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Abstract. Bertrand Russell was one of the protagonists of the programme of reducing 

“disagreeable” concepts to philosophically more respectable ones. Throughout his life he 

was engaged in eliminating or paraphrasing away a copious variety of allegedly dubious 

concepts: propositions, definite descriptions, knowing subjects, and points, among others. 

The critical aim of this paper is to show that Russell’s construction of points, which has 

been considered as a paradigm of a logical construction überhaupt, fails for principal 

mathematical reasons. Russell could have known this, if he had taken into account some 

pertinent results due to Hausdorff or Tarski. Its constructive aim is to show that one can 

save Russell’s thesis – that points can be defined in terms of events or regions – by using 

the conceptual resources of modern pointless topology.   

 

  

1. Points in Russell’s Philosophy. Bertrand Russell was one of the protagonists of the 

programme of reducing “disagreeable” objects to philosophically more respectable ones. 

Throughout his life he was engaged in eliminating or paraphrasing away a copious variety 

of suspicious objects: propositions, definite descriptions, knowing subjects, and many 

others.   

For Russell, logical analysis was the method of the new scientific philosophy to which he 

dedicated his philosophical career after his conversion from British Idealism during the last 

years of the 19th century. The aim of logical analysis was the elimination of suspicious or 

otherwise undesired entities from the discourse of scientific philosophy. In Our Knowledge 

of the External World as a Field for Scientific Method in Philosophy  (Russell 1914, 

OKEW) Russell attempted to show  

 
“by means of examples, the nature, capacity, and limitations of the logical-
analytic method in philosophy. …The central problem by which I have 
sought to illustrate method is the problem of the relation between the crude 
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data of sense and the space, time and matter of mathematical physics.”  
(OKEW, 10) 

 

More precisely, Russell attempted to show that the basic mathematical structures of 

physical spacetime - conceived as structured sets of spatial points and temporal points - 

could be reconstructed from “crude sense data”, later to be characterized as “events”. He 

credited Whitehead with the basic ideas of this approach characterizing his own version as 

a “rough preliminary account”: 

 
“I owe to Dr. Whitehead the definition of points, the suggestion for the trea-
tment of instants and “things”, and the whole conception of the world of 
physics as a construction rather than an inference. What is said on these to-
pics here is, in fact, a rough preliminary account of the more precise results 
which he is giving in the fourth volume of our Principia Mathematica.” 
(OKEW 10, 11) 

  

Actually, points played a role in Russell’s thinking already before he had started his col-

laboration with Whitehead on Principia Mathematica. From his youthful Essay on the 

Foundations of Geometry (Russell 1897, EFG)1 up to My Philosophical Development 

(1959) “points” were a recurrent theme in many of his writings. The most detailed account 

of spatial points can be found in The Analysis of Matter (Russell 1929), the last original 

work on matters of points (more precisely on instants) was the paper On Order in Time 

(Russell 1936, OT), but still in the retrospective My Philosophical Development (Russell 

1959) he ascribed to the issue of points an important place in his philosophical develop-

ment: 

   
“As regards points, instants, and particles, I was awakened from my “dog-
matic slumber by Whitehead. Whitehead invented a method of constructing 
points, instants, and particles as sets of events, each of finite extent. This 
made it possible to use Occam’s razor in physics in the same sort of way in 
which we had used it in arithmetic. I was delighted with this fresh appli-
cation of the methods of mathematical logic.” Russell (1959, 77). 

 

                                                
1 In the Essay on the Foundations of Geometry, still under the spell of Bradley’s idealism, Russell conceived 
points as “contradictory” objects that could be used to argue for the “dialectical structure” of science 
according to which the most basic science (= geometry) was not an independent science but pointed to some 
“higher” science, i.e. physics: “The antinomy of the Point proves the relativity of space, and shows that 
Geometry must have some reference to matter … .” Russell (1897, 196 – 199). 
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Taking into account Russell’s assertion that “the question of the construction of point-

instants … was already very much in my mind in 1911” (Russell 1959, 121) one may say 

that Russell considered the topic of the logical construction of spatial points and temporal 

instants as an important philosophical topic for almost 50 years. Nevertheless, he never got 

it right. Nevertheless he was quite clear about the general idea of how the construction of 

points from less queer entities such as regions or events should be carried out.  In The 

Analysis of Matter (Russell 1927) he compared his reductionist program with the standard 

approach of point set topology and differential geometry:  

 

“In analysis situs (= topology, T.M.) both points and neighborhoods are given. 
We, on the other hand, wish to define our points in terms of “events”, where 
“events” will have a one-one correspondence with certain neighborhoods. … We 
have to assign to our events such properties as will enable us to define the points 
of a topological space as classes of events, and the neighborhoods of the points as 
classes of points. (Emphasis mine, T.M.) But we have to remember that we do not 
want to construct merely a topological space: what we want to construct is the 
four-dimensional space-time of the general theory of relativity.” (Russell 1927, 
298) 

