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50 Karl Popper’s Propensity Interpretation of Probability 105
Jacob Rosenthal

51 Single Event Probabilities in Popper’s Propensity Account 113
Melis Erdur



vi Karl Popper: A Centenary Assessment

C Biology

52 The Emergent Character of Life 121
Josep Corcó
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Preface

For five warm summer days (3-7 July 2002), more than 300 people from more
than 50 countries attended Karl Popper 2002, a congress held in Vienna
to commemorate the 100th anniversary of Popper’s birth (28 July 1902). The
principal activity at the meetings held in the main building of the University
of Vienna, his alma mater, was, in keeping with Popper’s outlook, critical
engagement with his intellectual achievement in the many fields to which he
contributed. Besides the investigation, development, and critical assessment
of Popper’s ideas, participants were able to enjoy a walking tour of Vienna
sites relevant to Popper’s early career, a recital of his organ fugue at the
church of St Michael in Heiligenstadt, an exhibition at the Palais Palffy of his
life and work, the unveiling of a bronze bust in the Arkadenhof in the Uni-
versity main building, and the opening ceremony at the City Hall (Rathaus)
at which the Honorary President of the Congress, Professor Dr Hans Albert,
gave the Inaugural Address. There was also an excursion after the congress
to the University at Klagenfurt, where Popper’s working library is housed.
Full details of the congress programme and abstracts, of the membership of
the organizing and programme committees, and of the official sponsors, are
available at www.univie.ac.at/karlpopper2002/index.html/.

The three volumes are a selection from more than 200 invited lectures
and contributed papers presented at Vienna. The cull was made as follows.
Chairs of sessions and members of the programme committee made an initial
selection based upon what they had heard and read. Contributions planned
for publication elsewhere were excluded. Every selected paper was sent to
two referees. Authors made their final revisions in the light of the referees’
reports. We are grateful to those who shortened their papers on request.

The present volume is devoted to papers on the various sciences to which
Popper contributed (logic, physics, biology, the social sciences). Volume I
contains papers on Popper’s life and influence, and on democracy and the
open society. Volume II contains papers on his metaphysics and epistemology.

Karl Popper 2002 was more than six years in the planning. Many were
involved in its organization, but it would not have taken place without the
heroic efforts of Heidi König in Vienna. The editors should like to thank, in
addition, the speakers, chairs, and referees, and Mrs Melitta Mew and the
Karl Popper Charitable Trust. All royalties earned by these three volumes
will go to the Trust.

Ian Jarvie
Karl Milford
David Miller
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Scienze. Her recent research mainly concerns philosophy of physics, quantum
logic, and quantum computation. E-mail: dallachiara@unifi.it

Melis Erdur received her undergraduate degrees in philosophy and math-
ematics, and her master’s degree in philosophy, from Bogazici University,
Istanbul. She is currently a graduate student in Philosophy at New York Uni-
versity. Her main areas of interest are epistemology and meta-ethics. E-mail:
melis.erdur@nyu.edu



Notes on the Contributors xi

Michael Esfeld is Professor of Epistemology and Philosophy of Science at
the University of Lausanne. Main areas of research: philosophy of mind and
philosophy of science, in particular the philosophy of physics. Current main
research projects include structural realism, mental causation, and reduction-
ism. E-mail: Michael-Andreas.Esfeld@unil.ch

Mathias Frisch is Assistant Professor of Philosophy at the University of
Maryland, College Park. His recent book Inconsistency, Asymmetry, and
Non-Locality , Oxford 2005, examines philosophical issues in classical elec-
trodynamics, including the source of the temporal asymmetry of wave and
radiation phenomena. E-mail: mfrisch@umd.edu

Steve Fuller is Professor of Sociology at the University of Warwick. He is
most closely associated with the research programme of ‘social epistemology’.
His recent books include The Governance of Science: Ideology and the Future
of the Open Society , Open University Press 2000; Thomas Kuhn: A Philo-
sophical History for Our Times, Chicago 2000; Kuhn vs Popper: The Struggle
for the Soul of Science, Icon 2003; and The Intellectual , Icon 2005. E-mail:
S.W.Fuller@warwick.ac.uk

