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Abstract

Many tasks in statistical and causal inference can be construed as problems of entailment
in a suitable formal language. We ask whether those problems are more difficult, from a
computational perspective, for causal probabilistic languages than for pure probabilistic (or
“associational”) languages. Despite several senses in which causal reasoning is indeed more
complex—both expressively and inferentially—we show that causal entailment (or satisfiability)
problems can be systematically and robustly reduced to purely probabilistic problems. Thus
there is no jump in computational complexity. Along the way we answer several open problems
concerning the complexity of well known probability logics, in particular demonstrating the ∃R-
completeness of a polynomial probability calculus, as well as a seemingly much simpler system,
the logic of comparative conditional probability.

1 Motivation and Preview

There is an uncontroversial sense in which causal reasoning is more difficult than purely probabilistic
or statistical reasoning. The latter seems hard enough: estimating probabilities, predicting future
events from past observations, determining statistical significance, adjudicating between statistical
hypotheses—these are already formidable tasks, long mired in controversy. No free lunch theorems
(Shalev-Shwartz and Ben-David, 2014; Belot, 2020) show that strong assumptions are necessary to
gain any inductive purchase on such problems, and there is considerable disagreement about what
kinds of assumptions are reasonable in different epistemic and practical circumstances (Efron,
1978). Problems of causal inference only seem to make our tasks harder. Inferring causal effects,
predicting the outcomes of interventions, determining causal direction, learning a causal model—
these problems typically demand statistical reasoning, but they also demand more on the part
of the investigator. They may require that we actively interrogate the world through deliberate
experimentation rather than passive observation, or that we antecedently accept strong assumptions
sufficient to justify the causal conclusions we want to reach, or (very often) both. Indeed, statistical
indistinguishability is the norm in causal inference, even with substantive assumptions (Spirtes
et al., 2000). As formalized in the causal hierarchy theorem of Bareinboim et al. (2022) (see
also Ibeling and Icard 2021), it is not only impossible to infer causal information from purely
correlational (or “observational”) data, but also generically impossible to infer counterfactual or
explanatory information from purely experimental (or “interventional”) data. From an inferential
perspective, probabilistic information vastly underdetermines causal information.

A feature common to both statistical inference and causal inference is that the most prominent
approaches to each can be understood, at least in part, as attempts to turn an inductive problem
into a deductive one. This is famously true of frequentist methods in the tradition associated with
Neyman and Pearson (see Neyman 1977), but is arguably true of Bayesian approaches as well.
As Gelman and Shalizi (2013) suggest, “Statistical models are tools that let us draw inductive
inferences on a deductive background,” rendering statistical inferences “deductively guaranteed by
probabilistic assumptions” (p. 27). Indeed, one of the benefits of specifying a Bayesian probability
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model is that it provides an answer to virtually any question about the probability of a hypothesis
conditional on data. Given the model and the data, this answer follows as a matter of logic.

Causal underdetermination is likewise confronted with methods for formulating precise inductive
assumptions, sometimes allowing answers to causal questions to be derived by mere calculation.

Example 1.1 (Do-calculus). As one prominent example, the do-calculus of Pearl and collaborators
(see Pearl 1995 and Ch. 3 of Pearl 2009) establishes systematic correspondences between qualita-
tive (“graphical”) properties of a causal scenario and certain conditional independence statements
involving causal quantities. A typical causal quantity of interest is the (average) causal effect, e.g.,
how likely Y is to take on value y given an intervention setting X to x. In a formal language
(introduced in the sequel as Lcausal), we write this as P([X = x]Y = y), or more briefly, P([x]y).

Absent assumptions, it is never possible to infer the value of P([x]y) from observational data
(Bareinboim et al., 2022). Suppose, however, that we could assume the causal structure has some-
thing like the following shape (known in the literature as the front door graph):

X Z Y

U

For a standard example, we might assume that any causal effect of smoking (X) on cancer (Y )
will be mediated by tar deposited in the lungs (Z), and moreover that any unknown sources of
variation (U) on X or on Y (or on both), such as a person’s genotype, do not directly influence Z.
Under these circumstances, the do-calculus licenses several substantive causal assumptions, which
may be rendered precisely in Lcausal. Let Γ be the set of equality statements below:

(i) P([x]z) = P(z|x)

(ii) P([z]x) = P(x)

(iii) P([x]y|[x]z) = P([x, z]y) = P([z]y)

(iv) P([z]y|[z]x) = P(y|x, z)

For instance, (i) says that the causal effect of X = x on Z = z simply coincides with the conditional
probability P(Z = z|X = x). Appealing to a combination of laws of probability and distinctively
causal laws involving the “causal-conditional” statements like [x]y, it is possible to show that the
following equality is in fact entailed by the statements Γ, that is, by (i)-(iv):

P([x]y) =
∑

z

P(z|x)
∑
x′

P(y|x′, z)P(x′). (1)

In other words, (1) shows that the causal effect of X = x on Y = y can simply be calculated from
suitable observational data involving the variables X,Y, Z.

Methods such as these extend beyond the specific problem of estimating causal effects, to
include estimation of counterfactual quantities as well. For instance, we may want to determine—
from experimental data and background assumptions—the joint probability that an individual
would survive if and only if they are assigned a certain treatment, a quantity we would write as
P([X = 1]Y = 1 ∧ [X = 0]Y = 0). Inferential techniques similar to those in Example 1.1 have been
employed in such settings, and have even been automated (e.g., Duarte et al. 2021).

More broadly, a number of different approaches to inductive inference, both statistical and
causal, can be assimilated to a regiment something like this:

Inductive Assumptions + Data |= Inferential Conclusion (2)
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In Example 1.1, Γ are the inductive assumptions, the data would be information about P(X,Y, Z),
and the conclusion would be an estimate of the causal effect of X = x on Y = y. In a standard
Bayesian analysis, the inductive assumption might be a prior probability model for some latent
variables (e.g., parameters for a class of probability measures), while the data would be values of
some observable variables, and the conclusion might be the posterior values for the hidden variables,
or perhaps posterior predictive values for some yet-to-be-observed variables. A critical job of the
statistician or data scientist is to identify suitable inductive assumptions that a relevant party
judges reasonable (or, ideally if feasible, which are themselves empirically verifiable) and that are
sufficiently strong to license meaningful conclusions from the types of data available.

From this vantage point our titular question takes on a new significance. Rather than asking
about the difficulty of an inference task in terms of the strength of assumptions needed to justify
the inference, we could instead ask how difficult it is in general, computationally speaking, to reason
from inductive assumptions (together with data) to an inferential conclusion, in the strong sense of
(2). In other words, we ask how difficult questions like (2) could be across different logical languages
for describing relevant assumptions, data, and conclusions.

The contrast of interest in this article is between languages Lprob, suitable for probabilistic
reasoning, and languages Lcausal, which extend the corresponding probabilistic languages to en-
compass causal reasoning in addition. In short, Lprob encompasses “pure” probabilistic reasoning
about some set of random variables. In Lcausal we also reason about the probabilities of causal
conditionals, the causal effect P

(
[x]y

)
being a simple example. Such mixed reasoning is crucial for

applications like the do-calculus, where causal conclusions depend on distinctively causal assump-
tions (such as (i)-(iv) in Example 1.1). Some of the emblematic principles of Lcausal reveal a subtle
interplay between the probabilistic and causal-conditional components. For example, the following
formula states that if causal interventions which set the values of the variable X thereby affect the
values taken the variable Y , then the converse cannot be true:

P
(
[x]y ∧ [x′]y′) > 0 → P

(
[y]x ∧ [y′]x′) = 0. (3)

This formula emerges as an instance of a more general scheme in a complete axiomatization of
Lcausal (see Ibeling and Icard 2020), implying that X and Y cannot each causally affect the other.

In light of the considerable empirical (and expressive) gulf between these two kinds of languages,
we might expect to see a parallel jump in computational complexity when moving from Lprob
to Lcausal. In a certain respect, Lcausal can be seen as a combination of logics, embedding one
modal system (a conditional logic) inside another (a probability logic), with non-trivial interactions
between the two (such as (3)). It is common wisdom that such combinations may in general
drive up complexity, in some cases even resulting in undecidability (see, e.g., Kurucz 2007). As
a famous example, even seemingly innocuous combinations of modalities for knowledge and time
(each independently of low complexity) can lead to Π1

1-hardness (Halpern and Vardi, 1989). The
present work introduces two main results, which show that this does not happen here: causal
reasoning and probabilistic reasoning are, in a precise and robust sense, equally difficult.