 
This constructional programme has a circular structure: we start with a certain set E of 

events that are assumed to have certain (relational) properties. Then we construct points as 

certain classes of events and the neighborhoods of these points as certain classes of points 

of classes of classes of events. Then we may consider the newly constructed neighborhoods 

of constructed points as events in their own right and consider them as building blocks for 

the construction of new “second order” points. For these second order points we may 

construct neighborhoods again, i.e., second order events, and so on. Continuing in this way 

things tend to be complicated, or so it seems. Therefore it seems advisable to put some 

constraints on this undesired profusion of higher order points and events. The simplest way 

to achieve this is to assume that iterating the construction of points and events from already 

constructed points and events does not yield anything new. That is to say, the classes of 

points and events of higher order are required to be isomorphic to the classes of points and 

events of first order. This is a reasonable assumption, since the constructions of points of 

modern pointless topology do satisfy it. Thus, from now on, this requirement of “stability” 

will be considered as a condition that every good construction programme has to satisfy. 
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One of the main negative results of this paper is that Russell’s original construction is not 

stable, rather, it produces a diverging profusion of points and events of ever higher order. 

Notwithstanding this flaw I think it is remarkable fact that already in 1927 Russell quite 

explicitly formulated here the programme of what later was to become “pointless topo-

logy”, namely, “to assign to events such properties as will enable us to define the points of 

topological spaces as classes of events, …” (ibidem). Although Russell identified the task 

of that future discipline with admirable clarity, he did not much to accomplish it. He never 

offered any elaborated proposal of what the “properties of events” might be that would 

“enable us to define points in terms of events”.  Rather, he was content to conceive the 

class E of events – in modern terms – as a similarity structure (E, ~)2, i.e. as a set E 

endowed with a binary relation ~ intuitively to be interpreted as non-trivial overlapping 

(see section 5). Consequently, Russell never accomplished the task of giving a correct 

definition of points in terms of events, to say nothing about the envisaged construction of 

the topological and differential structures of the space-time manifolds. In the following we 

leave aside the projected higher layers of this construction and concentrate on its most basic 

level – the construction of points and their neighborhoods.  

Cast in terms of some appropriate set theory (instead of the framework of Principia 

Mathematica as Russell did), his plan for the construction of points (spatial, temporal, and 

spatio-temporal points) may be outlined as follows: One starts with a set E of events, 

whereby the concept of “event” is assumed to be a primitive term, i.e. there is no explicit 

definition of what an event is to be, rather, only some intuitive and informal hints are given. 

The reader may think of events as more or less well-formed regions of the Euclidean plane, 

or in the special case of purely temporal events, of intervals of the real line R endowed with 

its usual order structure. For the moment, he may take those regions as certain point sets, 

but it is important to keep in mind that in the end events are not to be thought as point sets – 

rather, points have to be constructed from events in such a way that events and their 

relations may be represented by appropriate point sets and set-theoretical relations.  

Let pt(E) := {p; p is a point of E} denote the set of points to be constructed from E. For the 

moment, the only thing we know about points is that they are to be sets of events, i.e., the 

set pt(E) of points is a subset of PE, PE being the power set of E. In the next sections we 
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are going to determine more precisely, what kind of subsets are points. At first look, this 

may look a bit involved, nevertheless the basic idea of constructing points as sets of events 

is intuitively appealing and simple. This is not to say, that the constructions to be carried 

out are simple. Actually they are not, and for reasons of space it is not possible to present 

all the concepts and arguments in full detail. The underlying mathematical facts may be 

succinctly described as follows. The general mathematical framework is provided by 

topology and the theory of lattices, more precisely by the theory of Heyting algebras. From 

a modern point of view, Russell’s programme of defining points in terms of events is 

located in a conceptual space that is determined by the following facts: 

FACT1: Let H be a regular continuous Heyting algebra. The elements of H are to be 
intuitively conceived as “events” in the sense of Russell. Up to isomorphism there is 
a unique topological space (pt(H), O(pt(H)) such that the Heyting algebra O(pt(H)) of 
its open sets and H are isomorphic. Hence, without loss of generality one can assume 
that H is a set-theoretical Heyting algebra, i.e. its elements are subsets of pt(H), and 
the lattice-theoretical operations of H are just the familiar set-theoretical operations of 
union and intersection.  

 
FACT2: Russell’s construction of ersatz points as maximal co-punctual subsets of H 
yields a profusion of points of which only a small minority corresponds to real points, 
i.e. to elements of pt(H). Hence, Russell’s construction is not stable under interation.3 

 
FACT3. Russell’s programme of defining “points in terms of events” can be saved by 
relying on some more sophisticated topological concepts of modern pointless topolo-
gy. The most important device of this approach is the notion of the “interior part-
hood” relation <<. This relation is used to define maximal round filters as ersatz 
points for which a 1-1-correspondence with the real points of H, i.e. the elements of 
pt(H), can be established.  

 
Before we go on some explanatory remarks on FACTS may be in order: 
 
Remark 1: The definition of a regular continuous Heyting algebra encapsulates the 
“appropriate properties of our events” that allow us to “define points in terms of events”. 

