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Abstract

It is widely acknowledged that the Galilean Relativity Principle,

according to which the laws of classical systems are the same in all

inertial frames in relative motion, has played an important role in the

development of modern physics. It is also commonly believed that this

principle holds the key to answering why, for example, we do not no-

tice the orbital velocity of the Earth as we go about our day. And

yet, I argue in this paper that the precise content of this principle is

ambiguous: standard presentations, in both physics and philosophy,

fail to distinguish between two principles that are ultimately inequiv-

alent, the “External Galilean Relativity Principle” (EGRP) and the

“Internal Galilean Relativity Principle” (IGRP). I demonstrate that

EGRP and IGRP play distinct roles in physics practice (e.g., EGRP is

connected to the concept of Galilean invariance, but IGRP is not) and

that many classical systems that satisfy IGRP fail to satisfy EGRP.

I further show that the Relativity Principle introduced by Einstein in

1905—which is not restricted to classical systems—also leads to two

inequivalent principles, an external one analogous to EGRP, and an

internal one analogous to IGRP. I conclude by noting that the phe-

nomenon originally captured by Galileo’s famous ship passage is much

more general than contemporary discussions in the philosophy of sym-

metries suggest.

Keywords: Galilean Relativity Principle, Relativity Prin-

ciple, Symmetry, Galileo’s ship, boosts
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1 Introduction

Consider ripples in a pond, a pendulum clock, the sounds produced by the

vibrations of a guitar string, a dart flying towards a dartboard, or any

other phenomenon on Earth whose laws are well-described by Newtonian

mechanics (at least at a certain level of approximation). The behavior of

any of these systems does not depend on whether the date is, say, July 4th,

2026 or January 4th, 2027, even though the Earth’s orbital speed will be
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about 2200 miles per hour faster on the second date compared to the first

one. For example, even if Alberta is an excellent musician, they would not

be able to detect a difference in the sound of the guitar on these two dates.

But why? Why is it that changes in the orbital velocity of the Earth (and

the guitar) produce no changes in the sound created by the guitar?

A natural answer is that the waves associated with the guitar’s strings are

a classical phenomenon and thus satisfy the so-called “Galilean Relativity

Principle” according to which, roughly for now, the laws of classical systems

are the same in any inertial frame, where an inertial frame is one in which a

body subject to no forces moves with constant speed in a straight line (i.e.,

a frame in which Newton’s first law holds). This principle is supposed to

apply to all of the phenomena mentioned above, whether it be the ripples in

a pond, the clock, or the vibrations in the guitar’s strings. Applied to the

case at hand, the principle implies that the laws for classical waves (such

as string waves and acoustic waves) remain the same when switching from

the (approximately) inertial frame associated with Alberta’s living room on

July 4th, 2026, to the (approximately) inertial frame associated with their

living room on January 4th, 2027 (where the second frame is moving at

around 2200 miles per hour relative to the first frame). Since these laws are

the same in both frames, it is no surprise that the vibrations of the strings,

and hence the sounds produced by them, are the same too. Indeed, this is

similar to Einstein’s remarks about an analogous case:

We should expect [if the Galilean Relativity Principle is not true],

for instance, that the note emitted by an organ-pipe placed with
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its axis parallel to the direction of travel [of the Earth] would be

different from that emitted if the axis of the pipe were placed

perpendicular to this direction (Einstein, Gutfreund, & Renn,

2015, pp. 25-26).

So far so good. But there is a problem! The laws of classical waves are

not invariant under Galilean boosts, the transformations linking different

inertial frames in relative motion in Newtonian mechanics.1 This is a prob-

lem because it seems to follow from this lack of invariance under Galilean

boosts that the laws for classical waves do not satisfy the Galilean Relativity

Principle. In particular, it seems to follow that the laws of these kinds of

systems are distinct in different inertial frames in relative motion. Thus, the

answer to our question, as well as Einstein’s explanation of the organ-pipe

case, needs to be revisited. In fact, the original question seems more puz-

zling now: if the laws governing classical waves are not the same in inertial

frames in relative motion, why is it that changes in the orbital velocity of

the Earth (and the guitar) produce no changes in the sound created by the

guitar?

In this paper, I will argue that there is a hitherto unnoticed ambigu-

ity in standard presentations of the Galilean Relativity Principle (GRP). In

particular, I argue that standard presentations fail to distinguish between

two principles that are ultimately inequivalent, the “External Galilean Rel-

ativity Principle” (EGRP) and the “Internal Galilean Relativity Principle”

1In §4, I will explain that classical waves are similar to electromagnetic waves in that
they are preserved by Lorentz boosts, the boosts used in Special Relativity (e.g., the kind
of boost that makes a rod contract relative to an observer who is not moving with the
rod).
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(IGRP). I will argue that these two principles, both widely endorsed in

physics practice, are associated with two different ways in which the laws of

classical systems can be the same in inertial frames in relative motion. The

distinction between EGRP and IGRP will help us see that, despite what is

typically suggested in the literature, there is a sense according to which a

system can satisfy the Galilean Relativity Principle even if it lacks laws that

are invariant under Galilean boosts—that is, even if these boosts are not

symmetries of its laws (I will explain these concepts in due course). Acous-

tic and string waves are good examples, but we will see that there are many

others.

Clarifying what the GRP says is important not only for philosophical

purposes (e.g., for thinking about what laws and symmetries are), but also

for historical and scientific reasons. GRP played a significant role in the

development of modern physics, from Galileo’s famous ship thought exper-

iment to Newton’s Corollary V in the Principia to Einstein’s development

of special relativity (see §2). Arguably, to better understand the develop-

ment of Newtonian Mechanics as well as Special and General Relativity, it

is important to better understand GRP, which is central to all of these the-

ories. Also, as mentioned above, the principle is taken by many to explain

a rather basic fact about our universe, namely, that systems inside bigger

systems in approximate uniform motion behave the same way regardless of

the velocity of the bigger system. We encounter this fact when traveling in

trains or airplanes or simply when standing in the street while our planet

moves around the Sun at several thousand miles per hour. But this kind of

explanation does not work if the principle is understood as EGRP, as will
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become clear later.

The structure of the paper is as follows: First, in §2, I start with a brief

historical overview of GRP, beginning with Galileo’s famous ship passage

and ending with the Relativity Principle (RP) introduced by Einstein in

his 1905 paper on special relativity (RP is a more general version of GRP,

a version that is not restricted to classical systems). Then, in §3, I show

that standard presentations of GRP are ambiguous between two different

principles, both of which fall under the label “Galilean Relativity Principle”

(here I also show that there is an analogous ambiguity affecting RP). In §4,

I prove that these two principles—EGRP and IGRP—are not equivalent, by

showing that some classical systems compatible with IGRP are incompatible

with EGRP. In particular, I show in this section that classical systems that

have laws that are not invariant under Galilean boosts satisfy IGRP but

not EGRP. In this section, I also clarify how the acoustic Doppler effect

relates to the distinction between IGRP and EGRP. Finally, in §5, I show

that the phenomenon originally captured by Galileo’s famous ship passage

is much more general than is normally assumed, and I briefly indicate why

this generality creates some problems for the widely defended view that there

is a strong link between the symmetries of a system and the observations

performed on that system.

2 From Ships to Trains

As explained in the introduction, a standard way of framing the Galilean

Relativity Principle is the following: the laws of classical systems are the
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same in all inertial frames in relative motion.2 I will ultimately argue that

there is an ambiguity in this and similar presentations of the principle, but

for now, I will leave this complication aside and focus on some key moments

in the historical development of the principle. From now on, to keep the

language simpler, when I talk about more than one inertial frame, I assume

that they are in relative motion along a certain direction (of course, one

could also talk about two inertial frames that are shifted or rotated, but

those are not the cases that will concern me here). For example, think of

the (approximately) inertial frame associated with a train parked in the

station and the inertial frame associated with the train when moving at 100

miles per hour in a straight line. Hence, using this terminology, we can

define the principle in this way:

Galilean Relativity Principle (GRP): the laws of classical

systems are the same in all inertial frames.

This principle is named after Galileo because, on Day Two of his Di-

alogues, Galileo presented (through Salviati) an important thought exper-

iment that illustrates a principle very much like this one. The thought

experiment, which was used by Galileo to illustrate that we cannot tell that

the Earth is moving simply by observing how objects behave around us,

goes as follows (my emphasis):

2For instance, the Stanford Encyclopedia of Philosophy entry on Symmetries defines
the principle like this (my emphasis): “the laws of physics are invariant under Galilean
boosts” (Brading, Teh, & Castellani, 2023). On the other hand, the Stanford Encyclopedia
of Philosophy entry titled “Space and Time: Inertial Frames” defines the principle in this
slightly different way (my emphasis): “mechanical experiments will have the same results
in a system in uniform motion that they have in a system at rest” (DiSalle, 2020). It
will be clear in §3 that these two definitions can be read as tracking to some extent the
external and the internal reading of the Galilean Relativity Principle, respectively.
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Shut yourself up with some friend in the main cabin below decks

on some large ship, and have with you there some flies, but-

terflies, and other small flying animals. Have a large bowl of

water with some fish in it; hang up a bottle that empties drop

by drop into a wide vessel beneath it. With the ship standing

still, observe carefully how the little animals fly with equal speed

to all sides of the cabin. The fish swim indifferently in all direc-

tions; the drops fall into the vessel beneath; [...] When you have

observed all these things carefully [. . . ], have the ship proceed

with any speed you like, so long as the motion is uniform and

not fluctuating this way and that. You will discover not the least

change in all the effects named, nor could you tell from any of

them whether the ship was moving or standing still. In throwing

something to your companion, you will need no more force to get

it to him whether he is in the direction of the bow or the stern,

with yourself situated opposite. [. . . ] the butterflies and flies will

continue their flights indifferently toward every side, nor will it

ever happen that they are concentrated toward the stern, as if

tired out from keeping up with the course of the ship, from which

they will have been separated during long intervals by keeping

themselves in the air (Galilei, 1967, p. 186).

