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ABSTRACT. In this paper it is argued that classical Boolean mereology cannot
deal with problems concerning structured wholes and structured parts. Elementary
examples of structured mereological systems are provided by Boolean algebras, groups,
similarity structures and topological structures. In general mereological systems turn
to be non-Boolean. Classical Boolean mereology is to be considered only as a very
special case. A truly general mereology as a general theory of parthood has to take
into account the various kinds of structures present in the mereclogical wholes under
consideration.

"This idea can be rendered precise in the framework of category theory. More pre-
cisely, it can be shown that every category comes along with its own specific mereology.
Depending on the category’s structure the category-relative mereology more or less de-
viates from classical Boolean mereology.

1 Classical Mereology

Classical mereclogy is the theory of classical mereological systems. I take a
classical mereological system to be a complete Boolean algebra. In this way,
formally, classical mereology may be considered as an elementary part of the
theory of Boolean algebras, since philosophers usually ignore the more advanced
parts of the theory of Boolean algebras, and leave it to the mathematicians.?

Standard examples of classical ‘mereological systems in this sense are the
power sets of sets. Take for instance the set X = {a,b, ¢}. Then the result-
ing mereological system can be depicted by the following familiar lattice diagram
in Fig.1:

In other words, the elements of the Boolean algebra PX are the parts of X.
Not all complete Boolean algebras are power sets PX, however. A more general
class of classical Boolean systems is provided by the class of Boolean algebras

MThe author is with the Department of Logic and Philosophy of Science, University of the
Basque Country UPV/EHU, Donostia-San Sebastian, Spain. Email:ylxmomot@sf.ehu.es

2Many mereclogists prefer to exclude the bottom element 0 of a Boolean algebra. According
to them, there is no “empty part”. Then they conceive a classical mereological system as a
Boolean algebra minus 0. Others have qualms even with the existence of a top element 1,
often called the universe that comprises all parts of mereological system, still others only admit
certain kinds of fusions, in particular they consider fusions of infinitely many mereological
individuals as unpalatable. In this paper I don’t want to discuss problems of this kind, Since
this paper is intended to be a contribution to the area of formal methodology I will stick to
the mathematically more convenient presentation of the theory. Hence from now on I consider
a classical mereological system to be a complete Boolean algebra with bottom 0 and top 1.
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'{0*X of regular open subsets of topological spaces X.® Notwithstanding this
ifact, power sets PX may still be considered as the most important class of clas-
sical (complete) mereological systems, in particular since David Lewis in Parts
of Classes vigorously advocated the thesis that sets and their subsets are to be
conceived as mereological systems. More precisely, Lewis argued that mereology
and set theory are intimately related in that the former is to be conceived as the
clementary “innocent” part of the latter (cf. [7, chap.l]). Conceiving classical
Boolean mereology as the elementary part of set theory he self-confidently as-
serted: “I myself take mereology to be perfectly understood, unproblematic, and
certain.” (ibidem, 75). For philosophers like him, mereology is just a tool that by
itself is philosophically not very interesting. This is a rather bold claim. In the
following I'd like to argue that it is wrong. Mereology is more complex and more
inferesting than partisans of classical mereology might have imagined. Asserting
that mereology is to be understood formally as the theory of Boolean algebras
is to claim that the meéreclogical concepts of part and whole are fully captured
by the conceptual framework of Boolean algebras. In other words, everything
concerning parts and wholes can be expressed in terms of complete Boolean al-
vebras. This is a rather strong claim. In this paper I'll argue that it is not only
strong but untenable.

Instead of casting mereology in the narrow framework of Boolean algebras
I propose to conceive the notions of part, whole, and their relatives as context
dependent. It is not plausible to assume that “part” and “whole” mean always
the same, in particular it is not plausible that the parts of 2 whole always form a
complete Boolean algebra. Take, for instance, the body of a living being. Then
one may consider its heart as a part of the whole body. It seems, however,
strange to say that the “body minus the heart” is just another part of the body
that serves as the “complement” of the “heart-part”. But this is required from.
the perspective of Boolean mereology. Thus, classical mereology is not very good
in dealing with structured wholes and structured parts. But most wholes to be
met in the world are structured wholes in some way or other.

Traditional mereology bluntly assumes that “structured wholes” are of no
concern for mereology in its genuine sense. Mereology is assumed thus abstract

3Actually, due to Stone’s representation theorem, all complete Boolean algebras can be
represented in this way.
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that it can safely ignore any non-mereological aspects of the systems it is dealing
with. Thereby the ken of mereology is severely restricted, and not much is left
for it. The problem of the relation between structure and mereology not only
concerns “difficult” entities such as “organic wholes”, it pops up also for artifacts.
If the carburetor of my car is part of the car, is the “car minus the carburetor”
another “complementary” part of the car? From the point of view of a car
mechanic the latter “part” of the car hardly makes sense. Or, take another
more formal example. Take Boolean algebras and consider them as candidates
of mereological investigations asking the question

What are the parts of a Boolean algebra? \

In analogy to Lewis’s claim that the parts of a set are its subsets it does
not seem too far-fetched to contend that the parts of a Boolean algebra are its
Boolean subalgebras. As we shall see in a moment, this opens the gate to a
wealth of non-classical, i.e. non-Boolean mereologies, since, as it is well-known,
the Boolean subalgebras of a Boolean algebra in general do not form a Boolean
mereological system. Thus, the mereology of Boolean algebras does not fit, into
the framework of classical Boolean mereology. This is already shown by the
algebra of Boolean subalgebras of the power set P({a,b,c}) of a set with three
elements a, b, and e. It looks as follows:

T

{0{a}. {b. e}, {a. b, c}} {8{b}. {e, c}s Loy b, 0]} {6{e}, {m, b}, (o b, e})

Pla.b, e}

Figure 2:

This lattice, often called the “diamond” (cf. [3, p.132]), is clearly not a
Boolean lattice, it is not even a distributive lattice. Thus, conceiving 2 Boolean
algebra B as a structured whole whose structured parts are its Boolean subalge-
bras leads us outside the ken of classical Boolean mereology. This phenomenon
is, of course, not restricted to Boolean algebras. Virtually all non-trivially struc-
tured entities lead to a non-Boolean structural mereologies. To put it bluntly,
Boolean mereological systems are not the rule but rather the exception. In gen-
eral, mereological systems are non-Boolean systems. I take the failure of classical
Boolean mereology to cope with problems of structure as a2 good reason to con-
sider the project of revising and updating classical mereology.

