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TOPOLOGICAL MODELS OF COLUMNAR VAGUENESS  

 

Abstract. The main aim of this paper is to show that the concept of vagueness based 

on an S4 modal operator C of clearness (CA to be read as “It is clear that A”, “It is 

definitely the case that A”, or similarly) leads to a concept of columnar higher-order 

vagueness. More precisely, the class of topological models of the operator C can be 

identified with the class of weakly scattered topological spaces such that the 

resulting concept of higher-order vagueness is columnar. A philosophically 

particularly interesting class of weakly scattered spaces, recently introduced by 

Rumfitt to cope with the Sorites paradox and other problems of vague concepts, is 

the class of polar topological spaces. More generally, all topological spaces support 

a concept of stably columnar vagueness that is only slightly weaker than proper 

columnar vagueness. Further, for all topological spaces, the boundaries of sets that 

satisfy the McKinsey axiom are columnar.    

Finally, it is proved that higher-order vagueness is (stably) columnar higher-order 

vagueness not only for S4-operators but also for operators that instead satisfy the 

axioms of Williamson’s “logic of clarity” (which is not S4 but characterized by 

Brouwer’s axiom (B)). Thus, (stably) columnar vagueness may be said to be almost 

ubiquitous in the existing modal accounts of vagueness. 

 
Key words: Columnar Higher-Order Vagueness, Topology, Weakly Scattered 

Spaces, Polar Spaces, McKinsey Axiom S4.1, McKinsey Algebra.  

 

1. Introduction. The aim of this paper is to provide a topological clarification of the 

formal properties of the concept of higher-order vagueness (cf. Bobzien 2015, 
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Bobzien 2013, Keefe 2015). Higher-order vagueness of some kind or other  shows 

up in many contemporary accounts of vagueness. According to Bobzien (2015, 

p.63) one may distinguish between two kinds of higher-order vagueness, 

hierarchical higher-order vagueness and columnar higher-order vagueness: 

 
Hierarchical higher-order vagueness is characterized by a hierarchy of 

consecutively higher orders of borderline cases of a vague predicate (that 

include clear (definite, determinate) borderline cases, and (ii) whose 

extensions do not overlap… Columnar higher-order vagueness differs from 

hierarchical higher-order vagueness in that, extensionally, it contains just one 

kind of borderline cases, and each borderline case is radically higher order, or 

radically borderline, i.e. borderline borderline …, ad infinitum (Bobzien 

(2015, 63)). 

 

The general result of this paper is that for most accounts based on a precise modally 

defined concept of “clearness”, “clarity” or something similar, the resulting 

concepts of vagueness turn out to be “almost” columnar (in a sense to be rendered 

precise in the following). In particular, vagueness amounts to columnar vagueness 

for S4 concepts, which, for familiar reasons, may be characterized as topological 

concepts of vagueness (cf. McKinsey and Tarski (1944)). Somewhat surprisingly 

perhaps, also for Williamson’s logic of clarity that is not S4, higher-order 

vagueness turns out to be (stably) columnar. The details are as follows. 

The concept of vagueness may be defined in a framework of a modal logic based 

on an operator C such that CA is interpreted as “It is clear that A”, “It is definitely 

the case that A”, or similarly. Then, with the aid of C an operator U is defined such 

that UA is as unclearness in the sense that UA is to be read as “It is not clear that 
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A, and it is not clear that not A”. More formally, in terms of C, the operator U is 

defined as 

 
(1.1)                                             UA  = NOT CA & NOT (C(NOTA))) 

 
Abbreviating the n-th iteration U •… • U of U by Un (n ≥ 1), the basic claim of a 

columnar account of vagueness is that U satisfies the equation  

 
(1.2)                                               UnA  =  UA    ,      n ≥ 1.  

In the following, C is assumed to be an S4 modal operator, i.e., C • C = C. This 

assumption is far from unanimously accepted. For a recent discussion of this issue, 

see Bobzien (2015) and Keefe (2015). Actually, the discussion whether C has to be 

assumed an S4-operator or not may be less important than it appears at first view 

since also for Williamson’s „logic of clarity“ based on an operator of clarity C – 

which does not satisfy the S4 principle  - the „unclarity operator“ U (corresponding 

to U) can be shown to be stably columnar for „fixed margin models“ (cf. 

Williamson (1994)) in the sense that   

(1.2)*                                                UnA  =  U2A    ,      n ≥ 2.  

