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Since Saul Kripke’s influential work in the ’70s, the revisionary approach to semantic 
paradox, the idea that semantic paradoxes must be solved by weakening classical logic, has 
been increasingly popular. In this paper, we present a new revenge argument to the effect that 
the main revisionary approaches breed new paradoxes they are unable to block. 
 
 

1. Introduction 
 
Let 𝜆  be a sentence which says of itself that it is not true. On the plausible if naïve 
assumption that, for every sentence 𝜑, 𝜑 and ‘𝜑 is true’ are in some sense equivalent, a little 
reflection shows that 𝜆 is true if and only if it isn’t—a contradiction. In classical logic, this 
entails any sentence, that is, the reasoning makes one’s theory trivial. This is the Liar 
Paradox. Because the existence of sentences such as 𝜆 can be proved from basic syntactic 
principles, it is often thought that there are only two main ways out of the problem: one can 
either give up naïve principles about ‘true’ and other semantic notions, or revise classical 
logic. Since Saul Kripke’s influential work in the ’70s, the latter revisionary option has been 
increasingly popular.1 Authors such as Hartry Field have forcefully argued that the truth 
predicate plays a key expressive role in our cognitive lives—one that requires that 𝜑 and ‘𝜑 
is true’ be intersubstitutable. In a slogan, truth must be naïve.2 As a result, classical logic 
must be restricted on pain of triviality but—revisionary theorists argue—this is not too high a 
cost, since classical principles are restricted where and only where they create trouble.3  

Different non-classical theories of truth offer different explanations of the failure of 
classical principles. For instance, sentences that do not satisfy all the principles of classical 
logic have been characterised as ‘paradoxical’ [Kripke 1975], ‘unstable’ [Zardini 2011], 
‘indeterminate’ [McGee 1991; Field 2008], ‘glutty’ [Beall 2009], both ‘tolerantly assertible 
and deniable’ [Cobreros et al. 2013], and so on. In turn, these notions have been thought to 
give rise to specific revenge arguments: Liar-like reasonings aimed at showing that while 
restricting certain classical principles allows non-classical theories to express a naïve notion 
of truth (and perhaps other semantic notions), notions such as absolute indeterminacy can 
only be expressed in those theories on pain of triviality. 4  Revisionary theorists have 
responded by rejecting the coherence of revenge-breeding notions. For instance, Field writes 
that a unified notion of indeterminacy is ‘ultimately unintelligible’ [Field 2008: 356]; 
similarly, Field, Jc Beall, and Graham Priest have all rejected the coherence of the notion of 
Boolean negation.5 More generally, revisionary theorists typically dismiss semantic revenge 
arguments, on the grounds that they assume (a non-instrumental reading of) classical 
semantics. However, revisionary theorists either reject classical semantics outright [Ripley 
2013], or interpret it instrumentally,6 or argue that it should be no surprise that non-classical 
notions cannot be expressed from within a classical framework [Beall 2007a; Field 2008]. 
																																																								
1 See e.g. Priest [2006a]; Field [2008]; Beall [2009]; Zardini [2011]; Cobreros et al. [2012]. 
2 See e.g. Field [2008: ch. 13]; Beall [2009: sec. 1.1]. 
3 See e.g. Priest [2006a: 221]; Beall [2009: 111-12]; Zardini [2011: 518-19]; Woods [2018]. 
4 See e.g. Gauker [2006: sec. 3]; Leitgeb [2007]; Rayo and Welch [2007]; Welch [2014]. 
5 See e.g. Priest [2006b: ch. 5]; Field [2008: sec. 21.1]; Beall [2009: ch. 3]. The Boolean negation ¬𝜑 of 𝜑 
takes value 1 whenever 𝜑 has a value other than 1. 
6 See e.g. Field [2008: 356], and Beall [2009: 39 and 57]. 



More recently, it has been argued that revisionary approaches validating the classical 
structural rules cannot express notions of naïve validity and that this fact should be taken to 
favour a substructural approach—one that restricts some of the classical structural rules (for 
discussion see e.g. Shapiro [2011a], Beall and Murzi [2013], Zardini [2014], Field [2017], 
Murzi and Rossi [2018a]). Substructural approaches can express naïve truth, Boolean 
negation, and naïve validity (Zardini [2011], Ripley [2013], Nicolai and Rossi [2018]). 
Moreover, they have been argued to be ‘surprisingly strong’ and to approximate ‘the 
simplicity and symmetry of classical logic to an extent unmatched by its naive rivals’ 
[Zardini 2011: 512]. Indeed, David Ripley has argued in a number of papers that his favourite 
nontransitive logic of paradox just is classical logic.7  

But are substructural approaches revenge immune? Is there a general revenge 
problem afflicting all kinds of revisionary approaches? In this paper, we present a new proof-
theoretic revenge argument to the effect that the main revisionary approaches, structural and 
sub- structural alike, breed new paradoxes that they are unable to block. Our argument does 
not rely on semantic notions and, unlike existing revenge arguments, it applies in a uniform 
way to any minimally strong revisionary theory. 

Our argument unfolds in two main stages. We start from the observation that current 
revisionary theories feature sentences such as 𝑡	 = 	𝑡 that satisfy all the principles of classical 
logic in a given theory S, and sentences such as 𝜆 that satisfy such principles in S only on 
pain of triviality. We call sentences of the former kind unparadoxical-in-S and sentences of 
the latter kind paradoxical-in-S. We argue that these notions are perfectly intelligible, even 
by non-classical lights, and provide a general recipe for generating revenge paradoxes to the 
effect that the main revisionary theories can only be closed under naïve principles for 
paradoxicality and unparadoxicality on pain of triviality. 

From a revisionary perspective, the most natural way out of the problem is to treat the 
new paradoxes in the same way as the paradoxes of truth, that is by further weakening the 
logic. Since our revenge paradoxes rely on very weak logical resources, the upshot is that the 
revisionary approach is much more radical than it is usually thought. 

To be sure, a more conservative reaction to the paradoxes of paradoxicality and 
unparadoxicality would be to question the intelligibility of these notions, much in the same 
way as notions such as absolute indeterminacy have already been questioned. However, we 
don’t think this would ultimately do. For one thing, the distinction between paradoxical and 
unparadoxical sentences in our sense is a simple fact about revisionary theories—one that 
encodes a minimal lesson to be learned from the semantic paradoxes, namely that, if truth is 
naïve, sentences such as 𝜆 yield absurdity if reasoned with classically, while sentences such 
as 𝑡 = 𝑡 don’t (see e.g. Zardini [2011: 499]). For another, the distinction plays a crucial role 
in the main revisionary approaches to semantic paradox: it allows revisionary theories to 
‘recapture’ classical theories such as classical mathematics, even if their logic is non-
classical. 

The plan of the paper is as follows. Sections 2-3 introduce the Liar Paradox and its 
four main revisionary ways out. Section 4 offers a precise definition of classical recapture. 
Section 5 presents four new revenge paradoxes, which trivialise the approaches introduced in 
section 4. Sections 6-7 discuss the relevance of our results and address potential objections. 
Section 8 concludes. The proofs of our results are given in an Appendix. 

 
 

 
 

																																																								
7 See e.g. Ripley [2012], and Ripley [2013: 146].	



2. The Liar Paradox 
 
We begin with some technical preliminaries. Let ℒ() be a first-order language with identity 
whose logical vocabulary includes ¬ , ∧ , ∨ , → , ∀ , and ∃ . In addition, 	ℒ()  contains a 
propositional absurdity constant ⊥, a propositional logical truth constant ⊤ and a predicate 
𝑇𝑟 expressing truth. Terms and formulae of ℒ() are defined as usual. Closed formulae are 
called ‘sentences’. We let 𝑡 and 𝑠 (possibly with indices) range over closed terms of	ℒ(), and 
use 𝜑, 𝜓, and 𝜒 (possibly with indices) as schematic variables for sentences of ℒ(). 