The outline of this paper is as follows: In Section 2 we will deal with an
elementary example of a structural mereology, to wit, the structural mereology
of groups. The mereology of groups, it will be argued, may be considered as a
paradigmatic example of a structural mereology that considerably differs from
standard Boolean mereology. In Section 3 we outline the general format of struc-
tural mereologies in the framework of the mathematical theory of categories.
"The upshot will be that every category C comes along with its own mereology.
Depending on the kind of C, this C-mereology turns out to be more or less
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similar to the classical Boolean mereology of sets.* As is to be expected the
classical Boolean mereology of sets can be identified with the mereology of the
category SET of sets. As another example of a structural mereology, which is
rather similar but still different from set-theoretical mereology, in Section 4 we
consider the mereology of similarity structures, i.e., sets endowed with a reflexive
and symmetric similarity relation. A similarity structure may be considered as
a rather simple kind of a spatial structure that allows to introduce the notion
of neighborhood. Anocther example of a structural mereology related to spatial
structures is discussed in Section 5, namely the structural mereology of spaces
dealing with topologically well behaved parts of topological spaces. In Section 6
it is argued that the general category-theoretical perspective on mereology may
also shed new light on a classical mereological problem that has been considered
already by Plato and Aristotle, namely, the problem whether the whole is “more”
than its parts. The paper concludes with some general remarks on the prospects
of a generalized mereology.

2 Structural Mereology I: Groups

The objects of the world are rarely blobs lacking any structure, rather they are
structured in some way or other. One may even doubt that the concept of an
object without any structure makes sense at all. Hence let us take as our starting
point the general assumption that the objects of the world we are dealing with are
structured objects, “structured” to be understood in a broad sense that need not
be specified for the moment. Then, given a structured whole W, it is reasonable
to ask for its structured parts, not just for its parts.

In the first section we already mentioned the case of Boolean algebras and
their parts. If one considers the Boolean subalgebras of a Boolean algebra as its
parts, the resulting mereological system of subalgebras is in general not a Boolean
algebra. For didactical reasons, instead of Boolean algebras, I propose to consider
the even more elementary case of groups and their structural parts. Recall that a

group G is a set endowed with an associative multiplication G x G- 5@ such
that there is a unique neutral element e € G satisfying m{a,e) = m{a,e) = ¢,
and for all ¢ € G there is an a* € G with m(a,a*) = m(a*,a) = e. The element
a* is called the inverse of a, and the neutral element e is often called the unit of
G. For a,b € G the product m(a,b) is often denoted by a - b or simply by ab. A
group is called abelian or commutative if m{a,b) = m(b,a). A subgroup H of G
is a subset of G that is a group under the multiplication of G, 1.e., it contains e,
and with ¢,b € H also a~! and m(a,b) are elements of H.

Groups abound in mathematics, physics, and elsewhere. Let us just mention
the group of integers Z, the groups Zy, of natural numbers modulo n, n € N,
the real numbers R, and symmetry groups such as the Lie groups O(m), SU(m)
endowed with their standard {matrix) multiplications.

There are several candidates for the office of the structural parts of a group
G, but certainly the most straight-forward choice is to take the subgroups of ¢

4 Tor more detailed accounts of this category-relative meveology (although not under this
name) from a mathematical perspective the reader may consult the presentations to be found
in Lawvere and Schanuel’s Conceptual Mathematics [5](elementary), and Lawvere and Rose-
brugh’s Sef Theory for Mathematicians [4] (more advanced).
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as its structural parts.® In line with our experiences with parts of sets one may
naively conjecture that the more elements a group has the more complicated its
subgroup structure tends to be. This is not always true, however. Take the
groups Zp of integers modulo p, p € N and prime. Since there are arbitrarily
large prime numbers p there are groups of arbitrary large order whose only parts
are the trivial group E having only one element and Z,, itself. Mereologically
more interesting is the group Z of integers (with standard addition + as group
operation) that has infinitely many subgroups. They are all of the form nZ :—
{-,-2n,-n,0,n,2n,---} for n € N.

In order to keep matters as simple as possible, in the rest of this paper we
will consider only finite groups having therefore finitely many subgroups. To
deal with these groups it is expedient to characterize them by generators and
relations. More precisely, we will deal with the following groups (2* =z x--. % z
(k times)):

9 w1
Zy, = {e,z,z%,2™

;2" =e,m € N}
K = {e’m,ya my;mz = y2 =eand zy = ygg}
= Zy x Zy (Klein group)

Ss {e,2,1,9°%, 2y, 2y% 22 = 4° = e and 2y = vz}

In analogy to the Boolean lattice Fig.1, which describes the parts of the set
{1,2,3}, the structural parts of these groups may be conspicuously exhibited by
lattices PART(G). Yor G = Z3, Zy, Z5, K, and Ss the lattices PART{G) can be
depicted diagrammatically as follows:

[ ] /N 7N

K

NNy

7
Figure 3:

More expliditly, these lattices are to be read as follows: If, according to the
recipe given above, the group Zy can be considered as the set {e, z, %, 2°} its sub-
group Z; is to be conceived of as the set {e, 2%} endowed with the canonical mul-
tiplication inherited from Z,. Similarly, if Zg is given by set {e, z,2?, 2%, 2%, 2°
the subgroup Z is given by {e, 2%} and the subgroup Z; is given by {e, 2%, 2%}
endowed with the multiplication inherited from Zg. A bit more interesting is the
case of the Klein group K. Its three subgroups are given by {e,z}, {e,y}, and
{e, zy}, respectively. Following these lines the reader may calculate PART(S3)
for himself.