 
Actually, this exactly corresponds to the behavior of C: If the logic of C is S4, only 

stable columnarity in the sense of (1.2)* is true for U and not the slightly stronger 

columnarity (1.2). Rather, as Bobzien rightly emphasizes, in order to ensure the 

validity of (1.2), S4 has to be strengthened to S4.1. As is well known S4.1 is 

characterized as an extension of S4 that satisfies the McKinsey axiom: 
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(1.3)                            C NOT C NOT  ⇒ NOT C NOT C  

 
McKinsey and Tarski (1944) proved that the modal system S4 is the logic of all 

topological spaces in the sense that a proposition is valid in S4 if and only if its 

topological interpretation is valid in all topological spaces. McKinsey and Tarski 

thus laid the foundation for the new discipline of “spatial logic”, which would 

become an extremely fruitful symbiosis of modal logic and set-theoretical topology. 

For a contemporary survey, see van Benthem and Bezhenishvili (2007). McKinsey 

and Tarski’s result has been generalized in many ways, establishing a 

correspondence between certain classes of topological spaces on the one hand and 

certain extensions S4.X of standard S4 logic on the other. For the purposes of this 

paper, the following special case is relevant: Let WSC denote the class of weakly 

scattered topological spaces (to be defined precisely in the next section). Then, the 

extension of S4 corresponding to this class of spaces is S4.1 (cf. van Benthem, 

Bezhanishvili (2007), Bezhenashvili, Mines, Morandi (2003), Bezhenashvili, 

Esakia, Gabelaia (2004), Gabelaia (2001)).  

In the following, we will exploit the correspondence between S4.1 and WSC to 

elucidate the formal properties of columnar vagueness. From a topological 

perspective, the clearness operator C corresponds to the topological operator int of 

the interior, and its operator U of unclearness corresponds to the topological 

boundary operator bd defined by 

 
(1.4)   bd(A) := Cint(A) & Cint(CA) = cl(A) ∩ cl(CA)   (C set-theoretical 

complement) 
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In terms of the topological concept of boundary, the basic claim (1.2) of the 

columnar account of vagueness reads 

(1.5)                                                 bd(bd(A)) = bd(A) 

From now on, we will use topological terminology throughout; i.e., instead of using 

the modal operators C and U, we will use the corresponding topological operators 

int and bd. The only reference to a logically inspired language will be that the 

expression “columnar boundary” is used to refer to a topological boundary operator 

bd that satisfies bd2 = bd. 

The class of topological spaces for which the boundary bd(a) of a is columnar for 

all a is the class of weakly scattered spaces (cf. Gabelaia (2001), Bezhenashvili, 

Mines, Morandi (2003), Bezhenashvili, Esakia, Gabelaia (2003)).  

Weakly scattered topological spaces, however, are a rather elusive species of 

topological spaces. This is evidenced by the fact that familiar topological spaces 

such as Euclidean spaces and their derivatives are anything but weakly scattered. 

Thus, if one intends to use topological means for the explication of concepts such 

as vagueness, and borderlineness, it would be highly desirable to have a reservoir of 

“concrete” weakly scattered spaces that are “naturally related” to matters of 

vagueness. Here, the polar spaces of Rumfitt come to the rescue. It will be shown 

that polar spaces, recently introduced by Rumfitt in his book The Boundary Stones 

of Thought. An Essay in the Philosophy of Logic (Rumfitt (2015))  to cope with the 

Sorites paradox, provide a class of intuitively appealing weakly scattered spaces 

with especially nice properties.  

However, the concept of columnar boundaries makes sense not only for weakly 

scattered spaces but also for topological spaces in general. It will be shown that for 
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all topological spaces, “many” subsets have columnar boundaries. 1  Issues 

concerning the columnarity of boundaries appear in general topological spaces and 

are to be considered general features of topological models of vagueness.  

  
 
2. Weakly Scattered Spaces as Models of Columnar Vagueness. Let us begin by 

recalling the basic topological concepts that will be used throughout this paper. A 

topological space is a pair (X, OX), where X is a non-empty set and OX is a family 

of subsets of X containing X and Ø that is closed under finite intersections and 

arbitrary unions of its elements. The space (X, OX) is an Alexandroff space if the 

arbitrary intersection of elements of OX belongs to OX (cf. Alexandroff (1937)). 

The subsets of X belonging to OX are called open sets of the space X; the family 

OX of open subsets of X is also called a topology on X. Set-theoretical 

complements of opens are called closed sets. The interior int(A) of a set A ⊆ X is 

the largest open set contained in A, whereas the closure cl(A) of A is the least 

closed set containing A. Clearly, int and cl are interdefinable, i.e., int = C cl C, and, 

correspondingly, cl = C int C, with C denoting the set-theoretical complement in X. 

For a topological space, the interior int and the closure cl can be conceived as 

operators on the set of subsets of X. They satisfy the so-called Kuratowski axioms: 

  
(2.1) (Kuratowski Axioms). Let (X, OX) be a topological space. Then, the 

operators cl and int satisfy the following axioms (A, B ⊆ X): 

      (1)      cl(A ∪ B)  =  cl(A) ∪ cl(B)          (1)*    int(A ∩ B)  = int(A) ∩ int(B). 
                
