distinguish between 

interesting and uninteresting partitions, however, a theory of conceptual systems as a 

theory of partitions does not get off the ground. Here, geometry and topology come to 

the rescue. Instead of being content to characterize a concept system abstractly as a 

partition, one may conceive it as a sort of map that partitions a space in various regions. 

Maps are tools for providing orientation for some parts or aspects of the world. Consider, 

for instance, a Voronoi tessellation of a conceptual space. Quite literally, a Voronoi 

tessellation indicates where something of interest for us, is located in a certain space and 

how it is spatially related to other, more or less similar entities. Locating an experience 

somewhere in a conceptual space helps categorize it:  Moreover, provided that two 

cognitive agents use the same map (in a sense to be specified), they can compare their 

experiences, assess how similar they are, and deliberate what kinds of (common) actions 

are advisable to carry out in a situation. Thereby maps also enable us to communicate 

and, more specifically, even to reason about experiences (cf. Douven and Gärdenfors 

(2019)).  

Modern maps do not presuppose a Euclidean structure of the domain that is mapped. This 

is already evident for the many kinds of “topological” mappings and diagrams we are using 

in our everyday epistemic activities. For instance, the various kinds of subway maps that 

people use for orientation, the countless types of diagrams and other graphical 

presentations up to the most indirect, theoretically and physically highly sophisticated 
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ways of producing computer-aided images of medical phenomena by methods of positron 

emission tomography (PET) and similar methods (see for instance Zvolsky (2014)).  

All these ways of representing and making sense of aspects of the world are based on 

maps that are not just catalogues of what there is, rather, they are conceptually grounded 

symbolizations that heavily depend on highly sophisticated geometrical, or better, 

topological theories. Thus, the issue of geometrical and topological representations of 

events, experiences and processes for all kinds of sciences is of the outmost importance 

for modern cognitive sciences and related disciplines. Non-trivial representations require a 

certain amount of formal, in particular mathematical tools that cannot be justified in 

advance. Thus, in order to persuade the reader that it is worth the effort to get acquainted 

with topology at least to a modest degree, it is argued that the concept of weakly 

scattered Alexandroff spaces (WSA) is useful in quite a few areas:  

 
(i) WSA spaces help elucidate problems related to the logic of vague concepts, in 

particular, a novel solution of the Sorites paradox (proposed by Rumfitt).  

 
(ii) WSA spaces provide a natural semantic for Bobzien’s “logic of clearness” and help 

overcome certain problems of the concept of higher-order vagueness.  

 
(iii) WSA are essential for finding a natural place for classical syllogistics in the 

framework of conceptual spaces.  

 
(iv) The specialization order of WSA spaces refines the all-or-nothing distinction 

between the prototypical and the non-prototypical in favor of a gradual distinction 

between more and less central elements. 

 
(v) Some intrinsic shortcomings of the geometrical account of conceptual spaces can 

be avoided by the topological approach, for instance, the so-called “thickness problem”.    
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(vi) A further advantage of WSA spaces is their ability to deal with issues of digital 

conceptual spaces that have become ever more important in the areas of artificial 

intelligence, computer simulation, digital imaging and related disciplines. 

 
This paper is structured as follows. In section 2, as starting point of the project of the 

topological elucidation of conceptual spaces, we investigate the topological structure of 

polar spaces in detail. This type of conceptual spaces was recently introduced by Ian 

Rumfitt in his book The Boundary Stones of Thought (Rumfitt 2015) as a convenient 

framework for dealing with the logic of vague concepts. Polar spaces may be considered 

an elementary example of the general topological account elaborated in this paper. As is 

shown they also provide a natural semantics for Bobzien’s logic of clearness that has been 

designed to cope with certain problems of higher-order vagueness. 

In section 3 the relation between the topologically defined tessellations of polar spaces 

and the better known geometrically defined Voronoi tessellations of Gärdenfors’s 

conceptual spaces is explicated. Section 4 addresses the topology and order structure of 

a subclass of Alexandroff spaces that is especially useful for studying conceptual spaces, 

namely, weakly scattered Alexandroff spaces. It is shown that this class of spaces may be 

considered the most general class of spaces that gives rise to well-behaved classifications 

and categorizations of objects. Section 5 argues that the topological approach can 

contribute to the so-called design theory of (natural) concepts. We conclude with some 

general remarks on the intricate intertwinement of the aspects of order, algebra, and 

topology in the framework of Alexandroff spaces in section 6. 

Moreover, the paper has two appendixes. In Appendix A, for the reader’s convenience, 

basic definitions and facts of topology are collected that are used throughout the paper. 

Appendix B contains a list of various kinds of Alexandroff spaces that are interesting for 

the purposes of this paper.  
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2. The Topological Structure of Polar Spaces. In this section, we begin the explication of 

the topological structure of conceptual spaces by investigating the topological structure 

of polar spaces. These spaces were recently introduced by Rumfitt to discuss the logic of 

appropriate vague concepts such as color concepts (cf. Rumfitt (2015, chapter (8.4)). In 

this section, we recall the basic ideas of Rumfitt’s approach and show in particular that 

these spaces are very simple Alexandroff spaces.   

Let X be a set of colored objects that serves as the underlying set of a conceptual space 

for color experiences. We are looking for a discretization of X, i.e., a partition of X that 

allows us to classify color experiences into different categories. This can be done with the 

aid of certain paradigmatic or prototypical experiences of red, blue, yellow and so on (cf. 

Gärdenfors (2000)). More precisely, Rumfitt argues that the classification of colors is best 

conceptualized as a procedure based on a comparison of certain color experiences to be 

considered as paradigmatic or prototypical:   

The spectrum enables us to attach senses to colour terms not because it shows 

boundaries, but because it displays colour paradigms or poles. Sainsbury likens 

colour paradigms to ‘magnetic poles exerting various degrees of influence: some 

objects cluster firmly to one pole, some to another, and some, though sensitive 

to the forces, join no cluster’. … I prefer a simpler analogy, which likens 

paradigms to gravitational poles, that is, massive bodies. If a small body is 

sufficiently close to a gravitational pole, it will be drawn towards it, rather as we 

are drawn to classify as red those objects that are sufficiently close in colour to 

a paradigm, or pole, of red. Rumfitt (2015, 236) 

  
The essential mathematical structure to be extracted from this example is as follows.  

Assume that there is a given set X of objects to be classified and a subset P of X to be 

considered as a set of distinguished elements that are “paradigmatic” or “prototypical” 

objects. Rumfitt (2015) calls them poles. These poles are used to classify the ordinary 

objects. This procedure is rendered precise by the following definition: 
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(2.1) Definition. Let X be a set and P Í X be a subset of distinguished elements to be 

interpreted as prototypes or poles. Assume that for every object x Î X, there is a 

nonempty set m(x) Í P of poles p. The poles p Î m(x) are said to be maximally close to 

x. For each x, the set m(x) is assumed to satisfy the following two requirements:  

(i) "x Î X (Ø ≠ m(x) Í P).                   

(ii)       "x Î X (m(x) = {x} Û x Î P).     

The map X¾¾m¾¾>2P defined by (i) and (ii) is called a pole distribution and denoted by 

(X, m, P).¨ 

 
Requirements (2.1) (i) and (ii) entail that poles do some classificatory work by classifying 

the elements of X. First, poles are distinguished from non-poles as those elements that 

are, so to speak, “self-classifying”, i.e., m(p) = {p}.11 Second, and this is an observation 

that is more interesting, a pole distribution (X, m, P) defines a topology on X. This is done 

with the help of an interior kernel operator 2X¾¾int¾¾>2X: 

 
(2.2) Proposition. Let (X, m, P) be a pole distribution and A Í X. Define the operator int 

by  

         x Î int(A) := (x Î A & "pÎP (p Î m(x) Þ p Î A)) Û  ({x} È m(x) Í A).¨ 

 
The operator int is a topological interior kernel operator that defines an Alexandroff 

topology. Informally formulated, x Î int(A) iff x Î A and all poles that are maximally 

close to x, i.e., that are elements of the set m(x), also belong to A. In other words, 

the interior of A comprises those elements of A whose maximally close poles also belong 

to A.   

Equivalently, the topology corresponding to a pole distribution (X, m, P) is defined by 

a closure operator 2X¾¾cl¾¾>2X: 

 
	

11 The function m need not be defined with the aid of a full-fledged metric on X as Gärdenfors seems 
to assume. 
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(2.3) Definition.  Let (X, m, P) be a pole distribution and A Í X. Define the operator cl by  

 
        x Î cl(A) := (x Î A or $pÎP(p Î A and p Î m(x)) Û ({x} È m(x)) Ç A ≠ Ø).¨ 
 
 
Informally speaking, the closure of a set, cl(A), comprises the members of A and all objects 

for which at least one of their maximally close poles is in A. In other words, cl(A) comprises 

all elements of A that are in A or that have at least a connection to elements of A.  

The topological space (X, OX) defined by the operator int (or cl) is called the polar space 

of the distribution (X, m, P). The proof that int and cl are topological operators involves a 

routine check that these operators satisfy the Kuratowski axioms (A.2); see Rumfitt 

(2015, 243 - 246). A closer inspection of definitions (2.2) or and (2.3) reveals that they 

even satisfy the Alexandroff condition (A.1) (iii), namely, arbitrary intersections (unions) 

of open (closed) sets are open (closed): 

 
(2.4) Proposition. The topology (X, OX) defined by a pole distribution (X, m, P) is an 

Alexandroff topology. ¨ 

 
Rumfitt defines the topology (X, OX) given by a pole distribution (X, m, P), but he does 

not describe the topology in any detail. In particular, he does not mention that (X, OX) is 

an Alexandroff space, nor does he explicitly show that O*X is atomic.   

Endowed with the topology defined by a pole distribution (X, m, P), the color spectrum (X, 

OX) is a very special Alexandroff space; namely, (X, OX) is a T1/2-space such that the 

singletons {p} Í P are open and all singletons {x} for x Î X – P are closed. More precisely, 

the following proposition holds:      

 
(2.5) Proposition. Let (X, OX) be a topological space defined by a pole distribution (X, m, 

P). Then, X is a weakly scattered T1/2–Alexandroff space, i.e., the elements p  Î P are open 

and cl(P) = X. For all y Î X, let V(y) be the smallest open set that contains y. For elements 

p Î P and x Î X – P one calculates:   
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int(p) = {p}.              int(x) = Ø.         V(x) = {x} È m(x).       V(p) = {p}. 

cl(x) = {x}.             cl(p) = {x; p Î m(x)}.         int(cl(p)) = {x; {p} = m(x)}. 