We require that any theory we consider satisfies two further requirements: 
 

(i) There is a function ⌈	⌉  such that for every sentence 𝜑 , ⌈𝜑⌉  is a closed term. 
Informally, ⌈	⌉ can be understood as a quote-name forming device, so that ⌈𝜑⌉ is a 
name of 𝜑. 

(ii) For every open formula 𝜑(𝑥) there is a term 𝑡: such that ⌈𝜑(𝑡:/𝑥)⌉ is 𝑡:, where 
𝜑(𝑡:/𝑥) is the result of replacing every occurrence of 𝑥 with 𝑡: in 𝜑. 

 
In order to satisfy (i) and (ii), a theory has to interpret a modicum of arithmetic or syntax 
theory. For simplicity, we only consider theories in which (i) and (ii) provably hold. 

 A sequent is an expression of the form Γ ⊢ 𝜑, where Γ is finite multiset of sentences.8 
The multiset to the left of ⊢ is the antecedent of a sequent; the sentence on the right of ⊢ is 
its consequent. We now recall the rules of classical propositional logic (henceforth, CPL).9 
Our axiomatisation is highly redundant, in order to simplify the definition of classical 
recapture to be given in section 4 below.10 

 

 
 

 

																																																								
8 A multiset is just like a set, except that repetitions count. We use {	} as brackets for sets, and [ ] as brackets for 
multisets. Thus, 𝜑, 𝜓, 𝜓  and 𝜑, 𝜓  are the same set but [𝜑, 𝜓, 𝜓] and [𝜑, 𝜓] are distinct multisets. We omit 
brackets from multisets in sequents, e.g. writing 𝜑, 𝜑 ⊢ 𝜓 instead of [𝜑, 𝜑] ⊢ 𝜓. 
9 This suffices for the purposes of this paper: the results of section 5 only require propositional logical rules. For 
simplicity, we have opted for a single-conclusion natural deduction calculus in sequent-style in which structural 
rules are explicitly formulated. 
10 A double line indicates that a rule can be read in both directions.	



The sequents over the horizontal bar of a rule are its premisses; the sequent below is its 
conclusion. A rule is an inference if its premises are empty, and a meta-inference otherwise. 

In keeping with revisionary orthodoxy, we assume a naïve view of truth, that is, that 
the truth predicate satisfies the following truth rules (for convenience, we assume both 
positive and negative forms): 

 

 
 
Other forms of naïveté include the T-Schema 
 

(T − Schema) Tr(⌈φ⌉) ↔ 𝜑, 
 
and transparency, viz. the intersubstitutivity salva veritate of Tr(⌈φ⌉)and 𝜑  in all non-
opaque contexts. 

We are now in a position to present the Liar Paradox. Given our assumptions on ℒ() 
we can prove that there is a sentence 𝜆 identical to ¬Tr(⌈𝜆⌉), so that 𝜆 says of itself that it 
isn’t true.11 We may then reason thus. We first prove Tr 𝜆 ⊢	⊥: 
 
 
 
 

 
 
 
 
 
Call the above derivation 𝐷O. We then derive Tr 𝜆  from 𝐷O:  
 
 
 
 
 
 
 
 
Call this derivation 𝐷P . 𝐷O  and 𝐷P  can now be combined together to yield a proof of 
absurdity, courtesy of Cut:  
 
 
 
 
 
 
Given ⊥-E, it yields a proof of any sentence φ, thus trivialising any theory in which the 
paradox can be derived.12   
																																																								
11 More precisely, 𝜆 is the sentence ¬Tr(𝑡T), where 𝑡T is a closed term such that 𝑡T = ⌈¬Tr(𝑡T)⌉. However, in 
the theories we consider 𝜆 and ¬Tr(𝑡T) are always intersubstitutable, and we will therefore stick to this simpler 
formulation. The same goes for the other ‘self-referential’ sentences to be introduced later. 



3. Four Revisionary Ways Out 
 
If naïve semantic principles such as Tr-I and Tr-E are non-negotiable, as revisionary theorists 
typically maintain, then one must blame the logic in order to avoid non-triviality. To be sure, 
such a revision is not to be taken lightly, and there is no shortage of classical treatments.13 
But, contemporary logical wisdom has it, these alternatives are dire, the naïve semantic 
principles are non-negotiable, and there might be independent reasons for weakening 
classical logic in the first place.  

The Liar Paradox makes use of four main logical ingredients: ¬-I, ¬-E, SContr, and 
Cut. Each of these rules can be, and indeed has been, questioned.14 We briefly consider the 
corresponding four revisionary strategies, and introduce, for each such strategy, the most 
representative corresponding formal theory.  
 
 

3.1 Paracomplete and Paraconsistent 
 
The most popular revisionary approaches to paradoxes such as the Liar involve revising the 
classical theory of negation and the conditional, according to which ¬ satisfies both ¬-I and 
¬-E, and → satisfies both →-I and →-E. According to paracomplete theorists, sentences such 
as λ are gappy: they either lack a semantic value, or they have an intermediate value between 
truth and falsity. According to paraconsistent theorists, sentences such as 𝜆 are glutty, that is, 
they are both true and false. We briefly review both approaches in turn.15 

Paracomplete theorists typically advocate the so-called strong Kleene logic K3 
(Kleene [1952: 332-40]), or some extension thereof. K3 is given by the rules of classical 
logic minus ¬-I and →-I. As a consequence, the Law of Excluded Middle 

 
LEM 			⊢ 𝜑 ∨ ¬𝜑 

 
is not unrestrictedly valid either. We call K3TT the theory resulting from adding the naïve 
truth rules to a sufficiently expressive theory based on the logic K3.  
Dually, paraconsistent theories are typically based on the logic LP, or some extension thereof 
(Asenjo [1966]; Priest [1979]). LP is given by the rules of classical logic minus ¬-E and →-
E. As a result, the Law of Non-contradiction 
 

LNC 			𝜑 ∧ ¬𝜑 ⊢⊥ 
 
must be given up. We call LPTT the theory resulting from adding the naïve truth rules to a  
sufficiently expressive theory based on the logic LP.   
																																																																																																																																																																												
12 Triviality can also be established, without making use of ⊥-E, via Curry’s Paradox. The paradox involves a 
sentence 𝛾  identical to Tr(⌈𝛾⌉) 	→ 	𝜓  (where 𝜓  is any sentence). Given SRef, SContr, Cut, →-I, and →-E, a 
Liar-like argument allows one to ‘prove’ 𝜓. 
13 Examples of classical hierarchical treatments include Tarski [1936]; Parsons [1974]; Glanzberg [2004]; Murzi 
and Rossi [2018b]; for classical, non-hierarchical approaches see e.g. Feferman [1991]; Leitgeb [2005]; Halbach 
[2011: sec. 19.3-19.5].  
14 The revisionary literature to date has almost exclusively focused on theories validating SRef. While it is 
possible to devise a revenge paradox for SRef-free approaches along the lines of the ones to be developed in 
section 5, we don’t give the argument here for reasons of space. For a recent proposal involving a restriction of 
SRef, see Nicolai and Rossi [2018]. 
15 Paracomplete theories have been developed in Kripke [1975]; Field [2008, 2013]; Halbach and Horsten 
[2006]; Horsten [2012]. For paraconsistent logics and their application to semantic paradoxes, see e.g. Asenjo 
[1966]; Priest [1979, 2006a]; Goodship [1996]; Beall [2009]. 



