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Abstract In this paper we give an analytic tableau calculus PL16 for a func-
tionally complete extension of Shramko and Wansing’s logic. The calculus is
based on signed formulas and a single set of tableau rules is involved in ax-
iomatising each of the four entailment relations |=t, |=f , |=i, and |= under
consideration—the differences only residing in initial assignments of signs to
formulas. Proving that two sets of formulas are in one of the first three entail-
ment relations will in general require developing four tableaux, while proving
that they are in the |= relation may require six.

Keywords Trilattice SIXTEEN 3 · tableau calculi · functional completeness ·
truth entailment · falsity entailment · information entailment

1 Introduction

In [14] Yaroslav Shramko and Heinrich Wansing define an attractive gener-
alisation of Belnap’s well-known four-valued logic (see [3,4]). Where Belnap
generalises classical two-valued propositional logic and moves from the set
of truth values 2 = {1, 0} to the set 4 = P(2) of combinations of truth
values, Shramko & Wansing repeat the move and consider logics based on
16 = P(4)—combinations of combinations of classical truth values. Belnap’s
original motivation for the move from 2 to 4—a logic based on this set can
model how a computer should deal with the incomplete and/or inconsistent
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information that may be fed to it—is extended as well, as the logic based on
16 arguably models how a network should reason on the basis of input it gets
from computers reasoning on the basis of 4.

These moves from 2 to 4 and from 4 to 16 come with an increasing num-
ber of lattice orderings. There is of course the usual ordering on 2, but Belnap
considers two orders on 4. The first of these is that of the logical lattice L4,
in which the values T = {1}, F = {0}, N = ∅, and B = {1, 0} are ordered
in a way that corresponds to an extension of the Strong Kleene evaluation
scheme (see Figure 1 for a Hasse diagram). The second is the ordering of the
approximation of information lattice A4, in which the same values are ordered
according to their degree of information. Together these two orderings form
what is called a bilattice. On 16 Shramko & Wansing consider three order-
ings, denoted with ≤t, ≤f , and ≤i, together forming the so-called trilattice
SIXTEEN 3. Of these three, ≤t can be interpreted as a truth order, ≤f as
a falsity order, and ≤i again as an approximation of information order. The
lattice L4, which in fact acts as a truth and falsity order, is thus replaced by
two independent orderings, not each other’s inverses, as will become apparent
below.

Meet and join operations in these lattices can naturally be associated with
conjunction and disjunction operators, but there are unary functions that can
interpret negation too. Belnap [4] already considers a negation operation on 4
that swaps T and F, but leaves N and B untouched, but it has a natural dual in
the operation that swaps N and B but leaves T and F as is. On SIXTEEN 3

there are three involutions −t, −f , and −i that are natural candidates to
provide the semantics for negation connectives in a logical language.

We thus see that SIXTEEN 3 is well-understood (more precise definitions
are to follow after this introduction). But the proof theory of logics based on
this trilattice is another matter (see also Odintsov & Wansing’s [10] section
1.2 on ‘the axiomatization problem’). We are aware of several approaches.
Odintsov [9], for example, gives Hilbert style axiomatisations of the truth en-
tailment relation |=t naturally based on ≤t and the falsity entailment relation
|=f based on ≤f . Another way of dealing with this problem is exemplified
in Wansing [16], where cut-free sequent calculi for |=t and |=f are presented.
And a third way can be found in Odintsov & Wansing’s [10], where a so-
called ‘bi-calculus’ for the t and f consequence relations is given. More sequent
and tableau systems for SIXTEEN 3 related logics are presented in Kamide &
Wansing [5] and in Wansing & Kamide [18].

But something is still to be wished for, as the logical languages that have
been considered do not provide a set of connectives that is functionally com-
plete for 16. In particular, we are not aware of an existing system in which a
connective ∧i corresponding to meet in the ≤i order is definable. (Odintsov’s
and Wansing’s logics are based on connectives corresponding to meet and join
in the ≤t and ≤f orderings, plus, in the case of some logics, certain impli-
cations →t and →f that are residua with respect to these orderings. But ∧i
cannot be defined in any of the resulting languages, as will become clear be-
low.) Since ∧i can be thought of as formalising a sceptical information merging
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strategy that one may reasonably want a computer network to follow, there is
some interest in clarifying its proof theory and characterising its interactions
with other connectives.