 
The specialization order of (X, OX) is given by x < y := x ≠ y and y Î m(x). Thus, for polar 

spaces (X, OX) the specialization order (X, ≤) is of depth 1. It just amounts to the 

distinction between prototypical and non-prototypical elements of X. The Boolean algebra 

O*X of regular open sets of (X, OX) is isomorphic to the power set 2P. 

 
Proof. To prove these claims, one must only check definitions. Be it sufficient to prove 

that V(x) = {x} È m(x) and the claim that O*X = 2P. According to the definition of the 

interior kernel operator int one has y Î int({x} È m(x)) Û y Î {x} È m(x) & "p (p Î m(y) 

Þ p Î {x} È m(x)). Clearly, every element in {x} È m(x) satisfies this condition. On the 

other hand, any smaller set properly contained in {x}È m(x) does not satisfy the condition. 

For two different elements x and y, V(x) and V(y) are different. Hence, X is a T0-space. 

Thus, the set {{x} È m(x), x Î X} forms a unique minimal basis for the topology OX of X. 

An isomorphism 2P¾¾r¾¾>O*X can be inductively defined as follows: r(p) := intcl(p), 

and if r(A) and r(B) are already defined, r(A È B) := j(i(r(A)) È i(r(B))), the maps 

O*X¾i¾>OX and i and OX¾j¾>O*X  as defined in A.5. A canonical minimal basis of OX is 

given by the set {V(x); x Î X} = {{x} È m(x); x Î X}.¨  

   
Proposition (2.5) characterizes polar spaces as a special class of Alexandroff spaces (X, 

OX) (cf. Bezhanishvili, Esakia, and Gabelaia (2004) and Bezhanishvili, Mines, and Morandi 

(2004)).   

The cardinalities of OX and O*X may be quite different. Already for the color circle S with 

a finite set P of prototypical colors (“red”, “orange”, “yellow”, …) OS is of uncountable 

cardinality while O*S has finitely many elements 2|P|. This is a compelling argument that 
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O*S rather than OS should be taken as the set that represents the Boolean algebra of 

concepts of a conceptual space (cf. Rumfitt 2015). One should note that O*X associated 

with a polar conceptual space (X, OX) come equipped with a binary similarity relation: 

 
(2.6) Definition.   Let O*X be the Boolean lattice of regular open subsets of the topological 

space (X, OX). A reflexive and symmetric similarity relation on O*X is defined by  

                                A ~ B := cl(A) Ç cl(B) ≠ Ø       for A, B Î O*X.¨ 

This relation is not necessarily transitive. It can be used to distinguish between different 

conceptual spaces X and Y that have isomorphic Boolean lattices O*X and O*Y but that 

differ in their similarity relations ~X and ~Y defined on O*X and O*Y, respectively. An 

elementary example is given by the linear color spectrum Lin(S) and the circle spectrum 

Cir(S) (cf. Gärdenfors (2000) and Rumfitt (2015)). Both have the same number of 

prototypes, say, “red”, “yellow”, “green”, “blue”, and “purple”, but their similarity relations 

may differ. For the linear spectrum one obtains   

(2.7)                     Lin(S)    =      < red ~ yellow ~ green ~blue ~ purple >  

In contrast, for the circular color spectrum one obtains  

(2.7)’                     Cir(S)     =     < red ~ yellow ~ green ~ blue ~ purple ~ red > 

 
These two similarity structures are different since in Lin(S) “red” and “purple” are not 

similar to each other, while in Cir(S) they are similar. Nevertheless, the corresponding 

Boolean lattices of regular open concepts of the two conceptual spaces are isomorphic 

(as Boolean algebras) to the power set 2P of the set P = {“red”, “yellow”, “green”, “blue”, 

“purple”}.    

Rumfitt rightly emphasizes that his topological representation of the color spectrum is 

just an example - analogous results hold for all conceptual spaces that “involve predicates 

whose meaning is given by reference to paradigms or poles” (Rumfitt 2015, 255).  
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His main concern is not a topological reconstruction of the color spectrum as a (polar) 

topological space, rather, the topology of the color spectrum is only the basic ingredient 

for his solution of the Sorites paradox.12  This solution relies on the fact that for regular 

open interpretations of classical Boolean propositional logic “the truth of a disjunction 

does not entail the truth of any of its disjuncts”(Rumfitt (215, 254)).  

Before we go on, it may be expedient to explain in more detail the general significance of 

(2.5) for the theory of conceptual spaces. Succinctly stated, (2.5) ensures that a 

conceptual space X endowed with a pole distribution (X, m, P) has a Boolean lattice O*X 

of regular open subsets that is atomic and isomorphic to the power set 2P of the set of 

its prototypes P.  

As is pointed out in Rumfitt (2015), the linear and the circular color spectrum Lin(S) and 

Cir(S) belong to this class of spaces. Proposition (2.5) states that these spaces possess 

well-behaved conceptual systems O*X. More precisely, O*X is a complete atomic Boolean 

algebra generated by intcl(p), pÎ P. Thus, the conceptual systems related to this kind of 

conceptual spaces have a very simple classical structure.  

Already Rumfitt’s solution of the Sorites paradox shows that the topological approach may 

	
12	Cut down to its bones, the topological core of Rumfitt’s solution of the Sorites paradox consists 
in exploiting the peculiar properties of topologically defined regular open interpretations of Boolean 
logic. The details are as follows. Let O*X be the Boolean algebra of regular open sets of (X, OX). A 
regular open interpretation of a propositional language L (with propositional variables a, b, …, and 
the Boolean connectives Ù, Ú, …) in O*X is a map L¾r¾>O*X such that  
 
(i)  r(a Ù b) := r(a) Ç r(b),    (ii) r(a Ú b) := int(cl(r(a) È r(b)),   and      (iii) r(¬a)  :=  intCr(a). 
 
The crucial feature of a regular open interpretation is that it yields a semantic of classical Boolean 
logic that may render a disjunction a Ú b true in X without implying that for all x Î X either a or b 
is true at x. The underlying topological fact is simply that for a regular open interpretation r a 
disjunction a Ú b of a and b has the interpretation int(cl(r(a) È r(b)). This set may be strictly larger 
than the union r(a) È  r(b) of the disjuncts r(a) and r(b). This fact may be used to cope with the 
Sorites paradox, see Rumfitt (2015, p. 253) or Mormann (2020, section 5). As it seems, Rumfitt 
assumes that the topological product of polar spaces is again a polar space. This is, as can be 
easily shown, not correct. An elementary example is the Khalimsky plane. This space is the 
Cartesian product of two polar spaces but not a polar space itself, see (2.10), (2.11), and 
(A.12)(iv). Rumfitt’s arguments are not affected by this slight inaccuracy, however. Be this as it 
may, the approach of the present paper has no difficulty of dealing with products of polar spaces, 
see (2.8)ff. 
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be useful for attacking intricate philosophical problems. For further applications it is 

expedient, however, to consider a somewhat broader class of topological spaces than polar 

spaces, namely, weakly scattered Alexandroff spaces (X, OX), for which polar spaces 

provide only the simplest example. More generally, one obtains: 

 
(2.8) Proposition. (i) The topological product (X ´ Y, O(X ´ Y) of the polar spaces (X, OX) 

and (Y, OY) is a weakly scattered Alexandroff space whose specialization order (X ´ Y, ≤ 

´ ≤) has depth 2. 

(ii) Finite products of weakly scattered Alexandroff spaces are weakly scattered 

Alexandroff spaces. If the specialization orders (X, ≤) and (Y, ≤) are of depth m and n, 

respectively, then the specializiation order (X ´ Y, ≤) is of depth m + n.   

(iii) Let ~ be an equivalence relation on weakly scattered Alexandroff space (X, OX) such 

that the quotient map X¾¾q¾>X/~ is open. Then (X/~, OX/~) is a weakly scattered 

Alexandroff space. 

  
Proof. (i) Let (X, m, P) and (Y, n, Q) be the pole distributions of (X, OX) and (Y, OY), 

respectively. Assume (x, y) Î X ´ Y, (p, q) Î P ´ Q, x < p, and y < q. In X ´ Y the chain (x, 

y) < (p, y) < (p, q) is of length 2. Hence the specialization order of the topological product 

(X ´ X, OX ´ Y) has depth 2. 

(ii) If MX and MY are the dense sets of maximal elements of the specialization orders (X, 

≤) and (Y, ≤), respectively, then MX ´ MY is the dense set of isolated elements of the 

weakly scattered Alexandroff space (X ´ Y, OX ´ Y). The depth of the specialization of (X 

´ Y, ≤) is calculated as in (i). 

(iii) Since the set ISO(X) of isolated points of X is mapped by q onto the open set {[p], p 

Î P} of isolated points of X/~, the space (X/~, OX/~) is weakly scattered and q(ISO(X)) is 

dense in X/~. Obviously, the quotient space q(X) is Alexandroff.¨ 

 
Proposition (2.8) ensures that there are plenty of weakly scattered Alexandroff spaces. 
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The following neat result shows that this class of spaces has topological properties that 

possess interesting modal interpretations:  

(2.9) Proposition. Let (X, OX) be a weakly scattered Alexandroff space. Then the following 

equivalent conditions hold: 

(i)     X satisfies the McKinsey axiom, i.e., int(cl(A)) Í cl(int(A)) for all A Í X. 

(ii) The boundary operator bd of (X, OX) satisfies bd(bd(A)) = bd(A) for all A Í X.  