 
 

3.2 Substructural Approaches: Non-contractive and Non-transitive 
 
We now turn to approaches which restrict the structural rules SContr  and Cut . Non-
contractive approaches advocate a restriction of SContr . That is, according to these 
approaches the fact that 𝜓  follows from [𝜑, 𝜑]  does not entail that 𝜓  follows from [𝜑] 
alone.16 Elia Zardini [2011] proves syntactic consistency for a transparent theory of truth 
whose underlying logic is a suitable strengthening of multiplicative affine linear logic 
(henceforth, MALL). MALL’s propositional fragment is CPL  without SContr  and with ∨-E 
replaced by the following weaker version: 
 
 
 
 
We call the propositional fragment of Zardini’s theory MALLTT, for a sufficiently expressive 
theory based on the logic MALL with transparent truth.17  

Finally, non-transitive approaches recommend a restriction of Cut.18 In particular, 
Pablo Cobreros, Paul Egré, Robert van Rooij, and David Ripley have recently put forward a 
non-transitive theory based on the non-transitive logic ST, which is essentially classical logic, 
with all its theorems and inferences, but without the rules Cut, →-E, ∨-E, and ¬-E. The 
theory, labelled STTT for strict tolerant transparent truth, allows for a uniform treatment of 
the semantic and indeed soritical paradoxes. For simplicity, we consider a sufficiently 
expressive theory of transparent truth, which we call STTTO, given by a sub-logic of ST with 
the addition of the naïve truth rules. More precisely, the logic of STTTO is given by the rules 
of CPL minus Cut, →-E, ∨-E, and ¬-E.  
 
 

4. Classical Recapture 
 
The four families of non-classical theories we have just introduced all share a common 
feature: despite their non-classicality, they have fully classical fragments. That is, all the 
theories presented in section 3 limit their restrictions to classical logic to some sentences. 
This is not only a basic fact about those theories; it also allows one to apply those theories to 
mathematics and science more generally. As it is sometimes said, non-classical theories can 
recapture classical reasoning when needed. 19  For instance, Field sees himself as being 
engaged in the project of finding  
 

a generalisation of classical logic that takes the classical rules to be appropriate for 
dealing with ‘ordinary’ predicates (such as those of standard mathematics and 
physics) but which allows only weaker rules when dealing with certain 
‘extraordinary’ predicates [such as ‘true’]. [Field 2008: 7]  

																																																								
16 See e.g. Shapiro [2011a]; Mares and Paoli [2014]; Zardini [2011]. 
17 Zardini’s full theory IKTc , as he calls it, includes some controversial infinitary rules for the quantifiers 
[Zardini 2011: 508]. The revenge paradox to be developed in section 5.5 applies not only to Zardini’s full 
theory, but also a version of his theory in which the conjunction and disjunction operators are additive, i.e. 
governed by context-sharing rules, and the quantifiers are governed by standard, finitary rules (for discussion, 
see Zardini [2011: 509-10]).  
18 See for instance Weir [2005]; Ripley [2012]; Cobreros et al. [2013].   
19 See e.g. Priest [2006a: 221], Field [2008], Beall [2009: 111-12], Zardini [2011].   



 
Classical logic is restricted where, and only where, it creates trouble.20  To see how non-
classical theories recapture classical theories, our starting point is a particularly simple way 
of characterising the classical fragment of K3TT , LPTT , MALLTT , STTTO , and their 
extensions. Such theories all enjoy the following informal property: 
 
(Classicality Principles) There are finitely many classically valid principles such that a 
sentence satisfies such principles only if it satisfies all classical principles. 
 
We can then say that a theory recaptures classical logic if it is closed under weaker versions 
of classical rules which, whenever some extra conditions are satisfied, reduce to their 
classical counterparts. The following definition formally captures this idea. 
 
Definition 4.1 (Classical recapture). Let S be a non-trivial theory. Then, S enjoys a classical 
recapture property if it is 𝔓-classical recapturing, for some classically valid principle 𝔓 
invalid in S. The following classical recapture properties correspond to the revisionary 
approaches reviewed in sections 3.1-3.2. 
 

§ S is LEM-classical recapturing if it is closed under the rules of CPL, where →-I and 
¬-I are replaced by the following weaker versions: 

 
 
 
 
 

§ S is LNC-classical recapturing if it is closed under the rules of CPL, where →-E and 
¬-E  are replaced by the following weaker versions:21 

 
 
 
 
 

§ S is LContr-classical recapturing,    

(LContr) ⊢ 𝜑 → (𝜑 ∧ 𝜑), 

 if it is closed under the rules of CPL, where SContr is replaced by the following 
 weaker version: 
 
 
 
 

§ S is Cut-classical recapturing if it is closed under the rules of CPL minus Cut, where 
→-E, ¬-E, and ∨-E are replaced by the following weaker versions:    

 
 
 

																																																								
20 Field’s quote is strictly speaking misleading: current non-classical approaches to semantic paradox seek to 
preserve classical logic also for unproblematic uses of the truth predicate, such as ‘All the theorems of Peano 
Arithmetic are true’, ‘If 65 + 57 = 125  is true, then 65 + 57 ≠ 125  is not true’, and so on. 
21 Our characterisation of classical recapture in LP is very much in line with an account discussed in Priest 
[2006a: 117-18] and Beall [2011]. 	



 
 
 
 
 
 
 
 
We now show that classical logic can be recaptured in the sense of Definition 4.1, in each of 
the non-classical approaches introduced in section 3. We do so by adding the classical 
recapturing rules to our target theories and by then establishing that classical logic holds for φ 
whenever the relevant classical principles hold for 𝜑. 
 
Definition 4.2 (K3TTl). K3TTl is the result of adding →-Im and ¬-Im to K3TT. 
 
By definition, K3TTl  is LEM -classical recapturing. To see that full CPL  holds for 𝜑  in 
K3TTl  given 𝜑	 ∨ 	¬𝜑 , it is sufficient to notice that whenever φ	 ∨	¬φ  is derivable in 
K3TTl , then both →-I and ¬-I hold in K3TTl  . More precisely, if Γ, 𝜑	 ⊢	⊥ is derivable 
together with 𝜑	 ∨ 	¬𝜑, then we can apply ¬-Im	and apply Cut to 𝜑	 ∨ 	¬𝜑, thus deriving 
Γ	 ⊢ 	¬𝜑, that is, the conclusion of full ¬-I. Similarly for →-I. 
 
Definition 4.3 (LPTTl). LPTTl is the result of adding →-Em and ¬-Em  to LPTT. 
 
By definition, LPTTl is LNC-classical recapturing. As above, to see that full CPL holds for 𝜑 
in LPTTl if 𝜑	 ∧ 	¬𝜑	 ⊢	⊥ does, it is sufficient to notice that full →-E and ¬-E hold for φ in 
LPTTl  whenever 𝜑	 ∧ 	¬𝜑	 ⊢	⊥ is derivable in LPTTl . More precisely, if Γ	 ⊢ 	𝜑 and ∆	⊢
	𝜑	 → 	𝜓 are derivable together with 𝜑	 ∧ 	¬𝜑	 ⊢	⊥, one can derive Γ, ∆	⊢ 	𝜓 courtesy of →-
Em  and ∨-E. At a glance: 
 
 
 
 
 
The reasoning for ¬-E is analogous.  
 
Definition 4.4 (MALLTTl). MALLTTl is the result of adding SContrm to MALLTT. 
 
As above, by definition MALLTTl is LContr-classical recapturing. To see that classical logic 
holds for 𝜑 if LContr holds for 𝜑, we reason in two steps, keeping in mind that MALL is 
classical logic minus SContr and with	∨-E replaced with ∨-Em.22 First, it is immediate to see 
that whenever LContr holds for 𝜑, then SContr also holds: 
 
 
 
 
 
Second, we show that 
 

(RContr) ⊢ (𝜑 ∨ 𝜑) → 𝜑 
 

																																																								
22 We are adapting Theorem 3.19 of Zardini [2011] to our framework.  



is derivable from SContr and that, in turn, ∨-E is derivable from RContr. The following 
derivation establishes the first claim:  

 
The second claim is proved as follows: 
 
 
 
 
 
Definition 4.5 (STTTOl ). STTTOl  is the result of adding →-Emo  , ¬-Emo , and ∨-Emo  to 
STTTO.  
 