Although our current concept of a classical system and an inertial frame

were developed after Galileo’s time (for one, Galileo’s inertial motion con-

cerned circular, not rectilinear motion [e.g., see Galilei (1967, pp. 31-32)
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and Chalmers (1993)]), it is easy to see why so many have believed that this

passage expressed something very similar to the idea that the laws of classi-

cal systems are the same in all inertial frames.3 After all, we can associate

an (approximately) inertial frame with the ship at rest in the port, and a

different inertial frame (with a different velocity) with the ship when sailing

uniformly. In both frames, all the objects in the cabin seem to behave in

the same manner, and, in particular, they all seem to satisfy the same laws.

In Galileo’s words, “You will discover not the least change in all the effects

named, nor could you tell from any of them whether the ship was moving

or standing still.”

Some decades later, a version of the same idea appeared in Newton’s

work, now presented as a corollary to the laws of motion of the new physics

developed in the Principia.4 The corollary in question reads as follows:

Corollary V: When bodies are enclosed in a given space, their

motions in relation to one another are the same whether the

space is at rest or whether it is moving uniformly straight forward

without circular motion (Newton, 1999, p. 423).

Note that by “space,” Newton means a system that is approximately

closed, for example, the cabin of a ship. Indeed, in the derivation of the

corollary that he presents just afterward, Newton gives the example of a

ship: “This is proved clearly by experience: on a ship, all the motions are

3Although this is a rather common belief, we will soon see that there are reasons to
think that Galileo was not intending to restrict his principle to classical or mechanical
systems.

4See DiSalle (2020, §1.3) for more details about the early history of the principle,
including Christiaan Huygens’s own version from 1656.
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the same with respect to one another whether the ship is at rest or is moving”

Newton (1999, p. 423). Note also that the motion relative to the shore of

the bodies inside a ship is different if the ship is moving or if it is anchored,

so it is important when stating this principle to distinguish the motion of

the bodies with respect to other bodies within the same space (e.g., the

ship) from their motion with respect to bodies outside that space (e.g., the

shore), as Newton explicitly does here (he is talking of “their motions in

relation to one another” in the same space).5 Of course, Galileo knew this

as well, which is why his example concerns the motion of objects inside the

cabin below deck.

From our modern perspective, it seems natural to read this corollary in

the Principia as stating that the laws of Newtonian systems (not just their

motions) are the same regardless of what inertial frame is adopted (where,

once again, we have associated an inertial frame to a “space” such as the

ship when anchored).6 That is, from our modern perspective it is natural

to read this corollary as presenting GRP or at least an earlier version of it.

It would take over two centuries after the publication of the first edition

of the Principia before someone coined the term “principle of relativity.”

It is believed the term was first used by Henri Poincaré in an address de-

livered before the International Congress of Arts and Science in St. Louis,

5Brown (2005, Ch. 4) argues that this distinction between the motion of bodies relative
to other bodies inside a space, and their motion relative to bodies external to that space,
gives empirical meaning to GRP.

6 Newton’s derivation of this corollary appeals to both the second law and an example
involving objects colliding with one another, but it would be an understatement to say
that the derivation is lacking. Indeed, as both Barbour (1989, pp. 31-32) and Brown
(2005, p. 37) have pointed out, Newton’s derivation omits the crucial premise according
to which the forces acting on all the bodies “in a given space” (e.g., inside the ship) do
not depend on the velocity of such space.
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on September 24th, 1904 (Browne, 2020, pp. 207-208).7 In the address,

Poincaré lists six important physical principles of the time, among which he

includes the conservation of energy and the following one (my emphasis):

The principle of relativity, according to which the laws of phys-

ical phenomena should be the same, whether for an observer

fixed, or for an observer carried along in a uniform movement of

translation; so that we have not and could not have any means of

discerning whether or not we are carried along in such a motion

(Poincaré, 1905, p. 5)

Notice that in contrast to Newton’s corollary V, this principle is stated

explicitly in terms of the laws of physical systems and not their motions,

making it more similar to modern formulations. It is also worth stress-

ing that Poincaré does not restrict the principle to mechanical or classical

systems. For instance, in the same piece, Poincaré considers how electro-

dynamics seems to threaten the principle (1905, pp. 9-10), discusses how

the optical experiments performed by Michelson and Morley offered an ex-

perimental confirmation of it (1905, pp. 10-11), and concludes that “the

principle of relativity has been valiantly defended in these latter times, but

the very energy of the defense proves how serious was the attack” (1905, pp.

11).

7Poincaré’s address was reprinted some months later in The Monist.
It was titled “Principles of Mathematical Physics” (1905). See
https://www.gutenberg.org/files/38267/38267-h/38267-h.htm for the original pro-
gram of the congress, which included well-renowned scholars in many disciplines such as
Ludwig Boltzmann, Gaston Darboux, Wilhelm Ostwald, and Thomas Woodrow Wilson,
who would become President of the United States nine years later.
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Even though Poincaré first used the term “relativity principle,” it was

Einstein who brought the principle to prominence a few months later in his

famous paper “On the Electrodynamics of Moving Bodies,” published on

June 30, 1905. In that paper, Einstein says (my emphasis):

the same laws of electrodynamics and optics will be valid for all

frames of reference for which the equations of mechanics hold

good [i.e., for all inertial frames]. We will raise this conjecture

(the purport of which will hereafter be called the “Principle of

Relativity”) to the status of a postulate (Einstein, 1905).

In section 2 of the same paper, Einstein defines the principle in this way

(my emphasis):

The laws by which the states of physical systems undergo change

are not affected, whether these changes of state be referred to

the one or the other of two systems of co-ordinates in uniform

translatory motion. (Einstein, 1905, §2)

Notice that Einstein, like Poincaré, presents this principle in terms of

the laws of physical systems rather than their motions. Also, Einstein is

explicit that the principle should encompass “electrodynamics and optics”

in addition to “mechanics,” and uses the language of frames of reference (in

the first passage) or coordinate systems in uniform motion (in the second

one), which is standard in modern presentations. This is not a coincidence,

of course, as modern presentations typically follow Einstein’s approach.

Einstein’s influential popular book on relativity, published in 1920, also

has an illustrative presentation of the principle:

12



If, relative to K [an inertial system], K’ is a uniformly moving

co-ordinate system devoid of rotation, then natural phenomena

run their course with respect to K’ according to exactly the same

general laws as with respect to K. This statement is called the

principle of relativity (in the restricted sense).8 As long as one

was convinced that all natural phenomena were capable of repre-

sentation with the help of classical mechanics, there was no need

to doubt the validity of this principle of relativity (Einstein et

al., 2015, p. 24).

For ease of reference, we can summarize the relativity principle Einstein

is introducing in these three passages in this manner:

Relativity Principle (RP): the laws of physical systems are

the same in all inertial frames.

Notice that GRP is a special case of RP, as the former says “classical

systems” and the latter employs the more generic term “physical systems.”

At this point, it is worth flagging that the term “Galilean Relativity

Principle” can be misleading in at least one important way (other issues with

the term will be noted later). The fact that the term is defined as being

restricted to classical or mechanical systems makes it sound as if Galileo

himself had intended to limit the ship passage to these kinds of systems.

But this seems false for at least three reasons. First, notice that in the ship

8Einstein uses “restricted sense” because by 1920, when this book was published, he
had already developed the theory of general relativity, and in doing so, had introduced
a more general principle of relativity that included accelerating frames. In his book,
Einstein called it the “General Principle of Relativity” (2015, §22). For a recent and
careful philosophical discussion of it, see Lehmkuhl (2022).
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passage, Galileo does not discuss any standard mechanical system at all,

such as a lever, a pulley, or an inclined plane. Instead, he illustrates his

principle by appealing to “biological systems” such as butterflies, fish, and a

person throwing an object (he also uses smoke and water drops). Second, as

Brown (2005, p. 36) notes, if Galileo thought that non-mechanical systems

such as light rays or magnets were not compatible with the ship thought

experiment, he probably would have said so at some point (Galileo discusses

both light and magnets in various parts of the Dialogues).9 And third, in the

introduction to the book, Galileo says that (my emphasis) “all experiments

practicable upon the earth are insufficient measures for proving its mobility,

since they are indifferently adaptable to an earth in motion or at rest”

(Galilei, 1967, p. 6). For these reasons, it seems more accurate to read

Galileo’s ship passage as presenting a principle closer in scope to RP than

to GRP. Having said this, to avoid unnecessary confusion, I will still follow

standard terminology and keep using “GRP” for the version of RP that is

restricted to classical systems.

Finally, consider a more recent presentation of the Relativity Principle

found in the first volume of the Feynman lectures. There, when talking of

Newton’s corollary V, Feynman makes the following comment (my empha-

sis):

This principle is that the laws of physics will look the same

whether we are standing still or moving with a uniform speed

in a straight line. For example, a child bouncing a ball in an

9A similar point can be made about Newton’s corollary V (Brown, 2005, p. 36).
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airplane finds that the ball bounces the same as though he were

bouncing it on the ground. [. . . ] This is the so-called Relativ-

ity Principle. As we use it here [in the context of Newtonian

mechanics] we shall call it “Galilean relativity” to distinguish it

from the more careful analysis made by Einstein, which we shall

study later (Feynman, Leighton, & Sands, 1963, ch. 10).