 
Proof.  Bezhanishvili, Mines, and Morandi (2003, Propositions 2.1, 2.4, and 2.8 prove 

(among other things) that (2.9)(i) - (iii) are all equivalent with the assumption that (X, 

OX) is weakly scattered.¨  

 
In order to see that (2.9) has interesting modal interpretations it is expedient first of all 

to recall a trail-blazing result of McKinsey and Tarski (1944). According to these authors, 

the modal system S4 is the logic of topology in the sense that a proposition is valid in S4 

if and only it is valid in all topological spaces. McKinsey and Tarski’s result has been 

generalized in many ways, in particular by establishing a correspondence between certain 

classes of topological spaces on the one hand and certain extensions S4.X of S4 logic on 

the other. As is well known, the extension of S4.1 of S4 by the McKinsey axiom 

corresponds to the logic of weakly scattered spaces (cf. Bezhanishvili et al. (2003), 

(2004), Gabelaia (2001)). In other words, weakly scattered Alexandroff spaces are models 

for the modal logic S4.1.13 

As a second example that weakly scattered Alexandroff spaces have some useful 

applications in modal logic, Bobzien’s logic of clearness may be mentioned. Very succinctly, 

this can be explicated as follows. For general topological spaces (X, OX) one easily 

calculates that, instead of (2.9)(ii), only the weaker equation bd(bd(bd(A))) = bd(bd(A)) 

	
13 Not all weakly scattered spaces are Alexandroff, of course. See appendix B. 
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holds for all A. There may be A Í X with bd(bd(A)) ≠ bd(A).14 Proposition (2.9) (ii) ensures 

that weakly scattered Alexandroff spaces behave particularly well with respect to 

boundaries bd, since for them the stronger formula bd(bd(A)) = bd(A) holds. In several 

papers Susanne Bobzien has argued that the logic of vague concepts should be cast in 

the framework of a modal logic based on an operator C such that CA is to be read as “It 

is clear that A” (cf. Bobzien (2012, 2015)). More precisely, she argues that the operator 

C should satisfy at least the axioms of the modal system S4. The operator C can be used 

to define an operator U of “unclearness” such that UA is to be read as “It is not clear that 

A, and it is not clear that not-A”. Obviously, the operators C and U are related to each 

other in the same way as the topological operators int and bd are related. Bobzien 

compellingly argues that U should satisfy the law U2A = UA, and proves that U2A = UA is 

equivalent with the assumption that her “clearness” operator C satisfies the McKinsey 

axiom. In sum, by (2.9) weakly scattered Alexandroff spaces offer a natural topological 

semantic for Bobzien’s modal “logic of clearness”.  

Rumfitt’s and Bobzien’s solutions of the Sorites paradox and related problems of the 

theory of vagueness show that weakly scattered Alexandroff spaces offer interesting 

insights into the subtleties of the theoretical logic of vagueness. These applications do 

not exhaust the usefulness of Alexandroff spaces, however. In the rest of this section we 

want to show at least in outline that the topology of Alexandroff spaces also has an 

immense practical importance as framework of the discipline of digital topology.  

Digital topology deals with the geometrical and topological investigation of digitized 

objects or digitized images and provides both theoretical and computational frameworks 

for image computing.  It plays an essential role in various fields related to digital images, 

such as image analysis, computer graphics, pattern recognition, shape modeling and 

	
14 An elementary example is given by the real line (R, OR): For the set of rational numbers Q one 
obtains bd(bd(Q)) = Ø and bd(Q) = R. 
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computer vision. It emerged during the second half of the twentieth century with the birth 

of computer graphics and digital image processing (cf. Couprie, Cousty, Kenmochi, and 

Coeurjolly (2020)).  

As a starting point for digital topology one may consider the “digital line” or “Khalimsky 

line”. The Khalimsky line is a polar space that can be defined as follows: 

 
(2.10) Definition. Let Z = {…, -2, -1, 0, 1, 2, …} be the set of entire numbers. Denote the 

set of odd numbers by 2Z + 1 = {…-3, -1, 1, 3, …}. Then a pole distribution (Z, m, 2Z+1) 

is defined by the map 

                               m(2n) = {2n-1, 2n+1}     ,      m(2n+1) := {2n+1}.  

The corresponding polar topological space (Z, OZ) is called the “digital line” or the 

“Khalimsky line”.¨  

 
(2.11) Corollary. Let Z2m denote the quotient space Z/2mZ for some integer m. Then the 

canonical quotient map Z¾¾q¾¾>Z2m is open (with respect to the Khalimsky topology 

and the quotient topology) and defines a finite topological space (Z2m, OZ2m). It is called 

the Khalimsky circle. (Z2m, OZ2m) is a polar space and may be considered as a kind of digital 

model of the circular color spectrum (X, m, P) with P = {1, 3, …2m-1}.¨ 

 
Applying (2.5) to (2.11) the pole distribution (Z, m, 2Z+1) defines a topological space (Z, 

OZ) such that the singletons {2m} of the “even points” 2m Î Z are closed, and the 

singletons {2m+1} of the odd points 2m+1Î Z are open subsets. The smallest open set 

of OZ containing 2m is {2m – 1, 2m, 2m +1}, and O*(Z)) is the power set 2L, L = 2Z+1.  

 
(2.12). Definition. The topological product (Z ´ Z, OZ ´ Z) of two copies of the digital line 

(Z, OZ) is called the “digital plane” or “Khalimsky plane”. Higher-dimensional digital spaces 

(Zn, OZn), n ≥ 3, are defined analogously.¨  

 
It is easily checked that the digital spaces (Zn, OZn) for n ≥ 2 are NOT polar spaces (as the 
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digital line (R, OR)) but WSA spaces. More precisely, one calculates that the digital plane 

(Z2, OZ2) has three kinds of points: The singletons {(2m+1, 2n+1)} are open, the 

singletons {(2m, 2n)} are closed, and singletons {(2m+1, 2n)} and {(2m, 2n+1)} are 

neither open nor closed (cf. Adams and Franzosa (2012, Ch. 11.3, p. 367ff)). Analogously, 

the higher-dimensional digital spaces (Zn, OZn) have many kinds of points that are neither 

open nor closed. Nevertheless, their open singletons are dense. Hence, they are weakly 

scattered Alexandroff spaces that are not polar spaces.  

The most important quality of the digital spaces (Zn, OZn) is that they can serve as 

“discrete” or “digital” models of the Euclidean spaces (Rn, ORn). For the digital line this 

claim is rendered precise by the following proposition: 

 
(2.13) Proposition. Let (R, OR) be the real line with the Euclidean topology. Define the 

map R¾¾q¾¾>Z by  

          x iff x = 2m, m Î Z, 
     q(x) = 

              2m+1 for 2m < x < 2m+2, m Î Z. 
 
Then the digital line (Z, OZ) is the quotient space of the real line (R, OR) by the map q. 

Further, the quotient map (R, OR) ¾¾q¾¾> (Z, OZ) is an open continuous map. Thereby, 

the polar topological space (Z, OZ) is shown to be a connected topological space.¨ 

 
(2.14) Corollary. The higher-dimensional digital spaces (Zn, OZn) are weakly scattered 

connected Alexandroff spaces that are open quotient spaces of the Euclidean spaces (Rn, 

ORn) by the product maps (Rn, ORn) ¾¾qn¾¾>(Zn, OZn).¨ 

 
  
Corollary (2.14) has been said to provide the foundation for the disciplines of digital 

topology and geometry (cf. Kopperman (1994)). In a nutshell, (2.14) establishes the fact 

that digital structures (Zn, OZn) can serve as a (partially faithful) models of the continuous 
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structures (Rn, ORn).15 Or, to emphasize more clearly the relevance of (2.14) for the issue 

of conceptual spaces: Continuous conceptual spaces (i.e., conceptual spaces based on 

Euclidean spaces Rn or appropriate Euclidean substructures) can be replaced (at least in 

principle) by digital conceptual spaces Zn (and appropriate derivatives). If one wants to 

deal with digital data that (due to the ubiquitous usage of computers) become ever more 

important in many areas in science and elsewhere, then such a replacement is 

unavoidable.16  

The example of higher-dimensional digital spaces (Zn, OZn) (and other digital manifolds 

such as the Khalimsky circle (cf. Melin (2009)) should be considered as a convincing 

argument for the thesis that polar spaces do not offer a convenient framework for a 

comprehensive topological theory of conceptual spaces. Rather, a more adequate 

framework for such a theory is provided by the more general class of WSA spaces. To put 

it bluntly, WSA spaces seem to be a convenient and even “necessary” generalization of 

polar spaces.17      

  

3. Topological and Geometrical Tessellations. The aim of this section is to discuss several 

types of tessellations (discretizations) of conceptual spaces that define conceptual 

classifications based on geometrical or topological structures of conceptual spaces. 

Because the Boolean algebra O*X is atomic for polar spaces (X, OX), the resulting 

tessellation is particularly simple and essentially unique.  

	
15 The task of finding out what are the digital counterparts of various kinds of continuous phenomena 
(if there are any), may be highly non-trivial. An early classical result in this field is the digital Jordan 
curve theorem according to which a continuous curve of a digital circle defines a tessellation of the 
digital plane in two parts. 
16 This paper is, of course, not the appropriate place to deal with digital topology and its many 
applications in any greater depth. The literature on digital topology is immense. Here, it must suffice 
to mention just some introductory texts, e.g., Rosenfeld (1979), Kovalevsky (2006), Kong, 
Kopperman, and Meyer (1991), Melin (2008, 2009).   
17 Already Gärdenfors in his geometrical account of conceptual spaces uses the possibility of 
constructing new conceptual spaces from products (or quotients) of already given conceptual 
spaces (cf. Gärdenfors (2000)). Likewise, Rumfitt uses finite products of the color spectrum to deal 
with the Sorites. These products are WSA spaces, not polar spaces (cf. Rumfitt (2015, Ch.8)).   
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(3.1) Definition. A regular open tessellation of a space (X, OX) is a set T := { Al Î O*X } 

of disjoint regular open subsets Al Î O*X with supremum VAl = X in O*X. The Al  are called 

the cells of T. Note that the supremum VAl of the Al is to be taken in O*X (not in OX).18 

The set bd(T) = X - ÈAl is called the boundary of T. If the Al are atoms of O*X, then T is 

called an atomic tessellation. Points of X that are not in any cell Al are said to be on the 

boundary bd(T) of the tessellation T.¨ 

 
(3.2) Examples of Topological Tessellations. (i) Let (X, OX) be a topological space, A Î 

O*X, A ≠ Ø, X. Denote the Boolean complement of A in O*X by A* (A* = int(CA)). Then, 

T = {A, A*} is a regular open tessellation of X with two open cells A and A* and boundary 

bd(T) = bd(A) (= bd(A*)). More generally, let A1, …, An be n regular open subsets of X 

with VAi = X. The intersections of the Ai generate a regular open tessellation of X that has 

m cells, m ≤ 2n – 1.   