As is directly observed only PART(Z3) and PART(Zg) are Boolean.® Thus
the structural mereology of groups in general is not Boolean. Already these

=2

5 Another plausible choice would be to consider only normal subgroups of G as parts of G.
From this mereological perspective simple groups (= groups having no normal subgroups) have
a trivial mereological structure.

SAs is easily shown that lattice PART(Zy,) of structural parts of Zum, is Boolean iff the
natural number m is square-free.
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elementary examples show that in general the structural mereology of groups is
not Boolean. Different types of subgroup lattices PART (G} may be distinguished
and related to the types of the groups G. For a comprehensive account of this
perspective on group theory see [10]. For instance, groups of prime order such as
73 have a trivial subgroup lattice, since there only part is the trivial group E.
The group Z4 is a bit more complex having a single proper part Z;. Evidently
the parthood structure of Z4 is non-Boolean since its only non-trivial proper part
Z» has no complementary counter-part such that the fusion of it and Ze would
yield the whole Z;.

More interesting are the cases of the Klein group K that may be described as

the Cartesian product Zz x Zg of two copies of the group Z; and the symmetric
group Sz that can be characterized as the group of permutations of three elements
1, 2, and 3. Naively one might have guessed that the subgroup Z; appears exactly
twice in K and once in Sz due to the fact that K has four elements and S3 has six
elements. The lattices PART(K) and PART(S;) refute this guess. The lattice
PART(K) is the “diamond” Mg in which the structural part Zg of K appears
three times, and PART(S3) is even more complicated, exhibiting three copies
~ of Z and one of Z3. Nevertheless, this lattice structure is not to be interpreted
" extensionally in the sense that this K is construed of three copies of Zo, since
- the group K has only four elements. Rather, one and the same group Z» appears
three times in the part structure of the Klein group K. Still more complicated
is the case of the symmetric group Sz.
" In Against Structural Universals [6) David Lewis pointed out that some in-
. tricate metaphysical problems are lurking here. Does it really make sense to say
. that, say, one and the same part Z; appears three times in one and the same
whole, or that the same parts can form different mereological wholes, depending
on how they are assembled? Lewis flatly denied that this is possible. He con-
tended that a composition of this kind cannot claim to be mereological at all.
According to him the talk that one and the same part appears repeatedly in one
and the same whole is simply unintelligible.” I don’t want to discuss Lewis’s
examples in this paper, rather I am content to show that his objections can be
defused for groups and similar structures.

The appropriate general framework for dealing with this kind of questions
concerning structural mereology has turned out to be the mathematical theory
of categories. A category C may be described as a Jocal mathematical universe of
discourse dealing with a certain kind of objects, called the C-objects, and their
relations called C-morphisms. Thereby one obtains, say, the category TOP of
topological spaces, the category GROUP of groups, and countless categories in
mathematics, physics, computer science, and other areas (cf. [4, 5, 8]).

Before we deal with mereological problems on the general level of categories,
T'd like to deal with the mereology of a concrete and easily accessible specific
category, to wit, the category of groups. Then the general case may be more
easily grasped.

As has become evident in the evolution of modern mathematics, groups and
other structures do not live in isolation. Rather, group theory does not only
study groups in themselves, an essential part of group theory is the study of

Tlewis did not deal with groups but with “structural universals” such as “methane” or
“butane” that allegedly were composed of more primitive universals such as “hydrogene” and
“carbon” as is indicated by their chemical formulas CHy and CyHg, respectively.
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relations between groups. The most important relations are homomorphisms (or

structure-preserving mappings) H —f—-a»G’ defined as follows:

Definition 1 Let H and K be groups. A homomorphism b with domain H and
codomain K is o set-theoretical map H—"sK satisfying the conditions:

flab) = Fla)fd) (1a)
fle) = e (1b)
fla) = fla) (1c)

The set h(H) := {h(z);z € H} is a subset of G and called the image of H
in G. As is easily shown the image h(H) of H is a subgroup of G. Between any

two groups H and K there always exists the trivial homomorphism H K
mapping all elements a of H to t(a) = e. Given two groups H and K it is usually

difficult to find a non-trivial homomorphism H ----f—>K . It may even happen
that none exists. For instance, there is no non-trivial homomorphism between
groups whose order is prime to each other, e.g. Z2 and Z3. For the following we
need to distinguish between different types of hoinomorphisms:

Definition 2 A group homomorphism H oK s a monomorphism if and

only if h(z) = h(y) entails = y. A group homomorphism H —* 5K isan
epimorphism if and only if for every y € K there is at least one x € H such that
h(z) = y. A homomorphism is an isomorphism if and only if it is @ monomor-
phism and an epimorphism.

Definition 3 Let H—">K and H'-%>K be two monomorphisms with the
same target K. The monomorphisms h and b’ are called equivalent if and only if

there is an isomorphism H—=>H' such that h = K - s, i.e., for alla € H one
hos hia) = h'(s(a)).