By definition, STTTOl is Cut-classical recapturing. It can be verified that, whenever Cut holds 
for 𝜑, full classical logic holds for 𝜑. To see this, consider →-E and suppose Cut holds for 𝜑. 
Then, given ⊢ 𝜑, full →-E is derived as follows: 
 
 
 
 
 
 
A similar reasoning applies to ¬-Emo and ∨-Emo.23 
The classical recapturing properties of the non-classical theories introduced in section 3 are at 
the heart of our general revenge argument, to which we now turn.  
 
 

5. Revenge 
 
Revenge arguments fall into two broad categories: object-linguistic and meta-theoretic.24 
Meta- theoretic revenge arguments point to the inexpressibility in a theory S of notions 
definable in S’s meta-theory (which is typically classical). They are standardly dismissed on 

																																																								
23 We should mention at least one alternative proposal for recapturing classical logic within a non-classical 
theory, viz. Priest’s minimally inconsistent LP, or 𝑚LP for short [Priest 2006a: 222 and ff). 𝑚LP is a non- 
monotonic logic that behaves like classical logic in the case of arguments with consistent premises and behaves 
like LP in the case of arguments with inconsistent premises. As far as we know, 𝑚LP has not been axiomatised. 
However, our account of classical recapture can be extended to 𝑚LP, provided such a logic can be given an 
axiomatisation satisfying Classicality Principles. 
24 For recent discussion of revenge, both object-linguistic and meta-theoretic, see e.g. Beall [2007a]; Field 
[2007]; Shapiro [2011b]. For general background on revenge, see the essays in Beall [2007c] and Scharp [2013: 
ch. 8]. 



the grounds that it is no surprise that classical notions are not expressible in a non-classical 
theory. 25  Object-linguistic revenge arguments typically point to the inexpressibility in a 
theory S of some notion N that plays some explanatory or expressive role in S. Notions such 
as indeterminacy [Field 2007, 2008] and instability [Zardini 2011] are cases in point.26 The 
revenge paradoxes to be developed in this section are of the second, object-linguistic kind. In 
particular, they don’t rely on classical semantic notions, and they apply to theories (such as 
the one developed in Zardini [2011]) for which no semantics is known. Sections 5.1-5.2 
motivate naïve principles for paradoxicality and unparadoxicality. Sections 5.3-5.6 introduce 
our revenge paradoxes.  
 
 

5.1 Paradoxicality and Unparadoxicality 
 
General approaches to revenge are discussed in Beall [2007c], Priest [2007], Shapiro 
[2011b], and Scharp [2013, sec. 4.3]. For instance, Graham Priest argues that  
 

[t]here is, in fact, a uniform method for constructing the revenge paradox—or 
extended paradox, as it is called sometimes. All semantic accounts have a bunch of 
Good Guys (the true, the stably true, the ultimately true, or whatever). These are the 
ones that we target when we assert. Then there’s the Rest. The extended liar is a 
sentence, produced by some diagonalising construction, which says of itself that it’s 
in the Rest. The diagonal construction . . . may then play havoc. This shows, 
incidentally, that the extended paradox is not really a different paradox. The pristine 
liar is the result of the construction when the theoretical framework is the standard 
one (all sentences are true or false, not both, and not neither) . . . ‘Extended 
paradoxes’ are simply the results of applying the construction in different theoretical 
frameworks. [Priest 2007: 226] 

 
We are sympathetic to Priest’s claim that revenge paradoxes are structurally similar to the run 
of the mill semantic paradoxes. However, his revenge recipe only describes extremely 
general features of revenge arguments and cannot be used to actually generate in a uniform 
way revenge paradoxes for a wide range of theories. Our aim in what follows is to provide a 
general revenge strategy for constructing revenge paradoxes for several non-classical theories 
satisfying Classicality principles, including some of the non-classical theories defended by 
Priest.  

Our starting point is the distinction, present in each of the theories presented in section 
3, between sentences that satisfy all the principles of classical logic and sentences that do so 
on pain of triviality. More precisely, let S be a 𝔓O, . . . , 𝔓q-classical recapturing, non-trivial 
theory. We then say that a sentence 𝜑 is paradoxical-in-S if and only if ⊥ follows in S from 
the assumption that 𝜑 satisfies 𝔓O, . . . , 𝔓q; and that a sentence 𝜑 is unparadoxical-in-S if 
and only if it satisfies 𝔓O, . . . , 𝔓qin S.27 Paradoxicality and unparadoxicality so understood 
are intelligible notions at the core of the revisionary approach to semantic paradox. In 

																																																								
25	See	e.g.	Field	[2008:	sec.	21.1)	and	Beall	[2009:	sec.	3.4].	
26 Field’s theory involves a hierarchy of ever stronger notions of indeterminacy, whereby sentences such as 𝜆 
can be only said to be indeterminateα, for some level 𝛼 in the hierarchy [Field 2007]. 

27 Our notion of paradoxicality-in-S is closely related to Jc Beall’s notion of a trivialiser for S [Beall 2015].  



keeping with the revisionist’s treatment of truth, we treat them as object-linguistic predicates, 
Par and Un.28 
 
 

5.2 The Expressive Role of Par and Un 
 
Revisionary theorists typically give the semantics of a language ℒ  in ℒ . Here are two 
representative quotes: 
 

If the formal language is to provide an adequate explication of the informal language 
that we use, it must contain its own metalanguage. [Reinhardt 1986: 227-9] 

 
[M]y claim will be that there are languages that are sufficiently powerful to serve as 
their own meta-languages. [Field 2008: 18] 

 
They further argue that the notion of truth for ℒ to be captured in ℒ must be naïve.29 For 
instance, the following reasoning is taken to motivate the unrestricted rule Tr-E: 
 
Agreement. All the theorems of Peano Arithmetic are true. 𝜑  is a theorem of Peano 
Arithmetic. Therefore, 𝜑 is true. Therefore, 𝜑. 
 
A parallel reasoning is taken to establish Tr-I: 
 
Disagreement. Everything Lois says is not true. Lois says 𝜑 . Therefore, 𝜑  is not true. 
Therefore, ¬𝜑. 
 
Similar considerations can be put forward for paradoxicality and unparadoxicality. For 
reasons of space, we only give one example, in the context of a paracomplete theory of naïve 
truth S. Consider the following case: 
 
The logic student. Lois is a logic student who is learning how to reason in S. She 
(mistakenly) assumes 𝜆 ∨ ¬𝜆. As a result, she carries out the Liar reasoning in S and derives 
⊥ . She concludes that assuming that 𝜆  satisfies LEM  trivialises S. As she puts it, 𝜆  is 
paradoxical, that is, Lois asserts Par(⌈𝜆⌉). 
 
In the above example, Lois adopts the following principle: that if S derives the sequent 𝜑 ∨
¬𝜑 ⊢⊥, then it also derives the sequent ⊢ Par( 𝜑 ). We call this principle Par- introduction, 
or Par -I for short. The principle immediately rules out the possibility of interpreting 
paradoxicality by means of a conditional. That is, given Par-I, Par(𝑥) cannot be interpreted 
as (slightly abusing notation) Tr(𝑥 ∨ ¬𝑥) →⊥, since in a paracomplete setting →-I is not 
unrestrictedly valid and, as a result, Tr(⌈𝜆⌉ ∨ ¬⌈𝜆⌉) →⊥ cannot in general be inferred from a 
derivation of ⊥ in S from 𝜆 ∨ ¬𝜆. 

It might be tempting to interpret Par as derivability in S instead. After all, if S 
interprets a modicum of arithmetic, if there is derivation in S of ⊥ from 𝜆 ∨ ¬𝜆, then S derives 
Derv(⌈λ ∨ ¬λ⌉, ⌈⊥⌉), where Derv is a standard, arithmetically definable derivability predicate 
for S. However, this can’t be either, as shown by the following scenario: 

																																																								
28 Since the chosen theory S will always be clear from context, we simply write Par(𝑥) for paradoxicality and 
Un(𝑥) for unparadoxicality. 
29 For a general case for naïve truth principles, see Field [2008: 209 and ff.] and Beall [2009: sec. 1.1]. 