      (2)       cl(cl(A)) =  cl(A).                         (2)*     int(int(A))  =  int(A). 
  
      (3)      A   ⊆   int(A).                                (3)*     int(A)  ⊆  A. 
                 
      (4)      cl(Ø)  =  Ø.                                    (4)*     int(X)  =  X.  
																																																								
1 What this means exactly will be explained in detail later.   
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Clearly, (1)-(4) is equivalent to (1)*-(4)*. In the following, we will use these 

axioms without explicitly mentioning them. ♦  

 
(2.2) Definition. Let (X, OX) be a topological space.  

(i)  A subset A ⊆ X is dense iff cl(A) = X. A subset B ⊆ X is nowhere dense iff   

int(cl(B)) = Ø. 

(ii) A point x ∈ X is isolated iff the singleton {x} ∈ OX. The set of isolated 

points of X is denoted by ISO(X). 

(iii)  (X, OX) is weakly scattered iff cl(ISO(X)) is dense in X, i.e., cl(ISO(X)) = 

X.♦ 

 
For a class K of topological spaces (X, OX), let L(K) denote the set of formulas of 

the modal propositional calculus that are valid for all members of K interpreting the 

modal operators ! and ! as interior operator int and closure operator cl, 

respectively. Due to the fundamental result of McKinsey and Tarski, L(K) is a 

normal extension of S4. The set L(K) of formulas is called the modal logic of the 

class K of topological spaces.  

For instance, if T denotes the class of all topological spaces and ALEX the class of 

Alexandroff spaces, then L(T) = L(ALEX) = S4. Many results of this type have 

been obtained for special classes of topological spaces (cf., for instance, van 

Benthem, Bezhanishvili (2007), Bezhenashvili, Mines, Morandi (2003), 

Bezhenashvili, Esakia, Gabelaia (2003), or Gabelaia (2001)). For this paper, the 

following theorem is fundamental:   

 
(2.3) Theorem. Let WSC be the class of weakly scattered topological spaces. Then, 

the modal logic L(WSC) corresponding to WSC is S4.1, defined as the extension of 
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S4 by the McKinsey axiom  

 
(MK)                                                "!A ⇒ !"A.♦ 

 
(2.4) Examples and Counter-examples.  

(i) Denote the power set of X by PX. Then (X, PX) is a topological space called the 

discrete topological space on X. Clearly, (X, PX) is weakly scattered and 

Alexandroff.  

 
(ii) For any set X, the structure (X, {Ø, X}) is a topological space called the 

indiscrete topology on X. If X has more than one element, (X, {Ø, X}) is not 

weakly scattered, since no point is isolated. Every non-empty set A ⊆ X is dense 

with respect to the indiscrete topology. 

 
(iii) Let X be the set {0, 1} of two elements and OX = {Ø, {1}, X}. The topological 

space (X, OX) is called the Sierpinski space. The only isolated point is the point 

{1} and clearly cl({1}) = X. Thus, the Sierpinski space is weakly scattered. For it, 

the set {1} is dense, and the set {o} is closed and nowhere dense. As a finite 

topological space, the Sierpinski space is Alexandroff. 

 
 (iv) The real line (R, OR) endowed with the standard Euclidean topology is not 

weakly scattered. (R, OR) has no isolated point at all. The set Q of rational 

numbers is dense. The set Z of integers is nowhere dense. The space (R, OR) is not 

Alexandroff, since the arbitrary intersection of open intervals may not be open.♦ 

 
These examples show that the concepts of weakly scattered spaces and Alexandroff 

spaces are consistent and non-trivial: weakly scattered spaces exist, but not all 

topological spaces are weakly scattered. In the next section, we will introduce 
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several “realistic” examples of weakly scattered spaces that are “naturally related” 

to issues of vagueness. 

  

3. Polar Spaces are Weakly Scattered. The aim of this section is to show that there 

are plenty of spaces relevant for issues of vagueness that are weakly scattered. For 

these spaces, the concept of boundary turns out to be columnar in the sense that 

bd(A) = bd(bd(A). This may be taken as an argument that columnar vagueness is 

indeed a “natural” phenomenon.  

As mentioned, polar spaces were recently introduced by Rumfitt (Rumfitt (2015)). 

In topology, polar spaces and related classes of spaces have been discussed for 

some time (although not under this name, of course) (cf. van Benthem, 

Bezhanishvili (2007), Bezhenashvili, Mines, Morandi (2003), Bezhenashvili, 

Esakia, Gabelaia (2003), Gabelaia (2001)). 