                                                                                                                                               
2 Or, in the case of purely temporal events, as an ordered similarity structure (E, ~, <). 
3 In fact, we will not rely on Russell’s original construction but on a slightly improved variant. Even the im-
proved construction founders, so Russell’s original proposal would score even worse. 
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The explicit definition of this structure from scratch is rather complicated and would need 
several pages. Thus some hints to the literature must suffice. Davey and Priestley (1990) 
provide a useful introduction to general lattice theory. The basics of the theory of complete 
Heyting algebras may be found in chapter II of Johnstone (1982), for a rather exhaustive 
treatment of continuous Heyting algebras the reader may consult the authoritative treatise 
of Gierz et al. (2003).  
Important examples of regular continuous Heyting algebras, which will be treated in some 
detail in the following sections, are the Heyting algebras OX of open sets of “nice” 
topological spaces (X, OX). Again, the exact definition of “niceness” used here is 
somewhat involved. Be it sufficient to state that Euclidean spaces belong to the class of 
nice spaces whose Heyting algebras of open sets are regular continuous Heyting algebras 
(cf. Gierz el al. 2003). On the other hand, the rational numbers Q endowed with their 
standard order do not form a continuous Heyting algebra.4 For an informal account of 
Stone’s mathematical achievements, see Piazza (1995). 
 
Remark 2. In section 3 we give an elementary example that shows that Russell’s construc-
tion yields too many ersatz points, i.e., at least some of the constructed points do not cor-
respond to real points. This and other examples were known to mathematicians and logi-
cians such as Hausdorff and Tarski, probably already to Cantor. Thus, Russell could have 
known that his method was doomed to fail if he had paid attention to the then contemporary 
mathematics. 
 
Remark 3: The “new methods” alluded to in FACT3 belong to the realm of mathematics 
sometimes called “pointless topology”. As a forerunner of this discipline one may consider 
Stone’s work on the representation of Boolean algebras B by topologically defined subsets 
of their Stone (or Boolean) spaces St(B) (Stone (1936, 1938). For a brief but complete ac-
count of Stone’s representation theorem see Davey and Priestley (1990); for some remarks 
on the history of the history of pointless topology see Johnstone (1982) and Gierz et al. 
(2003). 
 
The outline of this paper is as follows: in the next section we discuss the basic properties of 
Russell’s construction of points. For intuitive reasons, this construction may be dubbed the 
“onion construction”; mathematically, this it is characterized as the construction of maxi-

                                                
4 Continuity as employed here is indeed a generalization of Dedekind completeness. 
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mal filters for appropriate structures.5 Applying the axiom of choice allows us to define 
Russell points and Stone points. In section 3 we consider a very simple set-theoretical mo-
del of space and show that it has too many Stone points, and a fortiori, too many Russell 
points. Thus, Russell’s programme is doomed to fail for principal reasons. In section 4 
concepts of pointless topology are used to overcome the difficulties into which Russell’s 
original approach gets entangled. In particular it is shown that the replacement of “round” 
filters for ordinary filters suffices to eliminate the profusion of ersatz points Russell’s 
original construction was plagued with.  Section 5 deals with the special case of instants, 
i.e. temporal points. We conclude with a general assessment of Russell reconstructional 
programme in section 6. 
 
 
2. The Onion Construction. Let us take the Euclidean plane P as a typical example of a 
well-behaved topological space and take as the set E = E(P) of events an appropriate set of 
well-formed regions of the Euclidean plane. For the moment we need no worry about what 
precisely is meant by “well-formed region”. The reader may think of parts of the plane with 
“nice” boundaries and without interior crackles and holes, for instances circles, ellipsoides, 
and similar figures. Intuitively, appropriate families of these regions may be arranged in 
such a manner that they form an “onion” or a nested system of neighborhoods such that the 
elements of this system “approximate” a point x of E that lies in the interior of all of them.  
The system N(x) of nested neighborhoods of x can be taken as a representative of the point 
x, since at least for intuitively “nice” spaces such as Euclidean ones two different points x 
and y give rise to two different “onions” N(x) and N(y), respectively, since we may always 
find a neighborhood of x that does not contain y, and vice versa. 
If we could characterize systems like N(x) independently from and without reference to the 
points x of which they are neighborhood systems we would have met Russell’s challenge of 
“defining points in terms of events”. More precisely, our task is, as Russell put it, “to assign 
to events such properties as will enable us to define the points of a topological space as 
classes of events” (ibidem). Russell’s own proposal for achieving this task is somewhat 
complicated. In modern terms, it comes to something like this. The class of events E is 
considered as a set with a certain structure, to wit, some kind of a mereological or lattice-
theoretical structure: given two events (regions) a and b, they may overlap, i.e. there may 
be a region (a ∧ b) such that (a ∧ b) is a part of the regions a and b, and every region c that 

                                                
5 Actually, Russell did not use filters but somewhat weaker structures that he called “co-punctual” sets, see 
sections 2 and 5. 
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is part of a and b has (a ∧ b) as part. Of course, we have to require that the concept of over-
lapping is structurally well behaved. For instance, one should require that the overlapping 
(a ∧ b) of a and b is the same as the overlapping (b ∧ a) of b and a etc. In sum, the class of 
events should be conceived (at least) as a (semi)lattice (E, ∧, 0), 0 being the bottom element 
(cf. Davey and Priestley 1990, Chapter 3, 58). Then we can as usual define “overlapping” 
in terms of the lattice-theoretical operation by the stipulation that a and b overlap if and 
only if (a ∧ b) ≠ 0.6  
After these preparations we are now ready to approach Russell’s proposals of defining 
ersatz points solely in terms of regions: 
 

(2.1) Definition (Russell (1928, 299). Let E be the class of events. A set F ⊆ E is called co-

punctual if and only if every five regions a1, …, a5 of F overlap:  

 
a1∧ … ∧ a5 ≠ 0.  