 
Misguided reasoning. Clark reasons in S and assumes that everything Lois says is 
paradoxical. Lois asserts that 𝜑. As a result, Clark infers that 𝜑 is paradoxical. However, 
Clark also proves that 𝜑 satisfies LEM, and hence all the principles of classical logic. From 
his claim that 𝜑 is paradoxical, that is such that 𝜑 ∨ ¬𝜑 entails ⊥, and his proof of 𝜑 ∨ ¬𝜑, 
Clark concludes ⊥. 
 
The above scenario requires the following elimination rule: from Par( 𝜑 ) and ‘𝜑 satisfies 
LEM’, one may infer ⊥. We call this principle Par-elimination, or Par-E for short. Just like 
Par -I rules out interpreting paradoxicality by means of a conditional, Par -E rules out 
interpreting such a notion as derivability-in-S. This is essentially a consequence of Löb’s 
Theorem, as we will see more fully in section 6.1 below. 

We conclude that paradoxicality-in-S must be expressed via a single, primitive 
predicate Par, obeying Par-I and Par-E. Similar arguments apply to unparadoxicality-in-S, 
and to paraconsistent, non-contractive, and non-transitive theories. 

The notions of paradoxicality and unparadoxicality now give rise to a revenge 
argument, to the effect that any theory extending the theories presented in section 3 expresses 
such notions only if it is trivial. In particular, consistent theories cannot express the notion of 
paradoxicality, while inconsistent theories cannot express the dual notion of 
unparadoxicality. We consider theories formulated in the language ℒxyl obtained by adding 
Par and Un to ℒxy. We extend to ℒxyl  and the theories formulated in it all the conventions and 
requirements stated in section 2 for languages and theories. 
 
 

5.3 Paracomplete Revenge 
 
We focus on K3TTl-based theories as our representative, catch-all paracomplete theories. 
Since paracomplete theories reject LEM for ‘paradoxical’ sentences and since K3TTlis LEM-
classical recapturing, the rules for Par are as follows:30 
 
 
 
 
Definition 5.1 (K3TTP). K3TTP is the theory resulting from closing K3TTl under LEM-Par-
I and LEM-Par-E.  
 
Proposition 5.2. K3TTP is trivial, and so is the closure under LEM-Par-I and LEM-Par-I of 
any theory extending K3TTl. 
 
It follows from Proposition 5.2 that (among others) the theories developed in Field [2002, 
2008, 2013] and Yablo [2003] cannot express the notion ‘𝜑  yields absurdity if 𝜑 ∨ ¬𝜑 
holds’, on pain of triviality.  
 
 

5.4 Paraconsistent Revenge 
 

																																																								
30 With the exception of non-contractive theories, all the rules for Par and Un presented in this paper can be 
given a context-sharing formulation without affecting our revenge paradoxes. 



Consider now paraconsistent approaches. In keeping with our account of classical recapture, 
we focus on LPTTl-based theories. We show that no extension of LPTTl can express the 
notion of unparadoxicality introduced in section 5.1. Keeping in mind that LPTTl is LNC-
classical recapturing, a sentence 𝜑 is unparadoxical in LPTTl if LNC holds for 𝜑, that is, if 
LPTTl proves 𝜑 ∧ ¬𝜑 ⊢⊥. Conversely, if 𝜑 is unparadoxical in LPTTl, then LNC holds for 
𝜑, that is, if LPTTl proves 𝜑 ∧ ¬𝜑 from Γ, ∆, then it also proves ⊥ from the same multi-set 
of assumptions. More formally:  
 
 
 
 
Definition 5.3 (LPTTU). LPTTU is the theory resulting from closing LPTTl under LNC-Un-I 
and LNC-Un-E.  
 
Proposition 5.4. LPTTU is trivial, and so is the closure under LNC-Un-I and LNC-Un-E of 
any theory extending LPTTl. 
 
It follows from Proposition 5.4 that the theories developed in Priest [2006b] and Beall [2009, 
2011] cannot express the notion ‘𝜑  behaves classically if 𝜑 ∧ ¬𝜑 ⊢⊥ holds’, on pain of 
triviality.  
 
 

5.5 Non-contractive Revenge 
 
Now to contraction-free approaches. Because of its prominence, we focus on Zardini’s non- 
contractive theory, but our result generalises. We begin by recalling classical recapture in a 
contraction-free setting. As we have seen in section 4 (Definition 4.4 and subsequent 
remarks), full SContr  and ∨ -E, and hence full classical logic, hold for 𝜑  in 
MALLTTlwhenever MALLTTl  derives 𝜑 → (𝜑 ∧ 𝜑). Keeping in mind that, according to 
SContr-free wisdom, SContr  is the culprit of the semantic paradoxes, the paradoxicality 
predicate can now be interpreted as follows: if absurdity is derivable from the assumption 
that φ satisfies 𝜑 → (𝜑 ∧ 𝜑), then 𝜑 is paradoxical. Conversely, if 𝜑 is paradoxical and 𝜑 
satisfies 𝜑 → (𝜑 ∧ 𝜑), then ⊥ is derivable.  

This informal reasoning can be formalised thus. Let [𝜑]q be the multiset consisting of 
n occurrences of 𝜑. Moreover, let us assume that Γ in LC-Par-I does not contain instances of 
𝜑 → (𝜑 ∧ 𝜑), and let m ≥ 1. Then, paradoxicality in a non-contractive setting is characterised 
by the following rules: 
 
 
 
 
where n is the highest number of occurrences of 𝜑 → (𝜑 ∧ 𝜑) occurring on the left-hand side 
of the sequents in the subderivation of Γ ⊢ Par( 𝜑 ) if Γ is non-empty, and 0 otherwise. 
Intuitively, the I-rule tells us that, if contracting m times on 𝜑 yields absurdity (where m 
contractions on 𝜑 are represented by [𝜑 → (𝜑 ∧ 𝜑)]m), then 𝜑 is paradoxical. Conversely, 
the E-rule says that, if 𝜑 is paradoxical, then the assumption that 𝜑 can be contracted on (at 
least as many times as it is needed to declare it paradoxical) yields absurdity. 
 
Definition 5.5 (MALLTTP ). MALLTTP  is the theory resulting from closing MALLTTPl 
under LC-Par-I and LC-Par-E. 



 
Proposition 5.6. MALLTTP is trivial, and so is the closure under	LC-Par-I and 	LC-Par-E of 
any theory extending MALLTTPl. 
 
It follows from Proposition 5.6 that (among others) the theory developed in Zardini [2011] 
cannot express the notion ‘𝜑 yields absurdity if [𝜑 → (𝜑 ∧ 𝜑)]m holds’, on pain of triviality.  

It might be objected the non-contractive theorist who rejects contraction in all its 
forms has a reason to reject contracting on sentences of the form 𝜑 → (𝜑 ∧ 𝜑), and hence to 
reject LC-Par-I, which allows one to discharge multiple occurrences of 𝜑 → (𝜑 ∧ 𝜑). The 
resulting conception of paradoxicality would be problematic, however. It would commit the 
non-contractive theorist to distinguishing between different numbers of applications of 
SContr in a derivation, which would sit poorly with her diagnosis of what goes wrong in 
paradoxical derivations. According to non-contractive wisdom, indiscriminate uses of SContr 
must be rejected in general. That is, non-contractive theorists disallow the following 
generalised version of SContr: 
 
 
 
 
according to which, if ∆ follows from Γ and i occurrences of 𝜑, then ∆ follows from Γ and at 
least one occurrence of 𝜑. The idea that if SContr∗ applied to 𝜑 leads to ⊥ then 𝜑 is non- 
contractable is at the heart of the non-contractive approach to semantic paradox: one must 
disallow whatever number of applications of SContr  to 𝜑  lead to ⊥  in a paradoxical 
derivation. This is captured by our rule LC-Par-I, but cannot be expressed by the non-
contractive theorist who expresses paradoxicality by means of denumerably many 
paradoxicality predicates. 
 