(ii) A particularly important (geometrical and topological) tessellation is the tessellation 

of the Euclidean line R given by open intervals: T := {(2m, 2m+2); m Î Z}. 19  This 

tessellation may be called the Khalimsky tessellation. 

(iii) Tessellations of higher-dimensional Euclidean spaces Rn can be defined analogously.¨  

 
Regular open tessellations for topological spaces (X, OX) exist in profusion. The point is to 

find tessellations that are interesting for some reason or other. For instance, one may ask 

whether or not a space has a atomic regular open tessellation. As is easily shown, the real 

line R and, more generally, Euclidean spaces Rn do not possess atomic tessellations. In 

contrast, polar spaces (X, OX) possess atomic regular tessellations:  

 

	
18 It should be observed that the supremum VAl is to be taken in O*X. Thus, it may be strictly larger 
than the set-theoretical union UAl of the Al.    
19 As will be shown in a moment, the tessellation (3.2)(ii) is closely related to the construction of 
the digital line (Z, 0Z). 
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(3.3) Proposition. Let (X, m, P) be a pole distribution for X. Then, the topological space 

(X, OX) has a canonical regular open atomic tessellation defined by T := {intcl(p); p Î P} 

by the atoms of the Boolean algebra O*X and X = VpÎP intcl(p). 

 
Proof. Let (X, OX) be defined by (X, m, P). As proved in (2.6), the Boolean algebra O*X is 

isomorphic to the power set 2P. Thus, the atoms of O*X generate a regular open 

tessellation T of X. The atoms of T are the regular open sets int(cl(p)) = {x; {p} = m(x)}, 

p Î P. Elements of X to which more than one pole is maximally close are located at the 

boundary of T, i.e., bd(T) = {x; {p, p’} Í m(x)} for some p, p’ Î P and p ≠ p’.¨ 

 
By (2.5) Rumfitt’s polar spaces define topological tessellations in a natural way.  In this 

section we show that also Gärdenfors’s geometrically defined conceptual spaces may be 

used for this purpose. More generally, we are going to explain how Gärdenfors’s conceptual 

spaces may be conceived as Alexandroff spaces endowed with a distinguished topological 

tessellation defined by their Voronoi tessellation.   

According to Gärdenfors, conceptual spaces are similarity spaces. A similarity space is a 

metrical space whose metric is used to define a binary similarity relation on it. Distances 

in the space are meant to measure similarity: the shorter the distance between objects, 

the more similar they are.   

Let us now recall briefly the basics of the most prominent class of tessellations of 

conceptual spaces, namely, the so-called Voronoi tessellations (cf. Gärdenfors (2000), 

Decock and Douven (2015), Okabe, Boots, and Sugihara (1992), Zenker and Gärdenfors 

(2015)). For the sake of simplicity, let us restrict our attention to Voronoi tessellations 

of the Euclidean plane E. Assume E is endowed with the familiar Euclidean metric d and P 

= {p1, …, pn} is a finite set of distinct points of E. The bisector B(pi, pj) between pi and pj 

is defined as the set of points x Î E such that d(x, pi) = d(x, pj). Since d is Euclidean, B(pi, 

pj) is a straight line that divides the plane E into two open half planes. Thereby one obtains 
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a tessellation Tij of the Euclidean plane E defined by Tij: = L(pi, pj) È B(pi, pj) È R(pi, pj) 

such that pi Î L(pi, pj) and pj  Î R(pi, pj). The open convex sets L(pi, pj) and R(pi, pj) are 

called the cells of Tij and B(pi, pj) is called its boundary. Then, a general Voronoi tessellation 

may be conceived as the result of the intersection of n!/(2! (n-2)!) pairs of half-planes 

each defined by the bisectors of the pairs (pi, pj) of different points pi and pj. Thereby the 

plane is divided into n convex open cells together with their boundaries.   

Clearly, a geometrically defined Voronoi tessellation of Euclidean space defines a regular 

open topological tessellation in the sense of (3.1). By construction, all open Voronoi cells 

are convex and disjoint from each other (cf. Gärdenfors (2000, 88), Okabe et al. (1992)). 

As is well known, they are not only open but even regular open. From the very definition 

of Voronoi cells, points not in any cell are the points positioned at an equal distance to 

two (or more) paradigmatic points pi. Hence, they are located on the topological 

boundaries of the cells defined by the pi. This fact can be used to show that a Voronoi 

tessellation based on the metrical structure of Euclidean space E also yields a pole 

distribution (E, m, P):  

 
(3.4) Proposition. Let T be a Voronoi tessellation of the Euclidean plane E defined by a 

finite set P of prototypes p1, …, pn. Then a topological pole distribution (E, m, P) is defined 

by taking the Voronoi generators p1, …, pn as the set P of poles of a pole distribution 

X¾¾m¾¾>2P defined as:  

 
                  m(x) = {pi; x Î cl(<pi>); <pi> the Voronoi cell generated by pi)}.  

 
Proof. Let (E, OE) be the polar topological space defined by (E, m, P). Since the cells <pi> 

of the Voronoi tessellation are convex, they are regular open. Hence, (E, m, P) defines a 

regular open tessellation T = {<pi>; pi Î P}. This tessellation is, of course, not atomic with 

respect to Euclidean topology. It is, however, by definition, a regular atomic tessellation 

with respect to the polar topology defined (E, m, P). Its regular open atoms are just the 
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Voronoi cells <pi>. In terms of the pole distribution m, one has x Î E contained in a cell 

int(cl(p)) iff m(x) = {p}.¨ 

 
In other words, the cells of the topological tessellation of E defined by (E, m, P) coincide 

with the cells of the Voronoi tessellation of E. Moreover, the geometrically defined 

boundary of the Voronoi tessellation coincides with the topologically defined boundary. In 

sum, every geometrical Voronoi tessellation of the Euclidean space E defined by a finite 

set P of prototypes gives rise to a topological tessellation defined by a pole distribution 

(E, m, P). The two tessellations are extensionally equivalent in the sense that their cells 

and boundary areas coincide. Thus, they may be conceived as two different interpretations 

of the same set-theoretical data.   

Moreover, tessellations of a space (X, OX) define an equivalence relation ~ on X in a natural 

way:  

 
(3.5) Definition. Let T be a (topological or geometrical) tessellation of (X, OX). The 

elements x, y Î X are equivalent with respect to T iff the following holds:  

                          
                           x ~ y := x = y or there is a cell A of T and x, y Î A. ¨ 

 
(3.6) Examples.  (i) Let (R, OR) be the Euclidean line and T = {(2m, 2m+2), m Î Z} the 

tessellation (3.2). Choose the points 2m+1 Î (2m, 2m+2) as representatives of the 

resulting (non-trivial) equivalence classes of the relation ~ defined by the tessellation on 

R by x ~ y  := x = y or  2m < x, y < 2m+2. Then (R/~, OR/~) is just the Khalimsky digital 

line (Z, OZ). 

(ii) Let (Z, OZ) be the Khalimsky line and m ≥ 2 a natural number. On Z consider the 

equivalence relation: x ~ y := x – y Î 2mZ. Then the quotient space (Z/~, OZ/~) is called 

the Khalimsky digital circle (Z2m, OZ2m) (cf. Melin (2008, 14)). Let [x] Î Z2m denote the 

class of elements represented by x Î Z2m. The space (Z2m, OZ2m) is a polar space with poles 
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represented by the elements [1], [3], …, [2m – 1]. An element [2k] with 0 ≤ k ≤ m – 1 

represents the class of elements that have the same distance from the poles 2k -1 and 

2k + 1. In other words, the Khalimsky circle defined for 2m can be considered as a digital 

model of the circular color spectrum with m prototypical colors.¨     

                                                                                                                                                            
Compared with the geometrical construction of a Voronoi tessellation of the Euclidean 

plane, a topological tessellation requires much fewer structural presuppositions in the 

sense that a Euclidean structure of space is much more specific than a topological one. 

This is a conceptual advantage insofar as certain problems caused by the presence of 

representational artifacts disappear. For example, for Euclidean spaces, there are many 

different metrical structures that define the same underlying topological structure.20 With 

respect to these different metrics, one and the same set P of prototypical points may give 

rise to different Voronoi tessellations. Which should be chosen as the “right” one? This is 

a question that may have no unique answer. A topological approach does not have the 

burden to answer it.  

Another problem that may be attributed to the peculiarities of the specific mathematical 

apparatus used for the definition of a Voronoi tessellation T of a conceptual space 

concerns the boundary area bd(T) of T. This issue has been dubbed the “thickness 

problem” (cf. Douven et al. (2013) and Douven (2019)).  

The “thickness problem” can be explicated as follows. Consider a Voronoi tessellation of 

the Euclidean plane. By its very construction, the boundaries of the Voronoi cells are “thin” 

compared to their interior since they are composed of lines consisting of points that have 

equal distances to two (or more) prototypical points. Douven et al. rightly point out that 

	
20 A prominent case is provided by the family of Minkowski metrics di(x, y) for 1 ≤ i ≤ ¥. This problem 
is briefly discussed for d1 (Manhattan metric) and d2 (Euclidean metric) in Gärdenfors (2000, chapter 
3.9). The Euclidean metric d2 offers a structural advantage in that the cells of its Voronoi 
tessellations are always convex with respect to the standard convex structure of Euclidean space. 
This does not hold for d1 (cf. Hernandez Conde 2017). 
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this assumption for most conceptual spaces is not very plausible. For instance, for the 

conceptual space of the color spectrum, the boundary, say, between “red” and “orange,” 

is defined by points positioned at exactly the same distance from the prototypical points 

of “red” and “orange.” Empirically, this does not make much sense. What does it matter 

that a certain shade of color is positioned at the same distance from a prototypical “red” 

and a prototypical “orange”? Moreover, in a general case, there is no reason to assume 

that boundaries are “thin” compared to the regular open cells of Voronoi tessellation. 