Curiously, despite what he says in the last sentence, when Feynman

goes on to discuss the Relativity Principle in the context of the theory of

Special Relativity in chapter 15 of the same volume, he appeals to Newton’s

corollary V again and never considers Einstein’s own definition!

3 Internal vs External Relativity

3.1 Two senses of having the same laws

Recall that Feynman characterizes GRP by saying that “the laws of physics

will look the same whether we are standing still or moving with a uniform

speed in a straight line.” But what does it mean to say that the laws look the

same, exactly? And what does it mean to say, as in the definitions of GRP

and RP, that the laws are the same in all inertial frames? Perhaps Einstein’s

formulation can help here. In particular, recall that he characterizes RP

as saying that “natural phenomena run their course with respect to K ′

according to exactly the same general laws as they do with respect to K,”

where K and K ′ refer to two different inertial frames. Presumably, this

means that if we study the behavior of a physical system S using frame K,
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we find it to obey the same laws as the ones it does obey in frame K ′. Still,

this is not completely clear. Are we supposed to consider a single system

as studied from the perspective of two different frames in relative motion

with respect to one another, or are we supposed to consider two copies or

instances of the very same type of system, where one copy is co-moving

with frame K and the other one is co-moving with frame K ′? To better

understand this question and see why it matters, consider a very simple

example.

Say that Sara, while standing inside a train, throws a dart at a board

hanging on the front wall of the cabin (so she is throwing the dart in the

same direction as the motion of the train). In the cabin, there is a camera

that records the motion of the objects and is also capable of making mea-

surements of speed, time, and acceleration. Imagine, furthermore, that the

cabin of the train is made out of glass, so observers outside can see what is

happening in the cabin. A second camera is also installed outside on a post

at the train station. When the cabin is passing by the post with a constant

speed of 100 kph, Sara throws the dart. We then collect the video clips from

the two cameras and compare them. As expected, both recordings indicate

the same vertical acceleration (i.e., g), no horizontal acceleration, and the

same time for the dart’s flight. They also indicate different measurements for

the traveled distance and the horizontal velocity of the dart, as the external

camera sees the dart as moving with the velocity of the train in addition to

the velocity relative to the cabin (the internal camera only tracks the latter).

Crucially, both sets of measurements are consistent with Newton’s second

law. In particular, they both measure null horizontal acceleration, which is
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expected from this law if there is no horizontal force. And they both mea-

sure the same vertical acceleration, which is, again, expected given that the

dart’s weight is (approximately) constant as it falls. Hence, even though the

recorded positions for any time will be different because the velocities are

different, the laws obeyed by the system are the same (to be more precise,

these positions will be seen to satisfy the very same differential equations).

This example illustrates one way in which the same phenomena (the dart’s

behavior) “run their course with respect to K ′ according to exactly the same

general laws as with respect to K.”

Now, imagine Sara throwing a dart inside a train’s cabin, but this time,

we will consider two different throws, and we will forget about the external

camera. First, when the train is parked at the station, Sara will throw the

dart, and the camera in the cabin will record the motion. Then, when the

train is moving at 100 kph, Sara will throw the dart again, with the same

initial speed with respect to the cabin, and at the same angle and from

the same height. We then collect the video clips from the two throws and

compare them. Just like in the case discussed above, both clips indicate

the same vertical acceleration, no horizontal acceleration, the same time for

the flight, and, more generally, the recorded positions are seen to trace a

trajectory that satisfies the differential equations associated with Newton’s

second law. Hence, we say that both throws of the dart, each moving at

a different speed with respect to the ground, obey the same laws. This is

then a second type of instance in which the same phenomena “run their

course with respect to K ′ according to exactly the same general laws as

with respect to K.” Importantly, in contrast to the previous case, the two
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recordings show the same distance, the same horizontal velocity, and, in

general, the very same motion as a function of time. In fact, in this second

case, we could not tell one video clip apart from the other one!

So there seem to be at least two different ways of understanding a phrase

such as “obeys the same laws in different inertial frames” and thus two differ-

ent readings of the Galilean Relativity Principle (and, for the same reason,

two readings of the Relativity Principle, but we will focus on GRP for the

time being). In one reading, which I call “external,” the phrase means obey-

ing the same laws for a given single system simultaneously studied from two

(or more) inertial frames. In practice, this means that one can adequately

capture the kind of behavior of the system with the very same equations

in both frames (e.g., one can use the equations for projectile motion in two

frames). In a second reading, which I call “internal,” the phrase in question

means that if we study a system from the perspective of a certain inertial

frame and we boost both the frame and the system together (e.g., we perform

a Galilean boost on the train and the dart), then the laws of the boosted

system from the perspective of the boosted frame are the same as the laws

of the original system from the perspective of the original frame (notice that

this assumes that the initial conditions are the same; we will come back to

this shortly). In this second case, not only is the type of behavior the same

(e.g., parabolic motion), but the specific behaviors are also the same (e.g.,

one recovers the exact same parabola).

It is important to note that when considering the internal sense, we

don’t necessarily need to think of a single frame and a single system that

are being boosted together, like a single cabin and a single dart. Instead,
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we can consider two instances of the very same type of system, such as two

identical darts. For example, let’s say that at 3:00 pm, Sara throws a dart

with initial conditions C while standing in a train that is moving in a straight

line at 100 kph. At the same time (or different time, it does not matter!),

Carlos throws an identical dart with the same initial conditions C, but he is

standing inside a train moving at 5 kph in a straight line. According to the

internal interpretation of “obeys the same laws in different inertial frames,”

both Carlos and Sara will observe that their darts behave according to the

same laws (i.e., they will observe their positions as a function of time to

satisfy the same differential equations). Moreover, they will see that the

darts have the exact same motion (i.e., their positions as a function of time

seem exactly alike). So the internal reading ought to be interpreted more

broadly than just applying to a single system that is studied first in one

frame and then boosted to a new frame. If there are already two instances

of the same system moving at different velocities, there is no need to boost

anything according to the internal reading.

Although the distinction between the internal and the external interpre-

tations of the phrase in question might seem clear enough, offering a slightly

more precise formulation would be useful. To do so, we need to say a bit

more about the initial conditions of a system. Think of the initial conditions

C for a system in an inertial frame F as corresponding to whatever the (rel-

evant) properties of that system are, as measured with respect to an object

(e.g., a device or an observer) at rest in the origin of F at some “initial”

time t (what we take the initial time to be is, of course, arbitrary).10 For

10One can easily generalize the discussion by considering a device or observer in motion
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example, the initial conditions for the dart in the frame associated with the

train include things such as the initial height, initial velocity, and initial

angle at which the dart is thrown, where these properties are specified with

respect to some object in the cabin, say a camera attached to the cabin’s

floor (we take that camera to be located at the origin of the frame associated

with the cabin when the latter is moving uniformly). Recall that from the

perspective of another device, such as the camera at rest in the train station,

the very same dart, when thrown in a moving train, has a different initial

velocity precisely because the train is moving with respect to this external

camera. Hence, for cases that fall under the external interpretation, it will

generally be the case that the initial conditions for the very same system

will be different depending on the frame under consideration precisely be-

cause of the relative motion of the frames (this is why we do not require the

same initial conditions in the external interpretation). However, in cases

concerning the internal interpretation, the initial conditions as measured by

different devices at rest in different frames will be the same (at least in the

cases of interest). For convenience, I will use “CK” to represent the initial

conditions as specified with respect to the origin of frame K. For example,

CK will represent the initial velocity, initial height, and initial angle of the

dart when measured with respect to a camera, which is at the origin of K

and remains at rest in K.

We are now in a better position to see how the two interpretations of a

phrase such as “obeys the same laws in different inertial frames” correspond

to two different relativity principles for mechanics.

in F , or one not in the origin.
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External Galilean Relativity Principle (EGRP): Consider

an arbitrary classical system S1 with initial conditions CK in the

inertial frame K. S1 behaves according to the same laws in K

and in K ′, where K ′ is an inertial frame in uniform motion with

respect to K (in general, the initial conditions CK′ in K ′ will be

different from those in K). To phrase it more precisely, the kind

of behavior of S1 is captured by the same equations in K and

in K ′. The specific behavior will be, in general, different in K

and K ′ (i.e., the trajectories will be different but they will still

satisfy the same equations).

Internal Galilean Relativity Principle (IGRP): Consider

an arbitrary classical system S1 of type T with initial conditions

CK in the inertial frame K. Take a second classical system S2

of type T (it could be the very same S1, now boosted, or it

could be a duplicate) with initial conditions CK′ , where K ′ is

an inertial frame moving uniformly with respect to K. If the

initial conditions are the same in the two frames (if CK = CK′),

then the specific behavior of S1 in K is the same as the specific

behavior of S2 in K ′. It trivially follows from this that the kind

of behavior of S1 in K is captured by the same equations as the

ones that capture the kind of behavior of S2 in K ′.