The distinction between Lprob and Lcausal is orthogonal to another distinction, namely how
much arithmetic we admit in our formal language of probability over a set of probability terms
P(δ). A wide range of probability logics have been studied in the literature, from pure qualitative
comparisons between probability terms (e.g., de Finetti 1937) to richer fragments capable of rea-
soning about polynomials over such terms (e.g., Scott and Krauss 1966). For any such choice Lprob
of probabilistic language we can consider the extension Lcausal to allow not only probability terms,
but also causal-probability terms like those introduced above. A strength of our analysis is that
we provide a complexity-reflecting reduction from Lcausal to Lprob in a way that is independent of
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our choice of probabilistic primitives. Thus, across the landscape of probability logics, we see no
increase in complexity. Summarizing, our main result states:
Theorem 1 (Informal). Probabilistic reasoning is no harder than causal reasoning. In particular:

1. Reasoning about (causal or non-causal) probabilities is as hard as reasoning about sums of
(causal or non-causal) probabilities; both are as hard as reasoning about Boolean formulas, or
about sums of real numbers.

2. Reasoning about (causal or non-causal) conditional probabilities is as hard as reasoning about
arbitrary polynomials in (causal or non-causal) probabilities; both are as hard as reasoning
about arbitrary polynomials in real numbers.

While the relationship between probabilistic and causal languages is our main focus, it is worth
pointing out that some of our results are of interest beyond the connection with causality. In
particular, we find that reasoning in the language of conditional comparative probability is precisely
as hard as reasoning in the full existential first-order theory of real numbers (∃R), thus establishing
another notable example of a problem complete for this complexity class. It is also noteworthy that
this expressively weak probabilistic language is—from a computational perspective—as complex as
the most expressive causal languages we consider in the paper (namely, Lpoly

causal).

Relation to previous work

There is a long line of work on probability logic, including a host of results about complexity (Fagin
et al., 1990; Abadi and Halpern, 1994; Ognjanović et al., 2016; Speranski, 2017). As just mentioned,
our contribution advances this literature. Concerning causal reasoning, there have been a number
of complexity studies for various non-probabilistic causal notions (Eiter and Lukasiewicz, 2002;
Aleksandrowicz et al., 2017). Most germane to the present study is Halpern’s (2000) analysis of
the satisfiability problem for deterministic reasoning about causal models, which he shows to be
NP-complete (the same as propositional logical reasoning). Eiter and Lukasiewicz (2002) studied
numerous model-checking queries in a probabilistic setting, including the problem of determining
the probability of a specific causal query. They show that this problem is complete for the class #P,
the “counting analogue” to NP which also characterizes the problem of determining (approximations
for) probabilities of (even very simple) propositional expressions (Roth, 1996).

Our interest in the present contribution is the complexity of reasoning—viz. testing for satisfia-
bility, validity, or entailment, as portrayed in (2)—for probabilistic and causal languages. While this
angle has not yet been explored thoroughly in the literature, our study is indebted to, and draws
upon, much of this previous work. Theorem 1 synthesizes as well as greatly extends a heretofore
piecemeal line of results (Fagin et al., 1990; Ibeling, 2018; Ibeling and Icard, 2020). Moreover, the
results just mentioned by Halpern (2000) and by Eiter and Lukasiewicz (2002)—see also Darwiche
(2021)—could be said to lend further support to the claim that causal reasoning is no more difficult
(in the sense of computational complexity) than purely probabilistic reasoning.

Overview of the paper

In the next two sections (§2 and §3), we introduce the languages and the notions from computational
complexity needed to state Theorem 1 more formally. The proof of this main result appears in
§4. Finally, in §5 we zoom out to consider what our results show about the relationship between
probabilistic and causal reasoning, as well as consider a number of outstanding problems in this
domain. In our presentation we assume no prior knowledge of causal modeling, complexity theory,
or probability logic. Only elementary logic and probability are presupposed.
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2 Introducing Causal and Probabilistic Languages

In this section, we introduce the syntax and semantics for a series of probabilistic and causal
languages. With a precise syntax and semantics in hand, we illustrate that these languages form
an expressive hierarchy.

2.1 Syntax

Let V be a (possibly infinite) collection, representing the (endogenous) random variables under
consideration. Informally, these are the variables that we may want to observe, change, query, or
otherwise reason about explicitly.

For each variable V ∈ V, let Val(V ) denote the finite signature (range) of V . For example,
for two binary variables we have V = {X,Y } with Val(X) = Val(Y ) = {0, 1}. We introduce the
following deterministic languages

Lint := ⊤ | V = v | Lint ∧ Lint V ∈ V, v ∈ Val(V )
Lprop := V = v | ¬Lprop | Lprop ∧ Lprop V ∈ V, v ∈ Val(V )
Lfull := [Lint]Lprop | ¬Lfull | Lfull ∧ Lfull.

Choose either Lprop or Lfull as the base language L. The former is essentially a propositional
language with extended ranges, while the latter is a causal conditional language. The semantics of
these formulas will be introduced in §2.2, but intuitively we can interpret a formula of Lfull, such
as [X = 1]Y = 0, as expressing a subjunctive conditional: were X to take on value 1, then Y would
come to have value 0. We understand the conditional causally, in a sense to be made precise below.

So-called terms over the base language are the main ingredient of our probabilistic languages.
The most basic term is P(δ) for δ ∈ L, representing the probability of δ. By varying the composite
terms admitted, we can define polynomial, conditional, linear, and comparative languages. Where
δ, δ′ ∈ L are formulas of L:

Tpoly(L) is generated by the grammar t := P(δ) | t + t′ | t · t′

Tcond(L) is generated by the grammar t := P(δ | δ′)
Tlin(L) is generated by the grammar t := P(δ) | t + t′

Tcomp(L) is generated by the grammar t := P(δ)
We define for each ∗ ∈ {comp, lin, cond,poly} the causal and purely probabilistic languages:

L∗
prob := t ≥ t | ¬L∗

prob | L∗
prob ∧ L∗

prob t ∈ T∗(Lprop).
L∗

causal := t ≥ t | ¬L∗
causal | L∗

causal ∧ L∗
causal t ∈ T∗(Lfull).

Several of these probabilistic languages have appeared in the literature. For instance, Lpoly
prob ap-

peared already in early work by Scott and Krauss (1966), while Llin
prob was introduced explicitly by

Fagin et al. (1990). The language Lpoly
causal was introduced and studied recently in Ibeling and Icard

(2020) (see also Bareinboim et al. 2022 and Eiter and Lukasiewicz 2002). Many of these languages,
however, have not yet received explicit treatment.

2.2 Semantics

2.2.1 Structural Causal Models

The semantics for all of these languages will be defined relative to structural causal models, which
can be understood as a very general framework for encoding data-generating processes. In addition
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to the endogenous variables V, structural causal models also employ exogenous variables U as a
source of random variation among endogenous settings. For extended introductions, see, e.g., Pearl
(2009); Bareinboim et al. (2022).

Definition 2.1. A structural causal model (SCM) M is a tuple M = (F ,P,U,V), with:

(a) V a set of endogenous variables, with each V ∈ V taking on possible values Val(V ),

(b) U a set of exogenous variables, with each U ∈ U taking on possible values Val(U),

(c) F = {fV }V ∈V a set of structural functions, such that fV determines the value of V given the
values of the exogenous variables U and those of the other endogenous variables V ′ ∈ V, and

(d) P a probability measure on a σ-algebra σ(U) on U.

Here we will assume for convenience that Val(V ) and Val(U) are all finite.

In addition, we adopt the common assumption that our SCMs are recursive:

Definition 2.2. A SCM M is recursive if there is a well-order ≺ on V such that F respects ≺
in the following sense: for any V ∈ V, whenever v1,v2 : V 7→ Val(V ) have the property that
v1(V ′) = v2(V ′) for all V ′ ≺ V , we are guaranteed that fV (v1,u) = fV (v2,u).