Douven et al. (2013) proposes overcoming this shortcoming by the introduction of 

“collated Voronoi diagrams” that arise as a result of projecting similar ordinary Voronoi 

diagrams onto each other such that the set-theoretical union of their boundaries define a 

blurred and more or less “thick” area to take into account the vagueness of concepts and 

their boundaries.  

For topological tessellations, no “thickness” problem arises, since they do not distinguish 

between “thick” and “thin” as geometrical tessellations do (in an artificial way). The 

following example shows that the topological approach easily deals with tessellations with 

cells whose boundaries are “thicker” than the cells themselves:  

 
(3.7) Example. Let X be the set {a, w} È N, with N the natural numbers and a and w  are 

two objects that are different from all elements of N and from each other. Take P = {a, 

w} and define a pole distribution (X, m, P) by m(i) = {a, w}, i Î N, m(a) = {a}, and m(w)  

=  {w}. The corresponding topological structure (X, OX) is given by 

        cl(a) = {a} È N    ,                 cl(i) = {i}       ,                cl(w)  =  {w} È N 

        int(a) = {a}          ,                 int(N) = Ø      ,               int(w) = {w} 

        intcl(a) =  {a}     ,                   intcl(w) = {w}  ,              bd(w) =   bd(a) = N. 

        bd(i) = {i}         ,             V(i) = {i, a, w} ,             cl(N) = N.       

The specialization order of (X, OX) is given by i < a, w for all i Î N, and there is no other 

nontrivial relation between the elements of X.¨ 
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The cardinalities of the boundaries bd(w) and bd(a) of the regular open cells {a} and {w} 

are much greater than the cardinalities of the regular open cells {a} and {w} themselves. 

A natural basis for OX is given by {{a}, {w}, {i, a, w}; i Î N}. In contrast, the cardinality of 

the algebra of regular open sets O*X is much smaller. O*X is isomorphic to the Boolean 

algebra with 4 elements generated by {a} and {w}. Thus, moving from OX to O*X amounts 

to a considerable gain of conceptual parsimony (cf. section 5).¨   

 
The example (3.7) shows that the topological approach has no difficulty in dealing with 

the “thickness” of boundaries. The concept of topological tessellation is flexible enough 

to allow cells with boundaries that are intuitively much “thicker” than the cells they are 

boundaries of.   

 

4. Weakly Scattered Alexandroff Spaces as a General Framework for Topological 

Conceptual Spaces. The aim of this section is to show that weakly scattered Alexandroff 

spaces may be considered as a convenient topological framework for conceptual spaces 

in general. Weakly scattered Alexandroff spaces provide a natural generalization of polar 

spaces. They possess all their nice features but are more flexible and have a larger domain 

of applications. To put it bluntly, they may be considered as the “right” generalization of 

polar spaces.  

To set the stage, let us begin by recalling the essential features of the Alexandroff 

approach. An Alexandroff space X is defined as a topological space for which arbitrary 

intersections (unions) of open (closed) sets are open (closed) and not only finite ones).  

Clearly, every topological space (X, OX) with only a finite number of elements is an 

Alexandroff space. Finite spaces do not exhaust the class of Alexandroff spaces, however. 

Rather, Alexandroff topology becomes a particularly interesting field of topology exactly 

for spaces of infinite cardinality. Thus, the Alexandroff topology of a color circle and similar 

conceptual spaces defined by prototype distributions (X, m, P) qualifies as an interesting 
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Alexandroff topology (cf. Rumfitt (2015)) as well as digital topological spaces such as the 

Khalimsky plane (Z ´ Z, OZ ´ Z). 

 All Alexandroff spaces (X, OX) are completely characterized by their specialization orders 

(X, ≤) defined by x ≤ y := x Î cl(y). A particularly well-behaved subclass of Alexandroff 

spaces is the class of spaces whose specialization orders (X, ≤) have maximal elements, 

i.e., for each x Î X there is a y such that x ≤ y and y is maximal in (X, ≤). Clearly, polar 

spaces and their products are weakly scattered. Given an Alexandroff space (X, OX) (or 

equivalently, a partial order (X, ≤) one may distinguish two kinds of “extreme” elements: 

x Î X is an extreme element with respect to ≤ if and only if x is a maximal element of the 

specialization order, and x  Î  X is extreme with respect to the topology OX iff {x} Î OX, 

i.e., iff x Î ISO(X). Fortunately, these two concepts of “extreme elements” coincide: 

 

(4.1) Proposition. Let (X, OX) be a weakly scattered Alexandroff space with specialization 

order (X, ≤). The sets ISO(X) of isolated points and the set MX of maximal points of the 

specialization order (X, ≤) coincide. Conceiving (X, OX) as a conceptual space, the 

“extreme” elements of X can be conceived as the prototypical elements p of the regular 

open concepts int(cl(p)) Î O*X. 

 
Proof.  Let p be a maximal element of (X, ≤) and assume that {p} is not open. Then int(p) 

= Ø. By definition of int this is equivalent CclC(p) = Ø, i.e., cl(Cp) = X. Since X is Alexandroff 

one obtains X = cl(Cp) = Èa≠p cl(a). Hence p Î cl(a) and a ≠ p, i.e., p < a for at least one 

a. This is a contradiction against the maximality of p. Hence {p} is open. 

Now assume {p} is open and suppose p is not maximal and p Î cl(a) = CintCa. Clearly, p Î 

Ca, since a ≠ p. Since {p} is open one obtains int(p) Í intCa.  This is a contradiction. Hence 

p is maximal.¨   
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Now we can formulate the concluding theorem of this paper that characterizes weakly 

scattered Alexandroff spaces as a convenient class for dealing with order-theoretical, 

algebraic, and topological aspects of conceptual spaces:  

  
(4.2) Theorem. Let (X, OX) be a weakly scattered T0 Alexandroff space with specialization 

order (X, ≤), and let ISO(X) be the set of maximal elements. Then (X, OX) satisfies the 

McKinsey axiom, and the Boolean lattice O*X of regular open elements of OX is an atomic 

Boolean algebra with atoms intcl(p), p Î ISO(X) as generators. One obtains a regular open 

atomic tessellation of X by X = VpÎISO(X) intcl(p), i.e., O*X = 2L, with L being the set of atoms 

of O*X, i.e., L = {int(cl(p)), p Î ISO(X)}. 

 
Proof. Let ISO(X) be the set of maximal elements of the specialization order (X, ≤) of (X, 

OX). By definition, for each x Î X there is at least one p Î ISO(X) such that x ≤ p. Since 

the Alexandroff topology is the upper topology of the specialization order (X, ≤), 

singletons {p} are open, and closures cl(p) of {p} are the down sets ¯p := {x; x ≤ p}.  

The sets int(cl(p)) := {x; x Í ¯p} for p Î ISO(X) are atoms of O*X. For different p, p*, 

sets intcl(p) and intcl(p*) are disjoint and regular open, as int(cl(p)) Ç int(cl(p*)) = 

intcl({p} Ç {p*}) = Ø because the operator intcl is a nucleus, i.e., it distributes over finite 

intersections of open sets (cf. Johnstone (1982 (ch. II, 48)). 

To prove that intcl(p) is an atom in O*X is seen as follows: assume that x Î A = intcl(A) 

Ì intcl(p). Since intcl(p) is open, one has x Í cl(p)). This entails that x ≤ p and therefore 

that p Î x Í A. Hence, intcl(p) Í intcl(A) = A and A = intcl(p).  

We now prove that any regular open A Î O*X has the form A = VnÎM’ intcl(n) for some M’ 

Í M. Let MA := {p; p Î A Ç M}. Clearly, VnÎAM intcl(p) Í A. If we can show that A Í VnÎAM 

intcl(p), we are done. Assume that x Î A and define Mx := {p; x ≤ p and p Î ISO(X)}. Clearly, 

Mx Í MA. Hence, x Î cl(MA). Assume that y Î x. This is the case iff x ≤ y and this entails 
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that My Í Mx. Thus, we obtain x Í cl(MA). This means that x Î intcl(MA) = intcl(ÈnÎAM{p}) 

= VnÎAM intcl(p). Rather, A Í VpÎAM intcl(p).¨21 

 
Theorem (4.2) shows that the topological account of conceptual spaces has an important 

advantage over the geometrical account of conceptual spaces based on the concept of 

Euclidean convexity, insofar as it takes care of the genuinely “logical” aspects of concept 

systems. In Gärdenfors’s account of conceptual spaces the logical, i.e., the syllogistic 

aspects of concept systems are virtually absent. These syllogistic aspects of concept 

systems are encapsulated in the traditional logical calculus dealing with connectives such 

as “AND”, “OR”, “NOT”, etc.  

The geometrical approach, interested mainly in constructing discretizations of a 

conceptual space (by Voronoi tessellations or otherwise), has no means to adequately 

represent most of the classical logical operations on concepts defined for them from the 

time of Aristotelian syllogistics. This is due to the fact that these operations do not go 

well with convexity. Among the classical logical operations of concepts such as disjunction, 

conjunction, negation and others, only the conjunction of concepts has a well-behaved 

geometrical representation in conceptual spaces structured by convexity. That is, if A and 

B are concepts represented by convex regions of a conceptual space (X, co) the 

conjunction A & B of A and B is represented by the set-theoretical intersection of these 

regions. Other logical operations such as disjunction and negation of concepts cannot be 

represented in a plausible way by convex regions. The most obvious case is negation. 

Assume that a concept A is represented by a convex region of a conceptual space (X, co). 