To go back to our example, according to EGRP, the external camera will

see the dart in Sara’s cabin follow a different parabola compared to the one

seen by the internal camera, so the specific behavior of the dart is different
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depending on the frame. However, the two cameras agree in that the two

trajectories satisfy the differential equations for parabolic motion, and so

agree about the kind of behavior of the dart. According to IGRP, if the

initial conditions are the same, the dart in Sara’s cabin will follow the exact

same parabola as the dart in Carlos’ cabin. Hence, the specific behavior of

the dart is the same regardless of the frame, and so, trivially, the kind of

behavior (parabolic motion) is also the same. A more succinct yet slightly

technical way of describing the situation goes like this: in the case of EGRP,

different inertial frames pick out different solutions for the same laws of a

given system, whereas in the case of IGRP, different inertial frames pick out

the very same solution for the same laws.

I would like to make three remarks about these principles. First, an

important consequence of IGRP is that it would be impossible to tell if we

are in an inertial frame K or in another inertial frame K ′ simply by looking

at how a classical system behaves in our frame. For example, we can’t tell

that it is January as opposed to June simply by seeing how a pendulum

sitting on my desk oscillates during these two months, even though one

would associate (approximately) different inertial frames with my desk in

these two months. Second, it is easy to see that the two interpretations

of the phrase “obeys the same laws in different inertial frames” also lead

to two different versions of the Relativity Principle (RP), an internal one

(“IRP”) and an external one (“ERP”). IRP (ERP) would be formulated just

like IGRP (EGRP) except for the fact that it would use “physical systems”

instead of “classical systems.”

Third, and finally, it is worth clarifying how the distinction between
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EGRP and IGRP relates to the distinction between active and passive trans-

formations. Say we study the trajectory of a single dart from the perspective

of two inertial frames in the context of Newtonian mechanics, the frame of

the external camera (at rest in the station) and the frame of the internal

camera (moving at 100 kph in a straight line). If we know the trajectory

r(t) of the system in one frame as a function of time, we can derive the

trajectory r′(t) in the other one simply by performing a passive (or coordi-

nate) transformation that maps r(t) to the new trajectory r′(t) = r(t)− vt,

where v represents the velocity between the two frames (in other words, this

means that the coordinates in one frame are related to the ones in the other

frame via a Galilean boost). For example, if r(t) corresponds to the parabola

the internal camera records, then r′(t) = r(t)− vt would correspond to the

parabola recorded by the external camera (the latter is stretched compared

to r(t), but it is still a parabola). The fact that both frames see the dart as

following parabolic motion indicates that this passive transformation does

not change the laws of the dart (as EGRP requires), or in slightly more tech-

nical jargon, it indicates that Galilean boosts are symmetries of the dart’s

laws. Now study the dart when thrown in the cabin at rest, and then when

thrown in the cabin that is moving at 100 kph. In this case, one can go

from the trajectory r(t) seen in one frame to the trajectory r′′(t) seen in

the other one by performing both (a) a passive transformation that maps

r(t) to r′(t) = r(t) − vt and (b) an active transformation that maps r′(t)

to r′′(t) = r′(t) + vt. The passive one encodes information about how the

coordinates in one frame relate to the coordinates in the other one (just as

it was in the case of EGRP), whereas the active one represents the change
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in the velocity of the dart (the dart in the cabin at rest is moving with a

different velocity than the dart in the cabin moving at 100 kph). In the

end, these two transformations exactly cancel out, and so the net transfor-

mation relating the trajectory of the dart in one frame to the trajectory

in the other one ends up being trivial; r(t) is mapped to itself. In other

words, if one increases the velocity of the observer and the velocity of the

dart by the same amount, the relative motion between the dart and the

observer remains the same. Thus, the two frames see identical parabolas for

the dart, r(t) = r′′(t), just as IGRP requires. In short, according to EGRP

in the context of Newtonian mechanics, trajectories are related by a passive

transformation of the form r(t) 7→ r(t)−vt whereas according to IGRP they

are identical, r(t) 7→ r(t) (“a 7→ b” means that a is being mapped to b).

For completeness, let me note that if instead of Newtonian mechanics

we had considered Special Relativity, the transformations relating trajecto-

ries in one frame to trajectories in another frame would have been differ-

ent. In particular, if we were considering EGRP in a relativistic context,

then instead of assuming Galilean boosts of the form r(t) 7→ r(t) − vt, we

would have to assume Lorentz boosts of the form r(t) 7→ γ(r(t)− vt), where

γ = 1√
1−v2/c2

(at low velocities relative to the speed of light, γ ≈ 1, and

the two transformations coincide). In the case of IGRP, it would remain

true that r(t) 7→ r(t) because the passive Lorentz boost would cancel out

the active one. This serves to illustrate the often overlooked fact that the

Galilean Relativity Principle, either in the form of IGRP or EGRP, does not

require different inertial frames to be connected by Galilean boosts specifi-
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cally, despite what the name might suggest.11 In fact, notice that nowhere

in the definition of EGRP and IGRP is it specified what kind of transfor-

mation connects different inertial frames. Still, when evaluating if a given

system satisfies these principles, it is important to specify if we are in a non-

relativistic context in which inertial frames are related by Galilean boosts,

or if we are in a relativistic one in which they are related by Lorentz boosts.

After all, as we will see in the next sections, some systems might satisfy

EGRP (or ERP) only in one of the two contexts. Unless noted otherwise, I

will keep discussing EGRP and IGRP in non-relativistic contexts for now.

3.2 Is IGRP the obvious reading?

Let me end this section by addressing a potential concern. One might think

that it is obvious that the Galilean Relativity Principle is the one expressed

by IGRP because IGRP directly captures the idea that things look the same

“from within a given closed space” regardless of the state of uniform motion

of such space. Indeed, a version of IGRP does seem to be the one alluded to

in Galileo’s passage, or in Newton in Corollary V, or in Einstein’s passage

about the organ-pipe discussed in the introduction, and also the one hinted

at by Feynman in the passage discussed earlier. IGRP is also the principle

that seems to be discussed by philosophers of physics such as Belot (2000),

Brown 2005, Norton 2008 and DiSalle (2020). So why even suggest that

EGRP is a plausible reading of this principle?

It turns out that many physicists have defined or talked about the

11Brown (2005, p. 36) also stresses this, although without distinguishing between EGRP
and IGRP.
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Galilean Relativity Principle in ways that more closely resemble EGRP than

IGRP. For example, Emam (2021, p. 105) defines GPR in the following way:

“Any two observers moving at constant speed and direction with respect to

one another will obtain the same results for all physical experiments.” On

its own, this might not seem like enough to distinguish IGRP from EGRP,

but just a few lines later, the author goes on to add that the two observers

will disagree about properties such as the velocity (2021, p. 106). Hence,

Emam is thinking of EGRP, not IGRP. Or consider this passage by Zee

(2007, p. 55): “relativistic invariance says that two observers in relative

motion must arrive at the same physical laws, in spite of the fact that they

differ in their measurements of various physical quantities [e.g., speed].”

Here, “relativistic invariance” seems to be Zee’s own term for GRP, as he

introduces it just two lines after referencing Galileo’s ship (2007, p. 54) and

in the same section where he discusses the impossibility of measuring abso-

lute motion using mechanical experiments (this is also the section in which

Zee discusses Einstein’s own relativity principle). Hence, given the quoted

definition of relativistic invariance, it seems that Zee is thinking of GRP in

terms of EGRP and not IGRP. Similarly, in the chapter dedicated to the

Relativity Principle (RP) of the very influential textbook on relativity by

Taylor and Wheeler (1992), there is a section clarifying that even though

different frames agree about the laws for a system, they disagree about cer-

tain properties of the system, such as its velocity or space separation (1992,

§3.2). In the section after that one, the authors go on to emphasize that

according to RP, the laws and physical constants are required to be the

same in all inertial frames, but properties like the velocity can vary (Tay-
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lor & Wheeler, 1992, §3.3). So Taylor and Wheeler are thinking about the

Relativity Principle in the external sense captured by ERP.

Furthermore, even in Einstein’s 1905 paper, presumably the most influ-

ential paper on the Relativity Principle, the external perspective is central.

For example, according to Einstein, for RP to be compatible with the fact

that the speed of light is independent of the state of motion of the source

(the so-called “light postulate”), it has to be the case that different observers

in relative motion agree about the speed of any particular light ray (that

is, the speed of a single light ray observed from two different frames). Ein-

stein goes on to prove this result by using the Lorentz transformations for

a spherical wave and comes to the following conclusion (my emphasis):

The wave under consideration is therefore no less a spherical

wave with velocity of propagation c when viewed in the mov-

ing system. This shows that our two fundamental principles

[the Relativity Principle and the light-postulate] are compatible

(Einstein, 1905, p. 8).

Hence, Einstein believes that for RP to be compatible with the light-

postulate, it must be the case that the laws for a single light wave (he

says “the wave”) are the same in different inertial frames, which suggests

that he is reading RP externally, in the way captured by ERP (here the

relevant laws are that the speed of light is c and that the wave is spherical).

Indeed, notice that it would not be surprising at all that two different light

beams, produced in two different train cabins in relative motion with respect

to one another, are seen to have the same speed and to be spherical in
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their corresponding cabin. The surprising thing is that these properties of

light are preserved when a single light beam is seen from two frames in

relative motion! Similarly, relativistic effects such as length contraction or

time dilation require adopting the external perspective. For instance, the

contraction of a rapidly moving rod is only evident externally, from the

perspective of a detector that is not moving together with the rod (this is

why Taylor and Wheeler (1992, §3.2) go on to say that RP does not require

that different inertial frames agree about space separation or time intervals).