Roberto Giuntini is Professor of Logic and Philosophy of Science in the Fac-
ulty of Education at the University of Cagliari. His main research publications
are in quantum theory and quantum logic. E-mail: giuntini@unica.it

Eduard Glas is Associate Professor of Mathematics and Philosophy of Math-
ematics at Delft University of Technology. E-mail: e.glas@twi.tudelft.nl
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Truthlikeness for Theories on
Countable Languages ∗

Thomas Mormann

1 Introduction

2 Topology, metric, and order

3 Theories as deductively closed sets of the Lindenbaum algebra

4 The Stone Representation Theorem

5 The logical space of theories as a Vietoris space

6 Geometric conventionalism and logical spaces

1 Introduction

With only slight oversimplification one may assert that the various theories
of truthlikeness are governed by a single guiding metaphor: Truth, or better,
the true theory W , is conceptualized as being located in a logical space of
theories in such a way that the difference between W and a false theory F
is a sort of distance between W and F : the larger the distance d(W,F ) the
more F differs from the whole truth. Indeed Popper, who is considered as one
of the founding fathers of a theory of truthlikeness or verisimilitude, seems
to have been captivated by the above mentioned spatial metaphor when in
Conjectures and Refutations he asked the question (1963, Chapter 10, §x):

Is it not dangerously misleading to talk as if Tarskian truth were located some-

where in a kind of metrical or at least topological space so that we can sensibly

say of two theories — say an earlier theory t1 and a later theory t2, that t2 has

superseded t1, or progressed beyond t1, by approaching more closely to the truth

than t1?

I do not think that this kind of talk is at all misleading. On the contrary, I

believe that we simply cannot do without something like this idea of a better or

worse approximation to truth.

In order to overcome a merely metaphorical conception of ‘distance from
the truth’, one has to show that for a given logical space of theories one

∗I should like to thank two anonymous referees for their very helpful and conscientious
comments.
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4 Thomas Mormann

can define a non-trivial metric structure. Or, at least, one has to show that
for general reasons such a metrical structure exists. Popper addressed this
problem properly only for finite logical spaces for propositional theories (cp.
Popper 1976, § 2). In this contribution I should like to argue that Popper was
more right than he might have imagined. Theories on countable languages may
indeed be conceptualized as being located in a metrical space. This thesis is
to be understood literally, not metaphorically. More precisely, I propose to
construct for theories that can be formulated in a countable language L a
logical space T (L) endowed with an appropriate metric that satisfies most of
the structural requirements that have been proposed for such a metric in the
literature. This metric is objective in the sense that it does not depend on
‘intuitive’ choices but is determined by structural facts, at least to a large
extent. The point at which a conventional choice has to be made, can be
determined quite precisely, namely when it comes to the choice of a metric
that is compatible with the ‘objective’ ordered topological structure.

The outline of the paper is as follows: In the next section we recall the
rudiments of topology, order theory, and metric spaces we need in the following
sections. In particular we state a fundamental theorem of Urysohn-Carruth,
which asserts that under mild restrictions every ordered metrical space can
be assumed to have a metric that is compatible with the order structure. This
theorem will be crucial for the main result of this paper. In § 3 we characterize
the theories T (L) of a language L as the class of deductively closed sets of
the Lindenbaum algebra LINDA(L) of logically equivalent propositions. This
sets the stage for the topological representation of LINDA(L) carried out
in § 4. In § 5 the logical space T (L) of theories, conceived of as a Vietoris
space of closed subsets of the Stone space ST (L) is constructed. Thereby the
Urysohn-Carruth metrization theorem can be used to show that this space
can be endowed with a metric that is adequate for the purposes of truth
approximation. In § 6 some relations between the account of truthlikeness
advocated in this paper and Poincaré’s conventionalist stance in geometry
are pointed out.

2 Topology, metric, and order

In this section the basic notions of topology, theory of metric spaces and or-
der structures are recalled that will be needed in the following. This section
can offer only a very brief and incomplete survey. For a more thorough intro-
duction to the topics mentioned in this section the reader is recommended to
consult the literature (Davey & Priestley 1990, James 1999, Nachbin 1965,
Nagata 1985, Niiniluoto 1987, §§ 1.1 and 1.2). Let us start with topology.