 

5.6 Non-transitive Revenge 
 
We finally turn to non-transitive approaches. We focus on the theory STTTOl but, again, our 
results generalise. To begin with, we notice that, in STTTOl, full classical logic holds for 𝜑 
whenever Cut does (see Definition 4.5 and subsequent remarks). This in turn justifies the 
following characterisation of unparadoxicality. On the one hand, if 𝜑 is ‘cuttable on’, that is, 
if the conclusion of an instance of Cut applied to 𝜑 is derivable from its premises, then 𝜑 is 
unparadoxical. On the other, if 𝜑 is unparadoxical and the premises of an instance of Cut 
applied to 𝜑 are derivable, so is their conclusion.  

Our revenge argument against STTTOl shows that such a theory cannot express un- 
paradoxicality so understood. It makes use of higher-order rules: rules that allow one to 
discharge entire sequents, as well as sentences.31 We are now in a position to formulate the 
rules governing the unparadoxicality predicate: 
 
 
 
 

																																																								
31 To our knowledge, higher-order rules were first introduced by Peter Schroeder-Heister [1984: 1284-5], who 
pointed out that if sentence-assumptions are technically temporary axioms, nothing should prevent one from 
also making use of rule-assumptions, understood as temporary rules (in our setting, such temporary rules are 
sequent-assumptions). 



 

 
where the box left of the discharge line in Cut-Un-I signals that the rule-assumptions 𝛤 ⊢ 𝜑 
and ∆ , 𝜑 ⊢ 𝜓  may not be discharged vacuously. 32  Again, the rules are justified by the 
account of classical recapture given in section 4 (see especially Definition 4.5). Cut-Un-I says 
that, if 𝜑 is ‘cuttable on’, then it is unparadoxical. Conversely, Cut-Un-E tells us that, if 𝜑 is 
unparadoxical (given Γ), and hence ‘cuttable’, and both ∆O⊢ 𝜑 and ∆P, 𝜑 ⊢ 𝜓 are provable, 
then Γ, ∆O, ∆P⊢ 𝜓 follows. 
 
Definition 5.7 (STTTUO). STTTUO is the theory resulting from closing STTTOl under Cut-Un-
I and Cut-Un-E. 
 
Proposition 5.8. STTTUO is trivial, and so is the closure under Cut-Un-I and Cut-Un-E of 
any theory extending STTTOl. 
 
It follows from Proposition 5.8 that (among others) the theories developed in Ripley [2012]; 
Cobreros et al. [2013] cannot express the notion ‘φ behaves classically given a derivation of 
⊢ 𝜓 from ⊢ 𝜑 and 𝜑 ⊢ 𝜓’, on pain of triviality. 

We notice that the derivation of ⊥ in the proof of Proposition 5.8 (see Appendix) is 
not normal, since it involves a use of Cut-Un-E immediately after a use of Cut-Un-I.33 This 
suggests that, unlike STTTOl , Neil Tennant’s Core Logic, a logic in which all proofs are 
normal proofs, may support the rules for naïve truth together with Cut-Un-I and Cut-Un-E, in 
keeping with Tennant’s conjecture that the semantic paradoxes all involve derivations that 
cannot be brought into normal form [Tennant 1982, 2015].34 Does it follow that our revenge 
argument doesn’t apply to the non-transitive approach defended in Tennant [2015]? Tennant 
[2015: 593] advocates a positive answer. However, we do not share Tennant’s optimism. In 
the proof of Proposition 5.8, we give normal proofs of ⊢ Un( ς ), ⊢ 𝜍, and 𝜍 ⊢⊥, where 𝜍 is 
¬Tr( ς ) ∧ Un( ς ) . That is, Tennant’s theory proves both that 𝜑  is ‘cuttable’ and the 
premises of a cut on 𝜑. Yet, one cannot cut on 𝜑 in such a theory. This means that Un( ς ), 
viz. that 𝜑 is ‘cuttable’, no longer has its intended meaning in Tennant’s framework. The 

																																																								
32 See Tennant [2012: 4-5]. 
33 The derivation is also non-normal in the sense of Tennant [2012], since the major premise of Cut − Un − E in 
the last step of the derivation has non-trivial proof work above it.	
34 Core Logic is a non-transitive logic all of whose proofs are in normal form. The logic comes in a constructive 
and in a non-constructive variety; our remarks apply to both. As Tennant [2015] observes, the derivations of 
semantic paradoxes such as the Liar are all invalid in Core Logic supplemented by suitable rules for naïve truth. 
More precisely, just like in STTTOl, the final use of Cut in the paradoxical derivations (or of the unrestricted ¬-E 
and →-E) is disallowed, on the grounds that it would bring in non-normality. Although Tennant doesn’t prove 
consistency for a theory of naïve truth whose underlying logic is Core Logic, it can be shown that the 
consistency proofs available for STTT [Cobreros et al. 2013; Ripley 2012] immediately extend to the theory 
given by closing Core Logic under the rules for naïve truth (this follows from the fact that Core Logic is a 
relevant subsystem of the logic ST). This in turn answers the technical question raised in Tennant [2015: sec. 
4.3.4] whether one can prove the non-triviality of the approach he recommends. 



framework is not trivial, but non-triviality is only restored at the price of expressive 
incompleteness. 
 
 

6. What our Results Show 
 
The paradoxes of sections 5.3-5.6 make use of logical rules that are valid in the theories they 
trivialise. Insofar as the theories introduced in section 3 are representative of the revisionary 
approach to semantic paradox, it follows that revisionary treatments of the Liar Paradox and 
of other run of the mill paradoxes don’t apply to the paradoxes of sections 5.3-5.6. Yet the 
notions of paradoxicality and unparadoxicality codify a minimal lesson to be drawn from the 
semantic paradoxes: that given the naïve truth rules, sentences such as 𝜆  satisfy all the 
classical rules only on pain of triviality, whereas sentences such as t = t unproblematically 
satisfy those rules. The results of sections 5.3-5.6 show that the expression of such a truism is 
precluded to most non-classical theorists, on pain of adopting an extremely weak, and 
possibly unworkable, logic. For instance, it is a consequence of the proof of Proposition 5.2 
that a paracomplete logic of paradox cannot contain all of SRef , SContr , →-E, and ∨-I. 
Likewise, it follows from the proof of Proposition 5.8 that a non-transitive logic of paradox 
cannot contain SRef, SContr, the rules for conjunction, and a very weak form of negation 
elimination. And so on. Our revenge strategy is perfectly general. Although the paradoxes of 
sections 5.3-5.6 make use of theory-specific notions of paradoxicality and unparadoxicality, 
it can be shown that the naïve rules for Par and Un are all instances of a more general 
template.35 

Solomon Feferman [1984: 95] once wrote, referring to theories of truth based on the 
logic K3, that ‘nothing like sustained ordinary reasoning can be carried out’ in them. While 
his remark may apply to weak logics such as K3 and LP, it may be thought to be unfair as a 
criticism of the stronger non-classical theories developed since 1984, such as the structural 
ones given in Field [2002, 2008, 2017] and Beall [2009], and the substructural ones given in 
Zardini [2011] and Cobreros et al. [2012]. Even classical theorists concede that, pace 
Feferman, some such theories are surprisingly strong. Vann McGee [2010], for instance, 
reports to have been ‘astonished’ by the ‘combination of transparency and logical strength’ 
exhibited by Field’s paracomplete theory.  

The results of sections 5.3-5.6 vindicate the spirit of Feferman’s remark. Just like 
classical logic, and many other strong logics, are known to be incompatible with naïve truth, 
our results show that a wide range of reasonably strong non-classical logics are incompatible 
with naïve paradoxicality and unparadoxicality. And, as we argued in sections 5.1-5.2, just 
like there are strong reasons for wanting truth to be naïve, and hence to adopt one of the non- 
classical logics introduced in section 4 (or some extension thereof), there are parallel reasons 
for wanting paradoxical and unparadoxicality to be also naïve, and hence to adopt a weaker 
still non-classical logic—one in which the arguments of sections 5.3-5.6 no longer go 
through. By the revisionary theorist’s own lights, strong non-classical theories such as Field’s 
are ultimately incompatible with the project of giving the semantics of a language ℒ in ℒ.  

