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lems, involving calculation of the many examples, which need to be elabo-
rated in order to clarify the usefulness of these particular concrete interpre-
tations of the dialectical method of investigation. We very much need the
assistance of interested philcsophers and mathematicians,
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Structural Analogies Between Mathematical
and Empirical Theories

ANDONI IBARRA (San Sebastian) / THOMAS MORMANN (Berlin)

1. Introduction

Time and again philosophy of science has drawn zimalogies b_etwe(.:n mathem-
atics and the empirical sciences, in particular physics. The onentam_)n of m§s_e
analogies, however, has been rather different. In the heyday of Loglcal Po»sm:f
vism philosophy of m?thematics was considered the model for philosophy o
empirical sciences. . .

e Fm? some time one can witness the opposite approach: the 1mport'of ideas
from the realm of philosophy of empirical science to t%_le realm of philosophy
of mathematics. We would like to point out the following approaches of such

a transfer;

jcal Analo '
Metﬁgﬁgfgsg l;rc:)posed fg transfer his “Methodolog)f of scientific research prﬁ-
grams” ("MSRP") from the sphere of empirical SC.ICIICC 0 thg realm of math-
ematics. He claimed that there exists a methodological _para.llehsm between the
empirical and ("quasiempirical”) mathematical theories: in both realms one

. . 02
uses the method of "daring speculations and dramatic refutations”.

Functional Analogy . N
Quine proposed a functional analogy between mathematical and empirical

knowledge. His approach is based on the holistic thf:sis that mathematica;
concepts like "numbers”, "functions” or "groups” play in the global context o

t is leads to deductively oriented conceptions of empirical science, in parli-
z‘llllllasr It: the so called "rgceived view", cf. (Nagel 1961), (Suppe 1974). .

2 Cf. (Lakatos 1978, p. 41). There are not too many a_uthors who havc; c;)lr_al i-
nued Lakatos' approach despite its very high esteem 1n all quart?]rs 0 l}) Elt ott
sophy (and history) of mathematics. We mention (Howson 1979), (Halle

1979), and (Yuxin 1990).
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scientific knowledge essentially the same role as physical concepts like
"electron”, "potential” or "preservation of symmetry".

We do not want to critizise these two approaches in detail here, we simply
claim that neither Lakatos’ "methodology of scientific research programmes”
nor Quine's holism has to be the last word in this philosophical issue. We
would like to sketch another analogy between empirical and mathematical
knowledge, namely, a structural analogy between empirical and mathematical
theories. It might not be incompatible with those mentioned above. In parti-
cular, it may be considered as a specification of Quine's holistic approach, The
structural analogy between mathematical and empirical theories, which we
want to explain, is based on the general thesis that cognition, be it empirical,
mathematical or of any other kind, e.g. perceptual, has a representational
structure: Cognition is representation.

This thesis can be traced back at least to Kant who maintained that cogni-
tion is governed by representational structures, ¢.g. by the forms of intuition
(space and time}, and certain categories of understanding like causality. Among
its more recent adherents we may mention C. S. Peirce and E. Cassirer. But
we do not want to deal here with the problem of general representational
character of cogpition from a transcendental phitosophical viewpoint as Kant
did. We would rather like to make plausible that cognition is representation by
presenting an inductive argument,

First of all, let us recall that the representational character of cognition is
not restricted to scientific knowledge but pervades all kinds of cognition, e.g.
perception and measurement. For one reason or another, the similarity beiween
these kinds of cognition and scientific theories is often underestimated or even
denied: perception secems to belong to the merely subjective sphere of the
individual, and measurement, though it may be objective, seems o lack a
theoretical component. Hence, neither perception nor measurement seem to
have much in common with scientific cognition. This impression is wrong,
They all share a common representational character and this feature is of
crucial importance for their epistemological siructure,

Now, by ascribing a representational structure to perception, measurement,
and scientific knowledge we do not want to claim that the representational
structare in all of them is the same. This does not seem plausible. It may well
be that the representations in these different areas are determined by quite
different constraints, cf. (Goldman 1986, part 11). This, however, does not
exclude the possibility that they all should be dealt with a comprehensive
epistemology which investigates cognition in all its different realizations and

3 Cf. (Quine 1970}, also (Putnam 1979), and (Resnik 1988).
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treats them from a unified perspective.“ Let us mention some trends towards
that epistemology.