For the sake of definiteness, take X to be the Euclidean plane endowed with standard 

Euclidean vector convexity (cf. Gärdenfors (2000), (2009), Douven (2019)). If only 

	
21 According to theorem (4.2), for O*X to be an atomic Boolean lattice, it suffices that (X, OX) is 
Alexandroff and weakly scattered. These two requirements are, however, not necessary to ensure 
that O*X is atomic. There are non-weakly scattered Alexandroff spaces and non-Alexandroff weakly 
scattered spaces with regular open atomic tessellations O*X, see Appendix B.  	
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convex subsets of X are recognized as (natural) concepts the set-theoretical complement 

CA of A is not a concept since CA is usually not convex. The convex hull co(CA) does not 

work much better, since it is usually much larger than CA and has a non-trivial intersection 

with A. Disjunctions do not score better. The set-theoretical union A È B of convex sets 

A and B is usually not convex. Hence, it cannot represent a concept. On the other hand, 

the convex hull of co(A È B) is usually too great to serve as a logically plausible supremum 

A Ú B of A and B, since the law of distributivity:  

(4.3)                                   A Ú (B Ù C) = (A Ú B) Ù (A Ú C)  

does not hold in the lattice Co(X) of convex subsets of X. In sum, the familiar classical 

logical connectives of concepts have no place in the framework of conceptual spaces 

defined with the aid of Euclidean convexity operators. In contrast, topological operators 

account have no problems with the Boolean logic of concepts. Every conceptual space X 

endowed with a topology OX comes along with a naturally defined regular open 

interpretation of the Boolean lattice O*X. Moreover, if (X, OX) is weakly scattered 

Alexandroff, then O*X is even atomic with distinguished isolated elements a Î ISO(X) as 

generators of its atoms.22    

Let us conclude this section with some brief remarks on the relation between geometrically 

and topologically defined conceptual spaces. Very succinctly then, the relation between 

geometrically and topologically defined conceptual spaces may be expressed as follows. 

Starting from a “classical” geometrically defined conceptual space (endowed with Voronoi 

	
22 The fact that negations, disjunctions and other familiar combinations of concepts can be 
represented naturally in a topological framework should perhaps not be taken as the ultimate and 
definite argument that “not red”, “red or blue or green” are natural concepts in exactly the same 
sense as “red”, “blue”, and “green”. But for every even minimally useful calculus of concepts 
negations and disjunctions of concepts are indispensable. An example treated in this paper in some 
detail is Rumfitt’s solution of the Sorites paradox dealing with “non-red” etc. Thus, a theory of 
concepts that does not deal with the issue of logical connectives has to give explicit reason why 
it does so. Otherwise, it is to be assessed as seriously incomplete. In sum, I’d tend to answer the 
question (asked by a reviewer of an earlier version of this paper) whether the fact that Gärdenfors’s 
account of conceptual spaces does not deal with negative, disjunctive and other combinations of 
concepts is to be judged “as a bug or a feature” in favor of the first option. 
  



	 33	

tessellation defined via prototypes and Euclidean convexity), one obtains a corresponding 

topologically defined polar space (X, OX) with the same set of prototypes and the same 

set of open cells. This set of cells topologically defines a regular atomic tessellation of (X, 

OX) whose elements are the atoms of the Boolean algebra O*X of the underlying 

topological space (X, OX). Thus, in contrast to a conceptual space defined by a geometrical 

convexity, a conceptual space endowed with a topological structure comes with a ready-

made and well-behaved classical system of concepts, namely, the complete atomic 

Boolean algebra O*X.  Moreover, a closer look at the construction of the conceptual space 

reveals that the full-fledged apparatus of Euclidean geometry is not necessary to 

construct a topological discretization of X. Rather, a more austere structure suffices, 

namely, a weakly scattered Alexandroff topology.   

Weakly scattered Alexandroff spaces possess regular atomic tessellations that can be 

used to construct discretizations of conceptual spaces. As distinguished from polar 

spaces, for weakly scattered Alexandroff spaces, the dichotomy between prototypical and 

non-prototypical elements is replaced by a gradual distinction between “more” and “less 

prototypical” elements defined by the specialization order.23  

Already Rumfitt’s elucidation of the logic of vague concepts has shown that the very 

simple class of polar spaces offers a fruitful explication of many aspects of conceptual 

spaces. The more comprehensive class of weakly scattered Alexandroff spaces offers a 

sufficiently flexible framework for dealing with various aspects of conceptual discretization 

and categorization arising in cognitive science and related disciplines. 

 

5. Towards a topological design theory of conceptual spaces. The basic assumption of the 

conceptual spaces approach is that concepts can be usefully represented as well-formed 

	
23 As stated already in the introduction, such a gradual distinction has been assumed often more or 
less implicitly by many authors, nice examples can be found in the recent paper Osta-Vélez and 
Gärdenfors (2020). 
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subsets of a conceptual space. To speak meaningfully about well-formedness requires that 

the space in question is structured in one way or another. Then, the basic task of this 

approach is to find appropriate structures that allow us to characterize empirically useful 

concepts as structurally well-formed subsets. Topological structures have shown to be 

basic for all kinds of “spaces” that are used and investigated in numerous and variegated 

realms of knowledge (for instance, physics (of course), game theory, biology, neural 

sciences, economics, logic) (see for example Adams and Franzosa (2008), Curto (2017), 

Rabadán and Blumberg (2020)). Thus, it appears reasonable to expect that topological 

structures may also play an important role in the theory of conceptual spaces. Topological 

concepts are flexible enough to be adapted to various empirical and theoretical 

necessities. It is a matter of “theory-guided” empirical research to find out which 

topological structures for which types of conceptual spaces are the most useful ones. 

Topological structures are flexible enough to take into account a variety of criteria (which 

sometimes pull in opposite directions) that a system of “good,” i.e., “natural concepts,” 

should satisfy. This means that topology may be a helpful device for setting up a general 

“design theory” that aims to determine how “good” discretizations of conceptual spaces 

by “natural concepts” should look like. An account of such a theory has recently been put 

forward by Douven (2019) and Douven and Gärdenfors (2019). They present a list of 

desiderata for the design of conceptual spaces that “good” (or even “optimal”) systems 

of concepts should satisfy. More precisely, according to these authors, a good conceptual 

system should satisfy the requirements of parsimony, informativeness, contrast, and 

learnability. These design principles may pull in different directions. Thus, the overall task 

is to find a kind of equilibrium or balance between the various principles. The following 

shows how Douven and Gärdenfors’s list of design principles are accounted for by the 

topological approach (based on weakly scattered Alexandroff spaces): 

 
(5.1) Parsimony.   The conceptual structure should not overload the system’s memory.  
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Topological response: Already elementary examples like the color spectrum show that 

the cardinality of the Boolean lattice O*X of regular open sets is much lower than the 

cardinality of the Heyting lattice OX of open sets. This is evidence that the choice of O*X 

(instead of OX) as the set of representatives of concepts is in line with the principle of 

parsimony.¨ 

 
(5.2) Informativeness.  Concepts should be informative, meaning that they should jointly 

offer good and roughly equal coverage of the domain of classification cases.  

Topological Response: According to the topological approach, the extensions intcl(p) of 

concepts jointly offer complete coverage of the domain of classification cases since O*X 

provides an atomic topological tessellation VpÎpintcl(p) of X. In a somewhat different vein, 

informativeness is expressed by the fact that the set P of prototypes is dense in X, i.e., 

cl(P) = X.¨    

 
(5.3) Presentation.  The conceptual structure should be such that it allows one to choose 

for each concept a prototype that is a good representative of all items falling under the 

concept.   

Topological response: According to the topological approach, the prototypes for all 

concepts are defined as isolated points of (X, OX) or equivalently as maximal elements of 

the specialization order (X, ≤).¨  

 
(5.4) Contrast: The conceptual structure should be such that prototypes of different 

concepts can be so chosen such that they are easy to tell apart. 

Topological response: Different prototypes p and p’ are topologically separated in the 

sense that their extensions intcl(p) and intcl(p’) are separated, i.e., intcl(p) Ç intcl(p’) 

= Ø. ¨   

 
(5.5) Learnability: The conceptual structure should be learnable, ideally from a small 
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number of instances.  

Topological response: This can topologically be taken into account by requiring that for   

“good” conceptual spaces X, for each element x Î X there is a path x < x1 < … < xm 

from x to xm, and xm maximal with respect to the specialization order (X, ≤) of (X, OX). 

For polar spaces this requirement is satisfied by very short paths of length 2 that have 

prototypes as their maximal elements. For more general spaces, for instance, 

topological products of polar spaces, the paths are longer and pass through 

intermediate elements that may be characterized as “more or less prototypical”.24 This 

amounts to a more complex categorization than that which is determined by just one 

prototypical pole.¨   

 
As Douven and Gärdenfors point out the task of designing a good (or even optimal) 

conceptual structure for a conceptual space may be understood as problem of 

conceptual engineering. Engineers have to take into consideration certain constraints 

that restrict the feasibility of their design. Not everything that appears “in principle” 

possible, is practically feasible. This holds, in particular, for the cognitive scientist who 

aspires to design conceptual spaces that are to be used for building programs, robots, 

or other artificial devices that are designed for accomplishing various cognitive tasks. 

To be specific, consider the growing importance of computer simulations in many areas 

of science. Many of the conceptual spaces involved in such simulations use to be digital 

spaces of one kind or another. This predicament requires digitized conceptual spaces. 

Thus, a comprehensive design theory of conceptual systems has to take into account 

this fact. This is a desideratum that goes far beyond the level of concretization that 

Douven and Gärdenfors’s design theory has achieved up to now. For instance, in Douven 

(2019) the author presents several examples of “conceptual structures for disc-shape 

	
24 Detailed discussions about the essential role of “intermediate elements” in digital spaces may 
be found in Adams and Franzosa (2008, chapter 11.3), Melin (2008) and elsewhere. 
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similarity spaces” (Douven (2019, 125 - 127)). These examples, intuitively appealing 

and plausible as they may be, are not much more than intuitive illustrations or 

geometrical metaphors for design problems. In order to render them more precise and 

less metaphorical, the conceptual engineers have to take seriously the constraints that 

determine the material architecture of conceptual spaces. One important constraint 

that gains more and more relevance in contemporary cognitive science and artificial 

intelligence is the recognition of the digital (“discrete”) character of many conceptual 

spaces. The other side of this coin is the necessity to admit the limited relevance of 

considerations based on plausible intuitive Euclidean spaces.   

The task of finding appropriate design criteria for conceptual systems can perhaps be 

compared with the task of finding in physics fruitful “relative a priori principles” that 

characterize general features of theories concerning aspects such as continuity, 

probability, and the causality of laws (cf. Cassirer (1937), Friedman (2001)). For 

instance, in physics states spaces of systems have often been assumed a priori to 

satisfy certain geometrical constraints, e.g., the constraint of being Riemannian 

manifolds. This Riemannian constraint is mathematically highly non-trivial and not very 

intuitive, at least not for someone who is accustomed only to elementary Euclidean 

geometry. It took a long time for scientists and mathematicians to formulate this 

constraint in a mature form (and for philosophers to understand it). Something 

analogous may be expected for the design principles of the cognitive sciences. 