Although Rumfitt explicitly defines the topology of polar spaces, he does not 

address the specifics of this topology. This also holds for the numerous reviews of 

Rumfitt’s book, which all take note of its topological argumentation only in 

passing. The topological structure of polar spaces is rather specific and deserves to 

be made explicit.   

Rumfitt’s approach may be succinctly described as follows: Given a set X, a subset 

P of X is selected. The elements of P are to be interpreted as prototypical or 

paradigmatic elements of X. For instance, if X is a set of colored objects, the 

elements of the subset P ⊆ X are to be considered “prototypically” or 

“paradigmatically” colored in some sense. For instance, an element of P is a 

“typically” blue object or a “typically” red object. In the following, the elements of 
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P are called poles of the space X. The selection of poles is assumed to satisfy the 

following requirements:  

 
(3.1) Definition (Pole Distribution for X). Let X be a non-empty set, P ⊆ X. A 

function X⎯⎯m⎯⎯>2P is a pole distribution iff it satisfies the following 

requirements: 

(1)          For all x ∈ X, the sets m(x) ⊆ P are not empty.                  

(2)          For p ∈ P, one has m(p) = {p}. 

 
A pole distribution is denoted by (X, m, P).♦  

  
Rumfitt proved the following (cf. Rumfitt (2015, 243, Fn. 15):   

 
(3.2) Proposition. A pole distribution (X, m, P) defines a topology (X, OX) by an 

interior kernel operator PX⎯⎯int⎯⎯>PX  defined by 

 
       y ∈ int(A) := y ∈ A and ∀p ∈ P (p ∈ m(y) ⇒ p ∈ A)               (A ⊆ X) 

 
The topological space (X, OX) is called a polar topological space. The subset P ⊆ 

X is called the set of poles. 

 
Proof: To check that int satisfies Kuratowski axioms (1)*-(4)* of (2.1), see Rumfitt 

(2015, 243-244). ♦ 

 
Rumfitt does not investigate polar topologies in any detail. However, the details of 

the polar topology are important to show that polar spaces are (weakly) scattered 

spaces. Let us start with the following basic result: 

 
(3.3) Proposition. The topology (X, OX) defined by the polar distribution (X, m, P) 

is an Alexandroff topology; i.e., arbitrary intersections of open sets are open. 
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Proof. Let Ai be an arbitrary family of open sets of X. To show that (X, OX) is 

Alexandroff, one must show that ∩Ai = int(∩Ai). For trivial reasons one has int 

∩Ai ⊆ (∩Ai). In order to show ∩Ai ⊆ int (∩Ai) one argues as follows: By 

definition of the operator int, we obtain  

                 y ∈ ∩Ai iff for all i(y ∈ Ai)  

                 iff ∀i (y ∈ Ai and ∀p(p ∈ P and p ∈ m(x) ⇒ p ∈ Ai )          (since Ai  is 

open) 

                 iff (y ∈ ∩Ai and ∀p(p ∈ P and p ∈ m(x) ⇒ p ∈ ∩Ai) 

                 iff y ∈ int(∩Ai).♦  

 
Proposition (3.4). A polar topology (X, OX) is weakly scattered. More precisely, 

the set of isolated points ISO(X) of X is just the set P of poles. This set is dense in 

X, i.e., cl(P) = cl(ISO(X) = X. 

Proof. First, we show that the singletons of poles are open in the polar topology, 

i.e., {p} ∈ OX. Then, it is proved that cl(P) = X. Let q ∈ P. By definition of int for 

{q}, one has 

                     y ∈ int(q) iff y ∈ {q} and  ∀p(p ∈ P and p ∈ m(y) ⇒ p ∈ A).  

By definition of a pole distribution m for a pole q, there is only one pole in m(q), 

namely, q itself. Hence, {q} is open for q ∈ P. Slightly more difficult is the 

calculation of cl(q): By definition, the closure operator cl of (X, OX) is given by 

(cf. Rumfitt (2015, p. 244) 

 
                     x ∈ cl(A) := x ∈ A or ∃p ∈ P(p ∈ m(x) and p ∈ A) 

 
For A = {q}, q ∈ P, this yields cl(q) := {x; q ∈ m(x)}. To show that the set P of 

poles is just the set ISO(X) of the isolated elements of X and is dense in X, one first 
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observes that X is Alexandroff; therefore, one has cl(P) = ∪p∈P cl(p). Now, by 

definition of m for all x, the set m(x) is not empty. Hence, every x is an element of 

at least one set cl(p). Therefore, cl(P) is dense in X; i.e., X is weakly scattered.2 ♦ 