Measurement as Representation B

Measurement is representation in a quite direct and intuitive sense, namc?ly,
measurement is representation of empirical facts and relations by numerical
entities and relations. The explication of this elementary idea in the framework
of the so called representational theory of measurement has been developed,
among others, by Stevens and Suppes, cf. (Suppes 1989), (I-V,Iundy‘ 1986).
This has led to a comprehensive classification of the various kinds of
measurement scales and their transformation groups and invariants. It can.be
considered as an empirical analogue to Klein's Erlangen Programme which
aimed to classify the different geometries. This analogy often hgs been
recognized but only recently have there been serious atte’m|pts o c_opmdpr the
representational theory of numerical measurement, Klem.s cl.assnlfacation _of
geomelries, and the various attempts of a general "geometrization” of physics

- as special cases of a single coherent “general theory of meaningful

representation”, ¢f. (Mundy 1986).

Perception as Representation _ _
A perceived object is the result of a representational, constructive process.
This is shown very clearly by the various phenomena of perceptual constancy,
for example color or gestalt constancy. Up to now, there 18 no _unam_mny
among the different approaches of cognitive pSyCl_lOlO?;y and cognitive science
of how the representational character of perception 1s to be understood pre-
cisely. The so called "bottom-up” and the "top-down" approaches conc;ptuahzci
it in a quite different way, cf. (Goldman 1986). Nevertheless, Pracuca!lly al
sciences dealing with perception agree (or at least are cor'npaublc) wx_th th.e
assertion that some kind of representation and symbolic 'construcuo.n 1§
involved. Following Godel an alleged analogy of "mathematical perception
and "visual perception” often has been taken as an argur.nfcnt f?'r a ro'busf
platonism or realism which claims that the math.cmancnans perceive
mathematical objects just as ordinary people perceive the more mundane
things of the ordinary world. _ o
This analogy of mathematical and ordinary perception may subjectivily b!e

i

4 considerations for such a comprehensive epistemology, cf.
fGOZogz?;;a} Elgin 1988, p. 16). It should be noticefi, however, Eh?:lt a!reqdy
more than sixty years ago Cassirer set about the project of embedding philo-
sophy of science in a general representational Lhec?ry of symbolization in
his Philosophie der symbolischen Formen, cf. (Cassirer 1985).
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qui_te justified, i.e. it may be the case that mathematicians in the course of
ﬂleu"research believe that they "perceive” mathematical objects as they "really
arel" just as the layman believes that he perceives the table in front of him just
as it "really is". But the cognitive sciences teach us that — pace Gibson — this
is 2 somgwhat simplistic account of perception. Hence, it would be interesting
to investigate the problem whether the analogy of mathematical and visual
perception could survive as an argument for mathematical realism (platonism)
if it is based on an updated account of perception.

Cognition as Representation

. Qui.te generally, Cassirer claims that the search for representational inva-
riants is not restricted to perception but common to all kinds of cognition, be
it perception, measurement, thinking or whatever else. He considers the ten-
dency towards "objectification” in perception only as the rudimentary form of a
general tendency in conceptual, in particular mathematical, thought, where it
is developed far beyond its primitive stage (cf. also (Cassirer 1944, p. 20)):

"A critical analysis of knowledge reveals that the "possibility of object”
df:pends upon the formation of certain invariants in the flux of sense impres-
sions, no matter whether these be invariants of perceptions or of geo-
metrical thought, or of physical theory" (Cassirer 1944, p. 21).

In Lhe_, case of empirical and mathematical cognition the thesis is that empirical
theories are representations, and correspondingly that mathematical theories are
representations. . .

Thus, in order to clarify the representational character of empirical and
mathematical cognition and to make plausible the structural analogy between
empirical and mathematical theories we are led to the elucidation of the
concept of theory in both realms of knowledge. This is one of the central
conceptual problems of philosophy of science: to provide an adequate
explication of this term.’