The purpose of this paper therefore is to give a calculus that characterises
a propositional logic that expresses all of SIXTEEN 3, i.e. deals with all truth
functions on 16. We will provide such a logic with the help of a generalisation
of the approach in Wintein & Muskens [19], where a calculus for a functionally
complete first-order logic based on Belnap’s two lattices was given. That paper
was based on two ideas that are relevant here. The first of these—taken over
from Muskens [8] and ultimately from Langholm [6]—was to use a four-sided
sequent calculus,1 the second idea was to let each proof correspond to two proof
trees in the usual sense (see also Wintein & Muskens [20]). We will generalise
this approach by giving a signed analytic tableau calculus based on eight signs
and by letting proofs correspond to four or even six tableaux (an eight-sided
Gentzen sequent variant could easily be given). From a semantic point of
view, each of the eight signs (for which we use t, f, n, b, 6 t, 6 f, 6 n, and 6 b) signals
whether an element from 4 = {T,F,N,B} is present or absent in the value of
the sentence that is signed and each tableau checks whether one of these four
values is transmitted from premises to conclusions or vice versa. While the
description just given may seem to point to a rather complicated system, the
calculus is in fact simple and can be used to provide syntactic characterisations
of the semantic entailment relations |=t, |=f , and |=i (information entailment2)
based on the three lattice orderings, and a relation |= which is the intersection
of |=t and |=f . A single set of tableau rules can be used for all four consequence
relations (a feature our logic shares with the sequent calculus framework of
Wansing [16]), but testing for different consequence relations involves different
ways of initially assigning signs to formulas.

The presentation in this paper is meant to be technically self-contained,
but is not self-contained in terms of providing general background and motiva-
tion. For these, the reader is invited to consult the papers cited above, or the
somewhat more philosophical Wansing [17], or the full monograph Shramko
& Wansing [15].

2 The Trilattice SIXTEEN 3

The general theory of trilattices is subtle, but a description of SIXTEEN 3

in particular is easy to give. As explained in the introduction, the domain of
this trilattice is 16 = P(4), where 4 = P({1, 0}) = {T,F,N,B}. In order to

1 Many-sided calculi for many-valued logics also result from the methods used in, for
example, [13,12,1,21], but [8] explains why these methods are not applicable in the case of
a functionally complete variant of Belnap’s logic. Wansing [16] also makes use of many-sided
sequents.

2 We use the terms ‘entailment relation’ and ‘consequence relation’ purely for convenience
in the case of the information entailment relation |=i. Strictly more correct perhaps would
be ‘necessary approximation’, a term that was used in [19] for a ‘consequence’ relation based
on Belnap’s A4 lattice.
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Fig. 1 Belnap’s lattices L4 and A4.

obtain the three lattice orderings, the following auxiliary definition from [14]
is useful.

Definition 1 For any S ∈ 16, let

St := {x ∈ S | 1 ∈ x} (= S ∩ {T,B})
S−t := {x ∈ S | 1 /∈ x} (= S ∩ {F,N})
Sf := {x ∈ S | 0 ∈ x} (= S ∩ {F,B})
S−f := {x ∈ S | 0 /∈ x} (= S ∩ {T,N})

The idea here is that St consists of all values in S that code for truth, S−t for
all values in S that do not, Sf for all values that code for falsity, and S−f for
those that do not code for falsity. The trilattice orderings are now obtained as
follows with the help of these operations.

Definition 2 Define ≤t, ≤f , and ≤i by letting, for any S1, S2 ∈ 16:

S1 ≤t S2 ⇐⇒ St1 ⊆ St2 and S−t2 ⊆ S
−t
1

S1 ≤f S2 ⇐⇒ Sf2 ⊆ S
f
1 and S−f1 ⊆ S−f2

S1 ≤i S2 ⇐⇒ S1 ⊆ S2

Note that ≤t is defined in terms of truth only, ≤f in terms of falsity only. We
have followed Odintsov [9] and Odintsov & Wansing [10] in letting ≤f be the
inverse of the ≤f relation originally defined in [14]. An increase in the falsity
order will make statements less false, not more so (and the falsity order could
equally well be called a nonfalsity order).