Definition 2.1 Let X be a set. A topological structure O(X) on X is given
by a subset O(X) ⊆ P(X) of the power set P(X) of X that is assumed to
satisfy the following properties:

(i) ∅ and X belong to O(X).
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(ii) If Ai is an arbitrary collection of subsets of X belonging to O(X), then
the set-theoretical union

⋃
Ai also is an element of O(X).

(iii) If A and B belong to O(X), then the intersection A ∩ B belongs to
O(X).

The elements of O(X) are called open sets. An open set U that contains
some element α is called an (open) neighbourhood of α. The set-theoretical
complements of open sets are called closed sets.1 The set of closed sets of a
topological space 〈X,O(X)〉 is denoted by C(X). Closed sets obey the dual
conditions to those of Definition 2.1. Obviously, a topological structure on X
is defined by C(X) as well as by O(X).

Definition 2.2 Let 〈X,O(X)〉 be a topological space. A base of the topology
O(X) is a subset B of O(X) closed under finite intersections, such that any
open set is a union of elements of B. A subbase of O(X) is a subset S of O(X)
such that any element of O(X) is the union of finite intersections of elements
of S. Dually, a closed base is a subset D ⊆ C(X) that is closed under finite
unions such that any element of C(X) is an intersection of elements of D. A
topological space 〈X,O(X)〉 is second countable if & only if it has a countable
base. If 〈X,O(X)〉 is a topological space the Cartesian product X × X is
endowed with the topology that has {U × V | U, V ∈ O(X)} as a base. This
topology is called the product topology on X ×X.

Denote the set of real numbers by R. The standard topology of R is the
topology having as a base the set of open rational intervals (x, z) := {y | x <
y < z}. Correspondingly, the class of closed intervals provides a closed base
for this topology. With respect to this topology, R is second countable. More
generally, let 〈X, d〉 be a metrical space, that is, a set X endowed with a real
valued function d : X ×X 7−→ R satisfying the following axioms:

d(x, y) ≥ 0(1)
d(x, y) = 0 ⇐⇒ x = y(2)

d(x, y) = d(y, x)(3)
d(x, z) ≤ d(x, y) + d(y, z).(4)

The metrical space X is rendered a topological space by defining an open
base B as follows: B := {y | d(x, y) < 1/n for some x ∈ X and n ∈ N}. In
the following, all metric spaces are assumed to be endowed with this topol-
ogy. There may be different metrics defined on X defining the same topology.
Hence, the topological structure of a metrical space does not uniquely deter-
mine its metrical structure.

Definition 2.3 Let 〈X,O(X)〉 be a topological space.
1One should note that a set may be open and closed. This is only linguistically a paradox.

For instance, for every topological space 〈X, O(X)〉 the sets ∅ and X are open and closed.
An open and closed set is often called clopen.
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(i) X is Hausdorff if & only if distinct points α and β have disjoint open
neighbourhoods U and V , respectively, that is, U and V are disjoint with
α ∈ U and β ∈ V .

(ii) X is normal if & only if for disjoint closed sets A and B there are
disjoint open sets U and V with A ⊆ U and B ⊆ V .

(iii) X is compact if & only if every family of open sets Ai such that X =⋃
Ai has a finite subfamily A1, . . . , An such that X = A1 ∪ · · · ∪An.

The set of real numbers R endowed with the standard topology is a non-
compact normal Hausdorff space. The closed unit interval [0, 1] is a compact
Hausdorff space.2 More generally, metrical spaces are Hausdorff spaces, but
they need not be compact. A topological space is metrizable if and only if
its topology is induced by a metric. That is to say, it has a base defined by
some metric. With respect to metrizability we need the following fundamental
theorem (cp. Nagata 1985, pp. 253f.):

Theorem 2.4 (Urysohn) A second countable compact Hausdorff space is
metrizable.