The outline of the paper is as follows: in the next section we sketch the re-
presentational character of empirical theories. Then we want to show through
the example of group theory in what sense a "typical” mathematical theory can

5 A‘l?r‘ge part of the criticism against Logical Empiricism can be formulated as
criticism aga‘inst the inadequate theory concept of this approach: an empiri-
ﬁai tl_'leory '51mp1y is not a partially interpreted calculus as the so called

recew?d view" holds it, and similarly a "real life" mathematical theory like
fﬁgebraxc topology or commutalive algebra cannot be explicated adequately
in terms of a calculus of meaningless formal signs.

6 We l?ase our approach largely on Henry Margenau's "Methodology of modern
physics”, (Margenau 1935).
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be considered as a representation in quite an analogous way as empirical
theories are representations. Finally, we will point out how category theory

- can be considered as a useful formal tool for the representational reconstruction

of mathematical and empirical theories. We will close with some remarks on
the relation of our represeniational approach with some more traditional
currents in the philosophy of mathematics.

2. Empirical Theories as Representations: Data, Symbolic Constructs, and
Swing

To explain the thesis of the representational structure of empirical theories we
start by distinguishing two levels of physical conceptualization. We thereby
follow the approach of the philosopher and scientist Henry Margenau who
among others distinguished between the level of data and the level of symbolic
constructs.! He considers the following paradigmatic example:

" _we observe a falling body, or many different falling bodies; we then
take the typical body into mental custody and endow it with the abstract
properties expressed in the law of gravitation. It is no longer the body we
originally perceived, for we have added properties which are neither
immediately evident nor empirically necessary. If it be doubted that these
properties are in a sense arbitrary we need merely recall the fact that there is
an alternate, equally or even more successful physical theory — that of
general relativity — which ascribes to the typical bodies the power of
influencing the metric of space, ie. entirely different properties from those
expressed in Newton's law of gravitation” (Margenau 1935, p. 57).

it should be evident that this two-level-structure is not restricted to mechanics,
it pervades all parts of physics.

Even if the realm of symbolic constructs in physics is not determined in
the same rigid way as the realm of data, it is not completely arbitrary. There
are general requirements concemning symbolic constructs:

"Physical explanation would be a. useless game if there were no severe 1es-
trictions governing the association of constructs with perceptible situations.

7 We rely on Margenau because his account is intuitive and avoids any unn¢-
cessary technical fuss. However, Margenau is not the only one, and not the
first, who makes such a distinction: some more Or less implicite remarks on
the representational character of empirical theories can be found in Duhem’s
account of "The aim and structure of physical theory" ; see especially
(Duhem 1954, Ch. 8). In a formaily very sophisticated manner the
distinction between data (“Intended Applications”) and symbolic constructs
("Models") is elaborated in the so called structuralist approach of
philosophy of science, cf. (Balzer / Moulines / Sneed 1987).
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For a long time it had been supposed that all permissible constructs must be
of Lhe. kind often described as mechanical models or their properties, but this
view is now recognized as inadequate. ... While no restriction can be made
as to their choice, their use is subject to very strong limitations. It is easy
to find a set of constructs to go with a given set of data, but we require that
there be a permanent and extensive correspondence between constructs and
data " (Margenau 1935, p. 64).

Putting together the ingredients of data, symbolic constructs, and their
correspondence we propose the following general format of an empirical
theory. According to the representational approach an empirical theory is a
representation of the following kind:®

frD—>C

The realm D of data is represented via a mapping f by the realm ¢ of symbolic
constructs. The requirement that there must be a permanent and extensive
correspondence between constructs and data is expressed by the requirement
that the represeating mapping f from P to ¢ cannot be just any mapping but
has to respect the structure of 2 and C. Therefore some constraints have o be
put upon it which may not always be satisfiable. Thus, the thesis that a

theory has a representational structure implicitely makes the claim that the © .

can be represented by ¢ in an appropiate way.? How this is to be understood
precisely depends on how we conceptualize the realms of data and symbolic
constructs.'®

In philosophy of science, the specific nature and relation of these two
levels of empirical theories have been a topic of much discussion. A rather
popular account 100k P as the observable and ¢ as the non-observable. But
this has not been the only approach. Others have considered D as the
empirical, and C as the theoretical, It cannot be said that unanimity has been
achieved how these levels of conceptualization have to be understood precisely.
Probably The One and Only Right Explication does not exist. In any case, the

8 This is in some respect an oversimplification: as it turns out, a
{mathematical or empirical) theory can be reconstructed as a whole bunch of
representations of the above mentioned kind. Thus, more precisely we
should consider a representation f: D——> ( as the smallest meaningful
element of a theory.