It is easily proved that Definition 3 defines indeed an equivalence relation

between monomorphisms. The equivalence class of a monomorphism H —t.q
may be denoted by [h]. In order not to overburden notion we will often blur the

distinction between h and [A], i.e., we will talk of a monomorphism H —t .
even if we really mean the equivalence class [k] of h. Now we are ready to
formulate the central notion of this section, to wit, the concept “part of a group”:

Definition 4 Let G be a group. A part of G is an equivalence class of monomor-

phisms H N according to the equivalence relation Definition 8. If H LI,
represents o part of G, then H is called the type of h (or [h]). If it is not necessary
to refer explicitly to h, we may simply call H o part-type of G.
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Assume that H —t .G and H oG are equivalent monomorphisms, i.e.
define the same part of G. Then the images h{H) and h/(H’) coincide. Since
h(H) = K (H') is a subgroup of G one can identify a part of G with a subgroup
of G, to wit the image R{H) or K'(H’). Since we aim at a general clarification
of the concept of part, which is not confined to group theory, it is nevertheless
expedient to stick the clumsier terminology of parts as (equivalence classes of)

. R : . .
monomorphisms H——=G, even if for groups a more elegant terminology is
available.

IfH—">Gisa part of G it is natural to express this by saying that hisa
way how the part-type H is involved in G. Or, still differently, we may say a part
of G is a part-type-in-a-way. Distinguishing between parts and part-types allows
us to speak meaningfully that one part may appear in different ways. This will
be shown by the following elementary examples. More precisely, we will show
that one and the same group H - conceived as a part-type of an other group
G - may give rise to different parts of G, ie., there may exist non-equivalent

monomorphisms H —Po@ and H—2~G. Take, for instance the Klein group
- K, and denote the generator of the group Zs by z. Then three non-equivalent

| monomorphisim ZQLZ*K i =1,2,3, are defined by

h-]_(z) —
ha(z) = ¥y
ha{z) = =zy

 According to Definition 3, these homomorphisms define different parts of K
all of which are of the same type Zg. It goes without saying that this phenomenon
is not restricted to the Klein group but occurs for many groups. The group of
permutations S3 provides a particularly interesting example since it reveals that
in the case of groups a structured whole is not necessarily determined by its part-
types alone. It might happen that two different structured wholes have the same
part types. This is quite in line with our mereological intuitions in that often
the same parts may be assembled in different ways so that they form different
wholes. Take the groups Zg and S3. Although they both have six elements
they are non-isomorphic, since the former is commutative and the latter not. A
classical theorem of group theory tells us that they can only have parts of type Za

or Zs. Indeed, the only parts of Zg are given by the monomorphisms Zo —La»Z(,

and Za—"->Zg defined by h(z) = z° and k(z) = =% On the other hand, 53
has a more complicated parthood structure since there are three non-equivalent

ways Zgi—a-Sg ,i=1,2,3 for Z3 to become a subgroup of Ss:

qiw) = =z
g2(w) = =y
galw) = ay’

On the other hand there is only one way Zs — S3 of how Z3 be a part of
S;, namely by mapping its generator z onto y. In sum, it is possible that the
very same components Z2 and Z3 can be assembled in two different ways. This
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is In no way paradoxical if one bases one’s considerations on the sophisticated
definition of parthood, which takes into account the way, how the components
are assembled, to wit, the monomorphisms by which the “abstract” groups Zs
and Z3 are embedded into Zg and S3. Thereby it is revealed that there is only
one way that renders Zs and Zs parts of Zs, while in the case of S5 the group
Z; gives rise to three different parts, while for Z3 there is still only one way to
become part of S3.

Pace Lewis, then, according to Definition 4, for groups the talk of “a part
many times over” does make sense. One and the same group H may be part of
a larger group G in many different ways, namely, provided there are different,
non-equivalent monomorphisms that embed H in G. There is nothing mysterious
about it. :

In order to convince a Lewisian skeptic it may be more expedient, not to
rely on groups and their structural parts but to show that the same kind of ar-
gument goes through for Lewis’s preferred kind of mereological systems, to wit,
set-theoretical ones. In this case, instead of group-theoretical monomorphisms
we simply deal with set-theoretical monomorphisms, i.e. 1-1-set-theoretical func-

tions ¥ —">X. Following Definition 3 a part of the set X is defined to be an

equivalence class of set theoretical monomorphisms A—">X. Then m defines

a subset of X, namely m(A4) C X. An equivalent monomorphism 4'—Z»X
yields the same subset m(A) = m’(A’}. Hence, every part of X defines a unique
subset of X in the ordinary sense. On the other hand, if 4 is a subset of X in the
ordinary sense, then the inclusion of A in X yields a canonical monomorphism

A——X. The equivalence class of this monomorphism defines a unique part
of X in the sense of Definition 4. Hence, the notions of subsets and parts of X
coincide. Denoting the class of subsets of X by PX we get that PX is a lattice
with respect to the order relation < that is just the familiar set-theoretical in-
clusion. More precisely, PX is a Boolean lattice with bottom element § and top
element X.

The essential difference between the lattices PX of subsets of X and the
lattices PART(G) of group parts is that the PX are Boolean lattices while the
subgroup lattices PART(G) in general are not Boolean.® The lack of Booleaness
for the lattices PART(G) reflects the extra structure present in groups & but not
present in arbitrary sets X. If G is a group, not all subsets A C @ are G-parts
but only those that are compatible with the group structure, i.e., those that are
subgroups. In other words, only a selected subclass of subsets of G qualifies
as group parts. Formally, then, the generalization of traditional mereology to
a wealth of structural mereologies amounts to giving up the requirement that
mereological lattices have to be Boolean lattices. Instead, we subscribe to a
more liberal account that allows for other types of lattices as well,

Definition 4 is, however, only the beginning of a full-fledged theory of struc-
tural mereology for groups. Up to now, we have only defined the notions of
structural parts and part type but have said nothing why the class PART(G) of
structural parts G is actually a lattice. For groups, this is intuitively more or less

& Among the parthood lattices displayed above, only that of Zs and Zg are Boolean. In
general, lattices of subgroups are not even distributive as is shown by the examples K and 3.
For a comprehensive treatment of subgroup lattices see [0l
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clear since the subgroups of G are subsets of the set of elements of G' endowed
with a group multiplication inherited from that of G. Thereby it is cagily seen
that the set PART(@) of structural parts inherits a lattice structure from the
power set PG of G.