 
A Russell point is a maximal co-punctual subset F of E, i.e. a subset that cannot be enlarged 

without ceasing to be co-punctual.♦ 

 
This definition is the very core of Russell’s programme of reducing spatio-temporal points 

to more respectable entities such as events or regions. Thus, some explanatory remarks may 

be in order.  

The first question that probably comes to mind is whether there is any deeper reason why 

co-punctional F are defined via the non-trivial overlapping of five regions - why not two, 

three, or seventeen? Obviously one can define “co-punctuality” with respect to every n, n ≥ 

1. The answer is that Russell wanted to reconstruct the points of the four-dimensional 

space-time manifold of relativity theory. For some not very clear reasons he believed that 

for the construction of an n-dimensional space one needed co-punctuality with respect to 

(n+1) regions. Indeed, he explicitly asserted that for ordinary three-dimensional space one 

needed co-punctuality with respect to four regions, and for the reconstruction of temporal 

points (instants) of the one-dimensional time manifold he required co-punctuality with res-

pect to two events (intervals), see Russell (1936) and section 5.  

                                                
6 Russell did not traffick with these technicalities but took them for granted.  
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Secondly, an interesting problem arises with respect to maximal co-punctual subsets of E, 

i.e. Russell points. How do we know that they exist? Can we construct them in some expli-

cit sense? Russell was well aware that for the construction of maximal co-punctual subsets 

F of E the axiom of choice or a similar principle was necessary. Points are not for free, 

rather, one has to rely on a logical (or set-theoretical) principle that is far from trivial. As it 

turned out, even the modern “correct” construction of points has to use such a principle. On 

the other hand, the first part of Russell’s proposal, to wit, the requirement of “co-punctua-

lity”, turned out to have been a less clever idea. As will be shown in the following, the co-

punctuality approach is doomed to fail from the outset, regardless of the number of co-

punctual regions one requires. As we will show Russell’s construction yields too many 

points.  

The details are as follows. Let S be any well behaved space, e.g. Euclidean space. Assume 

that S has points in the usual sense, i.e., S is as a point set endowed with some further 

geometrical or topological structure. Defining the regions of S as a set of well behaved 

point sets we may then attempt to apply Russell’s recipe of (re)constructing the points of S 

as sets of maximal co-punctual regions. The result turns out to be a failure since there are 

many more Russell points than real points, i.e., elements of S. Describing the outcome as 

“many more ersatz points than real points” is to put it mildly. Actually, the cardinality of 

ersatz points is the cardinality of the power set of the power set of “real” points! Thus, 

Russell’s construction is quite off the mark as it is much too prolific in generating ersatz 

points. The first step to prove this is the following definition:  

 
(2.2) Definition. Let (E, ∧, 0) be a lattice. A Stone point of E is a subset F of E satisfying 

the following conditions: 

(1) 0 ∉ F ≠ Ø. 

(2) If a, b ∈ F, then a ∧ b ∈ F. 

(3) If a ∈ F and a ≤ b, then b ∈ F. 

(4) F is maximal with respect to (1) – (3), i.e. if x ∉ F, there is an a ∈ F such  

that a ∧ x = 0.♦ 
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Defining as usual a ≤ b := a ∧ b = a one may succinctly characterize a Stone point as a 

maximal upper subset of E closed under finite intersections. Usually a “Stone point” of E is 

called maximal filter or ultrafilter of E.7  

 

Filters are quite common mathematical objects considered in many realms of logic, lattice 

theory, topology and elsewhere. The following elementary lemma shows that for our 

purposes we may replace the Russell points by the more manageable Stone points: 

 

(2.3) Lemma. Let (E, ∧, 0) be a lattice. Then every Stone point of E is a Russell point of E. 

 

Proof: Let F be a Stone point of E. Let a1, …, a5 be five regions of F. By the very definition 

of a Stone point (a1 ∧ a2) is a region that belongs to F. Hence point (a1 ∧ a2)) ∧ a3) is an 

element of F. Iterating this argument, one finally obtains that the regions a1, …, a5 are co-

punctual in the sense of Russell. In order to show that F is a maximal set of copunctual 

elements we proceed by reductio. Assume that F is not a maximal co-punctual subset of E. 

Then there is a maximal co-punctual set G that properly contains F. Moreover, there is a 

region x in G that is not a region of F. Since F is a maximal Stone point, there is a y in F 

such that x ∧ y = 0. Hence x ∧ y ∧ y ∧ y ∧ y = 0. Hence G is not a maximal co-punctual set 

in the sense of Russell. This is a contradiction. Thus already F is a maximal co-punctual set, 

i.e. a Russell point.