Intuitively, M is recursive if for all V ∈ V, the function fV ensures that the value of V is
determined only by the exogenous random variables U ∈ U and endogenous random variables
V ′ ∈ V for which V ′ ≺ V . Thus in a recursive model M, the probability measure P on σ(U)
induces a joint probability distribution P(V) over values of the variables V ∈ V.

Causal interventions represent the result of a manipulation to the causal system, and are defined
in the standard way (e.g., Spirtes et al. 2000; Pearl 2009):

Definition 2.3. An intervention is a partial function i : V 7→ Val(V ). It specifies variables
dom(i) ⊆ V to be held fixed and the values to which they are fixed. An intervention i induces a
mapping, also denoted i, of systems of equations F = {fV }V ∈V, such that i(F) is identical to F ,
but with fV replaced by the constant function fV (·) = i(V ) for each V ∈ dom(i). Similarly, where
M is a model with equations F , we write i(M) for the model which is identical to M but with the
equations i(F) in place of F .

In order to guarantee that interventions lead to a well-defined semantics, we work with structural
causal models which are measurable:

Definition 2.4. We say that M is measurable if under every finite intervention i, the joint distri-
bution P(V) associated with the model i(M) is well-defined.

For measurable models, one can define a notion of causal influence:

Definition 2.5. A model M induces the influence relation Vi ⇝ Vj when there exist values v, v′ ∈
Val(Vj) and interventions α, α′ differing only in the value they impose upon Vi for which1

M |= P
(
[α]Vj = v ∧ [α′]Vj = v′) > 0.

Given an enumeration of variables V1, ..., Vn compatible with a well-order ≺, the model M is com-
patible with ≺ when it induces no instance Vi ⇝ Vj with i > j.

1The truth definition for |= is introduced formally below in §2.2.2.
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To illustrate the preceding definitions, we return to the front door graph shown in Example 1.1,
and demonstrate an example of a SCM that is compatible with this graph:

Example 2.6. Consider the SCM M = (F ,P,U,V), with the exogenous U = {U,UX , UY , UZ},
each of which has probability 1/2 of being 1 and probability 1/2 of being 0, and with three endogenous
variables V = {X,Y, Z}. The equations F = {fV }V ∈V are given by

fX(UX , U) = U ∧ UX

fZ(X,UZ) = X ∧ UZ

fY (Z,UY , U) = Z ∧ U ∧ UY

We observe that M is measurable and recursive with the ordering ≺ given by X ≺ Z ≺ Y . Further,
X ⇝ Z and Z ⇝ Y , so that M indeed realizes the front door graph and is compatible with ≺.

2.2.2 Interpretations of Terms and Truth Definitions

It suffices to give the semantics for Lpoly
causal, since this language includes all of the other languages

introduced above. A model is a recursive and measurable SCM M = (F ,P,U,V). For each
assignment u : U 7→ Val(U) of values to exogenous variables, each V ∈ V, and each v ∈ Val(V ),
we define F ,u |= V = v if the equations F together with the assignment u assign the value v
to V . Conjunction and negation are defined in the usual way, giving semantics for F ,u |= β for
any β ∈ Lprop. If F ,u |= β holds for all u, then we simply write F |= β. When the relation
F ,u |= β does not depend on u at all—that is, we have F ,u |= β iff F ,u′ |= β for all u,u′ and
all formulas β—we say that the equations F are deterministic. For β, β′ ∈ Lprop, we write β |= β′

when F |= β → β′ for all F , where material implicaiton is defined in the usual way.
For each intervention α ∈ Lint and each β ∈ Lprop, we define F ,u |= [α]β iff iα(F),u |= β,

where iα is the intervention which effects the assignments described by α. We also allow that α
may be the trivial intervention ⊤, in which case we simply write β instead of [α]β. We define

q
P(ϵ)

y
M

= P
(
{u : F ,u |= ϵ}

)
.

For conditional probability terms we define
q
P(δ|δ′)

y
M

= 1 when
q
P(δ′)

y
M

= 0 and using the above
definition and the usual ratio definition otherwise. For two terms t1, t2, we define M |= t1 ≥ t2 iff
Jt1KM ≥ Jt2KM. The semantics for negation and conjunction are defined in the usual way, giving a
semantics for M |= φ for any φ ∈ Lpoly

causal.
With this semantics, probability behaves as expected. For example, we have the following

validity for any ϵ1, ϵ2:
Add. P(ϵ1 ∧ ϵ2) + P(ϵ1 ∧ ¬ϵ2) = P(ϵ1).

Causal interventions behave as expected as well. Indeed, fix any model M with equations
F , any variable V ∈ V, and any assignment u of values to the exogenous variables. Then V
takes on at least and at most one value upon the intervention α: this is trivial if α intervenes
on V , and it otherwise follows immediately from the fact that once u is fixed, the values of all
variables are determined by the equations iα(F). In other words, in the language L∗

causal for any
∗ ∈ {comp, lin, cond, poly}, we have the validity for all M and u:

Def.
∧

v,v′∈Val(V )
v ̸=v′

¬[α](V = v ∧ V = v′) ∧
∨

v∈Val(V )
[α](V = v).
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More generally, for each α ∈ Lint, the indexed box [α] can be thought of as a normal, functional
modal operator.

Having introduced the syntax and semantics for several languages and pointed to some basic
validities, we recall in the next subsection various results and examples that illustrate the expressive
relationships between these languages.

2.3 A Two-Dimensional Expressive Hierarchy

Definition 2.7. For a formula φ in any of the languages just introduced, let Mod(φ) = {M : M |=
φ} be the class of its models. For two languages L1 and L2, we say that L2 is at least as expressive
as L1 if for every φ ∈ L1 there is some ψ ∈ L2 such that Mod(φ) = Mod(ψ). We say L2 is strictly
more expressive than L1 if L2 is at least as expressive as L1 but not vice versa.

In this section, mostly rehearsing familiar results and examples, we illustrate that the expressiv-
ity of the languages L∗ for L ∈ {Lprob,Lcausal} and ∗ ∈ {comp, lin, cond,poly} form an expressive
hierarchy along two axes. First, the purely probabilistic language L∗

prob is always less expressive
than the corresponding causal language L∗

causal. Second, Lcomp is less expressive than both Llin

and Lcond, both of which are less expressive than the language Lpoly. Where each arrow indicates
a strict increase in expressivity, the hierarchy can be shown graphically:2

Lcomp
prob

Lcond
prob

Llin
prob

Lpoly
prob

Lcomp
causal

Lcond
causal

Llin
causal

Lpoly
causal

2.3.1 First Axis: From Probabilistic to Causal

To illustrate the expressivity of causal as opposed to purely probabilistic languages, we recall a
variation by Bareinboim et al. (2022) on an example due to Pearl (2009):
Example 2.8 (Causation without correlation). Let M1 = (F ,P,U,V), where U contains two
binary variables U1, U2 such that P(U1) = P(U2) = 1/2, and V contains two variables V1, V2 such
that fV1 = U1 and fV2 = U2. Then V1 and V2 are independent. Having observed this, one could
not conclude that V1 has no causal effect on V2; indeed, consider the model M′, which is like M,
except with the mechanisms:

fV1 = 1U1=U2

fV2 = U1 + 1V1=1,U1=0,U2=1.

Here 1S is the indicator function for statement S, equal to 1 if S holds and 0 otherwise. In this
case PM(V1, V2) = PM′(V1, V2), so that the models are indistinguishable in any of the probabilistic
languages L∗

prob. However, the models are distinguishable in Lcomp
causal, and so in all of the other causal

languages. Indeed, note that PM

(
[V1 = 1]V2 = 1

)
= 1/2 while PM′

(
[V1 = 1]V2 = 1

)
= 3/4. Then, for

instance, the following statement

P
(
[V1 = 1]V2 = 1

)
= P

(
[V1 = 1]V2 = 0

)
belongs to Lcomp

causal and distinguishes M from M′.
2The arrow in the center of these squares is meant to indicate that L∗

prob is less expressive than L∗
causal for any

choice of ∗ ∈ {comp, lin, cond, poly}.
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As shown in Bareinboim et al. (2022) (cf. also Suppes and Zanotti 1981), the pattern in Example
2.8 is universal: for any model M it is always possible to find some M′ that agrees with M on all
of Lpoly

prob but disagrees on Lpoly
causal.3

Theorem 2. Lpoly
causal is more expressive than Lpoly

prob. What is stronger, no Lpoly
prob-theory (i.e., maxi-

mally consistent set in this language) uniquely determines a Lpoly
causal-theory.