Finally, we can offer a more general argument that EGRP constitutes a

fairly widespread understanding of GRP. It is very common to find discus-

sions of GRP that present the principle, or even try to justify it, by showing

that F = ma remains invariant under the Galilean boost transformation

x 7→ x − vt (e.g., see Cline (2021, p. 9567), Feynman et al. (1963, ch. 15),

North (2021, ch. 3), and Susskind and Cabannes (2023, ch. 1)).12 But

to think that GRP is the same as, or that it is justified by, the fact that

F = ma is invariant under x 7→ x−vt is to think about GRP along the lines

of EGRP. To see this, recall from the end of §3 that in the context of New-

tonian mechanics, EGRP involves a (passive) boost transformation of the

form x 7→ x−vt. This transformation tells us how x, the position variable in

one inertial frame, is related to x′ = x− vt, the position variable of another

frame moving with velocity v with respect to the first frame. So to show

that F = ma is invariant under x 7→ x−vt amounts to showing that the two

frames agree about the fact that the system (one system) satisfies Newton’s

12Crucially, these authors must assume that neither m nor F depends on the velocity,
otherwise the equation is not invariant under boosts (see footnote 6). For the classical
systems that we will study in this paper, this assumption holds.
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second law, even though they disagree about the position and velocity of the

system at any given time. Thus, showing that F = ma is invariant under

x 7→ x − vt is a way of demonstrating that EGRP holds. Recall too that

IGRP ultimately amounts to the trivial transformation x 7→ x because the

passive transformation relating the coordinates in the frames cancels out

the active one relating the two velocity states of the system (needless to say,

F = ma is invariant under x 7→ x). Hence, the fact that in their discussion

of GRP none of these authors mention the trivial invariance of F = ma

under x 7→ x but rather focus on the more interesting invariance of F = ma

under x 7→ x− vt strongly suggests that they are understanding GRP along

the lines of EGRP and not those of IGRP.13

4 Systems that do not satisfy EGRP

Up until now, I have argued that there are two different readings of GRP,

namely, EGRP and IGRP, and have shown that both seem to have ample

support (there are also two readings of RP, ERP and IRP). The possibility

remains, however, that EGRP and IGRP are ultimately equivalent princi-

ples. This section shows that this is not the case. The argument is simple:

in non-relativistic contexts, many classical systems serve as counterexamples

of EGRP but not of IGRP. In §5, I also show that the same argument holds

in relativistic contexts both for classical and non-classical systems.

13For exactly analogous reasons, the fact that scholars illustrate or explain RP by show-
ing that non-trivial Lorentz boosts are symmetries of the wave equation for light in vacuum
(as Einstein does in the passage discussed earlier) suggests that in relativistic contexts,
ERP is widespread.
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4.1 Guitars, springs, and planets

To begin with, consider again a system like the dart thrown inside a train’s

cabin, and let’s focus on the horizontal motion for simplicity. As we noted

earlier, even though the specific motion recorded by the external and in-

ternal cameras are different, both trajectories are consistent with Newton’s

second law for the case of projectile motion (no horizontal acceleration and

constant vertical acceleration). As we also said, if we repeat the experiment

at different uniform velocities of the cabin, say when parked and when mov-

ing at 100 kph, we obtain in both cases a motion that looks exactly alike in

the two cases, and, of course, a motion consistent with Newton’s second law

in the two cases. Hence, the dart is an example of a classical system that is

consistent with both EGRP and IGRP.

For another simple example, consider a person pushing a chair inside the

train cabin with force F , and suppose that there is no friction. Then, the

external and internal cameras will show different specific motions for the

chair (as the instantaneous velocity will be different), but the two motions

will satisfy F = m d2

dt2
x, Newton’s second law for this particular system.

Mathematically, this is reflected in the fact that x 7→ x − vt (a Galilean

boost) is a symmetry of F = m d2

dt2
x.14 It is also clear that if the person

repeats the experiment at different uniform velocities of the cabin, say when

it is parked and when it is moving in a straight line at 100 kph, they will

obtain in both cases a motion for the chair that looks exactly alike (we must

assume, of course, that the chair is pushed in the same way and also that

14F and m are held constant.
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its mass has not changed). So this seems to be another simple example of a

case that seems to be consistent with both IGRP and with EGRP.

It is tempting to infer from these two cases that we can generalize this

pattern to any other classical system, but things are not so simple. Consider

a slightly more complex system, namely, the vibrations of a string like those

obtained when playing guitar. Imagine that Sara makes a string vibrate

inside the cabin when the train is parked and then makes it vibrate when

the train is moving at 100 kph by pulling the strings in the same way. For the

camera inside, the vibrations of these two cases look exactly the same; the

waves in the string will be seen as having the same amplitude and the same

frequency. In particular, these waves will be seen to behave according to the

very same solution of the so-called “wave equation”.15 So the vibrations in

a string, and any other classical wave more generally (such as water waves,

acoustic waves, seismic waves, etc), seem to be examples of classical systems

consistent with IGRP. Indeed, this is precisely what Einstein seemed to be

alluding to with the organ example presented in the introduction (also, since

IGRP is a special case of IRP, all the systems that satisfy the former also

satisfy the latter). This is, of course, expected. We are familiar with the

fact that regardless of the Earth’s particular speed around the Sun, one can

use the classical wave equation to model many kinds of classical waves!

What about the behavior of the string’s waves when seen from the per-

15The dynamical equation for waves in a string is

∂2y

∂t2
=

T

µ

∂2y

∂x2
, (1)

where T is the tension in the string, µ the string’s density, t time, x the horizontal
displacement and y the vertical displacement. Here,

√
T/µ is the velocity of propagation

of the wave in the string.
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spective of the external camera as the train passes by? The external camera

will see different specific shapes or patterns for the vibrations precisely be-

cause of the velocity of the string with respect to the station. This is just as

it was with the dart, whose specific motion looked different when seen from

outside. However, the type of behavior for the vibrations, as seen by this

camera, is also different when compared with the one seen by the internal

camera. In particular, the vibrations on the string as seen by the exter-

nal camera will fail to satisfy the classical wave equation when the train is

moving. Instead, these vibrations will be seen to satisfy a different equation

that has a term that captures the relative motion between the string and the

frame (see figure 1 for an illustration).16 Mathematically, this is reflected

in the fact that x 7→ x − vt (a Galilean boost) is not a symmetry of the

classical wave equation. So, unlike the case of the dart, this is an instance

in which the law of a classical system (as captured, e.g., by the differential

equation used to model that system) is different in the external and the

internal frame. Hence, this is an instance of a system that is not consistent

with EGRP.

It turns out that many other classical systems that are consistent with

IGRP are inconsistent with EGRP. For example, as examined in detail by

Murgueitio Ramı́rez (2024), Hooke’s law, the equation used to model ideal

springs, is not invariant under Galilean boosts. This means that two ob-

16In particular, the vibrations will obey

∂2y

∂t′2
+ 2v

∂2y

∂x′∂t′
+

(
v2 − T

µ

)
∂2y

∂x′2 = 0, (2)

where v is the velocity of the string with respect to the external camera (not to be confused
with the velocity of propagation of the wave in the string, which is given by

√
T/µ). Notice

that this differential equation is different from the one in footnote 15.
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Figure 1: On the left we have a stationary wave in the guitar as seen by the internal
camera at three different times (the colors blue, red and orange correspond to the
wave at three different times). On the right we have the shape that the external
camera would see for the very same wave at the same time intervals. Notice that
whereas the internal camera sees the wave going up and down (a signature of a
stationary wave), the external camera sees it as moving both up and down and also
moving along the x axis. Crucially, the vibrations in the right figure do not even
satisfy the wave equation (footnote 15) but a more complicated differential equation
(footnote 16). The particular functions plotted here are y(x, t) = sin(2t) cos(x) for
the left figure and y(x, t) = sin(2t) cos(x− t) for the right one.

servers looking at the very same spring inside the cabin, one from outside as

the train passes by and one from the inside, will see it obey different laws,

contrary to what EGRP says (the external observer will not see the spring

as satisfying Hooke’s law). Of course, as recorded by the internal observer,

the spring will be seen to obey Hooke’s law when the train is parked and

also when it is moving uniformly, and so it is a classical system consistent

with IGRP. For another example, note that Galilean boosts are not even

symmetries of the equation for the Kepler problem that is used to describe

the motion of a body in an inverse square force field, such as that of a planet

moving around the Sun.17 This might seem rather puzzling, as Newtonian

17The equation is
d2r

dt2
+

µ

r3
r = 0, (3)

where r is the position vector and µ is a constant. This equation is not invariant under
boosts of the form r 7→ r − vt (see Prince and Eliezer (1981) for a discussion of the
symmetries of this equation).

33



gravitation is supposed to be a paradigmatic example of a theory whose

laws are invariant under Galilean boosts. And the puzzle only increases if

one notes that neither the gravitational force between the two bodies nor

their acceleration depends on the inertial frame from which they are being

observed. So, how come changes in the inertial frame, as when we go from

the internal to the external camera, give rise to changes in the equation used

to model the gravitational behavior of the bodies? Indeed, we can raise a

similar concern regarding ideal springs and classical waves. Neither the ten-

sion in the guitar’s string nor the force on an object attached to an ideal

spring depends on the velocity between the system and the inertial frame

adopted to study them. So how is it that the differential equations used to

model these systems depend on such velocity?