∧
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In the next few sections we will forget about Russell points and concentrate on the mathe-

matically better behaved Stone points. Before we deal with the technicalities it may be 

helpful to point out that the neighborhood systems of points of “nice” spaces define Stone 

points in a natural way. In some more detail, this may be spelt out as follows.8 Let (X, OX) 

be a topological space, i.e. a set X endowed with a topological structure OX ⊆ PX. The 

elements of OX are called the open sets of X. A ∈ OX with x ∈ A is called an open 

neighborhood of x. The system N(x) of all open neighborhoods of x is a filter, i.e. N(x) 

satisfies the following conditions: 

 
(1) Ø ∉ N(x) ≠ Ø. 

(2)  A ∈ N(x) & A ⊆ B ⇒ B ∈ N(x). 

(3) A, B ∈ N(x) ⇒ A ∩ B ∈ N(x). 

 
Invoking the axiom of choice it is easily proved that there exists a maximal filter F(x) 

containing N(x).9 Then F(x) satisfies the further maximality condition: 

  
(4) C ∉ F(x) ⇒ A ∩ C = Ø for some A ∈ F(x).  

   
For “nice” topological spaces two different points x and y have neighborhood filters N(x) 

and N(y) that contain neighborhood A(x) and A(y) of x and y, respectively, such that the 

intersection A(x) ∩ A(y) is empty. Then one can easily prove that x and y define different 

Stone points F(x) and F(y), i.e. maximal filters that contain N(x) and N(y), respectively, are 

different. “Nice” spaces in this sense are Euclidean spaces, and more generally, Hausdorff 

spaces. 

In the following section we show that nice spaces have more Stone points than real points. 

More precisely, we will show that for a space X every real points x defines a of Stone point 

F(x), but there is a wealth of undesired Stone points that do not correspond to any real 

points. Actually, Stone points related to real points turn out to be an exception. Since all 

                                                                                                                                               
Stone space or the Boolean space of E (cf. Davey and Priestley 1990, Chapter 10, 197). 
8 For a succinct presentation of the basic topological concepts used in this paper, the reader may consult the 
Appendix of Davey and Priestley (1990) or any textbook of topology. 
9 Of course, there is no reason to expect that F(x) is unique or that already N(x) is maximal. 
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Stone points are Russell points, this implies that Russell’s original constructional pro-

gramme is flawed.    

 

 

3. A Minimalist Model of Space. In this section we consider a simple set-theoretical model 

of space and show that it has too many Stone points, and a fortiori, too many Russell 

points. In later sections it will be shown that this simple model does indeed reflect the 

essential mechanisms due to which every construction based on Stone or Russell points 

must fail. Moreover, we show how to modify the construction of points such that the 

profusion of ersatz points is cut down in such a way that there can be established a 1-1 

correspondence between modified Stone points and “real” points.   

Let X be a set, and let us regard X as a topological space (X, OX) by endowing it with the 

discrete topology OX = PX. (X, PX) is called a discrete topological space. With respect to 

this special topological structure just any Y ⊆ X with x ∈ Y is an open neighborhood of x. 

Moreover, the system N(x) of all open neighborhoods of x is the set of all subsets of X 

containing x. This implies that in this case the system N(x) has the following properties: 

 

(1) Ø ∉ N(x) ≠ Ø. 

(2)  A ∈ N(x) & A ⊆ B ⇒ B ∈ N(x). 

(3) A, B ∈ N(x) ⇒ A ∩ B ∈ N(x). 

(4) C ∉ N(x) ⇒ A ∩ C = Ø for some A ∈ N(x). 

  
Since {x} ∈ N(x) one has C ∈ N(x) ⇔ x ∈ C. In other words, for every real point x ∈A the 

neighborhood system N(x) is a Stone point.  Moreover two real points x and y are equal iff 

the neighborhood systems N(x) and N(y) are equal. Hence for (X, PX) the neighborhood 

systems N(x) are faithful representatives for real points x ∈ X. Since neighborhood systems 

are maximal filters on PX, and maximal filters on PX can be characterized without explicit 

reference to points we seem to have made great progress on our way of defining points as 

systems of events or regions – at least in the special case of X being a discrete topological 

space (X, PX). There is missing only one piece: Although we know that every “real” point 

x ∈ X defines a unique Stone point N(x), it might be that there are still other maximal 
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filters that do not correspond to any real point x. Russell assumed without argument that 

this is not the case. As it seems, he took it for granted that all maximal filters on a set X 

arise as the neighborhood system N(x) of some point x of X. Actually, this assumption is 

true only for X with finitely many elements. For infinite sets X it is false. For them there 

are many more abstract neighborhood systems N than real points.   

It would take us too long to prove this result in full generality, instead, let us prove that an 

infinite set X has at least one Stone point that does not correspond to any real point x of X.  

 

(3.1) Proposition . Let X be a set with infinitely many elements, and define F to be the set 

of subsets Y of X whose complements consist of finitely many elements: 

 
F := {Y; Y ⊆ X and CF finite} 

 
The there is a Stone point N(F) that contains F but there is no element x ∈ X such that N(F) 

= N(x).  