 
The main example of a polar space discussed by Rumfitt is the well-known color 

circle X. In it, prototypical shades of colors such as red, orange, and yellow serve as 

poles P (cf. Rumfitt (2015, 235ff). This space plays a central role in philosophical 

discussions of vagueness. Thus, the fact that vagueness emerges as columnar 

vagueness for this space may be taken as an argument for the adequacy and 

naturalness of the concept of columnar vagueness. Moreover, the polar topology is 

a non-trivial topology, as the following proposition shows: 

 
(3.5.) Proposition. Let (X, OX) be the color circle endowed with the polar topology 

generated by familiar poles such as red, orange, and yellow. For the color circle 

endowed with the polar topology, neither Brouwer’s axiom (B) nor the converse 

MK* of McKinsey’s axiom is valid3:  

 
 (MK)*      CA ⊆ int(C(int(CA)) (B)           cl(int(A)) ⊆ int(cl(A))              

 
Proof. Let (X, OX) be a polar topology on X defined by a polar distribution (X, m, 

P), p ∈ P such that intcl(p)) ≠ {p}. That is to say, {x; m(x) = {p}} ≠ {p}. Take A = 

X - {p}. Then, Brouwer’s axiom requires that {p} ⊆ int(C(int(C A)) = int(X – {p}). 

Clearly, however, {p} ⊄ int(X – {p}). Hence, the polar space (X, OX) does not 

																																																								
2 Polar spaces can easily be shown to be scattered, not just weakly scattered; however, we 
do not need this result. 
3  Axioms (MK)* and (B) have a certain relevance for epistemological matters: (MK)* is 
characteristic for the system S4.2, which corresponds to the class of extremally dis-
connected spaces that have proven useful for modeling the concept of belief. Brouwer’s 
axiom (B) is a characteristic axiom of Williamson’s logic of clarity (cf. Williamson 1994), 
see section 5.   
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satisfy (B).  

The converse (MK)* of the McKinsey axiom is disproved by considering A = {p}, 

p ∈ P. Then, one obtains cl(int(p)) ={x; p ∈ m(x)} and intcl(p)) = {x; {p} = m(x)}. 

Clearly, = {x; p ∈ m(x)} ⊄ intcl(p)) = {x; {p} = m(x)}. Thus, (MK)* does not 

hold.♦ 

 
Obviously, the polar topology of the color circle does not coincide with the usual 

Euclidean topology of this space: in the Euclidean topology the color circle clearly 

lacks isolated points and is not weakly scattered, while in the polar topology it has 

plenty of isolated points (= poles) such that the set of isolated points is dense 

rendering thereby the color circle a (weakly) scattered. This difference between the 

two topologizations should be considered an advantage. The standard Euclidean 

circle is an overly strong structure that produces many artifacts that do not 

correspond to any empirical experience. For instance, what does it mean that certain 

color experiences x, y, z, and w are such that x and y have the same distance from 

each other as have z and w? In contrast, the polar topology is a much more modest 

structure that generates fewer structural artifacts.  

Polar spaces are not, however, the only area where columnar boundaries show up. 

In the next section, we show that columnar boundaries are virtually ubiquitous in 

topological models. 

 

 

4. The Boolean Algebra of McKinsey Sets of a Topological Space. In this section, 

we show that every topological space (X, OX) comes along with a large class of 

subsets A ⊆ X, the boundaries bd(A) of which are columnar, i.e., satisfy bd(bd(A)) 
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= bd(A). Moreover, the class of these subsets has the structure of a Boolean algebra 

(with respect to the set-theoretical operations inherited from the set X). 

 
(4.1) Definition. Let (X, OX) be a topological space. A set A ⊆ X is called a 

McKinsey set of (X, OX) if and only if bd(bd(A)) = bd(A). The set of McKinsey 

sets of (X, OX) is denoted by MKX. 

 
If (X, OX) is weakly scattered, all subsets of X are McKinsey sets. In general, 

however, this is not the case, as is shown by the following elementary example: 

 
(4.2) Example. Let (R, OR) be the real line with the standard Euclidean topology. 

The boundary bd(Q) of the set Q of rational numbers is not columnar, i.e., bd(Q) ≠ 

bd(bd(Q)).  

Proof. As is easily calculated, bd(Q) = R and bd(bd(Q)) = bd(R) = Ø.♦ 

 
In the rest of this section, we show that this example should be considered 

exceptional in the sense that there are many topologically better behaved sets that 

show a less complicated behavior with respect to boundaries. 

 
(4.3) Lemma. Let (X, OX) be a topological space. Then, OX ∪ CX ⊆ MKX, i.e., if 

A is an open set or a closed set bd(A) = bd(bd(A)).   