  

 

6. Concluding Remarks. In this paper arguments have been put forward in favor of the 

thesis that conceptual spaces can be usefully endowed with the topological structures of 

weakly scattered Alexandroff spaces. Alexandroff topologies are an expedient conceptual 

device for addressing the important role that prototypes and paradigmatic elements play 

in human and non-human categorization. In the simplest case, this is evidenced already by 
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polar spaces defined by pole distributions. Weakly scattered Alexandroff spaces are more 

general than polar spaces but inherit most of the useful properties exhibited by the former.  

In weakly scattered Alexandroff spaces the mathematical structures of order, algebra, and 

topology (Bourbaki’s “mother structures”) are interwoven in an intricate manner that can 

be used to tackle a variety of problems that arise for issues of conceptualization,  

categorization, and logic.  

Topological structures are fundamental spatial structures and arguably even the most 

fundamental ones. Thus, if one subscribes to Gärdenfors’s thesis that in order 

 
“to understand the structure of our thoughts and to be able to build artificial 

systems with similar cognitive capacities, we should aim at unveiling our 

conceptual spaces” (Gärdenfors (2000, 262)),  

 

we should invest some effort in the task of understanding the topological structures of 

our conceptual spaces and other conceptual spaces that we are interested in. 

 

 

APPENDIX A: ELEMENTS OF TOPOLOGY.  

For the reader’s convenience, this appendix lists some basic definitions and facts of 

topology that are used in this paper.   

  

(A.1). Definition. Let X be a set with power set 2X. A topological space (X, OX) is a 

relational structure with OX Í 2X satisfying the following:  

(i)  Ø, X Î OX;  

(ii)  Finite intersections and arbitrary unions of elements of OX are elements of OX. 

 
The elements of OX are called open sets of (X, OX). The set-theoretical complements of  
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open sets are called closed sets.25 As usual, when there is no danger of confusion, a 

topological space (X, OX) is simply denoted by X. 

 
(iii)  A topological space (X, OX) is an Alexandroff space iff arbitrary intersections 

(unions) of open (closed) sets are open (closed).¨ 

If X has more than one element, then different topological structures xist on X. In 

particular, there are two extreme topological structures (X, O0X) and (X, O1X) defined by 

O0X := {Ø, X} and O1X := 2X. The topology (X, O0X) is called the indiscrete topology on X, 

and the topology (X, O1X) is called the discrete topology. With respect to set-theoretical 

inclusion all topological structures (X, OX) on X lie between these two (rather 

uninteresting) extremal topologies: O0X Í OX Í O1X. A topology OaX is coarser than a 

topology ObX iff OaX Í ObX. Equivalently, ObX is said to be finer than OaX. Thus, O0X is the 

coarsest topology on X, and O1X is the finest topology on X.¨    

 

The following definition collects some standard methods to construct new topologies from 

old ones: 

  

(A.2). Definition. Let (X, OX) and (Y, OY) be two topological spaces. Recall that a (set-

theoretical) map X¾¾f¾¾>Y is continuous iff f-1(OY) Í OX. The map f is open if and only 

if f(OX) Í OY. 

(i) The product topology O(X ´ Y) on X ´ Y is the finest topology such that the projections 

X ´ Y ¾¾pX¾¾>X and  X ´ Y ¾¾pY¾¾>Y are continuous with respect to O(X ´ Y) and 

O(X) and O(X ´ Y) and O(Y), respectively.  

(ii) Let Z¾i¾>X be an inclusion map of a subset Z Í X. If (X, OX) is a topological space, 

the induced topological structure (Z, OZ) is the coarsest topology on Z such that the map                                                                                                                                                                                                                                      

i is continuous, i.e., OZ = Z Ç OX. 

(iii) Let ~ be an equivalence relation on X and X¾¾q¾¾>X/~ the canonical quotient map. 

The quotient topology OX/~ on X/~ is the finest topology such that q is continuous.¨ 

 

Topological structures (X, OX) can be defined in many equivalent ways. For our purposes, 

particularly useful is a definition in terms of closure operators cl or interior kernel operators 

int. These operators must satisfy the so-called Kuratowski axioms: 

 
	

25 A set may be open and closed. For instance, the sets Ø and X are open and closed for all 
topological structures (X, OX). Sets that are open and closed, are sometimes called clopen.  A 
topological space is called connected iff Ø and X are the only clopen subsets of X. 
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(A.3). Definition. A topological closure operator is an operator 2X¾¾cl¾¾>2X satisfying 

the four requirements (i) – (iv) below. Dually, a topological interior kernel operator is a 

map 2X¾¾int¾¾>2X satisfying requirements (i)* - (iv)*: 

 
(i) cl(A È B) = cl(A) È cl(B)        (i)*   int(A Ç B) = int(A) Ç int(B).    (Distributivity) 

(ii) cl(cl(A)) = cl(A).                   (ii)*   int(int(A)) = int(A).               (Idempotence) 

(iii) A Í cl(A).                             (iii)*   int(A) Í A.                           (Extension) 

(iv)  cl(Ø) = Ø.                             (iv)*   int(X) = X.                            (Normality) 

 

Closure operators and interior kernel operators are interdefinable: Denoting the set-

theoretical complement of A by CA, one obtains cl(A) = Cint(CA)) and int(A) = Ccl(CA)). 

Every topological closure operator cl uniquely defines a topological structure (X, OX) and 

vice versa. Given cl, the class of open sets OX is defined by OX := {B; B = Ccl(A); A Í X}. 

Dually, given a topological interior kernel operator int, the corresponding topological 

structure OX is defined by OX := {A; A = int(A), A Í X}.  

For A Í X, the boundary bd(A) of A is defined as bd(A) := cl(A) Ç cl(CA) = C(int(A) È 

int(CA)). Moreover, it is possible to define cl (and int) in terms of bd.¨ 

 
Topological closure operators are only one of many different types of closure operators 

used in mathematics. As is well known, also the concept of convexity may be defined in 

terms of closure operators: 

 
(A.4). Definition. A convex closure operator (or convexity) on a set X is defined as an 

operator 2X ¾¾co¾¾>2X that satisfies the following requirements: 

 
(i)      A Í B Þ co(A) Í co(B).                          (Monotony)        

(ii) co(co(A)) = co(A).                                (Idempotence)        

(iii) A Í co(A).                                            (Extension) 

(iv)  co(Ø) = Ø.                                            (Normality) 

(v)      For all y Î co(A) there is a finite set F Í A such that y Î co(F).   (Algebraicity). 

 
A set A is called convex with respect to the operator co iff co(A) = A. The convex operator 

co is of arity ≤ n provided its convex sets are precisely the sets A with the property that 

co(F) Í A for each F Í A with cardinality #F ≤ n.¨  
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The familiar Euclidean convexity is a convex operator of arity 2.26 More interesting is the 

observation that the topological closure operator cl of an Alexandroff space (X, OX) is also 

a convex closure operator in the sense of (A.4). By definition (see A.9) a set A is closed 

in the Alexandroff topology iff A = ¯A. Then x Î ¯A iff there is an a Î A with x ≤ a. In 

other words, x Î ¯a = co(a). Thus, one may choose F(x) = {a} as the finite set F(x) with 

F(x) Í A and x Î co(F(x)). Hence, the “lower convexity”, defined by the Alexandroff 

topological operator, is of arity 1. 

In other words, a conceptual space (X, OX) endowed with an Alexandroff topological 

structure OX (defined by the operator cl) may be conceived as a space endowed with a 

convex structure (defined as well by cl).27 Admittedly, this “Alexandroff convexity” is 

rather different from the Euclidean convexity that most conceptual spaces are assumed 

to be endowed with. Nevertheless, this fact suggests that Alexandroff’s and Gärdenfors’s 

approaches to conceptual spaces are not totally alien to each other.  

Quite often, a topological structure (X, OX) and a convex structure (X, co) co-exist on the 

same set X. Prominent example are the Euclidean spaces Rn. In this situation it is expedient 

to require appropriate compatibility conditions of the two structures (for details see van 

de Vel (1993, ch. III).  

 

(A.5). Proposition. Let (X, OX) be a topological space. An open subset A Î OX is regular 

open iff A = int(cl(A)). The set of all regular open subsets of X is denoted by O*X. O*X is 

	
26 Indeed, all convexity operators that Gärdenfors considers in contributions to the approach of 
conceptual spaces are of arity 2. More precisely, his basic primitive concept is a ternary relation B(x, 
y, z) of elements x, y, and z of a conceptual space X. The relation B(x, y, z) is to be read as “y is 
between x and z”. For any two points x and z the relation B defines a subset [x, z] of elements 
between x and z, i.e., [x, z] := {y; B(x, y, z)}. Then a set A Í X is convex with respect to B iff x, z Î 
A entails [x, z] Í A. This defines a convex closure operator co for which A.3(5) is just the 
requirement that y Î A iff there are x, z Î A and such that y Î B(x, y, z).   
27 The standard convex operators of Euclidean spaces and the topological operators of Alexandroff 
spaces are both convex closure operators. Thus, they can be treated as two cases of a general 
theory of convex structures (cf. van de Vel (1993)). This suggests that topology and convexity, 
used as devices for structuring conceptual spaces should be considered as special cases of the more 
general approach of an approach that conceives conceptual spaces as closure structures.   
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well known to be a complete Boolean algebra. There is a map OX¾¾j¾¾>O*X defined by 

j(A) := int(cl(A)) and an inclusion map O*X¾¾i¾¾>OX such that j • i = idO*X and idOX  Í i 

• j.¨ 

 
(A.6). Definition.  Let (X, OX) be a topological space.  

(i) An element x Î X is isolated iff {x} Î OX. The set of isolated points of X is denoted by 

ISO(X). 

(ii) A subset A Í X is dense in X iff cl(A) = X.   

(iii) The space (X, OX) is weakly scattered iff ISO(X) is dense in X, i.e., cl(ISO(X)) = X.  