For our purposes it will be worthwile to also characterise ≤t and ≤f in the
following more concrete way. That these equivalences hold is verified by an
easy inspection.
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Proposition 1 For any S1, S2 in SIXTEEN3:

S1 ≤t S2 ⇐⇒

{
T ∈ S1 ⇒ T ∈ S2 and B ∈ S1 ⇒ B ∈ S2 and

F ∈ S2 ⇒ F ∈ S1 and N ∈ S2 ⇒ N ∈ S1

S1 ≤f S2 ⇐⇒

{
F ∈ S2 ⇒ F ∈ S1 and B ∈ S2 ⇒ B ∈ S1 and

T ∈ S1 ⇒ T ∈ S2 and N ∈ S1 ⇒ N ∈ S2

In fact the four implications characterising ≤t will lead to four auxiliary se-
mantic entailment relations in section 4, which will, in their turn, correspond
to four syntactic consequence relations.

Each of the lattice orderings on 16 comes with meet and join operations,
We will write ux for the meet and tx for the join of ≤x (x ∈ {t, f, i}). Clearly,
ui is ∩ and ti is ∪. For the other four operations the following proposition
provides a handy reference (see also [15], but note that the inverse of our ≤f
is employed there).

Proposition 2 For any S, S′ in SIXTEEN3:

T ∈ S ut S′ ⇔ T ∈ S and T ∈ S′; T ∈ S tt S′ ⇔ T ∈ S or T ∈ S′;
B ∈ S ut S′ ⇔ B ∈ S and B ∈ S′; B ∈ S tt S′ ⇔ B ∈ S or B ∈ S′;
F ∈ S ut S′ ⇔ F ∈ S or F ∈ S′; F ∈ S tt S′ ⇔ F ∈ S and F ∈ S′;
N ∈ S ut S′ ⇔ N ∈ S or N ∈ S′; N ∈ S tt S′ ⇔ N ∈ S and N ∈ S′;

T ∈ S uf S′ ⇔ T ∈ S and T ∈ S′; T ∈ S tf S′ ⇔ T ∈ S or T ∈ S′;
B ∈ S uf S′ ⇔ B ∈ S or B ∈ S′; B ∈ S tf S′ ⇔ B ∈ S and B ∈ S′;
F ∈ S uf S′ ⇔ F ∈ S or F ∈ S′; F ∈ S tf S′ ⇔ F ∈ S and F ∈ S′;
N ∈ S uf S′ ⇔ N ∈ S and N ∈ S′; N ∈ S tf S′ ⇔ N ∈ S or N ∈ S′.

SIXTEEN 3 can now be defined as 〈16,ut,tt,uf ,tf ,ui,ti〉 and the reader
may wish to verify that, for any •, ◦ ∈ {ut,tt,uf ,tf ,ui,ti}, we have that
a◦(b•c) = (a◦b)•(a◦c) (see also Rivieccio [11]). This makes SIXTEEN 3 into a
distributive trilattice, from which it can be shown to follow that the structure
is interlaced, in the sense that all six lattice operations are monotone with
respect to the three lattice orders.

It is useful to also have available three unary operations that can be taken
to be the semantic correlates of negation connectives. The following definition
provides them.

Definition 3 Define the unary operations −t, −f , and −i by letting, for any
S ∈ 16:

T ∈ −t S ⇔ N ∈ S; T ∈ −f S ⇔ B ∈ S; T ∈ −i S ⇔ F /∈ S;

B ∈ −t S ⇔ F ∈ S; B ∈ −f S ⇔ T ∈ S; B ∈ −i S ⇔ N /∈ S;

F ∈ −t S ⇔ B ∈ S; F ∈ −f S ⇔ N ∈ S; F ∈ −i S ⇔ T /∈ S;

N ∈ −t S ⇔ T ∈ S; N ∈ −f S ⇔ F ∈ S; N ∈ −i S ⇔ B /∈ S;
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Inspection will show that, for each pairwise distinct x, y ∈ {t, f, i},

if a ≤x b, then −x b ≤x −x a ;

if a ≤y b, then −x a ≤y −x b ;

a = −x −x a .