# This claim corresponds to the "empirical claim of a theory” of the structura-
list approach, cf. (Balzer / Moulines / Sneed 1987) and the “theoretical hy-
pothesis” of the state space approach of van Fraassen and Giere, cf. (van
Fraassen 1989) or (Giere 1988). '

10 In the case of mathematical theories f will be a furctor between the Cate-
gory D of Data and the Category C of Symbolic Consiructs.
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emphasis should not be laid upon what the constituents D and ¢ "are in

“themselves"; what is important is the functional aspect of representation.

Thus, the representational approach puts the essence of a theory neither in the
things the theory talks about nor in the concepts used by the theory but, so to
speak, in the interstices, in the ontologically ambigous space of the repre-
sentational relation between data and symbolic constructs.

We do not want to offer any argument for our specific position in this issue,
but simply characterize our stance by the following remarks:

(i) The distinction between data and symbolic constructs is no absolute
distinction, i.e. in one context entities can work as data and in another
context as symbolic constructs. In particular, dafa must not be considered
as the "inmediately given" of some Logical positivists. Hence, Margenau
made the proposal to replace the term “data" by the less misleading term
habita”, i.e. that what one has at his disposal or takes as the starting point
of a research undertaking, cf. (Margenau 1935). In a similar vein Goodman

~points out, that "the given” or even "the immediatly given" does not exist.
Epistemology should consider "the given" as "the taken", i.e. as scmething
which has been taken as the relative starting point or relative basis,
{Goodman 1978, p. 10).

(i) It is an important task for the philosophical reconsiraction of empirical
and mathematical theories to explicate in a precise manner the structire and
the functions of the correspondence between data and symbolic const-

rucls.“

What is the representation of daia by symbolic constructs good for? This is a
very deep problem whose surface we can only scratch in the context:

(a) Symbolic constructs generate a "conceptual surplus” which can be used for
determining and predicting previously unacessible aspects of data. For
example, partially known kinetic data are embedded into the framework of
symbolic constructs like forces, Hamiltonians, or Lagrangians in order to
obtain new information not available without them.

11 In the framework of the structuralist approach this correspondence is expli- ’
cated in the following way: a theory T has a (more or less determined) dom-
ain 1 of "Intended Application” — Margenau's data — and a domain K of con-
ceptual structures — Margenau's symbolic constructs. Thus T is an ordered
couple T = <K, I>. The global claim of T is that I can be embedded in K in
such a way that a connected class of data corresponds 10 2 connected class of
symbolic constructs. The most detailed account of this approach presently
available is (Balzer / Moulines / Sneed 1987}).
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(b) Symbolic constructs have an explanatory function and serve to embed the
data into a coherent explanatory theoretical framework. That is, the corres-
pondence between data and symbolic constructs is the basis of physical
explanation. To use once again the just mentioned example: a kinetic sys-
tem may be explained causally by referring to theoretical constructs like
Jorces.

Hence, physical explanation can be described as a movement of the following
kind: it starts in the range of data, swings over into the field of symbolic
construction, and retums to data again:

D > C ~> D

More generally, we can characterize the activity of the scientists, be it explana-
tion, prediction, or conceptual exploration, as an oscillating movement
between the area of data and the area of symbolic construction. Following
Margenau we want to call it swing — more philosophically oriented minds
may even call it a hermeneutic circle. Somewhat more explicitly, this Jast
expression may be justified as follows: we start with a limited and partial
"Vorverstiindnis" of the data. Then the data are embedded and represented in an
interpretatory {ramework of symbolic construction which may be used 1o yield
a fuller understanding of the datq,

The purpose of the swing is manifold: it may be used to obtain new in-
formation about the data, or to provide an explanation for them, or even to
excite new conceptual research concerning the symbolic constructs.?