A refined version of this theorem lies at the heart of the theory of truth
approximation to be formulated in this paper. More precisely, it will be shown
that the logical space T (L) of theories of a countable language L is a topolog-
ical space to which a refined version of Theorem 2.4 applies. This refinement
concerns logical order. Theories are naturally ordered with respect to logical
strength, and somehow or other one has to deal with it. Generally speaking,
the interplay between topological, metrical, and order structures turns out
to be essential for a working theory of truth approximation. The following
definition is useful to fix the relation between topological, metrical, and order
structures (cp. Gierz & others 1980, p. 272):

Definition 2.5 A (partial) order relation on a set X is a binary relation that
is reflexive, antisymmetric, and transitive.

(i) A set X endowed with a partial order ≤ is called a poset .

(ii) A topological space X is a pospace (partially ordered space) if and only
if X is a poset and the order relation ≤ is a closed set with respect to the
product topology on X ×X; that is, the set {〈x, y〉 | x, y ∈ X and x ≤ y} is
closed in X ×X.

Next let us assume that the pospace X is also endowed with a metrical
structure d in the sense that the topological structure is induced by a metric
d. Then, it is natural to ask how the order structure is related to the metrical
structure. Somehow the order structure should respect the metric structure
and vice versa. The following definition formulates a reasonable connection
between metric and order structure:

2As is well-known, a compact Hausdorff space is normal.
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Definition 2.6 Let X be a poset endowed with a metric d. The metric d is
radially convex if x ≤ y ≤ z implies d(x, y) + d(y, z) = d(x, z).

For instance, the standard metric on the real line R is radially convex. For n ≥
2, one may define an order on Rn by x ≤ z : if & only if xi ≤ zi where x =
(xi) and z = (zi) for each i. With respect to this order the standard Euclidean
metric of Rn is no longer radially convex. A radially convex metric on Rn is
defined by d(x, y) =

∑
|xi−yi|/2i for each x, y ∈ Rn. This metric is equivalent

to the standard metric in the sense that it induces the same topology on Rn.
Hence, it is natural to ask if each metrical pospace admits a radially convex
metric equivalent to the original metric. For compact pospaces, this question
is answered in the affirmative by the following theorem of Carruth (1968,
p. 229):

Theorem 2.7 (Urysohn-Carruth metrization theorem) A compact
pospace X with a metric d has an equivalent metric d? that is radially convex .

The aim of this paper is to show that the logical space T (L) of theories
of a countable language L is indeed a compact metric pospace, and therefore
may be assumed to have a radially convex metric. As far as I know, the
notion of a radially convex metric does not appear in the literature dealing
with matters of truth approximation, but related notions have been discussed
by several authors. In (1984) Miller develops a pseudo-mad6L theora of d0∈〉s
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3 Theories as deductively closed sets of the Lindenbaum algebra

In this section we begin to build up the logical space of theories formulated in a
countable propositional language L. Then the true theory W may be thought
to be located in such a way that the ‘truthlikeness’ of a theory can be conceived
as ‘distance from the truth’. In order to keep the technical apparatus as lean as
possible let us concentrate on theories F,G, . . . (among them the true theory
W ) that can be formulated in a classical propositional language L having a
countable alphabet. That is to say, the logic of L is classical bivalent logic,
L has the usual logical constants ∧,∨,¬, and so on, and at most countably
many propositional constants p1, p2, . . . , pn, . . ..4 The first thing to note is
that under these assumptions the class of (finite) well-formed formulas of L
is still countable, since finite strings can be coded by natural numbers.5

If we want to deal with the logical relations of theories and propositions
we need not work with the propositions, that is, the well-formed formulas of
L. Rather, we can restrict our attention to the equivalence classes of logically
equivalent propositions. In other words, we can replace the algebra of well-
formed formulas of L by the Lindenbaum algebra LINDA(L):

Definition and Lemma 3.1 Let L be a propositional language of classical
logic. Two formulas a and b are said to be logically equivalent if and only if
a ↔ b is a tautology of propositional logic. The set of equivalence classes [a] is
denoted by LINDA(L) and is called the Lindenbaum algebra of L. LINDA(L)
is a Boolean algebra whose operations are defined by the operations of L:

[a] ∧ [b] := [a ∧ b], [a] ∨ [b] := [a ∨ b],¬[a] := [¬a].