Nevertheless, in view of the general category-theoretical account of structural
mereology to be developed in the next section, it is desirable to show that this
lattice structure can also be obtained from the new definition of paxt as laid down
in Definition 4. That is to say, we'd like to formulate the basic mereological notion
such as overlapping, disjointness, fusion in terms of monomorphisms. This can
indeed be done, as is shown by the following definition, which provides the base
for a full-fledged structural mereology of groups:

Definition 5 Let H—">G and H' ECENNG. represent two parts of G. If there

is a monomorphism H — P S H such that h = W -p this is denoted by h < I/, or,
by an abuse of language, simply by H < H'. Then, again committing an cbuse
of language, H is called a smaller part of G than H ‘

The definition of < is reasonable in the sense that it depends only on the
equivalence classes of h and A’, not on the representing monomorphisms h and
R’. Then it is easily seen that < is an order structure on the parts of G, L.e., <
is reflexive, transitive, and anti-symmetric. Even more can be proved:

Proposition 1 Let G be o group and denote the set of parts of G as defined in
Definition 5 by PART(G). Then PART(G) endowed with < has the structure
of a lattice, i.e., (PART(G), <) is an order structure with minimal element E,
mazimal element G and every finite subset of PART(G) has an infimum and
a supremum with respect to <. As usual, the infimum inf (H,K) is denoted by
HAK, and the supremum sup(H,K) is denoted by HV K.

This lattice structure on PART(G) enables us to speak of inclusion, compo-
sition, overlapping, and disjointness of G-parts much in the same way as for the
parts of classical mereological systems such as the system PX of subsets of a
set X. For instance, H < H’ is to be interpreted as that H is included in H',
and H A H' # E means that H and H’ overlap nontrivially. It may be expedi-
ent to spell out in some detail what is the infimum H A K and the supremum
HV K, respectively. By definition H and K — as parts of G — are defined by some

monomorphisms H—"%>G and K——G, respectively. Then A{H)Ng(K) C G
is a subgroup of G, independent of the representing monomorphisms h and g.

Hence the inclusion h(H) N g(K)——G defines a well defined part of G in the
sense of Definition 4. This part is denoted by H A K. Suppressing the various
monomorphisms involved one may simply say that H A K is just the intersecfion
of H and K. Thus, the construction of the infimum H A K of the G-parts H and
K is not essentially different from the construction of the infimum of two sets X
and Y in set theory, which is just the intersection X NY. :
T'hings become more interesting when we consider the supremum of HVK. In
this case H V K is not the set-theoretical union of H and X, since this is usually
not a subgroup of G. Rather, H V K may be described as the subgroup of G
generated by F and K. More precisely, the following holds: Let Hand K - as

—
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parts of G' — be represented by the monomorphisms -G and K . ;
respectively. Then there is a smallest subgroup of G that contains (G} and
g(K). This subgroup may be denoted by HV K C G and defines a part of
G in the sense of Definition 5. In other words, just as in the case of standard
mereology, for G-parts one can form the infimum (intersection, overlapping) and
the supremum (fusion, composition) in such a way, that these operations render
the set PART(G) of G-parts a lattice. Although the composition H V K of H
and K is not just the set-theoretical union but something different. Nevertheless,
the “ron-mereological” composition H V K makes perfect sense, since it is a well-
defined subgroup of G. Pagce Lewis, then, group theory is an example of a domain
which provides an honest notion of a “sui generis composition”.

It should be clear that our approach not only works for groups but for many
other structures as well. The details will be described precisely in the next sec-
tion. What is going on may be informally described as follows. According to
Fig.2 a group G is a “structured set” in that it is a “set plus group structure”,
Other types of structured sets may be defined analogously. Usually it is not dif-
ficult to define appropriate structure-preserving homomorphisms between these
structures. Thereby for each type of structured sets one may set up a specifie
notion of parthood and composition mimicking the definitions Definition 2-5 .
Thereby we obtain for each structure S a structure-specific mereology encapsu-
lated in the notion structure specific lattice PART(S) of structured parts of S.
This program will be carried out in detail in the next section in terms of category
theory. The category-theoretical generalization of mereology reveals that the es-
sential structure of generalized or relativised mereology that does not depend on
the specific features of group theory or set theory. Moreover, in the category
theoretical framework it can be shown that the traditional Boolean structure of
set-theoretical mereology is only a special case of the general approach of struc-
tural mereology. In other words, standard Boolean mereology, which Lewis took
as the only feasible one, and other structural mereologies are on an equal footing.
All of them are special cases of a general theory of parthood and composition.

3 A Category-theoretical Framework for General
Mereology

The mereologically interesting point is that every category C comes along with
its own specific C-mereology that deals with the C-parts of its C-objects. In-
stead of describing how this works in precise abstract terms, let us be content
to state that the structural mereologies of Boolean algebras and groups we just
mentioned correspond exactly to the category-theoretical mereologies of the cat-
egories BOOLE of Boolean algebras, and the category GROUP of groups. As
it should be, the mereology of sets favored by Lewis, is nothing but the mere-
ology of the category SET of sets. The examples of the categories BOOLE
and GROUP show that most categories have mereologies that are not classical.
From a general category-theoretical point of view, then, there is no reason for
mereologists to restrict their attention to Boolean mereology that is only a small
facet of the whole range of mereological possibilities. Mereology in general is
structural mereology, and it is just a “Boolean prejudice” to ignore non-Boolean
mereological systerns.