For the purpose of this paper we want to emphasize the following features
of data, symbolic constructs, and swing :

Relativity: whether an entity e belongs 1o the realm of dara or to the realm of
symbolic construcis is context-depending: in one context e may be consi-
dered as a datum, in another context as a symbolic construct.

Plurality: the realm of symbolic constructs is not uniguely determined by the
realm of data: there may be several rival (incompatible) symbolic
constructs for one and the same data.

Usefulness, Economy and Explicitness: the symbolic constructs are construc-

12 Tt might be interesting to note that for perception some authors have pro-
posed an analogous cycle beiween the “objects” perceived (data) and the
“schemata” (constructs) structuring perception, of. (Neisser 1976, p. 20f). In
general, in cognitive science there is more or less agreement on the asser-
lion that perception uses a mixture of "bottom-up” (data = constructs) and
“top-down" {constructs = data} processes to realize the perceived object or
situation, cf. (Goldman 1986, p. 187).
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ted with certain purposes, they have to be useful. This usually implies
economy and explicitness. To invoke an example of N. Cartwright taken
from the empirical sciences:

" A good theory aims to cover a wide variety of phenomena _with as few
principles as possible. ... It is a poor theory that requires a new
Hamiltonian for each new physical circumstance.. The great explanatory
power of quantum mechanics comes from its ability to deploy a small
number of well-understood Hamiltonians to cover a broad range of. cases, and
not from its ability to match each situation one-to-one with a new
mathematical representation. That way of proceeding would be crazy
(Cartwright 1983, pp. 144/145).

symbolic constructs in mathematical theories have to have the same or at ie_ast
similar virtues. The merits of Poincaré's theory of fundamental groups reside
in the fact it is possible to cope with a wide range of seemingly disparate
phenomena through the concept of fundamental groups. Th.c fact that cach
manifold has a fundamental group is in itself only of limited interest. In order
to be useful, one must be able to effectively calculate this construct. And,
equally important, it must turn out that the fundamentai group reflects
important traits of the spaces.

Quite generally, in mathematics symbolic constructs Iepresent Or express
the possible contexts of data. According to Peirqe’s Pra'gmanc Maxim the

~possible contexts of data may be identified with their meaning:
"Consider what effects, that might conceivably have practical bearings, we

conceive the objects of our conception to have. Then our cqnception of
these effects is the whole of our conception of the object” (Peirce 1931/35

[5.4021).

This can be spelt as follows: the “"practical bearings” a mathematical _Ob_iGC[
might conceivably have are its (functional) relations_ to other mtheme!thal
objects. For example, the meaning of a particular manifold revF:als itself in its
possible relations with other manifolds or, more generally,. wilh other .math-
ematical entities and, as we will sketch in the following section for manifolds,
an important part of these possible relations can be described in th‘e framework
of group theory. On the other hand, category theory can be c.onsuiered‘ as the
realization of a kind of functional Pragmatic Maxim accordmg' to which the
meaning of a mathematical object is to be seen in its relations t(? other
mathematical objecis. category theory does not care much about the objects gf
mathematical theories so that it is formally possible to eliminate them in
favor of relations. Thus, from a category-thcoretical point of view, an entity
gets its meaning nof by its underlying substance, i.c. its under%ying sets of
members or its internal properties, but through its external relations to other



40 Andoni Ibarra / Thomas Mormann

objects of the category. Impressive examples of this fact are provided by the so
called "arrow style" definitions. A simple case is the definition of the kernel of
a group homomorphism, A more spectacular one is Lawvere's category
theoretical reconstruction of the concepts of set and element through the
concept of a subobject classifier which is a pure "arrow-style" concept and
makes no use of any set theoretical concept, ¢f. {Goldblatt 1979).

3. The Case of Mathematics: Data, Symbolic Constructs, and Swing in
Group Theory

The structural analogy between empirical and mathematical knowledge which
we want {0 exhibit consists in the fact that the structure of mathematical
theories and research can be explained in terms of data, symbolic constructs,
and swing as well, Our example is a tiny part of group theory.