2.3.2 Second Axis: From Qualitative to Quantitative

Focusing just on probabilistic languages, we will show that Lcomp
prob is less expressive than both Llin

prob
and Lcond

prob , and that both of these are less expressive than the language Lpoly
prob. In each case, it

suffices to give two measures P1(V) and P2(V) which are indistinguishable in the less expressive
language but which can be distinguished by some statement in the more expressive one.

Comparative probability. First, we claim that Lcomp
prob is less expressive than Llin

prob. Suppose
we have just a single binary variable X, abbreviating X = 1 by q and X = 0 by ¬q. Then let
P1(q) = 2/3 so that P1(¬q) = 1/3, and let P2(q) = 3/5 so that P2(¬q) = 2/5. The qualitative
order on the four events q,¬q,⊤,⊥ is the same, but, for instance, P1(q) = P1(¬q) + P1(¬q), while
P2(q) ̸= P2(¬q) + P2(¬q).

Next, we recall an example due to Luce (1968), which shows that Lcomp
prob is less expressive than

Lcond
prob . Let p, q, r each be events corresponding to the three possible values taken by a random

variable. Consider the measures P1(p) = 5/9,P1(q) = 3/9,P1(r) = 1/9 and P2(p) = 6/9,P2(q) =
2/9,P2(r) = 1/9. Then the two orders are the same, because for i ∈ [2]

Pi(⊤) > Pi(p ∨ q) > Pi(p ∨ r) > Pi(p) > Pi(q ∨ r) > Pi(q) > Pi(r) > Pi(⊥).

However, the conditional probabilities differ: P1(r|q∨r) < P1(q|p∨q), while P2(r|q∨r) > P2(q|p∨q).
In other words, the measures P1 and P2 are indistinguishable in Lcomp

prob but distinguishable in Lcond
prob .

Polynomials in probabilities. To show that Llin
prob is less expressive than Lpoly

prob, we simply
identify a formula φ ∈ Lpoly

prob such that there is no ψ ∈ Llin
prob with Mod(φ) = Mod(ψ). For this we

can take the example P(A∧B) = P(¬A∨¬B)∧P(A|B) = P(B). (This is in fact expressible already
in Lcond

prob .) This enforces that P(B) = 1/
√

2, while Ibeling et al. (2022) show that every formula in
Llin

prob has models in which every probability is rational.
Finally, we give an example to show that Lcond

prob is less expressive than Lpoly
prob. As above, let p, q, r

be events corresponding to possible values taken by a random variable. Define P1(p) = 3/20,P1(q) =
4/20,P1(r) = 13/20, while P2(p) = 3/20 − .03,P2(q) = 4/20 − .01,P2(r) = 13/20 + .04. One can verify
by exhaustion that all comparisons of conditional probabilities agree between P1 and P2, thus they
are indistinguishable in Lcond

prob . At the same time, there are statements in Lpoly
prob in which the models

differ. For example, P1(r)P1(q) < P1(p), whereas P2(r)P2(q) > P2(p). This shows that Lcond
prob is less

3The Causal Hierarchy Theorem of Bareinboim et al. (2022) (refer to Ibeling and Icard 2021 for a topological
version, enabling the relevant generalization to infinite V) involves an intermediate language between Lpoly

prob and
Lpoly

causal, capturing the type of causal information revealed by controlled experiments. Even this three-tiered hierarchy
is strict, and in fact one can go further to obtain an infinite hierarchy of increasingly expressive causal languages
between Lpoly

prob and Lpoly
causal. Because we are showing that there is a complexity collapse even from the most expressive

to the least expressive systems, we are not concerned in the present work with these intermediate languages.
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expressive than Lpoly
prob. Further, we observe that P1,P2 can be distinguished in Llin

prob: Pi(q) ≥ 0.2
for i = 1 but not for i = 2, and this statement is equivalent to the statement in Llin

prob that

Pi(q) + ..+ Pi(q)︸ ︷︷ ︸
10 times

≥ Pi(⊤) + Pi(⊤).

Together, this observation and the earlier remark that P(A ∧ B) = P(¬A ∨ ¬B) ∧ P(A|B) = P(B)
is expressible in Lcond

prob show that Llin and Lcond are incomparable in expressivity.
Summarizing the results of this section:

Theorem 3. Llin and Lcond are incomparable in expressive power. Both are strictly more expressive
than Lcomp and strictly less expressive than Lpoly.

3 Introducing Computational Complexity

In this section, we introduce the ideas from complexity theory needed to state our main results.
We denote by SAT∗

prob,SAT∗
causal the satisfiability problems for L∗

prob,L∗
causal, respectively, where

∗ ∈ {comp, lin, cond, poly}. There are two key definitions:

Definition 3.1. Say that a map φ 7→ ψ preserves and reflects satisfiability when φ is satisfiable if
and only if ψ is satisfiable. Such a map is called a many-one reduction of φ to ψ. Such a map is
said to run in polynomial time if it is computable by a Turing machine in a number of time steps
that is a polynomial function of the length |φ| of the input formula. When the Turing machine
is non-deterministic, the map is said to be non-deterministic as well; in this case we say that the
reduction is an NP-reduction.

Definition 3.2. A decision problem maps an input, represented as a binary string, to an output
“yes” or “no.” For example, SAT∗

prob maps a standard encoding of the formula φ ∈ L∗
prob to “yes” if

it is satsifiable and to “no” otherwise. When each member of a collection C of decision problems can
be reduced via some deterministic, polynomial-time map to a particular decision problem c ∈ C,
one says that the problem c is C-complete. The class C of decision problems is called a complexity
class.

When a problem c is complete for some complexity class, this means that the complexity class
C fully characterizes the difficulty of the problem: the problem c is at least as “hard” as any of the
problems in C, and it is itself in C. Thus any two problems which are complete for a complexity
class are equally hard, since each can be reduced in deterministic polynomial time to the other.
Complete problems facilitate results relating complexity classes: to show that a class C is contained
in another C′, it suffices to give deterministic, polynomial-time, many-one reduction from a problem
c which is complete for C to any problem c′ ∈ C′.

Fagin et al. (1990) showed that SATlin
prob is complete for the complexity class NP. That SATcomp

prob
is also NP-complete follows quickly from this result and the Cook-Levin theorem (Cook, 1971),
which says that Boolean satisfiability is NP-complete as well. For clarity, we include these known
results in the statement of our main result, which gives completeness results for all of the other
probabilistic and causal languages defined above:

Theorem 1. We characterize two sets of tasks:

1. SATcomp
prob , SATlin

prob, SATcomp
causal, SATlin

causal are NP-complete.

2. SATcond
prob ,SATpoly

prob,SATcond
causal,SATpoly

causal are ∃R-complete.
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Since problems that are complete for a class are all equally hard, our main results imply that
causal and probabilistic reasoning in these languages do not differ in complexity. In the remainder
of this section, we introduce the complexity classes NP and ∃R. We note that the inclusions
NP ⊆ ∃R ⊆ PSPACE are known (Canny, 1988), where PSPACE is the set of problems solvable
using polynomial space; it is an open problem whether either inclusion is strict. Further, NP and
PSPACE are closed under many-one NP-reductions, and ten Cate et al. (2013) show that ∃R is also
closed under many-one NP-reductions:

Definition 3.3. A complexity class C is closed under many-one NP reductions if to show that a
problem is in C, it suffices to find a polynomial-time NP-reduction of the problem to one that is
known to be in C.

3.1 The Class NP
The class NP contains any problem that can be solved by a non-deterministic Turing machine in a
number of steps that grows polynomially in the input size. Equivalently, it contains any problem
solvable by a polynomial-time deterministic Turing machine, when the machine is provided with a
polynomial-size certificate, which we think of as providing the solution to the problem, or “lucky
guesses.” In this case we think of the deterministic Turing machine as a verifier, tasked with
ensuring that the certificate communicates a valid solution to the problem.