[t v—
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After having established that one can set up a structural mereology for groups,
encapsulated in the concept a group-part, let us now consider how this recipe can
be generalized to all kind of structures. This is done by showing that nothing
depends on the specific features of groups in the refined definition of parthood
as given in Definition 5. Rather, conceiving the theory of groups and group
homomorphisms as one calegory amnong mary, for every category C one may set
up its own specific “C-mereology”.

Definition 6 A category C is given by the following ingredients:

1. A collection of things A, B, D, -- called C-objects.

2. A collection of things f,g,h,--- called C-morphisms.

2. An operation that assigns to each C-morphism fa C-object domn{f) (the do-
main of f), and an other operation that assigns to f a C-object cod(f) (the

codomain or target of f). Thus, morphisms may be displayed as A—f——>B

whereby it is assumed that A is the dom(f) and B is cod(f).

4. An operation assigning to each pair (f,q) of C-morphisms with dom(g) =
cod(f) a C-morphism (g - f) with dom{g - f) = dom(f) and cod(g- f) =
cod(g) such that the following law of associativity is satisfied. Given the
configuration A f B S%oD-"sE onehash-(g-f)=(h-g)f-

5. An assignment to each C-object A a C-morphism A —ida — A such that

for any C-morphisms A——f%»B and B—2->A one has ida -g = g and

frida=f.

Intuitively, the category-theoretical notion of a morphism intends to capture
the essential features of the idea of a set-theoretical function. More precisely
the requirements Definition 63-5 generalize the essential aspects of the concate-
nation of set-theoretical functions. Thus, it is an easy exercise to show that
there is a category SET whose objects are sets, and whose morphisms are set-
theoretical maps such that g - f is the familiar set-theoretical concatenation of
set-theoretical functions. SET is not, however, the only category. Categories
abound in mathematics and elsewhere. Large lists of categories occurring in
mathematics, computer science and other sciences can be found in any textbook
on. category theory (cf. [4, 5, 8]). The category GROUP of groups is defined
as having as objects groups and as morphisms homomorphisms in the sense of
group theory. Analogously, categories of manifolds, vector spaces, rings, fields
and other structures may be defined. It should be noted, however, that there are
categories of a quite different kind than GROUP or SET whose morphisms are
not set-theoretical mappings at all. For instance, a lattice or any other ordered
structure may be conceived as a category. All of them have specific notions of
parthood and composition. .

In order to set up a general category-theoretical analogue of Proposition 1 of
group-theoretical parthood, we need purely category-theoretical characterizations
of the concepts of monomorphism, epimorphism and isomorphism that do not
presuppose the notions of sef, structure, and elementhood. This is achieved by
the following definition:

Definition 7 Let C be a cafegory.
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1. A C-morphism B——+D is a C-monomorphism if and only if for all C-
morphisms AiB the identity m - f = m - g entails f = g.

2. A morphism D——sF is a C-epimorphism if and only if for all morphisms
E-2loF the identity s -e =t -e entails s = t.

8. A C-morphism X ~t ez isa C-isomorphism if and only if it is a C-
monomorphism and a C-epimorphism.

Informally, monomorphisms are morphisms that can be cancelled from the
left, and epimorphisms can be cancelled from the right. As is easily checked set-
theoretical and group-theoretical homomorphisms are iso/epi/mono/morphisms
in the ordinary sense if and only if they are iso/epi/mono/morphisms in the sense
of 7. Thus, 7 is the “correct” category-theoretical generalization of the original,
more restricted versions of these notions. The point is that 7 does not refer to
set-theoretical notions such as set and element. Observing that the equivalence
relation 4 is already formulated in purely category-theoretical terms the desired
category-theoretical generalization of the concept of parthood is at hands:

Definition 8 Let X be an object of o category C, and Z —f>—X a C-monomorphism.
A monomorphism Z' —w{:m}X is eguivalent to Z —f>X if and only if th.ere is @
C-isomorphism Z 7! such, that f'-5=17F. Then a C-part® of X is defined

as an equivalence class of C-monomorphisms Z ~I.x.

Analogously as for the category GROUP for any category C one may define
the relation < between C-parts of X. Then, under some mild conditions on
C, for every C-object X one obtains an order structure, or, under somewhat
stronger conditions, even a lattice of its C-parts (cf. [4]). In this way, every
category comes along with its own ready-made notions of C-mereology.

Thus, 8 and the ensuing theory of C-parts and C-composition answers Lewis’s
question of what is the general notion of composition and parthood: The general
theory of parthood and composition is the theory of the category-relative concepts
of C-parthood and C-composition, C an arbitrary category. It should be noted
that this theory is not a philosopher’s fancy invention but rather is an established
mathematical enterprise built up over the last decades.

Before we leave this sketch of a general theory of parthood let us prove that
for the category SET of sets the definition 8 yields what it should, namely,
the standard mereological theory of parthood and composition. This is seen
as follows. Let X be a set and A C X a subset. Then the inclusion of A in

X yields a canonical monomorphism A——=X. The equivalence class of this
monomorphism defines a SET-part of the SET-object X in the sense of 8. On

the other hand, every monomorphismm B—"->X defines a subset of X, namely

m(B) C X. It is clear that equivalent monomorphism B—==X and B X

®In category theory, a C-part of a C-object X is often called a subobject of X. The family
of subobjects is denoted by Sub(X).
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yield the same subset m(B) = m/(B'). Thus, every SET-part of X in the sense
of 7 defines a unique subset of X and vice versa. Therefore the set PX of subsets
of X and the set of SET-parts of X coincide. This evidences that the definition
8 is the correct generalization of the familiar mereological notion of a subset to
arbitrary categories. This means that our definition of structural parthood is
indeed continuous with the original mereclogical definition.