 
Proof. Assume A to be open. By definition, bd(A) = cl(A) ∩ cl(CA) = cl(A) ∩ CA, 

since A is open. For bd(bd(A)), one obtains bd(bd(A)) = bd((cl(A) ∩ CA)) = (cl(A) 

∩ CA) ∩ cl(C(cl(A) ∩ CA)). Obviously, cl(C(cl(A) ∩ CA) = cl(C(cl(A) ∪ CA)) = 

cl(C(cl(A))  ∪ clA)) = cl(X) = X. Hence, bd(bd(A)) = bd(A).  
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The boundary of a closed set B equals the boundary of its open complement CB. 

Thus, the boundaries of open sets as well as the boundareis of closed sets are 

columnar.♦ 

 
(4.4) Corollary. Let (X, OX) be a topological space. All A ⊆ X are stably columnar 

in the sense that bd(bd(bd(A)) = bd(bd(A)).   

 
Proof. By definition, bd(A) is closed. Applying (4.3) to bd(A), one immediately 

obtains bd(bd(bd(A))) = bd(bd(A)). ♦ 

 
(4.4) may be informally stated as follows: For all topological spaces (X, OX) and 

all A ⊆ X, the boundary bd(A) is stably columnar in the sense that bd(bd(A)) = 

bdn(A), n ≥ 2; i.e., after the second iteration of the boundary operator, it becomes 

stable. Thus, instead of being a column consisting of equal layers bd(a), bd(bd(a)), 

bd(bd(bd(a))), … in the general case, the column of higher-order boundaries of a 

set A starts with a “pedestal” bd(A) on which equal layers bd(bd(A)), bd(bd(bd(A)) 

are put ad infinitum. The expression “pedestal” is adequate insofar as in general the 

“pedestal” bd(A) is “broader” than the layers bdbd(A), …, i.e., bd(A) ⊇ bd(bd(A)).   

 
(4.5) Lemma. For all (X, OX), one has bd(A) = bd(bd(A)) iff int(bd(A)) = Ø.  

 
Proof. Assume bdbd(A) = bd(A). Then one calculates 

bd(A)  =    bd(bd(A))   

          ⇔   bd(A)  =  bd(A)) ∩ cl(Cbd(A))   

          ⇔   bd(A)  =   bd(A) ∩ cl(Cbd(A))  ⇔  bd(A)  ⊆  cl(Cbd(A))    

          ⇔   bd(A) ⊆ Cint(bd(A)) ⇔ int(bd(A)) ∩ bd(A) = Ø   

          ⇔  int(bd(A)) = Ø.♦   
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The class of sets with columnar boundaries comprises many more than just the 

open sets and the closed sets of a topological space. Rather, the sets with columnar 

boundaries have the structure of a Boolean algebra. The proof of this assertion 

requires the following technical lemma: 

 
(4.6) Lemma. For every topological space (X, OX) and A ⊆ X, one has int(bd(A)) 

= Ø iff A satisfies the topological McKinsey axiom: 

 
                                  int(cl(A)) ⊆ cl(int(A)) ⇔ int(bd(A)) = Ø. 
 
 
Proof. int(cl(A)) ⊆ cl(int(A)) ⇔  int(cl(A)) ∩ Ccl(int(A)) = Ø 

                                              ⇔   int(cl(A)) ∩ CCintC(int(A)) = Ø 

                                              ⇔   int(cl(A)) ∩ C(int(A)) = Ø 

                                              ⇔   int(cl(A)) ∩ C(int(A)) = Ø  ⇔  int(bd(A)) = Ø.♦ 

 
Recall that a set A ⊆ X is nowhere dense in X iff intcl(A) = Ø. A closed set A is 

nowhere dense iff the complement CA is dense in X. As is well known, the finite 

intersections of dense open sets are again dense. Equivalently, the finite unions of 

closed nowhere dense sets are still nowhere dense. The following equivalent 

formulation using these concepts of (4.6) will be useful: 

 
(4.7) Proposition. For every topological space (X, OX), one has 

 
                             bd(bd(A)) = bd(A) iff bd(A) is nowhere dense.♦ 

 
(4.7) can be used to prove that the set of McKinsey sets has a very satisfying 

“logical” structure: 
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(4.8) Theorem. For every topological space (X, OX), the set MKX of McKinsey 

subsets of X is a Boolean algebra. 

Proof. We already know that A ∈ MKX iff CA ∈ MKX. Assume A and B to be 

columnar. Then, A ∪ B is also shown to be columnar by the following calculation:   

 
    bd(A ∪ B)     =       cl(A ∪ B) ∩ cl(C(A∪B)) = (cl(A) ∪ cl(B)) ∩ (cl(CA) ∩ 

cl(CB)) 

                          ⊆       (cl(A) ∪ cl(B)) ∩ (cl(CA) ∩ cl(CB))  

                          ⊆       (cl(A) ∩ cl(CA)) ∪ (cl(B) ∩ cl(CB))    =    bd(A) ∪ bd(B). 