(Again see Rivieccio [11].)
This ends the description of SIXTEEN 3 proper, but before we end this

section we would like to introduce three operators defined by Odintsov in [9],
as they will play a role in the next section. The first two can be defined as
follows.

Definition 4 Define the binary operations At, and Af by letting, for any
S, S′ ∈ 16:

T ∈ S At S′ ⇔ T /∈ S or T ∈ S′; T ∈ S Af S′ ⇔ T /∈ S or T ∈ S′;
B ∈ S At S′ ⇔ B /∈ S or B ∈ S′; B ∈ S Af S′ ⇔ B /∈ S and B ∈ S′;
F ∈ S At S′ ⇔ F /∈ S and F ∈ S′; F ∈ S Af S′ ⇔ F /∈ S and F ∈ S′;
N ∈ S At S′ ⇔ N /∈ S and N ∈ S′; N ∈ S Af S′ ⇔ N /∈ S or N ∈ S′.

Odintsov’s unary operator ⇁, which completes the three, is defined by letting
⇁S = {T,F,N,B} − S, for any S ∈ 16.

The reader may note that ⇁ in fact equals the composition of −t, −f , and −i
(in any order) and that S At S′ = ⇁S tt S′, while S Af S′ = ⇁S tf S′, for
any S, S′ ∈ 16.

3 Syntax, Semantics, and Expressivity

The logical language we shall use in this paper will be Ltfi , given by the follow-
ing BNF form (where p comes from some countably infinite set of propositional
constants).

ϕ ::= p | ∼t ϕ | ∼f ϕ | ∼i ϕ | ϕ ∧t ϕ | ϕ ∧f ϕ | ϕ ∧i ϕ

This set-up may be somewhat spartan, but other connectives can be defined
and the set {∼t,∼f ,∼i,∧t,∧f ,∧i} is in fact functionally complete, as we shall
see shortly.

Let us provide the language Ltfi with a semantics. The following definition
will not come as a surprise.

Definition 5 A valuation function is a function V from the sentences of Ltfi
to 16 such that

V (ϕ ∧t ψ) = V (ϕ) ut V (ψ); V (∼t ϕ) = −t V (ϕ);

V (ϕ ∧f ψ) = V (ϕ) uf V (ψ); V (∼f ϕ) = −f V (ϕ);

V (ϕ ∧i ψ) = V (ϕ) ui V (ψ); V (∼i ϕ) = −i V (ϕ).
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Given this interpretation of the language, we clearly can also define connectives
denoting the operations tt, tf , ti, ⇁, At, and Af via the obvious De Morgan
rules and the equivalences discussed in the previous section.

Definition 6 The following abbreviations will be in force.

ϕ ∨t ψ := ∼t(∼t ϕ ∧t ∼t ψ);

ϕ ∨f ψ := ∼f (∼f ϕ ∧f ∼f ψ);

ϕ ∨i ψ := ∼i(∼i ϕ ∧i ∼i ψ);

¬ϕ := ∼t∼f ∼i ϕ;

ϕ→t ψ := ¬ϕ ∨t ψ;

ϕ→f ψ := ¬ϕ ∨f ψ.

It is easily verified that V (¬ϕ) = ⇁V (ϕ) etc.
It will also be possible to define sentences that constantly denote a given

element of 16, regardless of the valuation. This can be done for each element
of 16. In the following definition we have chosen names for these sentences
that serve as a mnemonic for the element denoted (e.g. V (nfb) = {N,F,B},
for any V ).

Definition 7 Let p0 be some fixed propositional constant. The following ab-
breviations will be used.

tb := p0 →t p0;
nf := ∼t tb;
∅ := tb ∧i nf;
nftb := ∼i∅;
b := tb ∧f ∅;
ntb := tb ∨f nftb;
f := nf ∧f ∅;
nft := nf ∨f nftb;

t := tb ∨f ∅;
n := nf ∨f ∅;
nt := tb ∨f nf;
ftb := tb ∧f nftb;
nfb := nf ∧f nftb;
fb := tb ∧f nf;
nb := b ∧t ntb;
ft := t ∧t ftb;

Let us call a sentence ϕ bivalent if V (ϕ) = {T,B} or V (ϕ) = {N,F} for
any valuation V (note that {T,B} is the top element of the ≤t order, while
{N,F} is its bottom element). It is useful to have connectives at our disposal
that always give a result that is bivalent. For arbitrary ϕ, consider the sentence

Tϕ defined as
ϕ ∧t ∼i ϕ ∧t ∼f ϕ ∧t ∼f ∼i ϕ .