Hundreds of problems are known to be NP-complete. Among them are Boolean satisfiability
and the decision problems associated with several natural graph properties, for example possession
of a clique of a given size or possession of a Hamiltonian path. See Ruiz-Vanoye et al. (2011) for a
survey of such problems and their relations.

3.2 The Class ∃R

The Existential Theory of the Reals (ETR) contains all true sentences of the form

there exist x1, ..., xn ∈ R satisfying S,

where S is a system of equalities and inequalities of arbitrary polynomials in the variables x1, ..., xn.
For example, one can state in ETR the existence of the golden ratio, which is the only root of the
polynomial f(x) = x2 − x − 1 greater than one, by “there exists x > 1 satisfying f(x) = 0.” The
decision problem of saying whether a given formula φ ∈ ETR is complete (by definition) for the
complexity class ∃R.

The class ∃R is the real analogue of NP, in two senses. Firstly, the satisfiability problem that is
complete for ∃R features real-valued variables, while the satisfiability problems that are complete for
NP typically feature integer- or Boolean-valued variables. Secondly, and more strikingly, Erickson
et al. (2020) recently showed that while NP is the class of decision problems with answers that can
be verified in polynomial time by machines with access to unlimited integer-valued memory, ∃R is
the class of decision problems with answers that can be verified in polynomial time by machines
with access to unlimited real-valued memory.

As with NP, a myriad of problems are known to be ∃R-complete. We include some examples
that illustrate the diversity of such problems:

• In graph theory, there is the ∃R-complete problem of deciding whether a given graph can be
realized by a straight line drawing (Schaefer, 2013).
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• In game theory, there is the ∃R-complete problem of deciding whether an (at least) three-
player game has a Nash equilibrium with no probability exceeding a fixed threshold (Bilò and
Mavronicolas, 2017).

• In geometry, there is the ∃R-complete “art gallery” problem of finding the smallest number
of points from which all points of a given polygon are visible (Abrahamsen et al., 2018).

• In machine learning, there is the ∃R-complete problem of finding weights for a neural network
trained on a given set of data such that the total error of the network falls below a given
threshold (Abrahamsen et al., 2021).

For discussions of further ∃R-complete problems, see Schaefer (2009) and Cardinal (2015).

4 Our results

In this section, we prove our main result, Theorem 1. To do this, we first establish that one can re-
duce satisfiability problems for causal languages to corresponding problems for purely probabilistic
languages.

4.1 Reduction

Definition 4.1. Fix a set OP of operations on R, and for a given placeholder set S, let OP (S) be
the set of terms generated by application of operations in OP to members of S. Define

Lprob = t1 ≥ t2 | ¬Lprob | Lprob ∧ Lprob ti ∈ OP
(
{P(ϵ) : ϵ ∈ Lprop}

)
Lcausal = t1 ≥ t2 | ¬Lcausal | Lcausal ∧ Lcausal ti ∈ OP

(
{P(ϵ) : ϵ ∈ Lfull}

)
The semantics for these languages are restricted to recursive SEMs.

Proposition 4.2 (Reduction). There exists a many-one NP reduction from SATLcausal to SATLprob.

We first give a prose overview of the main ideas underlying the reduction. Fix φ ∈ Lcausal.
The key observation is that the reduction is straightforward when every ϵ with P(ϵ) mentioned
in φ ∈ Lcausal is a complete state description, where a complete state description says, for each
possible intervention and each variable, what value that variable takes upon that intervention.
Indeed, complete state descriptions have three nice properties:

1. Polynomial-time comparison to ordering. One can easily check whether a complete state
description implies influence relations conflicting with a given order ≺ on the variables ap-
pearing in it. Indeed, one simply reads which variables influence which variables off of the
intervention statements appearing in ϵ.

2. Existence of model matching probabilities. If a collection of complete state descriptions does
not conflict with an order ≺, then any probability distribution on the descriptions ϵ has a
recursive model that induces it; briefly, one can simply take a distribution over deterministic
models for the mutually unsatisfiable descriptions ϵ.

3. Small model property. At most |φ| complete state descriptions are mentioned in φ, and so at
most that many receive positive probability in any model satisfying φ.
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These properties will allow a reduction to go through. Indeed, fix φ ∈ Lcausal. Given that φ
is satisfiable, one can request as an NP certificate an ordering ≺ and (relying on #3) the small
set of complete state descriptions receiving positive probability. One then checks (relying on #1)
that these descriptions do not conflict with ≺. Since φ is satisfiable only if there exists a measure
satisfying its inequalities, one can safely translate those inequalities into the probabilistic language,
giving a satisfiable probabilistic formula ψ. If the probabilistic formula ψ is satisfiable via some
measure, one can (relying on #2) infer a corresponding recursive model for the causal formula φ.
Thus the map φ 7→ ψ preserves and reflects satisfiability.

As it turns out, the same reduction goes through in the general case, when the ϵ for which
P(ϵ) is mentioned in φ need not be complete state descriptions. Roughly, the strategy is to simply
replace every ϵ such that P(ϵ) is mentioned in φ ∈ Lcausal with an equivalent disjunction of complete
state descriptions. The primary complication with this strategy is that there are too many possible
interventions, variables, and values those variables could take on; truly complete state descriptions
are exponentially long, making the reduction computationally intractable. To address this issue,
we work with a restricted class of state descriptions, which feature only the interventions, variables,
and values appearing in the input formula φ:

Definition 4.3. Fix a formula φ ∈ Lprop ∪ Lcausal. Let I contain all interventions appearing in φ
and let Vφ denote all variables appearing in φ. For each variable V ∈ Vφ, let Assignmentsφ(V )
contain V = v whenever V = v or V ̸= v appears in φ, and let it also contain one assignment
V = v∗ not satisfying either of these conditions. Let ∆φ contain all possible interventions paired
with all possible assignments, where the possibilities are restricted to φ:

∆φ =
{ ∧

α∈I

(
[α]

∧
V ∈Vφ

βα
V

)
: βα

V ∈ Assignmentsφ(V ) for V ∈ Vφ

}
Call ∧

V ∈Vφ
βα

V the results of the intervention α, and βα
V the result for V of the intervention α.

We write α ∈ δ when δ ∈ ∆φ as shorthand for α ∈ I. We write V ∈ α when α contains some
assignment V = v.

The following three lemmas confirm that even working with this restricted class of state de-
scriptions, (versions of) the three nice properties outlined above are retained.

Definition 4.4. Fix a formula φ ∈ Lprop ∪ Lcausal and ∆′ ⊆ ∆φ. Fix a well-order ≺ on Vφ.
Enumerate the variables V1, ..., Vn in Vφ in a way consistent with ≺. The formula δ ∈ ∆′ is
compatible with ≺ when there exists a model M that assigns positive probability to δ and that is
compatible with ≺. Define ∆≺ to contain all δ ∈ ∆φ compatible with ≺.

Lemma 4.5 (Polytime Comparison to Ordering). Fix φ ∈ Lprop ∪ Lcausal. Given a set ∆′ ≤ |φ|,
one can check that ∆′ ⊆ ∆φ and that each δ ∈ ∆′ is compatible with ≺ in time polynomial in |φ|.

This lemma shows that given some statement φ and a set of formulas ∆′, one can efficiently
(i.e. in polynomial time) check that the formulas δ ∈ ∆′ satisfy two conditions. The first condition
is that the formulas δ describe, in the fullest terms possible, the ways that φ could be true (i.e.
∆′ ⊆ ∆φ). The second is that the formulas δ do not rule out the causal influence relations specified
by the order ≺, for example the relations X ≺ Z ≺ Y induced by the model of smoking’s effect on
lung cancer discussed in Example 1.1 and Example 2.6.

Proof. Checking that ∆′ ⊆ ∆φ is fast, since one can simply scan φ to make sure that φ mentions
precisely interventions mentioned in all δ ∈ ∆′; that φ mentions precisely the variables V appearing
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in the results of every intervention in δ ∈ ∆′; and that for each such variable V , at most of one of
its assignments V = v in ∆′ does not appear as an assignment or a negated assignment in φ.

We now give an algorithm to check whether δ ∈ ∆′ is compatible with ≺. We first give prose
and formal descriptions of the algorithm and then consider its runtime and correctness.