 

Proof. Clearly F is non-empty since X ∈ F and Ø ∉ F since X is infinite. Since the finite 

union of finite sets is finite, F is closed with respect to finite intersections. Moreover F is 

upward closed. In other words, F is a filter. Invoking the axiom of choice or a similar 

principle one infers that there is a maximal filter N(F) containing F. But N(F) cannot come 

from some principal filter N(x). If this were the case, x would be an element of all elements 

of N(F), a fortiori it would be an element of all elements of F. But clearly X – {x} is an 

element of F that does not contain x. Hence there is at least one abstract neighborhood 

system that does not correspond to a real point x ∈ X.♦ 

 
One might hope that the maximal filter N(F) is somehow an exception and that “usually” a 

Stone point of X comes from some real point of X. This hope is shattered by the following 

classical result due to Hausdorff and Tarski: 

 
(3.2) Proposition. Let X be an infinite set with cardinality <X>. Then the set of Stone points 

St(X) of X has the cardinality of the power set of the power set of X, i.e. <St(X)> = <PPX>. 

In other words, there are many more Stone points than real points.  
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Proof. Bell and Slomson (2006, 108, Theorem 1.5).♦ 

 

Remark.  The proof of (3.2) is somewhat complicated but elementary in the sense that it can 

be carried out using only the concepts that are already available to us. Its essential 

ingredient is, of course, the axiom of choice. Without it, or some similar principle, one 

cannot show the existence of even one maximal filter. This was known already to Russell 

(cf. Russell (1936), Anderson (1986)). More generally, without the axiom of choice there is 

no modern set theoretical topology as we know it.  

 

One may object that (3.2) can hardly count as a refutation of a Russellian programme of 

constructing points from events since the geometrical structure of X, i.e. OX = PX, is just 

too meager as though it could capture the relevant features of the topological relations 

between “points” and “neighborhoods” that Russell wanted to put to use. Prima facie, this 

suspicion is not unreasonable; nevertheless it turns out to be wrong in the end. More 

precisely it can be shown that for every reasonable space X (in particular for the Euclidean 

space E) and every reasonable set of events E(X) of X an analogous theorem to (3.2) holds 

according to which the cardinality of Stone points is much larger than the cardinality of real 

points of X: 

 
(3.3) Proposition (Theorem of Balcar-Franêk). Let B be an infinite complete Boolean 

algebra. Then the cardinality of the set of maximal filters on B is the cardinality of the 

power set PB of B.  

 
Proof. Koppelberg (1989, Theorem 13.6, 197).♦ 

 
Now, every maximal filter on O*X gives rise to at least one maximal filter on OX, since the 

inclusion O*X-----i----->OX is a ∧-monomorphism. This implies that there are at least as 

many maximal filters on OX as maximal filters on O*X. Hence, Russell’s construction 

yields too many points not just for the trivial discrete topological structure (X, PX) but for 

every non-finite topological space (X, OX). In other words,  our minimalist set theoretical 

model of space cannot be blamed for the failure of Russell’s programme. Rather, as will 

turn out in the next section, the culprit for the profusion of undesired ersatz points is the too 
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primitive “non-topological” notion of a filter we employed. This shortcoming will be 

overcome in the next section. 

  

 

4. Topology to the Rescue. Let us take stock what we have achieved so far, and what 

remains to be done. Given a topological space (X, OX) with a system of regions OX we did 

the first step to realize Russell’s program of “defining points in terms of events”, namely, 

improving upon Russell’s own account of ersatz points as maximal copunctual sets of 

regions, we defined ersatz points as maximal filters of X. In a sense, this works quite well – 

for every real point x ∈ X we can construct an ersatz point. In the case of OX = PX this 

ersatz point is even unique.10 The only flaw in this construction is that it yields much too 

many ersatz points. 

In this situation it is natural to attempt to restrict somehow the profusion of ersatz points by 

singling out a small class of particularly “nice” ersatz points. This is indeed possible, if we 

put to use the topological structure of the space X. It is here, where we encounter something 

new that has no counterpart in Russell’s original attempt to “define points in terms of 

events”.   

In order to use the topological structure of a space as a tool for cutting down the profusion 

of ersatz points we have to delve somewhat deeper into the details of topology. Recall that 

given a topological space (X, OX) the closed subsets of X are defined as the set-theoretical 

complements of the open sets. Every subset Y of X there is the smallest closed subset cl(Y) 

containing Y, where cl(Y) is defined as the intersection of all closed subsets containing Y. 

This defines an operator PX---->PX mapping each subset Y to its closed hull cl(Y). 

Complementarily the open kernel int(Y) of a set Y is defined by int(Y) := Ccl(CY), C being 

the set-theoretical complement of Y in X. A set Z is called regular open if and only if Z = 

int(cl(Z)). If Y is any subset of X, an open covering of Y is a family Ui of open subsets of X 

such that Y ⊆ ∪Ui. The covering is finite if and only if it consists of finitely many elements 

Ui. A subset Y is compact if and only if every open covering contains a finite subcovering. 