4 Structural Mereology II: Similarity Structures

The concept of similarity enjoys a mixed reputation in philosophy. On the one
“hand, authors such as Goodman and Quine considered similarity or resemblance
.as highly suspicious and finally philosophical useless. Their verdict was that
| “similarity was a quack ...”. On the other hand, there have been philosophers
such as Carnap who, at least for some time, considered the relation of similarity
as a sufficient base for carrying out “the logical constitution of the world” (cf.
[2). Although the detractors of similarity have dominated the debate on the
philosophical dignity of this concept there are some signs for a change of the
tide. After all, similarity plays an important role in many realms of scientific and
common sense argumentation.

The aim of this section is to show how mereology can be contextualized in
such a way that it takes into account the concept of similarity. For this purpose
we start from a rather weak concept of similarity inspired by Carnap’s notion
of “recollection of similarity” (cf. [2]). There similarity is conceived as a binary
relation ~ defined on some domain S of objects, and it is assumed that ~ is
‘reflexive and symumetric, i.e., every object  of S is similar to itself {x ~ ) and if
z is similar to y then y is also similar to x(z ~ y = y ~ z}. It is not assumed that
the similarity relation ~ is transitive, i.e. from z ~ y and y ~ z one cannot infer
that z ~ z. Apparently, this is a quite wesak, almost trivial notion of similarity.
Goodman and Quine have argued at length that this notion of similarity is too
weak to be interesting. In the following I'd like to argue that their assessment
was wrong.

To get started let us fix notation as follows: Let (S, ~) be a similarity struc-
ture, i.e. a set S endowed with a binary similarity relation ~.1° In the usual
way, one may define various categories of similarity structures, depending on what
kinds of similarity structures and similarity-preserving morphisms are admitted.
In the following we will restrict our attention to one such category, denoted by
SIM.! As every category SIM comes along with a ready-made specific SIM-
mereology. Indeed, SIM-mereological systems are complete Heyting-algebras
that can be conceived as generalizations of the classical Boolean systems PX
that arise from SET-objects X. This is not too surprising since the category
SET of sets may be conceived as a subcategory of SIM, namely, the subcate-
gory of similarity structures (X, ~) endowed with a trivial similarity relation ~
defined by & ~ % := « = y. The SIM-mereology provide an elementary and easily

10gimilarity structures appear in the literature under many hames: tolerance spaces, co-
herence spaces and others. These names emphasize the broadly spatial character of these
structures.

11STM has some interesting categorial properties. Among other things it can be shown that
it is almost a topes, namely a quasi-topos.




340 Thomas Mormann

accessible example of a structural mereology thas, although similar to standard
SET-mereology, differs in some aspects from it.

Definition 9 The category SIM of similarity structures s defined as follows:
SIM.-Objects: Similarity structures (S, ~).

SIM-Morphisms: Set-theoretical maps S mm{~>T that are
similarity-preserving in  the sense that
z o~y = flz) ~ fly)

Since identity maps 5—2.5 are obviously SIM-morphisms and the con-
catenations of SIM-morphisms are SIM-morphisms again, 9 defines a category.
The parts of a SIM-object (S, ~) are defined in the usual way as equivalence
classes of SIM-monomorphism (see 8). Denote the set of all SIM-parts of (8, ~)
by PART(S,~). Then PART(S,~) is endowed with an order structure < as
explained in the previous section. Then the following proposition can be proved:

Proposition 2 Let (S,~) be a similarity structure. Then the lattice PART(S, ~
Y of structural ports of (S,~) is a complete Heyting algebra. If the similarity
relation ~ coincides with identity is trivial, then PART(S, ~) is just the power
set PS.

Similarity structures abound. For instance, a natural intuitive interpretation
of similarity conceives similarity as some sort of nearness, Le., two things are
considered as similar, if they are near to each other in some sense to be specified.
Given a element x of a similarity structure {5, ~) one may therefore consider
the set §(z) := y;2 ~ y as a kind of neighborhood of z. Thereby a similarity
structure {S,~)} obtains a kind of rudimentary spatial structure. A concrete
example of such a spatial similarity structure can be obtained as follows: Let
{X,d} be a metrical space, i.e., & set endowed with a non-negative real-valued

function X z X—%—>R. Let £ > 0. Then X is rendered a similarity structure by
stipulating z ~ ¥ .= d{z,y) < e.

A quite different, more algebraic kind of similarity structure can be defined
for Boolean algebras and similar structures. If {B, <) is a Boolean algebra with
bottom element 0, the set B — —{0} is rendered a similarity structure by stip-
ulating z ~ y = infimum{z,y) # 0. These two kinds of similarity structures
in no way exhaust the possibilities. Similarity is a very flexible structure that
allows to define similarity structures almost ad Mbitum.