Order the variables V1, ..., Vn in Vφ in a way consistent with the well-order ≺. For each variable
Vi with i ∈ [n], do the following. First, for each intervention α in δ that mentions Vi, confirm
that the intervention leads to satisfiable results: if δ says that upon the intervention α which sets
Vi = v, the variable Vi takes a value v′ ̸= v, we reject δ, which necessarily has probability 0. Next,
for each pair of interventions α, α′ in δ which do not intervene on the value assigned to Vi, check
whether both interventions result in the same assignments to variables Vj for all j < i; we say that
such interventions α, α′ have agreement on all Vj for j < i. If this is the case, and yet δ says that
these two interventions result in different values for Vi, reject δ; since Vi can depend only on the
values of Vj for j < i, when these values are constant, Vi must be constant as well. Here is a formal
description of the algorithm. We will write V ∈ α to denote that the variable V appears (or is
mentioned) in the intervention α, i.e., that V = v is a conjunct in α for some value v.

Algorithm 1: Check that δ ∈ ∆′ is compatible with ≺
Order the variables V1, ..., Vn in Vφ according to ≺
for i in 1,...,n do

for intervention α in δ with Vi = v appearing in α do
if Vi = v′ with v ̸= v′ appears in the conjunction of assignments following α then

return δ is unsatisfiable, and so incompatible with ≺
end

end
for interventions α, α′ in δ agreeing on all Vj for j < i, and such that Vi /∈ α and
Vi /∈ α′ do

if α results in Vi = v and α′ results in Vi = v′ with v ̸= v′ then
return δ is incompatible with ≺

end
end

end
return δ is compatible with ≺

Below, we show that the above algorithm indeed runs in time poly(|φ|) and is correct, but for
clarity, let us step through its execution on some examples. Consider the input δ := [V1 = 0]V1 = 1.
Then, by the first “if” clause in the algorithm, δ is rejected as unsatisfiable, since the intervention
[V1 = 0] leads to impossible results. For another example, let δ′ be the formula

[V1 = 1 ∧ V4 = 1](V1 = 1 ∧ V2 = 0 ∧ V3 = 1 ∧ V4 = 1)
∧ [V1 = 1 ∧ V4 = 0](V1 = 1 ∧ V2 = 0 ∧ V3 = 0 ∧ V4 = 0).

Then in the second “if” clause on the third iteration, δ′ is rejected as incompatible with ≺, because
the interventions α = [V1 = 1 ∧V4 = 1] and α′ = [V1 = 1 ∧V4 = 0] do not intervene on V3, result in
the same values for V1 and V2, and do result in the same value for V3, contradicting the fact that
V3’s value must depend only on those assigned to V1 and V2.

It is helpful in considering these examples and the runtime of the algorithm to consider the
following table of values:
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Results of all interventions in the input formula δ′

Intervention V1 V2 V3 V4
α = [V1 = 1 ∧ V4 = 1] V1 = 1 V2 = 0 V3 = 1 V4 = 1
α′ = [V1 = 1 ∧ V4 = 0] V1 = 1 V2 = 0 V3 = 0 V4 = 0

In effect, the second “for” loop over all interventions α, α′ constructs the above table, starting
with the leftmost column V1 and proceeding to the right. The algorithm rejects δ′ when two cells
in the column Vi and rows α and α′ (with Vi /∈ α, α′) do not assign the same value to Vi but agree
on all columns Vj to the left. The restriction that Vi does not appear in α or α′ must be included
because distinct interventions α, α′ can disagree on the values they impose on Vi when intervening
on it, regardless of the values assigned to Vj with j < i; such disagreement does not constitute a
violation of the ordering ≺.

Let us first confirm that this algorithm runs in time poly(|φ|) and then show its correctness.
We observe that max{|δ|, n} = poly(|φ|). The algorithm contains an O(n) loop over V1, ..., Vn and
two O(|δ|2) loops over interventions. The work performed inside of these loops takes time O(n · |δ|),
since we are simply reading δ and checking values for the variables Vj for all j < i, which can be
stored in a lookup table (like the one above) of size O(n · |δ|). Thus the runtime of the algorithm
is indeed poly(|φ|).

Finally, we confirm that the algorithm is correct. Fix any δ ∈ ∆′ and recall that δ is of the form∧
α

(
[α]

∧
V ∈Vφ

βα
V

)
,

where βα
V ∈ Assignmentsφ(V ). First, suppose that the above algorithm declares δ compatible with

≺. We will inductively construct a deterministic model of equations F = {fVi}i∈[n] and show that
F |= δ and F is compatible with ≺. Define fV1 to be the constant function sending all arguments
to βV1 , where βV1 is the value of V1 upon any intervention α ∈ δ with V1 ̸∈ α; the second “for” loop
in the algorithm ensures that there is at most one such value, and if there is no such value, βV1 can
be chosen arbitrarily. Then fV1 |= ∧

α[α]βα
V1

. Indeed, this holds by construction for α with V1 ̸∈ α,
and it holds trivially for α with V1 ∈ α, because, by the first “for” loop, each α is compatible with
its results. For the inductive step, define fVi(V1 = βV1 , ..., Vi−1 = βVi−1) = βVi , where βVi is the
value of Vi upon any intervention α ∈ δ for which Vi ̸∈ α and βα

Vj
= βVj for all j < i; by the

same reasoning, there is at most one such value, and if there is no such value, βVi can be chosen
arbitrarily. Then by the same reasoning, fVi |= ∧

α[α]βα
Vi

. Because this holds for all i ∈ [n], we have
F |= δ. By construction, F is compatible with ≺, as desired.

Now, suppose that δ is compatible with ≺, so that δ is not self-contradictory and there exists
some F = {fVi}i∈[n] compatible with ≺ for which F |= δ. We claim that the above algorithm
returns that δ is indeed compatible with ≺ . Suppose for a contradiction that on iteration i, the
algorithm rejects δ as incompatible with ≺. Since δ is not self-contradictory, it follows by the
definition of the algorithm that for some interventions α, α′ (with Vi ̸∈ α, α′) which agree on all
Vj for j < i, we have [α]Vi = v and [α′]Vi = v′ with v ̸= v′. Let βj be the value such that the
assignments Vj = βj for j < i result from the interventions α and α′. Then

F |= [V1 = β1, ..., Vi−1 = βi−1](Vi = v ∧ Vi ̸= v),

which is impossible.

Lemma 4.6 (Existence of Model Matching Probabilities). Fix φ ∈ Lprop ∪ Lcausal, and suppose P
is a measure on ∆≺ ⊆ ∆φ for some ≺. Then there is a model M inducing the measure P on ∆≺,
i.e.,

q
P(δ)

y
M

= P(δ) for all δ ∈ ∆≺.
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Proof. Let us first define the model M and then show that it is recursive. Let Vφ denote all variables
appearing in φ. We define M =

(
F ,PM, {U},Vφ

)
, where Val(U) = ∆φ and PM(U = δ) = P(δ)

for all δ ∈ ∆φ. Enumerate the variables Vφ = {V1, ..., Vn} in a way consistent with ≺. Fix any
δ ∈ ∆φ. Recall that δ is of the form ∧

α

(
[α]

∧
i∈[n]

βα
Vi

)
,

where βα
Vi

∈ Assignmentsφ(Vi). If δ is satisfiable, it has a model, i.e. a deterministic system of
equations Fδ = {f δ

Vi
}i∈[n] such that Fδ |= δ. Turning now to define the equations F = {fVi}i∈[n],

for any assignment v to the variables Vj for j < i, put

fVi(v, U = δ) = f δ
Vi

(v).

By the above equations and mutual unsatisfiability of δ ∈ ∆≺, it follows that for all such δ

q
P(δ)

y
M

= PM[U = δ] = P(δ),

as required.
It remains for us to confirm that M is recursive. We claim that the influence relationships

Vi ⇝ Vj induced by the model M are simply those induced by the deterministic models4 Fδ. This
would complete the proof, since by assumption we have δ ∈ ∆≺, so that Fδ is compatible with
≺, and therefore i < j. Suppose that M induces the influence relation Vi ⇝ Vj . Then for some
interventions α, α′ which disagree only on the value assigned to Vi, some assignment u to U , and
some distinct values v, v′ of Vj , we have

F ,u |= [α]Vj = v ∧ [α′]Vj = v′.

