Tal and Comesaña on evidence of evidence

Luca Moretti
l.moretti@abdn.ac.uk
University of Aberdeen & Munich Center for Mathematical Philosophy

R. Feldman defends a general principle about evidence the slogan form of which says that 'evidence of evidence is evidence' (cf. 2014: 284–99, 2011 and 2007: 194-214). B. Fitelson (2012: 85–88) considers three renditions of this principle and contends they are all falsified by counterexamples. Against both Feldman and Fitelson, J. Comesaña and E. Tal (2015: 557-59) show that the third rendition—the one actually endorsed by Feldman—isn't affected by Fitelson's counterexamples, but only because it is *trivially* true and thus uninteresting. Tal and Comesaña (2015) defend a fourth version of Feldman's principle, which—they claim—'has not yet been shown false' (p. 16). Against Tal and Comesaña, I will show that this new version of Feldman's principle is in fact *false*.

The third version of Feldman's principle considered by Fitelson (2014) is this:

(EEE_3) If S_1 possesses evidence, E_1 , that supports the proposition that S_2 possesses evidence, E_2 , that supports P, then S_1 possesses evidence, E_3 , that supports P. EEE_3 has been defended by Feldman (2011). Furthermore, Feldman (2014: 292) endorses a restatement of this principle that is only unimportantly different. Here is Fitelson's alleged counterexample to EEE_3 : S_1 's background information says that a card c will be picked out randomly from a standard deck. S_1 is then told that S_2 knows which card c is exactly, and that:

 (E_1) c is a black card.

In these circumstances, E_1 gives S_1 some support for the proposition that S_2 possesses the following information:

 (E_2) c is the ace of spades.

Furthermore, E_2 entails and supports the proposition:

(P) c is an ace.

In this setting, upon learning E_1 , S_1 acquires evidence that supports the proposition that S_2 possesses evidence E_2 that supports P. So EEE_3 's antecedent is satisfied. However—Fitelson contends— S_1 doesn't have any evidence E_3 that supports P. For we can stipulate that in this scenario all evidence S_1 possesses about c is constituted by E_1 , the proposition that S_2 knows which card c is exactly, and any consequence of these two propositions. But none of these propositions is—according to Fitelson—evidence for P. Since EEE_3 's antecedent is satisfied but not its consequent, EEE_3 is false.

Comesaña and Tal (2015) retort that this is no counterexample to EEE_3 . For in this scenario—pace Fitelson— S_1 has some evidence E_3 supporting P. For example, S_1 believes the trivial consequence of E_1 ,

c is not the Jack of hearts,

which supports *P*. Comesaña and Tal emphasize that this upshot doesn't actually help Feldman because:

For any pair of propositions E and Q (about which the subject in question is not already certain), something entailed by E supports Q: for instance, the disjunction either E or Q. Therefore, Feldman's EEE_3 is only trivially true, and so the fact that it is not refuted by Fitelson's case is irrelevant. (2015: 559, edited)

The moral is that Feldman can reject Fitelson's contention that EEE_3 has a counterexample, but this is a Pyrrhic victory because EEE_3 's truth is immaterial to the general epistemological thesis that Feldman would like to substantiate. I endorse this conclusion.

To rescue the evidence-of-evidence-is-evidence principle from the triviality problem and other difficulties, Tal and Comesaña (2015: 14) propose replacing EEE_3 with this principle:

(EEE_4) For all E and Q, if (i) E is evidence that there is some evidence for Q and (ii) E is not a defeater for the support that the proposition that there is evidence for Q provides for Q, then E is evidence for Q.

In EEE_4 , 'evidence' means any *true* proposition regardless of its being possessed by a subject. Since Feldman (2014: §15.2) thinks of evidence as a proposition possessed by a subject, EEE_4 may be unsuitable to render the principle he has in mind. EEE_4 is afflicted by a more serious problem: it is

not trivially true but just *false*. For there are many pairs of ordinary propositions E and Q (about which we are uncertain) that satisfy EEE_4 's antecedent but not EEE_4 's consequent.

Take E and Q from two disparate domains—for instance, E = 'Aristotle used to snore' and Q = 'There is a mouse in my house'. Even so, E and Q satisfy (i) because E is evidence that there is some evidence for Q—namely, any (uncertain) proposition E* that entails both E and Q (e.g. the conjunction E & Q). This is so because E* entails E. Thus E is evidence for E*. (As E* entails E, E confirms E* in the sense that Pr(E*|E) > Pr(E*), if Pr(E*) > 0 and Pr(E) < 1.) Furthermore, E* entails Q. Thus E* is evidence for Q. But E and Q also satisfy (ii), for it is intuitively true that E is not a defeater for the support that the proposition that there is evidence for Q provides for Q.

A way to flesh out this intuition is the following: the *existential* proposition that there is evidence for Q can be construed as a *disjunction* each disjunct of which states that $[E_n, and E_n]$ supports Q] for any relevant E_n . E would be a defeater for the support that this disjunction provides for Q only if E were a defeater for the support that *all* or *most of* these disjuncts individually supply for Q. But we have no reason to believe this is the case. Rather, we have reasons to believe the opposite. Take for example E_n = 'There are chew marks on the cupboard'. Clearly, E isn't a defeater for the support that [there are chew marks on the cupboard, and the proposition that there are chew marks on the cupboard supports Q] provides for Q. The same result obtains for any other E_n that stands for *typical* evidence for Q. The same happens in many cases in which E_n stands for *atypical* evidence for Q. Suppose for instance $E_n = E^*$. E isn't a defeater for the support that E^* , and E^* supports E^* 0] provides for E^* 1. For the conjunction E^* 2 is E^* 3 is E^* 4 supports E^* 5 is E^* 6. This is so because, since E^* 6 entails E7. E^* 8 is E^* 9, and E^* 8 supports E^* 9, which supports E^* 9. Which supports E^* 9, which supports E^* 9.

In conclusion, since E and Q satisfy both (i) and (ii), EEE_4 's antecedent is satisfied. Nevertheless, since E is *not* evidence for Q, EEE_4 's consequent is unsatisfied. Therefore, EEE_4 is false.

References

- Comesaña, J. and E. Tal. 2015. 'Evidence of evidence is evidence (trivially)'. Analysis 75: 557-59.
- Feldman, R. 2007. 'Reasonable religious disagreements'. In *Philosophers Without God: Meditations on Atheism and the Secular Life*, ed. L. Antony, 194–214. Oxford: OUP.
- Feldman, R. 2011. 'Evidence of evidence is evidence'. In *Keynote Lecture at Feldmania: A Conference in Honor of Richard Feldman*, UT-San Antonio, Texas, 19 February 2011.
- Feldman, R. 2014. 'Evidence of evidence is evidence'. In *The Ethics of Belief*, ed. J. Mattheson and R. Vitz, 284–99. Oxford: OUP.
- Fitelson, B. 2012. 'Evidence of evidence is not (necessarily) evidence'. Analysis 72: 85-88.
- Tal, E. and J. Comesaña. 2015. 'Is Evidence of Evidence Evidence?' *Nous*. doi: 10.1111/nous.12101.