3.1. Groups as Symbolic Constructs

.We would like to explain the idea of groups as symbolic constructs through
the example of the fundamental group of manifolds introduced by Poincaré at
the turn of the century.

The fundamental group of a manifold is the prototype of a symbolic
construct which plays a central role for the solution of the following general
topological problem: '

Given two manifolds M, and M, the problem is to prove that they are
unrelated in the sense that there does not cxist a contincus map
£ M;—>M,. A famous case in this contexi is Brouwer’s fixpoint
theorem that can be considered as a paradigmatic example.

In order to solve such a problem it often turns out to be convenient, even
necessary, to replace the manifolds themselves by appropiate symbolic
constructs, in our simple case by their fundamental groups =,(M,) and
7,;{M,), and to convert the geometrical problem into an algebraic one. That is
to say, one shows that there does nol exist an algebraic map, i.e. a group
homomorphism, between the fundamental groups m,(M,) and n,(M,). Then,
due to the correspondence between manifolds and their fundamental groups,
one can conclude that there does not exist a continous map between the
manifolds themselves.!?

13 Fompared with the l?ata manifold the definition of the Symbolic Construct
fundmcntal group” is somewhat complicated. One may know the Dafa quite
well, i.e. one may be able to identify or to distinguish them quite easily
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Thus, in the same way as for empirical theories, in the case of Poincaré's

theory of the fundamental group we have the two constituents: the level of

data — the manifolds — and the level of symbolic construcis — the fundamental
groups of the manifolds. Further, we have the swing from the manifolds and
their geometric relations to the groups and their algebraic relations back to the
manifolds. To put it bluntly: the proof of Brouwer's fixpoint theorem is cs-
sentially nothing but the swing.

Let us finally consider briefly the topic of plurality. In the later develop-
ment of topology it turned out that the fundamental groups are by no means
the only symbolic constructs for manifolds. A huge generalization is provided
by the so called higher homotopy groups 7 (M) (i>2) for manifolds. The
fundamental group is only the first of an infinite series of grouplike symbolic
constructs.?

3.2. Symbolic Constructs of Groups

Usually new mathematical entities first appear as symbolic constructs’
However, once such a construct has been established in the mathematical dis-
course, it rather quickly takes the role of a datum for which further symbolic
constructs are built. In the case of groups we want 1o consider the symbolic
construct of characters related to a group G.

A character of a group G is a representation of G into the complex
numbers €, i.e. a function from G into € with certain special properties we
need not consider in any detail. The symbolic construct of the set of characters
€ (G) forms a vectorspace and serves as a model of the group G, and can be
used as a powerful tool to investigate its stracture. A well known example is

“the theorem of Burnside which deals with the solvability of certain finite

groups. For quite a long time the only available proof of this theorem made
crucial use of the symbolic construct of characters, although the statement of
Burnside’s theorem can be formulated quite independently from this concept.
Again we are confronted with the typical swing : Stating from the level of
data, in our case they are the set (or category) of groups, we move into the

without being able to calculate their fundamental groups. In the case of;
Brouwer's Fixpoint Theorem it is easy to calculate the fundamental groups of
the manifolds involved.

14 Tt is remarkable that these higher homotopy groups are not known com-
pletely even for quite "elementary” manifolds like the 2-dimensional sphere.

15 Groups as Symbolic Consiructs are introduced for the first time by Lagrange
and FEuler in the course of their investigations on quadratic forms and
potential rests, ¢f. (Dieudonné 1976), {Wussing 1969).
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[

field of symbolic construction, the set (or category) of vectorspaces, and return
to the realm of groups again.

Her<; 00 we can witness a pluralism of symbolic constructs. Problems of
groups in general, and problems of solvability in particular, need not be treated
by characters. Much later, a proof of Burnside’s theorem was found which does
not depend on the symbolic construct of characters.

4. Formal Tools: Category Theory

The representational reconstruction of mathematical theories sketched here for
a small part of group theory has the advantage that a lot of work for its formal
claboration has already been done. To nobody's surprise it turns out that one
can use the tools of category theory for the representational reconstruction of
mathematical theories.