The order relation ≤ of LINDA as a Boolean algebra is just the order of logical
consequence. That is to say [a] ≤ [b] := [a] ⇒ [b]. The unit of LINDA(L) is
denoted by 1 and the bottom element by 0. For typographical reasons we
write in the following ‘a’ instead of ‘[a]’.

LINDA(L) may be characterized as the algebraic structure that determines
the logical relations between propositions, and, as we shall see in a moment,
also the logical relations between theories formulated in the language L. Fol-
lowing Tarski, a theory is defined as a set of propositions of L closed under
logical consequence. In the language of algebraic logic this can be expressed
as follows:

Definition 3.2 Let LINDA(L) be the Lindenbaum algebra of a countable
language L. A theory F on L is a subset of L that is closed with respect to

4It may be shown (not in this paper) that the restriction to propositional logic is not
necessary. Virtually the same argument goes through for a countable first-order language.
Even the assumption of classical logic can be dropped in favour of more general logics that
have a well-behaved Lindenbaum algebra. Finally, even the first-order assumption may be
weakened, if one is prepared to give up the strict correspondence between the syntactic and
the semantic level. The only non-negotiable assumption for the argument of this paper is
that the language is countable. In this paper I am content to treat the simplest case, to
wit, classical propositional logic with countably many propositional constants.

5For a detailed proof see, for example, Dunn & Hardegree (2001), p. 139.
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logical consequence. Hence, algebraically, theories are characterized as filters
of the Boolean lattice LINDA(L), that is, as subsets of LINDA(L) satisfying
the following two conditions:

(i) F is upward closed: a ≤ b and a ∈ F implies b ∈ F .

(ii) If a, b ∈ F , then a ∧ b ∈ F .

The set of theories of L is denoted by T (L). For later use, the following special
class of filters will turn out to be important.

(iii) F is a prime filter if & only if a ∨ b ∈ F implies a ∈ F or b ∈ F .

One may distinguish at least the following three other kinds of theories (or
filters):

(iv)1 The theory F is a finitely axiomatizable theory if & only if F = {a |
b ≤ a} for some b ∈ F . Such a theory is called the principal filter generated
by b.

(iv)2 The theory F is a complete theory if & only if for all a ∈ LINDA(L)
either a ∈ F or ¬a ∈ F . A complete theory is also called an ultrafilter.6

(iv)3 The theory F is consistent if & only if F 6= LINDA(L). The Boolean
algebra LINDA(L) is called the trivial filter or the trivial theory on L.

At first glance, it is not at all obvious that complete theories exist. In-
deed, the existence of sufficiently many ultrafilters, that is, complete theories,
presupposes the validity of the axiom of choice or some similar principle (see
Davey & Priestley 1990, Chapter 9). The axiom of choice is assumed through-
out the rest of this paper without further mention. Then the true theory W in
the sense of Popper may be conceptualized as a distinguished ultrafilter, that
is, as a distinguished complete theory W for which either a ∈ W or ¬a ∈ W
for all a ∈ LINDA(L).

There is a natural map r : LINDA(L) 7−→ T (L) defined by r(a) := {b |
a ≤ b}. In order to render this map order-preserving one defines an order
relation ≤ on T (L) by F ≤ G := G ⊆ F . Here, ⊆ is the standard set-
theoretical order defined on T (L) due to the fact that filters are subsets of
LINDA(L). As is well known, T (L) endowed with this order ≤ is not just
an ordered structure but is a complete co-Heyting algebra 〈T (L),≤〉 (Tarski
1935, Johnstone 1982).7 Since r : LINDA(L) 7−→ T (L) is order-preserving,
one may consider the order relation ≤ on T (L) as a natural generalization of
the logical order of propositions of LINDA(L).

For 〈T (L),≤〉 one can define a theory of truthlikeness, or, more generally,
a qualitative (order-theoretical) theory of theory comparison that is essen-

6Obviously, the notion of a filter can be defined for general lattices. For Boolean algebras
the notions of ultrafilter and prime filter coincide. This does not hold for more general
lattices: if LINDA(L) is not Boolean, ultrafilters are prime filters, but the reverse does not
hold.