In what follows, we briefly explore the relation between our results and Löb’s 
Theorem (section 6.1). We argue that the naïve principles for paradoxicality and 
unparadoxicality can be seen to be compatible with classical limitative results such as Löb’s 
Theorem just in the same way as a naïve notion of truth can be seen to be compatible with 
classical limitative results such as Tarski’s Theorem. We then point to a parallelism between 
our arguments and a recent revenge argument for classical theories (section 6.2). 

																																																								
35 For reasons of space, we leave out the precise formulation of the template. 



6.1 Paradoxicality and Derivability 
 
It could be argued that the results of sections 5.3-5.6 are hardly surprising, on the grounds 
that the eliminations rules for Par and Un are unacceptable in the lights of Löb’s Theorem. 
More precisely, let S be a theory satisfying the Hilbert-Bernays conditions for a predicate 
Provv expressing standard provability-in-S.36 It is a consequence of Löb’s Theorem that, if S 
proves every instance of Provv( 𝜑 ) → 𝜑, then it also proves any sentence 𝜑. Consider the 
paradoxicality predicate Par. Its rules can be rewritten using a two-place derivability 
predicate Derv(𝑥, 𝑦) expressing that y is derivable from x in S. For instance, the LEM-Par 
rules can be seen as instances of the following general rules: 
 
 
 
 
However, Derv-E entails 

Derv( ⊤ , 𝜓 ) → 𝜓, 
 
which is equivalent to Provv( 𝜓 ) → 𝜓, from which 𝜓 is derivable in S via Löb’s Theorem. 
It is now natural to object that the rules for Par and Un employed in the results of sections 
5.3-5.6 are but special cases of naïve rules for provability-in-S that are already known to be 
unacceptable because of Löb’s Theorem.37 

The foregoing reasoning requires that paradoxicality-in-S be interpreted as standard 
derivability-in-S. More precisely, it assumes that the paradoxicality and unparadoxicality 
predicates be interpreted by means of an arithmetically definable derivability predicate Derv 
satisfying versions of the Hilbert-Bernays derivability conditions. On such a construal, the 
introduction rules for Par and Un are arithmetically derivable, while the elimination rules 
only hold on pain of triviality. However, we have argued in 5.2 that Par is not to be 
interpreted via a standard derivability predicate: scenarios such as Misguided reasoning rule 
out this possible interpretation. 

If it is insisted that paradoxicality and unparadoxicality are to be interpreted via a 
standard derivability predicate, and therefore fail to obey their elimination rules because of 
Löb’s Theorem, then a parallel argument can be given that truth is to be interpreted via some 
arithmetically definable predicate, and therefore fails to obey the naïve truth rules, because of 
Tarski’s Theorem. For instance, it might be pointed out that sufficiently strong theories 
validate all instances of the T-Schema restricted to Σq-sentences of the base language. More 
precisely, they validate all instances of the following schema: 
 

𝜑 ↔ Tr	��( 𝜑 ), 
 
for 𝜑 a Σq-sentence of the base language (for any given n) and Tr�� a predicate definable in  
the base theory. To be sure, restricting the T-Schema to Σq-sentences is inadequate for the 
purpose of giving the semantics of a language ℒ in ℒ, and for fulfilling the expressive role of 
‘true’. 38  However, it might be argued, the same holds for any restricted notion of 

																																																								
36 Standard provability predicates satisfy the Hilbert-Bernays ‘derivability conditions’, i.e. predicate analogues 
of the rules of necessitation and of the K and 4 axioms of modal logic. 
37 For more discussion see Field [2017] and Murzi and Rossi [2018a]. 
38 Suppose one tried to express her acceptance of all of PA’s theorems by asserting that all the theorems of PA 
are true. If ‘true’ is modelled by a Σ𝑛-truth predicate, one would have thereby only expressed acceptance of the 
Σ𝑛-theorems of PA. 



paradoxicality or unparadoxicality. For instance, if Par-I is restricted, some sentences that 
behave non-classically in S cannot be said to be paradoxical and, if Par-E is restricted, one 
cannot infer from the claim that 𝜑 is paradoxical that 𝜑 satisfies S’s classical recapturing 
principles only on pain of triviality. Just like it is possible to validate all instances of the T-
Schema in spite of Tarski’s Theorem, it is also it is possible, and consistent with Löb’s 
Theorem, to non-trivially have all instances of the naïve rules for paradoxicality and 
unparadoxicality, provided one adopts a very weak non-classical logic. 
 
 

6.2 Non-classical and Classical Revenge 
 
The revenge paradoxes for non-classical theories given in sections 5.3-5.6 are closely related 
to a general revenge argument for classical theories recently introduced by Andrew Bacon 
[2015]. Bacon’s starting point is analogous to ours: while non-classical theories of truth 
restrict the application of classical logic to some sentences, classical theories of truth restrict 
the application of naïve truth-theoretic principles to some sentences.39 In order to express 
such a distinction, Bacon introduces a ‘healthiness’ predicate H satisfying the following 
scheme:  
 

SRT 	H( 𝜑 ) → (Tr( 𝜑 ) ↔ 𝜑). 
 
That is, Bacon characterises the healthy sentences as those that satisfy naïve truth-theoretic 
principles such as the T-Schema. Bacon then shows that every (sufficiently expressive) 
classical theory of truth that includes all instances of SRT proves sentences that it also proves 
to be unhealthy, that is, proves 𝜑 ∧ ¬H( 𝜑 )  for some 𝜑 . Under the assumption (which 
Bacon does not endorse) that H satisfies the following necessitation rule 
 
 
 
 
Bacon’s argument shows the resulting theories to be trivial. 

The parallel between Bacon’s argument and ours is easy to see. On one hand, Bacon’s  
argument shows that classical theories cannot be closed under natural principles governing a 
healthiness predicate true of all and only the sentences that satisfy the naïve truth rules, 
keeping classical logic fixed (and similarly for unhealthiness). On the other hand, our results 
show that non-classical theories cannot be closed under natural principles governing a 
unparadoxicality predicate, true of all and only the sentences that satisfy all the principles of 
classical logic, keeping the naïve truth rules fixed (and similarly for paradoxicality). 
 
 

7 Objections and Replies 
 

Revisionary theorists might object to the paradoxes of sections 5.3-5.6 on the grounds that 
our naïve principles for paradoxicality and unparadoxicality trade on a deep 
misunderstanding of their views. More specifically, they might argue that our revenge 
arguments try to force revisionary theories to express notions whose intelligibility they have 
long argued against.40 For instance, Field writes: 

																																																								
39 For instance, classical theories do not derive the following instance of the T-Schema: Tr( λ ) ↔ λ. 
40 See e.g. Priest [2006b: ch. 5], Field [2008: sec. 21.1], Beall [2007b, 2009: ch. 3]. 



 
there is no negation that obeys [both of ¬-I and ¬-E] without restriction: if there 
were, it would be impossible to have a [naïve] truth predicate. [Field 2008: 309] 
 

He further suggests that there is no coherent notion satisfying both of → -I and → -E. 
Similarly, it might be argued that while the non-classical theories of section 3 cannot express 
paradoxicality or unparadoxicality, this is not a problem, since there is no coherent notion to 
be expressed beyond the ones already expressible in such theories. For instance, the non-
contractive theorist might insist that LC -Par-I validates some illicit, and ultimately 
unacceptable, uses of contraction. Likewise, the non-transitive theorist might insist that 
‘cuttable’ is to be interpreted by means of a conditional: if one can assert the premises of a 
cut on 𝜑, then one may assert the conclusion of such a cut. She might then point out that to 
assume that one can in general infer the consequent of this conditional from the premises is 
just to assume the unrestricted validity of →-E, which non-transitive theorists reject (since it 
makes Cut admissible). 