Since bd(A) and bd(B) are closed and nowhere dense sets, their union bd(A) ∪ 

bd(B) is closed and nowhere dense as well, i.e., int(bd(A) ∪ bd(B)) = Ø. Thus, 

intbd(A ∪ B) = Ø. Similarly, bd(A ∩ B) is shown to be nowhere dense by the 

following calculation using de Morgan’s laws for the set-theoretical operations ∩ 

and ∪: 

 
   bd(A ∩ B) = bd(C(A ∩ B)) = bd(CA ∪ CB)) ⊆ bd(CA) ∪ bd(CB) = bd(A) ∪ 

bd(B) 

Hence, if bd(A) and bd(B) are nowhere dense, then bd(A ∩ B) is also nowhere 

dense. In sum, the set MKX of McKinsey sets is a Boolean algebra.♦ 

 
(4.9) Corollary: Let MKX be the McKinsey algebra of (X, OX). For A ∈ MKX, the 

boundary bd(A) is columnar: bdn(A) = bd(A), n ≥ 1.♦ 

 
In sum, if one casts the concept of vagueness in a framework of an S4 operator C 

the corresponding boundary operator is always stably columnar (bd3 = bd2) and 

quite often even columnar (bd2 = bd).  One may conjecture that this is due to the 
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fact that C satisfies C • C = C, i.e., a principle analogous to the famous “KK-

principle” to the knowledge operator K. This is, however, not the case. As will be 

shown in the next section, also for Williamson’s logic of clarity based on an 

operator C that does not satisfy the KK-principle, the corresponding boundary 

operator is stably columnar. 

 

5. Columnar Vagueness in the Williamson’s Logic of clarity. In the appendix of his 

well-known treatise Vagueness  (Williamson 1994) the author gives a succinct 

sketch of a modal “logic of clarity” based on an sentential operator C such	that	C	A	

is	to	be	read	as	“It	is	clearly	the	case	that	A”.	For	fixed	margin	models	(the	only	

type	 of	 models	 of	 the	 logic	 of	 clarity	 we	 will	 consider	 in	 the	 following)	 C 

defines	a	modal	logic	KTB.		

The	details	are	as	follows:	We	start	with	a	similarity	(W,	~),	where	W	is	a	set	

(of	 possible	 worlds)	 and	 ~	 a	 binary	 similarity	 relation	 that	 is	 reflexive	 and	

symmetric	but	not	necessarily	transitive.	For	x	∈	W	define	co(x)	:=	{y;	x	~	y}	as	

the	 similarity	 neighborhood	 of	 x.	 Then	 it	 is	 easily	 checked	 that	 for	 A	⊆	 W	

Williamson’s	clarity	operator	C	can	be	defined	as	 

                                                          C A := {x; co(x) ⊆ A}  	
                                                      
Since the relation ~ is assumed to be reflexive, clearly C A ⊆ A. More precisely, 

one can show that the modal logic based on C is just KTB (cf. Williamson (1994, 

271)).4 Moreover, one observes that in general C does	 not	 satisfy	 the	 “KK-

																																																								
4	In	detail	 (W,	~)	 is	 equivalent	 to	Williamson’s	 fixed	margin	model	<W,	d,	 1,	
[]>.	
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principle”	C • C = C.5 Thus,	one	may	conjecture	that	the	concept	of		vagueness	

associated	with	the	boundary	operator	bd	correlated	to	C	does	not	satisfy	the	

axiom	 of	 (stable)	 columnarity.	 As	 will	 be	 shown	 in	 the	 following,	 this	

conjecture	turns	out	to	be	wrong:	also	the	boundary	defined	by	Williamson’s	

“clarity”	 operator	 C	 is	 stably	 columnar.	 In	 the	 appendix	 of	 Vagueness	

(Williamson	 1994)	 does	 not	 deal	 with	 issues	 concerning	 the	 boundary	

operator	 defined	 by	 C. Fortunately,	 Breysse	 and	 De	 Glas	 have	 elaborated	

(without	 being	 aware	 of	 it)	 Williamson’s	 “logic	 of	 clarity”	 based	 on	C – in	

particular	 they	 dealt	 with	 the	 problem	 of	 the	 boundary	 operator	

corresponding	to	C, see	their	“A	New	Approach	to	the	Concepts	of	Boundary	

and	Contact:	Toward	an	Alternative	 to	Mereotopology”	 (Breysse	and	De	Glas	

2007).		