As is well known, the fundamental group of Poincaré can be considered as
a functor  from the category of manifolds to the category of groups:

P MG

In a similar vein one can interprete the correlation of groups and characters as a
functor ¢ from the category of groups G to the category of vectorspaces V.

c: G2V

The fact that #and ¢ ar¢ functors can be considered as a precise formulation of
the requirement that there exists a permanent and extensive correspondence
between data and constructs, i.e. relations between data have to correspond (at
least partially) to relations between constructs and vice versa.'¢

According to category theory, group theory is a whole bunch of grouplike
representations, or betier, a net of grouplike representations, This net is to be
conceplualized as an open net, i.e. as a net which is extended in different ways
and directions: new knots are added, and new connections between already
existing knots are constructed, and so on,.,

5. Conclusion.

T l‘w representational approach might prove to be especially useful in coping
with some weaknesses which the philosophy of mathematics traditionally suf-

16 _What this mean exaqt}y depends on the specifics of the case in question, but
it can be spelt out in the framework of a general theory of meaningful
representation, cf. (Mundy 1986).

Structural Analogies: Mathematical and Empirical Theories 43

fered from, i.e. the exaggerated inclination to stick to attitudes like efementa-

- rism, fundamentalism, and ontologism.

Elementarism claims that it is sufficient to understand elementary math-
ematical theories as the arithmetic of natural numbers, thus gaining complete
philosophical insight into the whole enterprise of mathematics. The concepts
of category theory used in the representational approach are technical concepts
which are rather immune to an utterly elementarist approach. Thus the repre-
sentational approach is closer 1o the conception of the working scientist.

Fundamentalism maintains that the most important task of the philosophy
of mathematics is to provide an absolutely secure foundation of mathematics.
Fundamentalism localizes the philosophical problematic of mathematics in its
foundations, be it Jogic, set theory, or any other foundational discipline. This
leads to a strictly hierarchical and global organization of mathematical know-
Jedge. Contrary to this (inadequate) conception of mathematics the representa-
tional approach favors a local, more flexible organization of mathematics as a
non-kierarchical net of interrelated units.

Finally, ontologism concenirates rather exclusively on global questions
like the following: What "mode of being" pertains to mathematical entities?
To this question there exists a whole spectrum of answers. On the one end, we
find a solid platonism which assigns mathematical objects to an exclusive area
whereas, on the other end, we find eliminative conceptions which try to
reinterpret the domain of mathematics nominalistically or physicalistically.
They hope to get rid of the ontological problems of mathematics once and for
all. Between those exireme positions we find constructivist approaches which
put various constraints on mathematical entitics. In principle we do not think

_ these approaches to be wrong but we would like to remark that these global

ontological claims of philosophy towards mathematics appear, from a natura-
listic perspective, to be rather strong. They do not correspond fo anything in
philosophy of empirical sciences. The question “What is an electron?" sounds
strange while philosophers of mathematics frequently ask "What is a number?”
and similar questions.!’ :
The relative, context-dependent characterization of mathematical entities as
data and symbolic constructs, however, leads the representational approach to a
distributed and variegated ontology of the objects of mathematical discourse.
One cannot assume that the mode of being of entities belonging 10 different
fevels of conceptualization is the same and remains fixed once and for all.

17 Often, this approach is related to fundamentalism in localizing the oniolo-
gical question in a fundamental domain, e.g. in arithmetics of natural num-

bers or set theory.
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!

Rather, the ontological status of mathematical entities is a variable and
depends on the development of mathematics.
As Margenau pointed out already 50 years ago a simplistic Yes/No attitude
conceming the existence of scientific entitics is inappropriate:
"Do _masses, electrons, atoms, magnetic field strengths, etc., exist ?
Nothing is more surprising indeed than the fact that ... most of us still ex-
pect an answer to this question in terms of yes and no. ... Almost every
term that has come under scientific scruting has lost its initially absolute
significance and acquired a range of meaning of which even the boundaries

are often variable. Apparently the word to be has escaped this process”
(Margenau 1935, p. 164).

Even if we assume for the sake of the argument that the isolated claim "r
exists" makes sense, one must be a very hardheaded platonist to maintain that
TL €Xists in the same way as, say, an entity like an "extraordinary cohomology
theory" - a rather complex entity which nevertheless can be made the object of
study.