The key to solving these puzzles relies on the fact that the equations used

to model these and other classical systems that are inconsistent with EGRP

in a non-relativistic context (i.e., systems whose laws are not invariant under

Galilean boosts) do presuppose a special inertial frame. In the case of the

spring, the equation assumes a frame that is at rest with respect to the

equilibrium position. In the case of the vibrations in the string, a frame

is adopted so that the string is initially at rest (so “standing waves” are,

in fact, stationary in this frame). In the case of the Kepler problem, one

assumes a frame in which the source of the potential is at rest. The same is

true of the wave equation for sound propagation, which adopts a frame in

which the medium (the air) is initially at rest, or the heat equation, which

adopts a frame in which the material that is being heated, say a metallic

rod, is not moving. In all these cases, the differential equations capture
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how the system behaves from the perspective of these particular frames, so

it should not be that surprising that the equations are not invariant under

Galilean boosts. In other words, given that scientists study many systems

from the perspective of a lab frame in which the system (or a part of it)

is initially at rest, it is not that surprising that the equations they end

up using to model those systems only properly model the system in those

particular frames; they do so by design.18 Note that this is not unlike the

case of the wave equation for light, whose lack of invariance under Galilean

boosts was interpreted by many scientists as suggesting that there was a

privileged frame, namely, the one in which the ether was supposed to be at

rest. Unlike the case of sound waves or waves in a string, however, scientists

were not able to detect such a medium for light (see Cheng and Read (2021)

for a careful study comparing the case of sound waves to that of light in the

context of GRP).

Notice that the lack of invariance under Galilean boosts of these laws is

consistent with the fact that neither the accelerations nor the forces acting

on the various objects depend on the velocity between them and the frame.

If one were to compute the acceleration and the force of, say, a block attached

to a spring as seen from a frame that is in uniform motion with respect to

the equilibrium position, it would be the same as the acceleration and the

force calculated from the rest frame of equilibrium (Murgueitio Ramı́rez,

2024, §6), and the same goes for the other systems such as those involving

18This does not mean that scientists could not find the equations for other frames.
They can easily do that by starting with the equations that assume the lab frame and
then studying how they change under r(t) 7→ r(t) − vt (they will change, for Galilean
boosts are not symmetries of those equations).
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gravitational bodies. This illustrates the often overlooked fact that even if

all inertial frames were to agree about the forces and accelerations for a given

classical system, and so even if they were to agree about the fact that the

system obeys F = ma, it might still happen that different inertial frames

would disagree about the specific laws that the system satisfies, precisely

because those laws might be sensitive to features of the system that do

depend on its velocity with respect to the frame, such as whether the medium

of the wave is initially at rest. This is why it is misleading to take simple

cases like the dart or the chair when evaluating IGRP and EGRP, as these

systems are rather special and satisfy both.

Now, the reader might think that to say that the laws for these classical

systems do presuppose a special inertial frame is problematic, for it seems

to be at odds with the widely accepted belief that, in physics, any inertial

frame is as good as any other for the description of nature—that is, no

inertial frame is privileged. Indeed, this kind of answer seems problematic

also on more philosophical grounds: the laws of nature are not supposed to

be the kinds of things that are rather specific or that depend on arbitrary

choices on the part of agents, such as a choice of frame for the observer

or detector. For these reasons, one can object to the claim that the laws

of some classical systems are not compatible with EGRP in this way: if

it is true that the classical wave equation and many other equations that

represent the laws of some classical systems do presuppose specific inertial

frames, then, despite appearances, these equations do not capture the kind

of regularities that achieve “lawhood status.” That is, these equations do

not capture genuine laws. And if they do not capture genuine laws, then,
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the objection goes, they pose no challenge to EGRP.

I think, however, that this kind of objection is lacking, as it is fueled

by an ambiguity in the claim that no inertial frame is privileged. A frame

in which the string is at rest is indeed “privileged” from the point of view

of classical waves, in the sense that it is the frame in which those waves

behave in the way captured by the classical wave equation—for example,

it is the frame in which standing waves are, indeed, stationary. But it is

also true that no inertial frame is preferred over any other one in this more

substantive sense: whatever the inertial frame in which the string is at rest

is, waves in that frame do behave according to the very same equation. To

use a previous example, no matter what the train’s uniform velocity is (i.e.,

no matter the frame), as long as the string is pulled in the same way every

time, the vibrations will look just the same inside the cabin every single

time. This is precisely what we expect if IGRP is true, and presumably

what many have in mind when saying that there is not a privileged inertial

frame.

A similar thing can be said regarding the concern that the wave equation

does not capture a genuine law. If it were true that the wave equation only

“works” when the train has a particular velocity, that might indeed suggest

that the equation does not capture a genuine law, as it would be extremely

specific. But, once again, this is not the case. On the contrary, the classical

wave equation can be used successfully in many different contexts such as

in different locations (e.g., in any lab on Earth or even in a spaceship), in

spaces with different velocities (ships, airplanes, trains), and at different

times. It is also rather informative, has high predictive value, and supports

37



counterfactuals (e.g., it tells us how some particular wave in a string would

have behaved if the string had been pulled in some other way). In short,

this equation seems to exhibit all the standard features associated with the

equations of natural laws. Furthermore, to say that this equation does not

represent a genuine law would open the floor for saying that, for example, the

equation for the propagation of electromagnetic waves is also not capturing

a law, which would be rather controversial (formally, one can regard the

electromagnetic wave equation in vacuum as a three-dimensional version of

the classical wave equation). And, finally, to claim that the classical wave

equation is not the equation of a law just seems to be at odds with scientific

practice.

4.2 Acoustic Waves and the Doppler Effect

To end this section, it is illustrative to consider the relationship between

acoustic waves and the case of string waves discussed above. One might

wonder, in particular, if the situation involving the vibrations of the string

in the train cabin is analogous to cases involving the acoustic Doppler effect.

When an object produces waves while it is moving relative to the medium

over which the waves are defined, such as in the case of the siren of an

ambulance when the ambulance is moving relative to the air, those waves

are indeed affected by the relative motion between the source of the waves

(the siren) and the medium (the air). In this case, boosts of the ambulance

with respect to the air do produce changes in the pitch or frequency of the

sound, and so these kinds of boosts do bring about detectable effects. The

question, then, is whether this constitutes an example in which EGRP fails
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analogous to the case of the string waves, or perhaps a novel example in

which IGRP also fails.

Let’s start with IGRP. As Cheng and Read (2021, §2) point out, in the

case of classical waves we have to distinguish between the case in which we

boost both the object producing the waves (henceforth the “source”) and

the medium for those waves, and the case in which we boost the object

producing the waves without boosting the medium (or the case in which we

boost the medium without the source). If one boosts the source without

boosting the medium, then a person moving with the source, say the driver

of the ambulance, will notice differences in the sound of the siren when the

ambulance is at rest compared to when the ambulance is moving. The fact

that the person inside the ambulance can detect these differences in the

sound of the siren might suggest an analogy to scenarios where a person

inside a ship conducts experiments to distinguish between different states of

motion within the ship, potentially indicating situations where IGRP may

not hold. However, cases in which only the source is boosted relative to the

medium seem to be instances in which only a part of the relevant (total)

system is being boosted, analogous to boosting just a few objects inside the

cabin of Galileo’s ship or to boosting the front wheel of a bike without the

rest of the bike. Yes, there will be physical effects associated with these

kinds of boosts, but IGRP is about cases in which the whole system, not

just a part of it, is boosted together with the frame. In other words, when

assessing IGRP in the context of classical wave phenomena, we must treat

the source and the medium as parts of a total “wave-system” that must be
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boosted together as a whole.19 And if one does this, the boost does not seem

to bring about any physical effects. In the words of Cheng and Read (2021,

p. 4), “if the medium of propagation is also subject to a Galilean boost,

one does not expect violations of the Galilean relativity principle by a given

wave” (note that the authors seem to be assuming the internal reading of

GRP). Indeed, Einstein’s example of the pipe organ nicely illustrates this

point (the organ and the air around it are moving together with the Earth).

Thus, acoustic waves do not seem to threaten IGRP.

The previous discussion might suggest that if one treats the source and

the medium as parts of a greater system that must be boosted together,

then all classical waves are compatible with GRP in a Newtonian (non-

relativistic) context, even if GRP were to be read along the lines of EGRP.

As it turns out, perhaps surprisingly, some classical waves are inconsistent

with EGRP even if one boosts the source and the medium together. In fact,

the vibrations in a guitar string are a good example! Here the source of

the vibration might be a finger plucking the string, and the medium is the

string proper. As we explained earlier in this section, a camera fixed in the

station will see the vibrations as satisfying different laws compared to those

seen by the internal camera moving with the system. That is, even when

the source (here a person) and the medium (a string) are boosted together

relative to the external camera, that camera still detects different laws than

those detected by the internal camera (see Figure 1). So even if the source is

19Famously, in the case of light in vacuum there is no medium to be boosted even though
many physicists thought that the ether was such a medium (see Cheng and Read (2021)
for discussion).
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boosted together with the medium, classical waves can still violate EGRP.20

Furthermore, we do not need to focus only on string waves to encounter

cases incompatible with EGRP. Certain situations involving acoustic waves

also illustrate this point even when we boost the source and the air to-

gether. For instance, imagine an ambulance that is parked with the siren

on, and consider two detectors, one that is attached to a car moving uni-

formly relative to the ambulance, and one that is attached to the street near

the ambulance. Despite no relative motion between the source (the siren)

and the medium (the air) in this scenario, the two detectors will disagree

regarding the laws governing the acoustic waves; while the detector at rest

will show that the waves obey the standard acoustic wave equation, the

detector in motion will indicate that the waves obey a more complex differ-

ential equation that takes into account the motion of the detector relative

to the medium.21 Hence, as the detectors in the two inertial frames disagree

about the law associated with the sound waves produced by the siren, this

constitutes a counter-example to EGRP in a non-relativistic context (the

detectors also disagree about the frequency, but this is analogous to a dis-

20 Mathematically, this is captured by the fact that even if the propagation velocity
of the wave relative to the medium is constant, as expected when both the medium and
source are boosted jointly, Galilean boosts will introduce a time dependence for the wave’s
position that affects its various derivatives (this time dependence captures how the points
along the string move relative to the external camera that is not boosted). This is why the
equation in footnote 15 is not invariant under x 7→ x − vt even if

√
T/µ, the velocity of

propagation of the wave relative to the string, is held constant. Interestingly, the equation
is invariant under Lorentz boosts (assuming, again, that

√
T/µ is held constant).