This kind of reply is perfectly coherent, as far as it goes. But how far does it go? As 
we observed in section 5.5, LC-Par-I expresses the basic non-contractivist diagnosis of the 
paradoxes, namely that contraction in general is at the root of those paradoxes. Whether S is 
trivialised by one, two, or m uses of contraction, these are all manifestations of the same 
problem. Similarly, if one’s logic doesn’t allow interpreting ‘cuttable’ in such a way that one 
can cut on a cuttable sentence, then this is a serious expressive limitation of the logic. The 
English expression ‘cuttable’ still means cuttable, and any adequate solution to the paradoxes 
should respect this basic fact about English. (Imagine the surprise of our logic student, Lois, 
if she were to learn that, even if 𝜑 is cuttable and one can assert the premises of a cut on 𝜑, 
one may still not be allowed to derive the conclusion of such a cut.) Similarly for the other 
cases: rejecting the rules for Par and Un restores non-triviality only at the price of serious 
expressive limitations. 

We can think of two main possible reactions at this point. First, upon deriving ⊥ in S 
from a classical recapturing principle, non-classical theorists might concede that 𝜑  is 
paradoxical, and insist that it is just a limitation about S that it cannot non-trivially prove as 
much—a limitation one must learn to live with. However, while classical theorists may be 
sympathetic to this suggestion, it does not sit well with the project of giving the semantics for 
a language ℒ in ℒ. 

Second, one might offer instead a hierarchical treatment of the notions of 
paradoxicality and unparadoxicality, much in the same way as, in order to semantically 
characterise intuitively defective sentences such as 𝜆, Field [2007, 2008: ch. 22-23] defines a 
hierarchy of determinacy operators.41 For instance, the thought would be that although the 
sentence ρ identical to Tr( 𝜌 ) → Par( 𝜌 ) figuring in the proof of Proposition 5.2 cannot be 
said to be paradoxical in the sense expressed by Par, it can still non-trivially be said to be 
paradoxical in a stronger sense expressed by a new predicate ParP. And so on (and similarly 
for Un). It might then be insisted that, as Field puts it in a related context, this ‘would not 
nearly have the devastating impact on our reasoning a stratification of truth predicates would 
have’ [Field 2014: 22]. 

Field’s strategy has been criticised in a number of places (see e.g. Priest [2007]; Rayo 
and Welch [2007]; Welch [2008, 2014]). Here we limit ourselves to noticing, first, that 
paradoxicality and unparadoxicality appear to be just as central as truth in the revisionary 
theorist’s cognitive life. That λ entails absurdity if reasoned with classically, and is therefore 
paradoxical in our sense, is a minimal but key revisionary lesson of the Liar Paradox. Second, 
																																																								
41 The strategy can be generalised to other non-classical approaches (see Field [2008: ch. 27]).	



the arguments that are usually put forward against non-hierarchical accounts of truth equally 
apply to paradoxicality and unparadoxicality. For instance, if 𝜑’s paradoxicality-in-S can 
only be asserted by means of a stronger paradoxicality predicate ‘paradoxicality1-in-S’, it 
might be argued following Kripke [1975: 695-6] that there is no way to interpret a discourse 
in which two speakers attribute paradoxicality-in-S to everything they say. 
 
 

8 Concluding remarks 
 
Non-classical approaches to paradox are attractive for two main reasons: they allow one to 
retain extremely intuitive naïve semantic principles; and they often allow one to do so using 
non-classical logics that can be both natural and strong.42 This is a tempting, if ultimately 
radical, thought. Existing revisionary approaches cannot express one of the basic lessons of 
the semantic paradoxes, namely that certain sentences trivialise one’s theory if reasoned with 
classically, while others don’t—facts that are built into the classical recapturing properties 
enjoyed by each of the representative theories discussed in the course of this paper. As a 
result, revisionary theorists must resort to logics that are significantly weaker than the four 
families of logic introduced in section 4. This is especially problematic for revisionary 
theorists who place special emphasis in their theories’ ability to recapture classical theories 
and restrict classical logic exactly when it creates paradox-driven trouble. The original Liar 
Paradox, and other run of the mill paradoxes, can be blocked by weakening classical logic. 
But, in view of the paradoxes of paradoxicality and unparadoxicality, the Liar Paradox 
inevitably reemerges in new theory-relative clothes to exact its revenge.43 
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Appendix 
 
We provide proofs of Propositions 5.2, 5.4, 5.6, and 5.8. 
 
Proposition 5.2. K3TTP is trivial, and so is the closure under LEM-Par-I and LEM-Par-E of 
any theory extending K3TTl. 
 
Proof. We make use of the following K3TTl-valid form of →-I (given →’s materiality, this  
is in effect a restricted form of ∨-I): 
 
 
 
We now reason thus, in K3TTP. Let 𝜌 be identical to Tr( 𝜌 ) → Par( 𝜌 ). We first prove 𝜌 ∨
¬𝜌 ⊢ Tr( 𝜌 ) ∨ ¬Tr( 𝜌 ): 

 
Call this derivation 𝐷O. In our next step, we prove 𝜌 ∨ ¬𝜌 ⊢ 𝜌: 

Call this derivation 𝐷P. We use it to show that 𝜌 is paradoxical: 

 
We now have a proof of Par( 𝜌 )—call it 𝐷�. This in turn yields absurdity, as the following 
derivation shows: 
 
 
 
 



Proposition 5.4. LPTTU is trivial, and so is the closure under LNC-Un-I and LNC-un-E of 
any theory extending LPTTl. 
 
Proof. Let 𝜍 be a sentence identical to ¬Tr( 𝜍 ) ∧ Un( 𝜍 ). We reason in LPTTU. We begin 
by proving 𝜍 ∧ ¬𝜍 ⊢⊥: 
 
 
 
 
 
 
 
 
Call this derivation 𝐷O. We can use it to prove ¬𝜍: 
 
 
 
 
 
 
 
 
 
 
Call the above derivation 𝐷P. Together with 𝐷O, it yields a proof of triviality.  
 
 
 

Proposition 5.6. MALLTTP is trivial, and so is the closure under LC-Par-I and LC-Par-E of 
any theory extending MALLTTPl. 
 
Proof. Let 𝜌 be the sentence Tr( 𝜌 ) → Par( 𝜌 ). We reason in MALLTTP. We first prove 𝜌, 
on the assumption that 𝜌 satisfies 𝜌 → (𝜌 ∧ 𝜌): 
 

 



Call this derivation 𝐷O. We use it to prove that 𝜌 is paradoxical from two occurrences of 𝜌 →
(𝜌 ∧ 𝜌): 
 
 
 
 
 
 
Call the above derivation 𝐷P. We now use it to prove that 𝜌 is paradoxical: 
 
 
 
 
 
 
 
Call the above derivation 𝐷�. It yields a proof of ⊥, and hence of the triviality of MALLTTP: 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition 5.8. STTTUO is trivial, and so is the closure under Cut-Un-I and Cut-Un-I of any 
theory extending STTTOl. 
 
Proof. We reason much in the same way as in the paraconsistent case. We reason in STTTUO. 
We let 𝜍 be identical to ¬Tr( 𝜍 ) ∧ Un( 𝜍 ) and prove 𝜍 ⊢⊥: 
 
 
 
 
 
 
 
 
 
 
Call this derivation 𝐷O. We can now assume ⊢ 𝜍, use the conclusion of 𝐷O (namely 𝜍 ⊢⊥) to 
derive ⊢⊥, and finally discharge our assumptions and categorically conclude ⊢ Un( 𝜍 ) via 
Cut-Un-I:  
 
 
 



Call this derivation 𝐷P. 𝐷O and 𝐷P can finally be combined to yield a proof of ⊥:  
 
 