Let δ be the value that u assigns to U . We claim that

Fδ |= [α]Vj = v ∧ [α′]Vj = v′.

Indeed, this follows from the fact that fVi(v, U = δ) = f δ
Vi

(v) for all i ∈ [n].

Lemma 4.7 (Small Model Property). Fix φ ∈ Lprop ∪ Lcausal. If φ is satisfiable, then φ has a
small model, in the sense that the model assigns positive probability to at most |φ| elements δ ∈ ∆φ.

Proof. Since φ is satisfiable, it has a recursive model M with some order ≺. Given the existence
of M, we claim there exists a small model Msmall. Indeed, consider the system of equations in the
unknowns {P(δ) : δ ∈ ∆≺} given by∑

δ∈∆≺

P(δ) = 1

∑
δ∈∆≺
δ|=ϵ

P(δ) = PM(ϵ), for each ϵ such that P(ϵ) is mentioned in φ.

There are at most |φ| equations, and since for each ϵ, there exists some δ ∈ ∆≺ for which δ |= ϵ,
the equations are non-trivial. Suppose for the moment that P = PM is a solution. Then by a fact
of linear algebra (see Lemma 4.8 of Fagin et al. 1990), since the at most |φ| linear equations have a

4I.e., according to Definition 2.5 when each deterministic model is thought of as a probabilistic model in which its
respective system of functions is selected with no uncertainty.
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solution, they have a solution P = Psmall in which at most |φ| of the variables Psmall(δ) are nonzero.
By Lemma 4.6, we then infer from the existence of Psmall that the desired model Msmall exists.

It remains to confirm that P = PM is indeed a solution to the above system of equations. To
show this, we must show that for ϵ with P(ϵ) mentioned in φ,

P(ϵ) =
∑

δ∈∆≺
δ|=ϵ

P(δ).

By our choice of ≺, we know that the recursive model M will assign probability 0 to all δ ̸∈ ∆≺.
It thus suffices to show that the above holds when ∆≺ is replaced with the larger set ∆φ. To do
this, we will put ϵ into a more manageable form; afterwards, establishing the above equality will
be relatively straightforward.

If ϵ mentions only one intervention α, we claim that |= ϵ ↔ [α]β, where β is an assignment of
variables in φ to various values. Indeed, negation and conjunction distribute over [α], in the sense
that |= ¬[α]β ↔ [α]¬β and |= [α]β ∧ [α]β′ ↔ [α](β ∧ β′), so [α] can be assumed to appear on the
outside. Further, since by the validity Def, each variable takes one and only one value upon the
intervention α, we can replace β with a disjunction over all assignments to all variables in φ which
agree with β. Let us use vφ to denote such an assignment ∧

V ∈Vφ
βV where βV ∈ Assignments(V ),

as defined in Definition 4.3. Summing up:

|= ϵ ↔ [α]
∨

vφ|=β

vφ.

The exact same ideas apply when ϵ mentions several interventions [αi]βi for i ∈ [n], in which case

|= ϵ ↔
∧
i

[αi]
∨

vφ|=βi

vφ ↔
∨

vi
φ|=βi

∧
i

[αi]vi
φ.

Thus, since all interventions, variables, and assignments appearing in ϵ are mentioned by the δ ∈ ∆φ,
and one can always add trivial interventions [α]⊤, we see that it is a validity that ϵ is equivalent to
a disjunction of formulas δ ∈ ∆φ. Finally, we conclude with the observation that since the δ ∈ ∆φ

are mutually unsatisfiable, additivity for the measure P (according to which P(δ∨δ′) = P(δ)+P(δ′)
for mutually unsatisfiable δ, δ′) tells us that

P(ϵ) =
∑

δ∈∆φ

δ|=ϵ

P(δ),

as desired.

With the lemmas in hand, we now give the desired reduction:

Proof of Proposition 4.2. Fix a SATLcausal instance φ. We first describe the NP certificate and
many-one reduction and then prove soundness and completeness. The NP certificate consists of an
order ≺ on Vφ and a set of ∆′ of size at most |φ|. The reduction proceeds as follows.

1. Check that ∆′ ⊆ ∆φ and that each δ ∈ ∆′ is compatible with ≺.
We note that by Lemma 4.5, this can be done in time polynomial in |φ|.
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2. Replace P(ϵ) appearing in φ with P
( ∨

δ∈∆′

δ|=ϵ

f(δ)
)
, where f is a bijection between ∆′ and an

arbitrary set of mutually unsatisfiable statements in Lprop. Call the resulting Lprob formula
φ(∆′).
We note that checking δ |= ϵ can be done in polynomial time, since δ is a complete description
of the results of all interventions.

Completeness: If φ is satisfiable, by Lemma 4.7 it has a small model that assigns positive
probability only to some ∆′ ⊆ ∆≺ for some ordering ≺, and the probabilities given by this model
also solve φ(∆′). So the certificate exists and the reduction succeeds in producing a satisfiable
formula.

Soundness: If φ(∆′) is satisfiable, it is solved by some measure P. This is a measure defined
on f(∆′), and so on ∆′ ⊆ ∆≺. Thus since each δ ∈ ∆′ is compatible with ≺, by Lemma 4.6 there
exists a model M such that

q
P(δ)

y
M

= P(δ) for δ ∈ ∆φ. This M is a model of the inequalities
stated by φ and is recursive, so φ is satisfiable as well.

4.2 Characterization

Now, we show our main result:
Theorem 1. We characterize two sets of tasks:

1. SATcomp
prob , SATlin

prob, SATcomp
causal, SATlin

causal are NP-complete.

2. SATcond
prob ,SATpoly

prob,SATcond
causal,SATpoly

causal are ∃R-complete.

We can express these results in a diagram, which holds for ∗ ∈ {prob, causal}:

SATcomp
∗

SATcond
∗

SATlin
∗

SATpoly
∗

∃R

NP

The line separates ∃R-complete problems from NP-complete problems, and an arrow from one sat-
isfiability problem to another indicates that any instance of the former problem is an instance of
the latter.

We note that these results imply that there exists a many-one, polynomial-time, deterministic
many-one reduction from SAT∗

causal to SAT∗
prob, for any ∗ ∈ {comp, lin, cond, poly}, whereas Propo-

sition 4.2 only gives a non-deterministic reduction. To illustrate, recall the model of smoking’s effect
on lung cancer discussed in Example 1.1 and Example 2.6. Consider again the task of determining
whether smoking makes one more likely to possess lung cancer, given one’s causal assumptions Γ
and one’s observation of statistical correlation between smoking, tar deposits in the lungs, and lung
cancer. In other words, the task is determine whether

Γ + Correlational data |= P
(
[X = 1]Y = 1

)
> P

(
[X = 0]Y = 1

)
, (4)

where the correlational data includes statements such as P(Y = 1|X = 1) > P(Y = 1|X = 0) and
0.7 > P(Y = 1|X = 1) > 0.6. The above result implies that this task is no more difficult than that
of determining whether an analogous entailment

Γ′ + Correlational data |= Probabilistic conclusion (5)
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holds, given purely probabilistic assumptions Γ′. Indeed, given Equation (4), one can efficiently (i.e.
in polynomial time) construct a probabilistic equation with the form of Equation (5) such that
both entailments have the same truth-value; the causal inference goes through if and only if the
purely probabilistic inference goes through.

To show the results in the second part of Theorem 1, we borrow the following lemma from
Abrahamsen et al. (2018):

Lemma 4.8. Fix variables x1, ..., xn, and set of equations of the form xi +xj = xk or xixj = 1, for
i, j, k ∈ [n]. Let ∃R-inverse be the problem of deciding whether there exist reals x1, ..., xn satisfying
the equations, subject to the restrictions xi ∈ [1/2, 2]. This problem is ∃R-complete.

Here, for reasons of space we only outline the two steps in the proof of Lemma 4.8. First, one
shows that finding a real root of a degree 4 polynomial with rational coefficients is ∃R-complete,
and then one repeatedly performs variable substitutions to get the constraints xi + xj = xk and
xixj = 1. Second, one shows that any such polynomial has a root within a closed ball about the
origin, and then one shifts and scales this ball to contain exactly the range [1/2, 2].