(iv) The space (X, OX) satisfies the McKinsey axiom iff int(cl(A)) Í cl(int(A)) for all A Í 

X.¨ 

 
(A.7). Definition (Specialization quasi-order of a topology). Let X be a set. A quasi-order 

on X is a binary relation ≤ such that for all x, y, z Î X, the following conditions (i) and (ii) 

are satisfied:  

(i)  x ≤ x. (Reflexivity) 

(ii)  x ≤ y and y ≤ z implies x ≤ z.  (Transitivity) 

(iii)  If also x ≤ y and y ≤ x implies x = y is satisfied the quasi-order ≤ is said to be a 

partial order, and the structure (X, ≤) is called a poset.  

(iv)  A subset C of a partial order (X, ≤) is a chain iff all elements x, y Î C are comparable, 

i.e., x ≤ y or y ≤ x. If C is a finite chain in X with #C = n +1, the length of C is n. 

The length of the longest chain is called the depth of partial order.   

A topological space (X, OX) defines a quasi-order (X, ≤) by x ≤ y := x Î cl(y). This quasi-

order is called the specialization quasi-order of (X, OX). The set of maximal elements of 

(X, ≤) with respect to this order is denoted by MX.¨	

For many traditional topological spaces such as the Euclidean spaces (E, OE), the 

specialization order (E, ≤) is trivial, i.e., x ≤ y iff x = y, or, equivalently, iff MX = X. In 
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contrast, for non-trivial Alexandroff spaces (X, OX) the specialization quasi-order is non-

trivial, i.e., MX ≠ X.  

 
(A.8). Proposition (Upper topology defined by a quasi-order (X, ≤)). Let (X, ≤) be quasi-

order. For A Í X, define the upper set of A by A := {x; a ≤ x for some a Î A}. The upper 

topology (X, OX) corresponding to (X, ≤) is defined by OX := {A; A Í X}. The closed sets 

of this topology are the lower sets of (X, ≤) defined by A:= ¯A := {y; y ≤ a for some a Î A}. 

X endowed with the upper topology of the quasi-order (X, ≤) is an Alexandroff topological 

space (X, OX).28¨  

 
(A.9). Proposition. Let (X, OX) be an Alexandroff space with the specialization quasi-order 

(X, ≤). Then, the upper topology of X is isomorphic to (X, OX). In other words, the topology 

of an Alexandroff space (X, OX) is completely determined by its specialization quasi-order 

(X, ≤). An element a Î X is maximal with respect to the specialization order if and only if 

a Î ISO(X), i.e., {a} Î OX.¨ 

 

(A.10). Separation axioms. Let (X, OX) be topological space. 

(i) X is a T0-space iff for every x Î X and every y ≠ x there exists an open set A Î OX such 

that either x Î A and y Ï A or x Ï A and y Î A. 

(ii) X is a T1/2-space iff every point x Î X is either open or closed. 

(iii) X is a T1-space iff every point x Î X is closed. 

(iv) (X, OX) is a T2-space (or Hausdorff space) iff for distinct points x and y there are open 

sets A Î OX and B Î OX containing x and y such that x Ï A and y Ï B. 

(v) The separation axioms T0 – T2 satisfy a chain of proper implications: T2 Þ T1 Þ T1/2 Þ 

T0.¨ 

 
The following examples show that Euclidean and Alexandroff spaces behave quite 

differently with respect to separation axioms: 

 

(A.11) Examples.   

	
28 Analogously, the lower set ¯A of A Í X is defined by ¯A := {y; y ≤ a for some a Î A}. Thereby, 
the so-called lower topology of (X, ≤) is defined as the set of all lower sets {¯A; A Í X}. In this 
paper, however, there is no need to consider this topology of (X, ≤).   
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(i) The standard Euclidean topology OR of the real line R is generated by open intervals 

(a, b) = {x; a < x < b}. Two distinct points x and y can be separated by open intervals U(x) 

and U(y), which are disjoint from each other. Hence, (R, OR) is a T2–space. A fortiori, all 

points are closed, and no point is open. 

(ii) Let (N, ≤) be the set of natural numbers endowed with their natural order ≤. A 

topological space (N, ON) is defined by stipulating that Ø and the sets n := {m; n ≤ m} 

are open for each n Î N. Then (N, ON) is an Alexandroff space that satisfies T0 but not 

T1/2. No point of (N, ON) is open, and the only closed point of (N, ON) is 0.   

(iii) The Khalimsky line (Z, OZ) (as a polar space) satisfies the axiom T1/2 but not T1. 

(iv) The Khalimsky plane (Z ´ Z, OZ ´ Z) satisfies T0 but not T1/2. The even points (2m, 

2n) Î Z ´ Z are closed, the odd points (2m+1, 2n+1) Î Z ´ Z are open, and the “mixed 

points” (2m, 2n+1), (2m +1, 2n) Î Z ´ Z are neither open nor closed.¨ 

 

(A.12). Proposition. 

(i) An Alexandroff space (X, OX) satisfies T1 iff it is discrete, i.e., OX = 2X. 

(ii) A topological space (X, OX) is a T0-Alexandroff space iff its specialization quasi-order 

(X, ≤) is a partial order.29 

(iii) For an Alexandroff space with specialization quasi-order (X, ≤) define an equivalence 

relation on X by x ~ y := x ≤ y and y ≤ x. Then (X/~, OX/~) is a T0-Alexandroff space.¨  

 

 

Appendix B. (EXAMPLES OF ALEXANDROFF SPACES). 

(B.1). All finite topological spaces (X, OX) are Alexandroff spaces with O*X atomic. The 

Sierpinski space (X, OX) with X = {a, b}, OX = {Ø, {a}, {a, b}} is weakly scattered. In general, 

finite topological are not weakly scattered. The smallest example is the space X = {a, b, 

c} with topology OX = {Ø, {a, b}, {c}, {a, b, c}}. The only isolated point of (X, OX) is {c}, 

but {c} is not dense in (X, OX), since clearly cl(c) = {c}. Nevertheless, O*X is atomic, 

	
29 In classical topology, the separation axiom T1 is considered a minimal requirement 
that must be satisfied for a topological space to be considered reasonable. (A.13)(i)  
shows that Alexandroff spaces fall outside the realm of classical theory: Only trivial 
(discrete) Alexandroff spaces are T1, and some important Alexandroff spaces such as 
the digital plane (Z ´ Z, O(Z ´ Z)) fail to be T1/2. 
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namely, O*X is the Boolean algebra with four elements {Ø, {a, b}, {c}, {a, b, c}}, generated 

by the atoms {a, b} and {c}. 

 
(B.2). Polar spaces X provide the simplest class of Alexandroff spaces that may have 

infinitely many elements. Examples treated in detail include the linear color spectrum and 

the circular color spectrum (color circle) with finitely many poles but infinitely many shades 

of colors.  

Perhaps the most important example of a polar space is the Khalimsky line (or digital line) 

(Z, OZ) defined by the pole distribution (Z, m, 2Z+1) (cf. 2.10). Indeed, the Khalimsky 

line may be considered as the “foundation of digital topology” (cf. Kopperman (1994)). 

 
(B.3). Finite products of polar spaces are weakly scattered Alexandroff spaces. More 

generally, finite products of weakly scattered Alexandroff spaces are weakly scattered  

Alexandroff spaces.     

 
(B.4). Not all Alexandroff spaces with infinitely many elements are weakly scattered. An 

example is the Alexandroff space (N, ON) defined by the standard linear order (N, ≤) as 

the specialization order. As is easily observed, the set of isolated points of this space is 

empty. Hence, (N, ON) is not weakly scattered. Nevertheless, the Boolean algebra O*N is 

atomic, namely, the minimal Boolean algebra of two elements generated by the atom N. 

 
(B.5). More generally, there are infinite trees (X, ≤) whose Alexandroff topologies (X, OX) 

have regular open lattices O*X that are the atomic Boolean algebras 2n, n = 1, 2, …  Just 

take X to be the disjoint union of n copies of N endowed with the natural order. Identify 

the minimal elements (“0”) of all copies of N with each other. The result is a tree with n 

infinite linear branches. Clearly, (X, OX) is not weakly scattered, because X has no isolated 

points at all. However, the Boolean algebra O*X of regular open sets of the Alexandroff 
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space (X, OX) is the atomic Boolean algebra 2n generated by the regular open upper sets 

x1, …, xn, where each xi generates a branch of the tree as its open hullxi.    

 
(B.6). Not all Alexandroff spaces are regular atomic. An example is given by the 

specialization order (X, ≤) of the infinite binary tree.30 Let X be the set of finite 0-1-

sequences (e1, …, en), ei = 0, 1, endowed with the following partial order: For x, y Î	X one 

has x ≤ y := x is an initial subsequence of y, i.e. y = (x, z) and z Î X. Then (X, ≤) is an 

infinite binary tree with root the empty sequence Ø. The two children of Ø are the 

sequences (0) and (1), the children of (0) and (1) are (0, 0) and (0,1), and (1, 0) and (1, 

1), respectively, and so on.  

For all x Î X, the subtrees x are regular open subsets of (X, OX). They are not atomic 

since for any x, one may find x < x’< x’’ < … such that x É x’ É x’’ É …. One then 

obtains infinite strictly decreasing sequences of regular open elements of O*X.¨ 

 
(B.7). There are weakly scattered spaces (X, OX) with atomic O*X that are not Alexandroff: 

Let (R, OR) be the set of real numbers R endowed with the topology engendered by the 

standard Euclidean topology and the elements of the set Q of rational numbers. Then, the 

rationals are isolated points of (R, OR) such that cl(Q) = R since every open neighborhood 

U(s) of an irrational number s contains a rational number q Î Q. The singletons {s} of 

irrational numbers s Î R – Q are closed but not open: if {s} were open, s Î intcl(s) Í intcl(R 

– Q). However, clearly intcl(R – Q) = int(R – Q) = Ø, since Q is open in this topology. Hence, 

{s} is closed but not open. This shows that (R, OR) is not Alexandroff, since the 

intersection {s} of the open neighborhoods of s is not open. The Boolean lattice O*R is 

atomic, since clearly O*R = PQ due to the fact that the only atomic elements of O*R are 

singletons {q} with q Î Q.¨ 

 

	
30 I owe this example to Imanol Mozo. 
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