5 Spatial Mereology

Let us conclude the series of examples of structural mereclogies by an example
that has met considerable attention in recent years, to with, the mereology of
space. To be as specific as possible let us concentrate on the most prominent case,
to wit, Euclidean space E. It should be clear, however, that the following consid-
erations apply to a much larger variety of spaces. Conceiving E as a mereological
system requires to give a reasonable answer to the mereologically fundamental
question “What are the parts of Euclidean space?’ The standard Euclidean an-
swer is “The parts of Euclidean space E are sets of Euclidean points”. This is,
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however, not a very convincing answer. It amounts to conceive E simply as a
set of points, thereby completely ignoring its genuine spatial structure. In other
words, the point of a genuinely spatial mereology is somehow to take into ac-
count the spatial structure of E. There are several ways to achieve this. One is
to describe the Euclidean space as a topological space. Recall that a topological
space (X, 0*X) is defined as a set X for which a set O*XC PE is singled out.1?
The elements of OFX are called the open sets of the topological space X and
form a complete Heyting algebra with bottom element ¢ and top element X. The
Euclidean space F carries a canonical topological structure OF inherited from
its canonical metrical structure. Then a reasonable answer, at least prima facie,
to the fundamental mereological question “Whai are the parts of E?7” would
be “The parts of Euclidean space are the open subsets of E, i.e. the elements
of OF.” Considering only the elements of OF as spatial parts of F, and not
just any contrived subset of F amounts to the requirement that genuine spatial
parts have to be structurally “nice” or “natural”, or in other words, the notion
of parthood in the case of E has to take into account the spatial structure of E.
This is done by denying that certain “wild” subsets of E deserve the predicate of
“being a spatial part of E”. For this maneuver, there is, of course, a price to pay.
The resulting mereology, which takes as parts of E only the elements of OF, and
not all elements of PX, is no longer Boolean, but solely Heyting. This entails
that the elements of OF no longer have Boolean complements. All this can be
cast in the category-theoretical framework of Section 3 introducing the category
TOP whose objects are topological spaces and whose morphisms are continuous
maps.

Tt should be noted that the class of open subsets 0¥X of a topological space
X is in no way the only reasonable choice for genuine spatial parts of X. Since
even open sets may often look rather unwieldy and unnatural, one may prefer to
restrict the ken of proper spatial parts of a space X still further. Accordingly,
some authors have proposed to consider only regular open subsets of X as its
spatial parts. This class, denoted by O*X, is a proper subclass of 0*X. Indeed,
the move from O*X to O*X has some advantages. For instance, O*X is a com-
plete Boolean algebra ~ and not only a Heyting algebra. On the other hand, new
difficulties arise. For instance, while (under some mild restrictions) a topological
space. (X, 0*X) is determined (up to isomorphism) by the Heyting algebra O*X
of its parts, this is no longer true for O*X. There may be topologically different
spaces X and Y having isomorphic algebras O*X and O*Y. This can be inter-
preted as the fact that the spatial mereology of a space no longer fully determines
it. Accepting only regular open subsets A € O*X of X as spatial parts entails
that some information on X is lost in that the Boolean lattice O*X alone does
not uniquely determine the point set X. Hence, the full topological structure of
(X, 0*X) escapes a mereological description in terms of O*X. In other words,
topological mereology is inevitably non-Boolean mereology.

6 Platonic versus Aristotelian Mereology

The category-theoretical generalization of classical mereology has not only the
virtue to offer a unifying framework for a large variety of structural mereologies.

12F0r a succinet account of the basic notions of topology the reader may consult [3, chap. 10]
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It may also be used to shed new light on a classical metaphysical problem that
already occupied Plato and Aristotle, namely, the time-honored problem whether
a whole is identical with its parts. The pertinent texts are Socrates’ Dream in
the Theaetetus and Aristotle’s Metaphysics Z 17, respectively (cf. [9, chap.4,
60ff]). As is well known, Plato held that the whole is identical with its parts.
Accordingly, he claimed that the syllable “SO” is identical to the letters “S” and
“0”, Then the difficulty arises that the letters “S” and “O” may not only be
assembled to form the syllable “SO” but also to the syllable “0S5”. This may be
considered as analogous to the group-theoretical fact that the groups Zs and 73
may be assembled in two different ways, namely, one way to yield the abelian
cyclic group Zg and another way to yield the non-abelian group S;.

In contrast to Plato, Aristotle maintained that the whole and its parts are
different. The syllable, said Aristotle is not just the letters “S” and “O” but
something else, too, since when the syllable is “dissolved, the whole, i.e. the syl-
lable, no longer exists, but the elements of the syllable exist.” Hence, Aristotle
concluded, the syllable consists of the elements plus a further item, which is of a
completely different type than the elements namely its substance. As Scaltsas
points out, the classical dispute between a Platonic and an Aristotelian account
to mereology finds a certain rehearsal in the dispute between Armstrong, Lewis
and other contemporary philosophers on the possibility of non-mereological com-
position of structural universals {ef. [1, 6]). Structural mereclogy in the sense
of category-relative mereclogical as outlined in this paper may not directly con-
tribute to this problem, but at least it may widen the horizon of mereologists
and thereby help indirectly to better understand some classical problems of tra-
ditional mereology. For reasons of space I cannot further elaborate this point,
but it seems that the account of structural mereology presented in this paper
favors an Aristotelian stance in mereclogical matters.

7 Concluding Remarks

In this paper I have argued that classical Boolean mereology needs to be contex-
tualized or customized in the sense that it has to take into account the various
kinds of structures that are present in the objects of our mereological investiga-
tions. This kind of customized mereology defies the confines of standard Boolean
mereology. Elementary examples of structured mereological systems in this sense
are provided by Boolean algebras, groups, similarity structures, topological strue-
tures, and many other structures as well. These examples show that in general,
the lattices of structural parts of structured wholes are not Boolean. These con-
siderations can be rendered precise in the framework of category theory according
to which every category C comes along with its own specific C-mereology. Clas-
sical Boolean mereology turns out to be closely related to the category SET of
lattices. In sum, then, P’d to contend that mereoclogy is far from being “perfectly
understood, and unproblematic® part of formal methodology, as the late David
Lewis maintained. Rather, it is to be considered as an open field of research that
offers a wealth of interesting philosophical, logical, and mathematical problems.
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