Now we are ready to define the crucial concept of interior parthood: 
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(4.1) Definition. Let a, b open sets of the topological space (X, OX).  The region a is an 

interior part of the region b, a << b, if and only if the closure cl(a) of a is contained in b, 

and cl(a) is compact: 

 a << b :=  cl(a) ⊆ b and cl(a) is compact.♦ 

 

Intuitively, the relation a << b is to convey the meaning that the region a plus its boundary 

bd(a) is fully contained in b, and moreover, that a is somehow “small”.  Compactness may 

indeed be interpreted as a topological version of “smallness” or even “finiteness” as the 

following topological analogue of the finite/infinite filter (see Proposition (3.1)) shows:  

 

(4.2) Example (A topological version of the Finite/Infinite Filter). Let (X, OX) be a nice 

non-compact space, for instance the real line R or an Euclidean space. Define the filter F as 

a maximal filter that contains all sets of the form X – K, K ⊆ compact.  Then it is easily 

seen that F cannot contain the open neighborhood filter N(x) of some x ∈ X: if x and y are 

two different points of X, one can show that x has an open neighborhood U(x) such that 

cl(U(x)) is compact and does not contain y. This proves that there is a Stone point of (X, 

OX) that does not correspond to any real point x ∈ X. In other words, Russell’s 

construction yields too many points.♦ 

 

Now we engage in the constructive work of showing that the concept of interior parthood 

may be used to single out a special class of filters as follows:  

 

(4.3) Definition . Let (X, OX) be a topological space with interior parthood relation <<.  

(a) A subset F ⊆ OX is a round filter (with respect to <<) if and only if F is a filter and 

satisfies the further condition that for all b ∈ F there is an a ∈ F with a << b.11 

(b) A maximal round filter F is called a (round) ersatz point.♦ 

 

                                                                                                                                               
10 There is no reason to expect that in the general case each real point x gives rise to a unique Stone (or 
Russell) point. In section 5 we will prove this for the 1-dimensional topological space R. As is seems, this 
idea never occurred to Russell. Even Anderson in his (Anderson 1986) seems to be aware of this possibility. 
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As is easily shown by Zorn’s lemma, round ersatz points exist. Moreover, under some mild 

conditions on the topology of X the filters N(x) of open neighborhoods of real points x are 

round filters. Indeed, the class of maximal round filters is the class of ersatz points we were 

looking for. Let us first deal with the special case (X, PX): 

 

(4.4) Proposition. Let (X, PX) be a discrete topological space. Then the real points of X are 

in a 1-1-correspondence with the maximal round filters of X.  

 

Proof: First let us prove that for (X, PX) a << b if and only if a is a finite subset of b. 

Assume that a << b. By definition this means that cl(a) a is a compact subset of b. But cl(a) 

= a, since the topology of X is trivial;  using this fact once again, we observe that every 

singleton {x} is open. Hence, a set is compact if and only if it has only finitely many 

elements. By definition a round maximal filter F must contain a finite set. But then it is 

easily seen that in order to be maximal F must even contain a singleton {x}. Hence it is the 

principal filter F(x) generated by x. The other direction is trivial.♦ 

 

In other words, in the case of a discrete topological space (X, PX) the topologically defined 

round maximal filters correspond in a 1-1-fashion to the real points of X.  

This result not only holds for discrete topological spaces (X, PX), but for a large class of 

“nice” topological space (X, OX). The task of defining exactly what is meant by “nice”, 

would lead us to far away.12 Be it sufficient to state that the class of nice spaces comprises 

the class of metrical spaces, in particular the Euclidean spaces: 

 

(4.5) Proposition. Let (X, OX) be a nice topological space with interior parthood relation 

<<. Then there is a 1-1-correspondence between the real points x ∈ X and the round ersatz 

points of X, i.e., the maximal <<-round filters on OX. 

 

Proof (Sketch). The proof of this proposition naturally falls into two parts. First, one has to 

show that each real point gives rise to a uniquely defined maximal round filter, secondly 

                                                                                                                                               
11 For a detailed discussion of “round filters” see Gierz and Keimel (1981) and Gierz et al. (2003). 
12 For the cognoscenti: locally compact regular Hausdorff spaces will do as “nice” spaces.   
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one has to show that each maximal round filter comes from a uniquely defined real point. 

Let x be a real point of X. Then we can consider the filter R(x) of regular open 

neighborhoods of x. Due to niceness, R(x) is easily shown to be a round  filter with respect 

to the interior parthood relation <<. By the axiom of choice there is a maximal round filter 

N(x) containing x. Again by niceness (Hausdorff property) for two different points x and y 

maximal round filters N(x) and N(y) must be different. Hence, if X is nice, every real point 

gives rise to (at least) one ersatz point such that the ersatz points are different for different 

points. 

It remains to show that every maximal round filter corresponds exactly to one real point. 

Assume that N is a maximal round filter. Consider the intersection ∩cl(Yi) of the closed 

hulls cl(Yi) of all elements of N. Since N is round, we may assume that X is compact 

without loss of generality. The set ∩cl(Yi) is non-empty, since otherwise there would be a 

finite family of sets cl(Yi) with empty intersection. This is impossible, since N is a filter.  

Choose a point x ∈ ∩ cl(Yi). Since for every Y there is a Y’ with  cl(Y’) ⊆ Y we obtain x ∈ 

Y for every element of N, i.e. x is an element of every element of the filter N. In other 

words, N is contained in the neighborhood filter of x. In other words, the neighborhood 

filter N(x) of x is the only maximal round filter containing x. This establishes a 1-1-

correspondence between real points and maximal round filters as ersatz points.♦  

 

This is an important step on the path of realizing Russell’s programme of defining “points 

by events”. In should be noted, however, that we yet we have not accomplished our final 

goal. Up to now, we have assumed that the events we are employ for the construction of 

ersatz points are point sets, namely, the open sets of a topological structure OX defined on 

the set X. In other words, in the definition of ersatz points as maximal round filters the real 

points of X still play an essential role, or so it seems. Actually this is not the case. But it 

needs some extra effort to show this.  