7These authors consider the set-theoretical order ⊆ on T (L) that is opposite to the
‘logical’ order ≤. Hence for them, the structure of T (L) is that of a Heyting algebra.
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tially equivalent to the ‘naive approach’ of Kuipers (2002). This can be seen
as follows: recall that the intersection

⋂
Fi of an arbitrary family of filters

is again a filter. More precisely, it is the supremum of the Fi with respect
to the order relation ≤. Hence, for any subset S ⊆ LINDA(L) there is a
maximal filter F with F ≤ S, to wit, the set-theoretical intersection of all
filters including S. Hence, for any filter F its quasi-complement F # is defined
by F # :=

⋂
{Fi | CF ⊆ Fi}, CF being the set-theoretical complement of

F . Moreover, for two filters F and G there is a unique largest filter F ∨ G
included in both, to wit, the intersection of all filters that include F and G.
Hence one may define:

Definition 3.3 Let U , V , and R be theories on L. Then U is at least as close
to the target theory R as V is (U ≤R V ) if and only if

(U ∩R#) ∪ (U# ∩R) ⊆ (V ∩R#) ∪ (V # ∩R)

This definition corresponds to Kuipers’s ‘naive approach’. The only difference
is that T (L) is not a Boolean algebra of sets but only a complete co-Heyting
algebra. This means essentially that the quasi-complement V # of V satisfies
only some weaker versions of the familiar laws of a Boolean complement:

(U ∧ U#)# = 1 U## ≤ U U# = U###(3.4)

Since Definition 3.3 depends only on the logical structure, one may call it an
objective qualitative measure of similarity. Or, in the case the target theory
R is the true theory W , the relation ≤W defines an objective logical measure
of truthlikeness.8 The shortcomings of this ‘naive account’ are well-known
and need not be rehearsed here (cp. Miller 1984, Kuipers 2000, Chapter 10).
As an important flaw of Definition 3.3 I take the fact that according to it
most theories are not comparable. As will be shown, this shortcoming can be
repaired. Any theory of truthlikeness that intends to improve on the naive
approach by rendering more theories comparable should preserve the naive
account as far as possible; that is, assuming that one has a metric d measuring
the distances between theories these distances should be compatible with the
logical order relations between theories established by the naive account. In
the following it will be shown that this can be achieved by radially convex
metrics.

4 The Stone Representation Theorem

In order to endow the set of theories T (L) of L with an appropriate metric,
that is, with a metric that respects the existing logical order structure, in
this section we are going to construct a faithful topological representation
of T (L) as the co-Heyting algebra of closed sets of a topological space. The

8It should be noted that for Kuipers, though not for Popper or Miller, the true theory
W is not an ultrafilter.
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underlying set of the topological space to be constructed is the set ST (L) :=
{Fp | Fp is a proper prime filter of LINDA(L)}. The topology on ST (L) is
defined by the lattice C(ST (L))) of closed sets as follows: For every filter
V ∈ T (L) define the range r(V ) ⊆ ST (L) by r(V ) := {Fp | V ⊆ Fp}. The
proof that 〈r(V ), V ∈ T (L)〉 defines a topology on ST (L) is a routine exercise.
More precisely we get:

Theorem 4.1 Let L be a countable language with classical logic. The topo-
logical space 〈ST (L),O(ST (L))〉 is a second countable, compact Hausdorff
space, and the finitely axiomatizable theories a are represented by the clopen
subsets r(a) of ST (L).

Proof : This theorem is nothing but a specialization of the famous Stone
Representation Theorem (cp. Halmos 1963, Johnstone 1982) to the case of
countable Boolean algebras.

Invoking Theorem 2.4 we get:

Corollary 4.2 The topological space 〈ST (L),O(ST (L))〉 is metrizable.