We find by inspection, using proposition 2 and definition 3, that, for any V ,

T ∈ V (Tϕ)⇐⇒ T ∈ V (ϕ) and F /∈ V (ϕ) and B ∈ V (ϕ) and N /∈ V (ϕ)

⇐⇒ B ∈ V (Tϕ)

F ∈ V (Tϕ)⇐⇒ F ∈ V (ϕ) or T /∈ V (ϕ) or N ∈ V (ϕ) or B /∈ V (ϕ)

⇐⇒ N ∈ V (Tϕ)

From this it follows that V (Tϕ) = {T,B} iff V (ϕ) = {T,B} and that
V (Tϕ) = {N,F} iff V (ϕ) 6= {T,B}. This can be used to define other connec-
tives giving bivalent results.
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Definition 8 We define the following connectives.

ϕ�t ψ := T(ϕ→t ψ)
ϕ ≡ ψ := (ϕ�t ψ) ∧t (ψ �t ϕ)

In [9] Odintsov shows that, for every S, S′ ∈ 16, S ≤t S′ iff S At S′ = {T,B}.
From this and the definition of ϕ�t ψ it follows that, for all V , V (ϕ�t ψ) =
{T,B} iff V (ϕ) ≤t V (ψ) and V (ϕ �t ψ) = {N,F} iff V (ϕ) 6≤t V (ψ). The ≡
connective expresses identity, as V (ϕ ≡ ψ) = {T,B} iff V (ϕ) = V (ψ), and
V (ϕ ≡ ψ) = {N,F} otherwise.

We now turn to the functional completeness theorem, for which we will as-
sume that p0, p1, p2, . . . , pn, . . . is some fixed enumeration of the set of propo-
sitional constants (p0 was already used in definition 7). If g is an n-ary truth
function g : 16n → 16 and ϕ is an Ltfi formula such that exactly p0, p1, . . . , pn
occur in ϕ, we say that ϕ expresses g if V (ϕ) = g(V (p1), . . . , V (pn)), for each
valuation V .

Proposition 3 Every truth function g : 16n → 16 is expressed by an Ltfi
formula.

Proof The proof generalises that of Muskens [7] for the four-valued case and
proceeds by induction on n. Zero-place truth functions can be identified with
the elements of 16 and inspection of definition 7 shows that each element of
that set is denoted by a constant defined there. For S ∈ 16 we will use the
notation S to refer to the term given in definition 7 that denotes S. For the
induction step, let g : 16n+1 → 16 be an n+ 1-ary function. For each S ∈ 16
define the n-ary truth function gS : 16n → 16 by letting gS(S1, . . . , Sn) =
g(S1, . . . , Sn, S). Using induction we find that each gS (S ∈ 16) is expressed
by some formula ϕS . Let ϕ be the formula∧

t
U∈16

∼t(pn+1 ≡ U) ∨t ϕU ,

where
∧
t is used to denote a finite ∧t-conjunction of formulas. Let V be

an arbitrary valuation. Then V (pn+1) = S, for some S ∈ 16 and, for any
S′ 6= S, it holds that V (∼t(pn+1 ≡ S′) ∨t ϕS′) = {T,B}, while V (∼t(pn+1 ≡
S) ∨t ϕS) = V (ϕS). It follows that V (ϕ) = V (ϕS) = gS(V (p1), . . . , V (pn)) =
g(V (p1), . . . , V (pn), S), so that V (ϕ) = g(V (p1), . . . , V (pn), V (pn+1)), and,
since V was arbitrary, that ϕ expresses g. ut

It is also instructive to see that {∼t,∼f ,∼i,∧t,∧f ,∧i} is a minimal set that
is functionally complete.

Proposition 4 No proper subset of {∼t,∼f ,∼i,∧t,∧f ,∧i} can express every
truth function g : 16n → 16.