Roughly, it works like this: up to now we started from a topological space (X, OX) 

endowed with an interior parthood relation << and constructed the ersatz points as maximal 

round filters. To get rid of the points, one forgets about the set X and retains only the 

topological structure OX, conceived not as a set of open sets, but as an abstract lattice. As is 

well known, the lattice OX is a complete Heyting algebra. For topologically nice spaces the 
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lattice OX is even a regular continuous Heyting algebra (cf. Johnstone (1982), Gierz et al. 

(2003)). The point is that these structures can be defined without reference to points, i.e. the 

elements of such algebras need not be conceived of as point sets. Moreover, every regular 

continuous Heyting algebra H comes along with a binary relation << (the way below 

relation) that may be interpreted as an interior parthood relation. Then one can define the 

set pt(H) of maximal round filters of H as ersatz points of H. Next one shows that the set 

pt(H) can be endowed with a topology O(pt(H)) such that (pt(H), O(pt(H)) is a topological 

space. Finally it is proved that O(pt(H)) and H are naturally isomorphic as Heyting 

algebras. Thus one has obtained a stable (see section 1) method of defining points in terms 

of events: starting with the algebra H of events, one constructs the topological space (pt(H), 

O(pt(H)), taking O(pt(H)) as a system of events in its own right one constructs a set 

pt(O(pt(H)) of points of second order, for which one can construct neighborhoods 

O(pt(O(pt(H)) etc. But fortunately these iterations yield nothing new, due to the 

isomorphism between H and O(pt(H)). 

Conceiving H as the class of events this construction may be considered as a 

mathematically rigorous reconstruction of Russell’s programme of “defining points in 

terms of events” that he envisaged some 80 years ago in The Analysis of Matter (Russell 

1927) or even earlier in Our Knowledge of the External World (Russell 1914). Concep-

tually, this construction is not too difficult to understand – it amounts to the onion construc-

tion discussed in section 2, but technically it is somewhat involved. Hence, the details 

cannot be given here, see Gierz et al. (2002), Johnstone (1982), Mormann (1997).  

Russell never imagined the technical complexity of this endeavor, since he never cared 

about the details of the relational structure of the set E of events. He simply assumed that 

the class E of events was endowed with some binary relation of overlapping whose 

structural properties he never specified. In contrast, the definition of a continuous Heyting 

algebra, due to Scott (1972) is rather involved.  

Finally, it should be noted that our reconstruction only accomplishes a part of Russell’s 

programme: we only defined the topological structure “in terms of events” while Russell 

planned to reconstruct not only that structure but also the geometrical and differential 

structure of the spacetime manifold as well. 
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5. Conclusion. We are left with a mixed assessment of Russell’s programme of defining 

points in terms of regions.  On the one hand, it is clear that Russell did not have the tech-

nical skills to realize this programme in a mathematically satisfying and rigorous manner. 

With respect to higher dimensional spaces he never got beyond some informal sketches that 

might be intuitively appealing but that did not hit upon the conceptual essence of the 

matter. His attempted construction of instants, i.e. temporal points, scores somewhat better, 

but this is a special case that depends on the linear order of time, and therefore cannot be 

applied to the case of general topological spaces. On the other hand, Russell had a 

surprisingly clear vision of the general task of what today is called “pointless topology”.  

It was the American mathematician M.H. Stone, who laid the foundations for this discipline 

in the thirties. Stone’s famous representation theorem of Boolean algebras may be 

considered as the first successful example of constructing points for something (Boolean 

algebras) that at first view exhibited no spatial features at all. According to the experts 

Stone’s theorem is one of the most important theorems of 20th century mathematics that has 

influenced an ever-growing variety of mathematical disciplines (cf. Johnstone 1982). 

Unfortunately, the spaces that Stone constructed as representations for Boolean algebras in 

this way were quite remote from any intuitive interpretation. In particular, Stone’s spaces 

were quite different from Euclidean and other familiar spaces. Hence, his work, although 

highly appreciated by mathematicians and logicians (for instance by Tarski), remained vir-

tually unknown to philosophers during the following decades.13 In particular, Russell never 

took notice of Stone’s work, although this would have helped him a lot in the task of 

coming to terms with the task of “defining points in terms of events”. In philosophy, Rus-

sell’s topological sketches were received with respect. But there were not many attempts to 

develop them further. Consequently, up to how, topology - to say nothing of pointless 

topology - can hardly be said to belong to a philosopher’s toolkit even when he is 

accustomed to use formal methods. If Russell’s reconstructional programme, in particular 

his attempt of developing pointless topology, had been taken up more seriously by his 

fellow philosophers, topology might have played a major role - to the benefit of 

philosophical disciplines such as metaphysics, epistemology and ontology.  

                                                
13 The collection Topology for Philosophers (Smith and Zelaniec (eds.) 1996) still provides ample evidence 
for this claim: Stone’s work is not mentioned even once.   
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In sum, then, I’d contend that Russell has had a point with his early programme of pointless 

topology, despite its mathematical flaws.  
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