Let us pause for a moment and take stock of what we have achieved so far.
We have shown that by intrinsic logical means, that is, without introducing
further primitives, the space of prime theories may be endowed with a metric
that is compatible with the underlying topological structure of that space.
This metric is in no way unique. Moreover, it is logically rather useless, since
evidently all prime theories are logically incompatible. What we should like to
have, however, is a metric not only for the rather inaccessible prime theories,
but for all theories. This metric should be compatible with the logical relations
existing between theories. In the next section, these desiderata are shown to
be satisfiable. In order to understand why and how this can be done, it is
useful to consider in some more detail the proof of Urysohn’s metrization
theorem.

The basic idea of the proof is to metrize a given topological space X by
showing that it can be embedded in a certain metric space in such a way that
this embedding induces a metrical structure on X. Denote by I the closed
unit interval [0, 1] endowed with the standard topology. The embedding space
just mentioned is the so-called Hilbert cube IN defined as follows:

Definition 4.3 Let I := [0, 1] be the closed unit interval endowed with the
standard metric, that is, d(x, y) := |x − y|. Denote the countable product of
I with itself by IN. The space IN is called the Hilbert cube. The elements of
IN are countable sequences x of real numbers with 0 ≤ xi ≤ 1. A metric d on
IN is defined by d(x, y) :=

∑
d(xi, yi)/2i. The topology defined by d renders

IN a second countable, compact Hausdorff space.

The embedding of X into IN is done is the following way: one constructs
countably many continuous functions (‘Urysohn functions’) fn : X 7−→ I,
n ∈ N, which separate the points of X, in the sense that for distinct points α
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and β there is always a function fn with fn(α) 6= fn(β). The product function
f = (fn)n∈N defines an embedding e : X 7−→ IN by e(x) := (fn(x))n∈N. Then
the metric structure of the Hilbert cube IN may then be pulled back by e to
X rendering it a metric space:

The metric structure of ST (L) allows us to measure the distance between
the points of ST (L), that is, prime theories. This is not very useful in itself,
since prime theories are rather elusive entities. What we are interested in,
however, is measuring the distances between general theories in such a way
that their order relations are respected.

To cope with this task, first note that IN is not just a metric space but
even a pospace with respect to the order relation ≤ defined by x ≤ y : xi ≤ yi

for all i ∈ N. Secondly, the metric of Definition 4.3 is radially convex with
respect to this order relation. Moreover, it satisfies the condition d(x, z) ≥
d(x∧y, y∧z)+d(x∨y, y∨z). In the next section it will be shown that the space
of theories T (L) is still a second countable compact Hausdorff space. Hence
it can be embedded into the Hilbert cube. Moreover, due to the Urysohn-
Carruth metrization theorem this can be done in such a way that the space
of theories inherits the radially convex metric of IN.

5 The logical space of theories as a Vietoris space

The final step for constructing a metric suitable for truth approximation is to
endow the set of theories, that is, the set C(ST (L)) of closed sets of ST (L)
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ogy on C(X). The set C(X) endowed with this topology is called the Vietoris
space of 〈C(X),O(C(X))〉 of X.

With respect to the natural order of set-theoretical inclusion ⊆ of closed
subsets of X the Vietoris space C(X) can be conceived as an order structure.
Using the following elementary reformulation of the concept of a pospace (cp.
Gierz & others 1980, p. 273) one can show that it is indeed a pospace:

Theorem 5.2 Let 〈X,≤〉 be a poset with topology O(X). X is a pospace if &
only if whenever a, b ∈ X and NOT (a ≤ b), there exist open sets U, V ∈ O(X)
with a ∈ U and b ∈ V such that if x ∈ U and y ∈ V , then NOT (x ≤ y).

Theorem 5.3 Let X be a compact Hausdorff space. Then the Vietoris space
C(X) of closed subsets of X is a pospace.

Proof : Assume a, b ∈ C(X) and NOT (a ≤ b). Hence there are α ∈ a
and β ∈ b. Since X is normal, the closed sets {α} and b have disjoint open
neighbourhoods V (α) and R(b). Let R(a) be an open set containing a. Note
that a ∈ m(V (α)). Hence R(a) ∩ m(V (a)) is an open neighbourhood of a.
More precisely, t(R(a)) ∩ m(V (α)) and R(b) are open neighbourhoods of a
and b such that for all x ∈ t(R(a)) ∩m(V (α)) and y ∈ t(R(b)) we have NOT
(x ≤ y). The reason is simply that the elements y of R(b) do not contain the
point α while the elements x of t(R(a)) ∩m(V (α)) are open neighbourhoods
of α by definition. Hence, C(X) is a pospace.