21 In particular, the equation for acoustic waves in the case of an observer moving
relative to the medium with velocity v is

∂2
t p(x, t) + 2∂t v·∇p(x, t) + v · ∇2 x p(x, t) = c2∇2p(x, t), (4)

where c represents the velocity of the waves with respect to the medium, p the acoustic
pressure, x the position and t the time (the standard acoustic wave equation lacks the
second and third terms on the left side of this equation).
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agreement about the dart’s speed, and so analogous to a disagreement that

is compatible with EGRP). Crucially, in contrast to a case where the ambu-

lance moves relative to the air, in this situation, there are no changes in the

velocity between the source and the medium but only changes in the frame

from which the source and medium are being studied (from the perspective

of the detector in the car, this is a case where the source and the medium

are boosted together).

The upshot is that even though acoustic waves do not threaten IGRP,

they do threaten the Galilean Relativity Principle in the form of EGRP, and

they do so even when there are no changes in the relative velocity between

the source of the wave and the medium (i.e., they threaten EGRP even when

the source and the medium are boosted together).

5 Going Beyond the Classical World

Up to this point, I have appealed to some classical systems to show that

IGRP and EGRP are different in non-relativistic contexts. In this section,

I will generalize the discussion further by considering non-classical systems,

both in relativistic and non-relativistic contexts. The upshot, we will see,

is that IRP (but not ERP), is an extremely general principle, satisfied by

all kinds of systems, including systems that have laws that are not invariant

under Galilean or Lorentz boosts (recall from §3.1 that IRP and ERP gener-

alize IGRP and EGRP for the case of all physical systems). This illustrates

not only that the phenomenon captured by Galileo’s ship is surprisingly

universal, but, as we will see at the end of the section (in §5.2), it poses
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some problems for a widely endorsed interpretation of Galileo’s passage in

the contemporary philosophical literature on symmetries.

5.1 Atoms and light

Imagine that in the train cabin, there is an advanced laboratory capable

of running the Stern-Gerlach experiment or doing spectral analyses of the

hydrogen atom. If we run one of these quantum experiments when the train

is parked in the station, and then repeat it when it is moving uniformly at

100 kph in a straight line, we will get the same results, say, the very same

distribution of the spectral lines for hydrogen (for now, we are assuming

a non-relativistic context). Hence, we would not be able to distinguish be-

tween two uniform states of motion of the train solely based on the outcomes

of these quantum experiments. But if this is so, then it seems that quantum

systems satisfy IRP in non-relativistic contexts, just like classical ones do.

Now, it is well known that the Schrödinger equation, used to model

non-relativistic quantum systems such as the hydrogen atom at low speeds,

is not invariant under simple Galilean boosts of the form x 7→ x − vt.22

What does this lack of invariance tell us? Something very similar to the

case of classical waves! Although this is often left implicit, the Schrödinger

equation presupposes a particular frame, namely, a frame in which the so-

called “standing waves” are indeed stationary (these waves are solutions

of the time-independent part of the Schrödinger equation). To be more

concrete, when one uses the Schrödinger equation to solve the case of a

22Rather, it is invariant under more complex boost transformations that require the
addition of a term with a phase factor (see Brown and Holland (1999) and Greenberger
(2001)).

43



particle in a box, one assumes a frame in which the box is at rest. It

follows that whereas an internal device would see a quantum system in

the cabin satisfy the Schrödinger equation, the same would not be true for

an external device.23 Not only is the Schrödinger equation not invariant

under Galilean boosts, but as a non-relativistic law, it is also not invariant

under Lorentz boosts. So even if the two inertial frames associated with the

two states of motion of the train were to be related by a Lorentz boost, the

internal and the external camera would still disagree about the laws satisfied

by the system in the cabin. It follows that quantum systems modeled by

the Schrödinger equation fail to satisfy ERP in both relativistic and non-

relativistic contexts. And yet, just as we could not use the results of a

quantum experiment to distinguish between two inertial frames related by a

Galilean boost, we also could not do that in the case in which those frames

were related by a Lorentz boost. This illustrates that Galilean and Lorentz

boosts preserve the outcomes for experiments (confined to the cabin) of

systems whose laws are manifestly not invariant under either kind of boost.

The phenomenon originally captured by Galileo’s ship is remarkably general!

It is also illustrative to briefly consider electromagnetic systems, which

are manifestly relativistic. If we perform some experiments involving light

inside the train cabin when it is parked, and repeat the experiments when

the train is moving uniformly relative to the station, and we further assume

that the two frames are related by a Galilean boost, we will obtain the

very same results inside the cabin (e.g., the same interference patterns). So

23See Brown, Suárez, and Bacciagaluppi (1998) for a discussion of how Galilean boosts
of the frame affect the spectrum of a (non-relativistic) quantum system.
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Galilean boosts can preserve the behavior of light as seen inside the cabin,

exactly in an analogous way to how they preserve the vibrations in a string

as seen inside the cabin. But just as it happened with the classical wave

equation, the wave equation for light is not invariant under Galilean boosts

but under Lorentz boosts. This lack of invariance under Galilean boosts

reflects the fact that in a non-relativistic context, a device inside the cabin

would disagree with an external device about the kind of behavior of an

electromagnetic system inside the cabin—the devices would agree, however,

if the two frames were to be related by Lorentz boosts, as Einstein notes in

the passage cited in §3.2. Thus, in non-relativistic contexts, electromagnetic

systems can satisfy IRP, but not ERP. In relativistic contexts, these same

systems satisfy both IRP and ERP.

In summary, when assessing if a physical system satisfies the Relativity

Principle (or the Galilean Relativity Principle for a classical system), it is

important to specify (1) if we mean the internal or the external version of the

principle, and (2) if we are assuming a relativistic context in which inertial

frames are related to one another by Lorentz boosts, or a non-relativistic

context in which they are related by Galilean boosts. For example, in a non-

relativistic context, vibrations in a string satisfy IGRP and fail to satisfy

EGRP, as the classical wave equation is not Galilean invariant. In a rela-

tivistic context, the same vibrations satisfy both IGRP and EGRP, as the

classical wave equation is Lorentz invariant.24 Ideal springs satisfy IGRP

both in relativistic and non-relativistic contexts but do not satisfy EGRP

24This is true if we assume that the velocity of propagation of the wave with respect to
the string,

√
T/µ, is held constant (see footnote 20).
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in either case, as Hooke’s law is neither Galilean nor Lorentz invariant. A

quantum system such as a hydrogen atom satisfies IRP in relativistic and

non-relativistic contexts, but it does not satisfy ERP in either case (the

Schrödinger equation is neither Lorentz nor Galilean invariant). An elec-

tromagnetic wave propagating in a vacuum satisfies IRP in relativistic and

non-relativistic contexts, but it only satisfies ERP in the relativistic case, as

it has Lorentz invariant laws. And so on for other cases.

The distinction between EGRP and IGRP, on the one hand, and between

relativistic and non-relativistic contexts, on the other, highlights a sense in

which standard terminology can be rather confusing. For we use “Galilean”

both in the “Galilean Relativity Principle” and in “Galilean invariance,”

as if these terms were always intimately tied to one another and perhaps

even equivalent.25 But as it should be clear now, the connection between

these concepts is rather subtle. In particular, with the risk of repeating my-

self, note that it is not necessary that a system has laws that are Galilean

invariant in order for it to satisfy the internal version of the Galilean Rela-

tivity Principle (IGRP), although it is necessary (and sufficient) that it has

Galilean invariant laws for it to satisfy the external version (EGRP) in non-

relativistic contexts. Furthermore, it is not necessary for a system to have

Galilean invariant laws for it to satisfy the external version of the Galilean

25Some authors also use “Galilean covariance” or “invariance under Galilean transfor-
mations” instead of “Galilean invariance.” But the term “Galilean transformation” is also
ambiguous, as it sometimes refers to Galilean boosts (e.g., see Browne (2020, p. 209)),
and sometimes it denotes the more general set of transformations given by (i) spatial and
time translations, (ii) spatial rotations and (iii) Galilean boosts (this set of transforma-
tions forms the so-called “Galileo Group”). According to Mart́ınez (2009, p. 324), the
first scholar to use the term “Galilean transformation” was Philipp Frank in 1908 (Frank
used it to refer to Galilean boosts in particular).
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Relativity Principle in relativistic contexts, as waves in a string illustrate