With the lemma in hand, we show the theorem:

Proof of Theorem 1. We begin with the first statement. Using the fact that SATcomp
prob is NP-hard, it

suffices to show that SATlin
causal is inside NP; indeed, since all of the satisfiability problems mentioned

in the first statement include SATcomp
prob and are included by SATlin

causal, they would all then be NP-
hard and inside NP, and so would all be NP-complete. It is known both that SATlin

prob is inside
NP and that NP is closed under many-one NP reductions; by Proposition 4.2, this places SATlin

causal
inside NP, as desired.

We turn now to the second statement. By the same reasoning, it suffices to show that SATcond
prob

is ∃R-hard and that SATpoly
causal is inside ∃R. We claim that SATpoly

prob is inside ∃R; ∃R is closed
under many-one NP reductions (ten Cate et al., 2013), so Proposition 4.2 will place SATpoly

causal in
∃R immediately.

To show that SATpoly
prob is inside ∃R, we slightly extend a proof by (Ibeling and Icard, 2020) that

the problem is in PSPACE. Suppose that φ ∈ Lpoly
prob is satisfied by some model P. Again using the

fact that ∃R is closed under NP-reductions, we will provide a reduction of φ to a formula ψ ∈ ETR.
Let E contain all ϵ such that P(ϵ) appears in φ. Then consider the system of equations∑

δ∈∆φ

P(δ) = 1

∑
δ∈∆φ

δ|=ϵ

P(δ) = P(ϵ) for ϵ ∈ E.

The measure P satisfies the above system, so by Lemma 4.7, the above system is satisfied by
some model Psmall assigning positive probability to a subset ∆+ ⊆ ∆φ of size at most |E| ≤
|φ|. Thus adding to φ the constraint ∑

δ∈∆+ P(δ) = 1 and replacing each P(ϵ) appearing in φ
with ∑

δ∈∆+:δ|=ϵ P(δ) gives a formula ψ belonging to ETR which has a model, namely Psmall—and
conversely, the mutual unsatisfiability of the δ ∈ ∆+, together with the fact that they sum to unity,
ensures that any model of ψ is a model of φ. Further, the size constraints on E and ∆+ ensure
that ψ can be formed in polynomial time.

Let us conclude the proof by showing that SATcond
prob is ∃R-hard. To do this, consider an ∃R-

inverse problem instance φ with variables x1, ..., xn. It suffices to find in polynomial time a SATcond
prob
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instance ψ preserving and reflecting satisfiability. We first describe the reduction and then show
that it preserves and reflects satisfiability.

Corresponding to the variables x1, ..., xn, define fresh events δ1, ..., δn ∈ σ(Prop). Define fresh,
disjoint events δ′

1, ..., δ
′
n. Let ψ be the conjunction of the constraints

1
n

≥ P(δi) ≥ 1
4n for i = 1, ..., n

P(δi|δj) = P(δi) ∧ P(δi ∧ δj) = 1
4n2 for xi · xj = 1 in φ

P(δ′
i) = P(δi) ∧ P(δ′

j) = P(δj) ∧ P(δ′
i ∨ δ′

j) = P(δk) for xi + xj = xk in φ.

The formula ψ is not yet a formula in Lprob
cond, since it features constraints of the form P(α) ≥ 1/N

and 1/N ≥ P(α). For any constraint of the form P(α) ≥ 1/N, replace 1/N with P(ϵN ), replace
α with α ∨ ϵN , and require that the fresh events ϵ1, ..., ϵN are disjoint with P(∨iϵi) = 1 and
P(ϵi) = P(ϵj) for i = 1, ..., N . Similarly, for any constraint of the form 1/N ≥ P(α), replace 1/N

with P(ϵ′N ), replace α with α ∧ ϵ′N , and require that the fresh events ϵ′1, ..., ϵ′N are disjoint with
P(∨iϵ

′
i) = 1 and P(ϵ′i) = P(ϵ′j) for i = 1, ..., N . (The constraints of the form P(α) = 1/N are

replaced in the obvious way.)
This completes our description of the reduction. The map xi 7→ xi/2n sends satisfying solutions

of φ to those of ψ, and the inverse map P(δi) 7→ P(δi) · 2n sends satisfying solutions of ψ to those
of φ. Further, the operations performed are simple, and the introduced events δi, δ

′
i, ϵi and the

constraints containing them are short, so the reduction is polynomial-time.

5 Conclusion and Outlook

We have shown that questions posed in probabilistic causal languages can be systematically reduced
to purely probabilistic queries, showing that the former are—from a computational perspective—no
more complex than the latter. In fact, we demonstrated a kind of bifurcation between two classes
of languages. On the one hand, languages encompassing at most addition enjoy an NP-complete
satisfiability problem, whether the language is causal or not. However, as soon as we admit even
a modicum of multiplication into the language, causal and probabilistic languages become hard
for the class ∃R, and even the full language of polynomials over (causal) probability terms is ∃R-
complete. At the low end, this applies to a language with no explicit addition or multiplication, but
just inequalities between conditional probability terms, or even simple independence statements for
pairs of variables. As clarified in the resulting landscape of formal systems, we have identified an
important sense in which causal reasoning is no more difficult than pure probabilistic reasoning.
The substantial empirical and expressive gulf between causation and “mere (statistical) association”
is evidently not reflected in a complexity gap.

It should be acknowledged that, from the standpoint of inferential practice, questions of the
form (2) constitute just one part of a larger methodological pipeline. In some sense this is only
a final stage in the process of going from an inductive problem to a deductive conclusion. The
formulation of reasonable inductive assumptions can itself be an arduous task, as can translating
those assumptions into a language like Lprob or Lcausal (that is, into the set Γ). Take once again
the example of do-calculus (Example 1.1). The idea behind this method is that in many contexts
investigators will be in a position to make reasonable qualitative (viz. graphical) assumptions,
perhaps justified by expert knowledge, to the effect that some variables are not causally impacted
in a direct way by certain other variables. Even when this method involves nothing more than
assuming a specific causal (directed acyclic) graph, it may still take work to determine which
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causal-probabilistic statements are licensed by the graph. Many subtasks in this connection have
been studied. For instance, determining whether three sets of variables in a graph stand in the
so called d-separation relation (which in turn guarantees conditional independence) is known to
be very easy (it is linear time; see, e.g., Schachter 1988). Nonetheless, there are certainly other
questions related to complexity that one might ask in this and other settings.

Moving beyond statistical and causal inference tasks narrowly construed, the results in this
article raise a number of further research questions, both technical and conceptual. For instance,
one can easily imagine versions of our causal languages in a multi-agent setting, with a (causal)
probability operator Pa for multiple agents a. As has been widely recognized, strategic interaction
routinely involves reasoning about causality and counterfactuals (see, e.g., Stalnaker 1996). Existing
formal proposals for capturing these styles of reasoning have been largely qualitative, with coun-
terfactual patterns formalized using models of belief revision rather than structural causal models
(see, e.g., Board 2004). Whereas (“pure”) probability-logical languages have been thoroughly ex-
plored in the game theory literature (e.g., Heifetz and Mongin 2001), the causal-probability-logical
languages studied here would be quite natural to investigate in that context. Echoing our themes
in the present article, what happens to computational complexity in this multi-agent setting, and
specifically would a reduction to pure (multi-)probability would still be possible?

In a more technical vein, there are natural questions about further extensions to even the
most expressive languages we considered. To take just one example, much of probabilistic and
causal reasoning employs tools from information theory like (conditional) entropy that in turn
rely on logarithmic principles, or alternatively (via inversion), reasoning about exponentiation. A
major open problem in logic—known as Tarski’s exponential function problem—is to determine
whether the first-order theory of the reals with exponentiation is decidable. Short of that, one
might hope to show that some of the weaker (causal-)probability languages studied here remain
decidable, perhaps even of relatively low complexity, when exponentiation is added. However, for
the strongest languages, such as Lpoly

prob, this may prove difficult. As Macintyre and Wilkie (1995)
have shown, decidability of the existential theory of the reals with the unary function ex would
already imply a positive answer to Tarski’s problem.

The reader will surely think of further questions and extensions pertaining to our work in this
article. We hope that the systems, results, and methods offered here will be useful in these various
directions moving forward, and more generally will help to catalyze further research at the fruitful
intersection of logic, probability, causality, and complexity.
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