Thanks to Theorem 5.3, we may apply the Urysohn-Carruth metrization
theorem (2.4) to the space of theories 〈C(ST (L)),≤〉 obtaining a radially con-
vex metric d on C(ST (L)). Putting things together we finally have reached
the main theorem of this paper:

Theorem 5.4 Let L be a countable language. Then the logical space T (L)
of theories on L can be conceived of as the Vietoris space C(ST (L)) of closed
sets of ST (L).10 Then T (L) is a pospace that can be endowed with a radially
convex metric.

This metric can be used for truth approximation, or, more generally, for
a metrical theory of theory comparison. It is, as it should be, in line with
the underlying topological structure, and at least partially with the relevant
logical structure, to wit the order structure ≤. For the time being, I do not
know if it satisfies the further condition Miller (1984) set up for a good metric
of truthlikeness In order to understand how this deficit may be overcome it is
useful to dwell in some more detail upon Carruth’s proof of his metrization
theorem. It mimics exactly the proof of the classical theorem of Urysohn ac-
cording to which a second countable compact Hausdorff space X is metrizable

10In a somewhat different manner, Brink, Pretorius, & Vermeulen (1992) use the order
structure of the Vietoris space to define an order-theoretical notion of truth approximation.
The main difference to the present paper is that they do not consider the possibility of
endowing T(L) with a (radially convex) metrical structure.
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since there is an embedding e : X 7−→ IN. Explicitly, X is rendered a metric
space by restricting the standard metric of INto e(X) and then pulling it back
to X itself. The essential point is that thanks to technical results of Nachbin
(1965) Carruth proves that the embedding function e is order-preserving , that
is, for a, b ∈ X and a ≤ b one has e(a) ≤ e(b). What he does not prove is
that in the case of the Vietoris space C(X) is that the embedding e is also a
lattice homomorphism. He does not prove that the embedding e satisfies also
e(a∧b) = e(a)∧e(b), and e(a∨b) = e(a)∨e(b). If this could be done one could
immediately derive Miller’s requirement d(a, b) ≥ d(c∧a, c∧b)+d(c∨a, c∨b).
As is easily checked, this is true for the standard metric of the Hilbert cube,
and could be pulled back to C(X). Hence, if the embedding e : C(X) 7−→ IN

can be proved to be a lattice homomorphism one may pull back the ‘good’
metric of IN to a ‘good’ metric on C(X).

6 Geometric conventionalism and logical spaces

The radially convex metric d constructed for the logical space of theories
T (L) in no way is unique. The construction of the order-preserving embedding
e : T (L) 7−→ IN by the Urysohn-Carruth proof is highly non-constructive and
involves several choices. This does not mean that d is arbitrary: recall that
it has to respect the topological and the order structure. This ensures that
the trivial metric (for example) is excluded. More precisely one may say that
for the construction of d the ordered topological structure of T (L) has to be
taken as a priori, since it flows directly from the language L and its logic.
On the other hand, moving from the ordered topological structure to the
metric structure of T (L) involves a conventional choice. This should not be
considered as a flaw. Quite the contrary. It is very plausible that questions of
truthlikeness and theory approximation do not totally depend on ‘objective’
facts but are also a matter of pragmatically motivated decisions. (Miller 1994,
Chapter 10, § 4).

It may be useful to compare the problem of a priori and conventional
structural strata of the logical space T (L) with the corresponding problem of
physical space. As is well known, a hundred years ago Poincaré subscribed
to a sort of partial conventionalism with respect to the structure of physical
space. According to him, the underlying topological structure of space was a
priori while the metrical structure was conventional. T (L), the results of this
paper suggest an analogous result: there is an underlying objective topological
structure defined by logic alone. On the other hand, there is some choice in
constructing a metric for T (L) via its embedding in the Hilbert cube IN. This
may be considered as a conventional component in matters of truthlikeness.
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