It should be noted that the problem of ontological diversification is not a
special problem of the empirical sciences, It conceins the social sciences and
common sense knowledge as well: Does it really make sense to maintain that
objects like "San Sebastian", "the European Community”, or "the develop-
ment of capitalism in the 20th century” ¢xist in the same way as the notorious
apple tree in the philosopher's garden? ‘

Thus, taking into account the structural analogy between empirical and
mathematical theories as representations, we maintain that mathematics shares
with empirical science this feature of a variegated ontological status of its
objects. That is, we maintain that Margenau's remarks concerning the blurred
ontology status of scientific entities also apply to mathematics. Regrettably
this common ground of mathematics and empirical science is rarely recognized
by philosophers of mathematics. In the realm of physics, for example, philo-
sophers of mathematics often take a robust realism for granted, thereby
accepting an artificial wall between mathematics and empirical science. The
representational structure of empirical and mathematical theories, however,
renders it dubious that there is a sharp and clear ontological distinction
between the physical and the mathematical. At this point the representational
approach meets Quine's holistic account of science, cf. (Resnik 1988).

Hence, taking into consideration this common feature of mathernatics and
empirical science it is evident that the philosophy of mathematics cannot
restrict itself to the "foundations" or the "elements” of mathematics. It has to

i
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pay attention to the ongoing process of mathematical progress..18 y
Stressing the common ground of empirical and mathematical cognition as
it is exhibited in the representational structure of mathematical and empirical
theories, the philosophy of mathematics could tap the sources of presen_t da:y
philosophy of empirical science. There, problems of ontology are dlez'xlt with in
a far more liberal and sophisticated way than in the Logical Empiricism of th.e
thirties. Nowadays, the ontological diversification of scientific cnti_ties is
widely recognized, as is witnessed by the talk of causality, possibilities, or
counterfactuals, even in quarters which consider themselves to belong to the
analytic tradition. In particular, one may consider the ongoing debate.orti
realism as an effort to overcome the far too simple dualism of "does exist”

versus "does not exist".!®

Up to now, however, philosophy of mathematics seems to hgve ignored
this debate. In order to gain contact again with the rest of philosophy of
science, philosophy of mathematics has to give up the perniciogs concentra-
tion on such idiosyncratic "~isms" as elementarism, fundamentalism and onto-
logism.

We hope the representational approach can be considered to be a small step

towards this goal.
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Reduction and Explanation: Science vs. Mathematics

VEIKKO RANTALA (Tampere)

1. Introduction

The aim of this essay is to compare the explanatory roles which the nol:'fon of
reduction has played in the philosophy science, on the one hgnd, and in the
philosophy of mathematics, on the other, and to argue that in tha% respect
there is a crucial difference between the two fields of study. Thus, for instance,
in the philosophy of science the notions of explanation and reductiop have
been extensively discussed, even in formal frameworks, but there exist few
successful and exact applications of the notions to actual theories, and,
furthermore, any two philosophers of science seem to think differently about
the question of how the notions should be reconsiructed. On the other hanFI,
philosophers of mathematics and mathematicians have been_ successfgl in
defining and applying various exact notions of reduction (or :nterprf:tauon),
but they have not seriously studied the questions of explanation and
understanding, . .
There are several reasons why reduction has been extensively discussed in
the philosophy of science and in science itself. For example, it is oflen assum-
ed that behind an observed, or otherwise given, phenomenon there exists a
more fundamental reality to which the phenomenon can be reduced and which
can be employed to explain and understand it. Secondly, it is usually thought
that scientific research is not feasible if it cannot be reduced to methods wh:cfh
in some sense are objective and reliable. Philosophy and science abounq in
historical examples and consequences of these ontological and methodological
forms of reductionism; such are radical empiricism and rationalism, the idea
that the axiomatic method is reliable (these examples represent methodolog if:ai
reductionism deriving from the struggle for epistemic certainty), reductive
materialism and idealism, the discussion concerning the reduction of bi(.)iogy
to physics (which, in turn, represents ontological reductionism), disgovenes of
elementary particles (which are a consequence of a kind of ontological reduc-

_ tionismy), efc.