Their approach is essentially equivalent to Williamson’s approach of  “fixed margin 

models being based on a similarity structure (W, ~) as defined above: Given (W, ~) 

Breysse and De Glas define operators PW⎯⎯h⎯⎯>PW and PW⎯⎯s⎯⎯>PW 

such that h is a (non-topological) interior kernel operator and s = C•h•C a	(non-

topological)	 closure	 operator.	 More	 precisely,	 h is just Williamson’s C and	 s	

satisfies		

(5.1)																												s(A)				=			{x;	co(x)	∩	A	≠	Ø}	

Then	the	operators	h	and	s	are	used	to	define	various	concepts	of	boundary	to	

be	discussed	in	more	detail	in	the	following.	In	order	not	to	confuse	the	reader	

with	 a	mixture	of	different	 terminologies	 and	denotations,	 in	 the	 rest	 of	 this	

section	we	will	use	that	of	Breysse	and	De	Glas,	 i.e.,	 in	the	rest	of	this	section	
																																																								
5	If	the	clarity	operator	C is to	satisfy	also	S4 this	amounts	to	the	requirement	
that	it	is	even	S5.	
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Williamson’s	operator	C is	denoted	by	h. 	

	

(5.2)	Proposition.	Let	(W,		~)	be	a	similarity	structure.	Then	operators	h	and	s	

defined	above	for	all	A	⊆	W	have	the	following	properties:	

(i)	 h(A)	⊆	A,		A	⊆	s(A).	

	(ii)	 h(A	∩	 B)	=	h(A)	∩	h(B).	

(iii)	 sh(A)	⊆	A.	

(iv)	 hs	 is	 a	 closure	 operator,	 i.e.,	 hs	 satisfies	 the	 first	 three	 Kuratowski		

axioms.♦			

	

As	 is	 shown	 by	 Breysse	 and	 De	 Glas,	 the	 operators	 h	 and	 s	 can	 be	 used	 to	

defined	define	a	very	useful	concept	of	boundary	as	follows:	

	

(5.3)	 Definition.	 Let	 (W,	 ~)	 be	 a	 similarity	 relation	 with	 operators	 h	 and	 s	

defined	as	above.	Then	(in	strict	analogy	to	topology)	a	boundary	operator	bd	

can	be	defined	for	A	⊆	W	by	

																																																										bd(A)	:=	hs(A)		∩	hs(CA).♦ 

 

(5.4) Theorem. The boundary operator bd defined by (5.2) is stably columnar, i.e.: 

  
                                                   bd(bd(bd(A))) = bd(bd(A)). 

 
Proof: The proof is carried out by using (5.1)(i) – (iv) and some other familiar 

properties of closure operators. By definition 

 
            bd(bd(bd(A)))       =      hs(bd(bd(A)) ∩ hs(Cbd(bd(A)) 

                    =     bd(bd(A)) ∩ Csh(bd(bd(A)) 

 
We prove that Csh(bd(bd(A)) = W and are done. 

 

Csh(bd(bd(A)) = W  ⇔  sh(bd(bd(A)) = Ø ⇔  h(bd(bd(A)) = Ø 

                                  ⇔  h(hs(bd(A) ∩ hs(Cbd(A)) = Ø 

                                  ⇔  h(bd(A) ∩ hCh(bd(A)) = Ø 

                                  ⇔  hbd(A)) ∩ h2 Ch(bd(A)) = Ø 
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Clearly hbd(A)) ∩ h2 Ch(bd(A)) ⊆ hbd(A)) ∩ Ch(bd(A)) = Ø.♦ 

 

In sum, both the S4 “logic of clearness” as well as the non-S4 “logic of clarity” 

give rise to stably columnar boundary operators (in the latter case if one restricts 

one’s attention to fixed margin models. As is pointed by Williamson, the logic of 

variable margin models is KT, i.e., the Brouwer axiom (B) (equivalent to the fact 

that hs is a closure operator) is no longer valid (cf. Williamson (1994, 272)).  

 

 

6. Concluding remarks. If one relies on topological, i.e., S4 models of the modal 

operators C and U, columnar vagueness crops up almost everywhere, be it in its 

strict version (for all subsets of weakly scattered spaces, or for McKinsey sets of 

arbitrary spaces) or in a weaker form (as stably columnar vagueness for all subsets 

of all topological spaces). An analogous result holds for fixed margin models (W, 

~) that lead to a KTB logic of the modal operator C. Thus, if one rejects columnar 

vagueness for one philosophical reason or other, one must reject S4 or KTB models 

of vagueness altogether. On the other hand, if one accepts an S4 approach for the 

clearness operator C or a KTB approach for the clarity operator C one has to buy 

into columnar vagueness for the resulting concept of boundary. If one wants to 

avoid columnar vagueness one has to be content with a concept of vagueness that 

only satisfies KT.    
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