(they have Lorentz invariant laws). In short, we see a hodgepodge of terms

appear in the literature with “Galilean” in the name, making it too easy

to lose track of the fact that, as I have argued in this paper, some of these

terms actually correspond with very different principles.26

5.2 Galileo’s ship and the philosophy of symmetries

To end, let me briefly indicate how the discussion in this section allows us

to draw some general lessons that are relevant to recent conversations in

the philosophy of symmetries. In the contemporary literature on symme-

tries, Galileo’s ship has became a paradigmatic example of a case supposedly

illustrating how symmetries of the laws (also known as “dynamical symme-

tries”) give raise to, or are intimately connected with, the preservation of

certain observations. To be concrete, authors such as Brading and Brown

(2004), Dasgupta (2016), Greaves and Wallace (2014), Healey (2009), Wal-

lace (2022), Teh (2015), and Murgueitio Ramı́rez and Teh (2021)—to name

a few—all treat Galileo’s ship as a paradigmatic case that demonstrates

how symmetry transformations of a given system (e.g., Galilean boosts) can

both (I) preserve the system’s behavior as seen by someone who is trans-

formed together with it, and (II) bring about detectable effects relative to an

external system that is not transformed (many authors even use the terms

“Galileo-ship-type” or “Galileo-ship-case” precisely to characterize this kind

of situation). For example, think of the case of the dart that was discussed

26In other words, the fact that two or more principles have “Galilean” in the name does
not imply that they are equivalent, but rather indicates that they are influenced, at least
in part, by the work of Galileo.
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earlier. In that case, a Galilean boost—which is a symmetry of the dart’s

laws—preserves how the dart’s trajectory looks according to the internal

camera (which is also boosted), but changes how the trajectory looks with

respect to the external camera fixed in the station. What I have shown in

this paper, however, is that this characterization of Galileo’s ship is just too

narrow. There is a vast number of physical systems (not to mention biolog-

ical systems such as the butterflies Galileo himself mentions!), ranging from

classical ones like vibrating strings to quantum ones like atoms, whose laws

do not include Galilean boosts as symmetries. And yet, Galilean boosts

of these systems still satisfy conditions (I) and (II)—this illustrates that

non-symmetry transformations of many systems still satisfy (I) and (I).

This suggests that the phenomenon captured by Galileo’s ship has been

mischaracterized in contemporary discussions; in its full generality, it is

not really about dynamical symmetries, let alone dynamical symmetries

preserving certain observations. Rather, it is about the rather general fact

that when one boosts a system together with an observer, the motion of the

system relative to the observer is preserved (see Murgueitio Ramı́rez (2024,

§7) for a recent proposal along these lines). In fact, this is made clear by

Galileo himself! Towards the end of the ship passage, Galileo says that “the

cause of all these correspondences of effects is the fact that the ship’s motion

is common to all the things contained in it, and to the air also” (Galilei,

1967, p. 186). What Galileo says here about the objects in the ship can

also be said of guitar string vibrations, Einstein’s pipe-organ, Stern-Gerlach

apparatuses in a lab, and all objects that move together with the Earth as

it orbits the Sun. Indeed, the same idea can be applied to any system that
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satisfies IRP (or IGRP) regardless of their symmetries.

This is not to say that there are no interesting links between observations

and dynamical symmetries. In fact, EGRP points to an obvious connection;

if Galilean boosts are symmetries of a system, then in a non-relativistic con-

text, an external observer will agree with an observer boosted with the sys-

tem about the laws (the dart is a good example). But, of course, agreement

about the laws is a far cry from agreement about every single observation.

In fact, these two observers will disagree about various properties, including

the velocity, position, and momentum of the system.27 On the other hand,

if Galilean boosts are not symmetries, the two observers in question will

disagree not only about these properties but also about the laws (e.g., the

laws for the vibrations in a string).

In short, the examples discussed in this paper highlight that symmetries

do convey interesting information about the external side of things (as cap-

tured by EGRP or ERP), but not so much about the internal perspective

(as captured by IGRP or IRP). Thus, if one wants to better understand the

observations made by someone who is boosted together with the system, as

it happens in the ship passage, then less attention should be given to the

symmetries of the system, and more to other matters that have been com-

paratively neglected, such as the relativity and composition of motion (also

discussed by Galileo), the rigidity of physical systems (necessary so that

27When a system satisfies EGRP in a non-relativistic context, the internal and exter-
nal observers will also agree, in addition to the laws, about the value of the properties
conserved by the boost. In particular, it follows from Noether’s first theorem that, for
classical systems, the quantity xCM − vCM t is conserved by Galilean boosts, where xCM

is the center of mass of the system, v the velocity associated with the boost and t the time
(for the observer moving with the system, v = 0) .

49



they can be boosted without destruction), the relationship between space-

time symmetries—not to be confused with dynamical symmetries—and the

behavior of physical systems, and even sociological and historical questions

connected to how physicists decide which properties of their theories are

observable (e.g., see Read and Møller-Nielsen (2020)).

6 Conclusion

The following two assumptions are widely held:

1. There is a close relationship between the Galilean Relativity Principle

and the symmetries of mechanical systems.

2. There is a close relationship between the Galilean Relativity Principle

and Galileo’s ship thought experiment.

It is very tempting to look at these two assumptions and infer the fol-

lowing:

C. There is a close relationship between the symmetries of mechanical

systems and Galileo’s ship thought experiment.

Indeed, the widespread view that there is a strong connection between

symmetries and observations seems to be strongly motivated by (C)!

This paper can be seen as offering an argument that the temptation of

inferring (C) from (1) and (2) must be resisted. The argument is simple:

(C) is not really motivated by (1) and (2) because the two instances of

“Galilean Relativity Principle” refer to two different principles, EGRP and
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IGRP, respectively. The first instance refers to the idea that the laws of

mechanical systems are invariant under Galilean boosts, that is, to the idea

that boosts are symmetries of these systems. As we explained in §4, there

are exceptions to this principle, such as classical waves and ideal springs.

The second instance refers to the idea that if one boosts a system together

with an observer (in a straight line), the relative motion between the system

and the observer is preserved, and so the observer will not be able to tell

apart different states of uniform motion (i.e., different inertial frames) solely

based on the system’s behavior. This is not primarily about the laws obeyed

by the system, let alone its symmetries (Galilean or otherwise). In fact,

this is not even just about mechanical or classical systems; it works for

quantum systems and electrodynamical ones too, even though their laws

are not invariant under Galilean boosts!28

In short, the reason that ripples in a pond, a clock pendulum, the sounds

produced by the vibrations of a guitar string, experiments at CERN, and

virtually the outcome of any experiment performed in a (approximately

closed) lab do not depend on the orbital speed of the Earth is not that

Galilean boosts are symmetries of these systems. Rather, the reason is that

the systems, the instruments used to study them, their surroundings, and

the scientists themselves are moving together with the Earth. Paraphrasing

what Galileo says at the end of the ship passage, the Earth’s motion is

common to all the things contained within it, including the air.

To end, notice that the principle of the composition and relativity of mo-

28Although in quantum cases, perhaps it is more accurate to speak of “behavior” as
opposed to “motion.”
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tion, which allows us to explain why so many different kinds of observations

and experiments fail to reveal changes in the Earth’s orbital speed, also has

the seeds for understanding the even more general idea captured by New-

ton’s Corollary VI (or Einstein’s equivalence principle) according to which

joint accelerations of a system and an observer preserve how the system

seems to behave relative to the observer. And just as it was with the case of

simple boosts, we should resist the temptation of inferring that these more

general principles ought to be understood via the symmetries of the laws

of physical systems. After all, the law of the classical wave equation is not

preserved under acceleration transformations, yet the waves in the strings

of a guitar look the same, as seen by an observer co-moving with the guitar,

regardless of whether the spaceship is in free fall or moving uniformly. But

a careful discussion of these more general principles will have to wait until

another day.
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Poincaré, H. (1905). The principles of mathematical physics. The Monist ,

XV (1). Retrieved 2024-06-13, from http://archive.org/details/

jstor-27899559

Prince, G. E., & Eliezer, C. J. (1981). On the Lie symmetries of the classical

Kepler problem. Journal of Physics A: Mathematical and General ,

14 (3), 587–596. doi: 10.1088/0305-4470/14/3/009

Read, J., & Møller-Nielsen, T. (2020). Redundant epistemic symme-

tries. Studies in History and Philosophy of Science Part B: Stud-

ies in History and Philosophy of Modern Physics, 70 , 88–97. doi:

10.1016/j.shpsb.2020.03.002

Susskind, L., & Cabannes, A. (2023). General Relativity: The Theoretical

Minimum. Basic Books.

Taylor, E. F., & Wheeler, J. A. (1992). Spacetime Physics. LibreTexts.

Teh, N. J. (2015). Galileo’s Gauge: Understanding the Empirical Signif-

icance of Gauge Symmetry [Journal Article]. Philosophy of Science,

57

http://archive.org/details/jstor-27899559
http://archive.org/details/jstor-27899559


83 (1), 93–118. doi: 10.1086/684196

Wallace, D. (2022). Observability, redundancy and modality for dynamical

symmetry transformations. In J. Read & N. Teh (Eds.), The Phi-

losophy and Physics of Noether’s theorem (pp. 322–353). Cambridge:

Cambridge University Press.

Zee, A. (2007). Fearful Symmetry: The Search for Beauty in Modern Physics

(Revised edition ed.). Princeton University Press.

58


	Introduction
	From Ships to Trains
	Internal vs External Relativity
	Two senses of having the same laws
	Is IGRP the obvious reading?

	Systems that do not satisfy EGRP
	Guitars, springs, and planets
	Acoustic Waves and the Doppler Effect

	Going Beyond the Classical World
	Atoms and light
	Galileo's ship and the philosophy of symmetries

	Conclusion