Proof In order to see that∼t is essential, consider a unary g such that g({T,B}) =
{N,F}. Each operator underlying one of the connectives ∼f , ∼i, ∧t, ∧f , and
∧i will return the value {T,B} when its argument(s) all take that value, so
no formula in {∼f ,∼i,∧t,∧f ,∧i} can express g.
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That ∧i cannot be left out can be seen by considering the set

O := {{T,B}, {N,F}, {N,T}, {F,B}} .

Each connective in {∼t,∼f ,∼i,∧t,∧f} will return a value from O when fed
arguments from O. It follows that no formula built up from these connectives
can take the value ∅ when all its propositional constants are assigned elements
of O. So no formula in {∼t,∼f ,∼i,∧t,∧f} can express ui.

For the other four cases proceed similarly. ut

The last proposition of this section shows that some logics considered in the
literature (see Odintsov [9] and Wansing’s [16]) are equally expressive.

Proposition 5 The languages

L→t

tf : ϕ ::= p | ∼t ϕ | ∼f ϕ | ϕ ∧t ϕ | ϕ ∧f ϕ | ϕ→t ϕ

L→f

tf : ϕ ::= p | ∼t ϕ | ∼f ϕ | ϕ ∧t ϕ | ϕ ∧f ϕ | ϕ→f ϕ

L∗tf : ϕ ::= p | ∼t ϕ | ∼f ϕ | ϕ ∧t ϕ | ϕ ∧f ϕ | ϕ→t ϕ | ϕ→f ϕ

L∼i

tf : ϕ ::= p | ∼t ϕ | ∼f ϕ | ∼i ϕ | ϕ ∧t ϕ | ϕ ∧f ϕ

are all equally expressive.

Proof Observe that definition 6 did not make use of ∧i to obtain →t and
→f , so L∼i

tf is at least as expressive as any of L→t

tf , L→f

tf , or L∗tf . To see that,

conversely, any of L→t

tf , L→f

tf , and L∗tf are at least as expressive as L∼i

tf , use

Odintsov’s [9] and Wansing’s [16] observations that ¬ϕ can either be defined
as ϕ →t ∼t(p0 →t p0) or as ϕ →f ∼f (p0 →f p0), together with the fact that
∼i ϕ is equivalent with ∼t∼f ¬ϕ. ut

4 Semantic and Syntactic Consequence

We now come to the characterisation of consequence relations. Let us first give
semantic definitions.

Definition 9 Using ⊔x for greatest lower bound in the ≤x order (x ∈ {t, f, i})
and

⊔
x for least upper bound, let the relations |=t, |=f , |=i, and |= between

sets of sentences be defined in the following way.

Γ |=t ∆⇐⇒ ⊔t
γ∈Γ

V (γ) ≤t
⊔

t
δ∈∆

V (δ) for all valuations V

Γ |=f ∆⇐⇒ ⊔f
γ∈Γ

V (γ) ≤f
⊔

f
δ∈∆

V (δ) for all valuations V

Γ |=i ∆⇐⇒ ⊔i
γ∈Γ

V (γ) ≤i
⊔

i
δ∈∆

V (δ) for all valuations V

Γ |= ∆⇐⇒ Γ |=t ∆ and Γ |=f ∆
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We have thrown the relation |= into the mix because it models a constraint
on reasoning that not only rejects loss of truth but also rejects increase in
falsity when going from premises to conclusions. Requiring a computer net-
work to preserve both truth and nonfalsity while drawing conclusions seems a
reasonable demand.

The definition of |=i is just a fancy way of expressing that Γ |=i ∆ iff⋂
γ∈Γ V (γ) ⊆

⋃
δ∈∆ V (δ), for all V , but we have put it in the form above in

order to stress the uniformity of the three definitions. It is worthwile, however,
to decompose the |=t and |=f entailment relations a bit further.

Proposition 6 Γ |=t ∆ holds iff the conjunction of the following four state-
ments holds for all valuations V .

T ∈ V (γ) for all γ ∈ Γ =⇒ T ∈ V (δ) for some δ ∈ ∆
B ∈ V (γ) for all γ ∈ Γ =⇒ B ∈ V (δ) for some δ ∈ ∆
F ∈ V (δ) for all δ ∈ ∆ =⇒ F ∈ V (γ) for some γ ∈ Γ
N ∈ V (δ) for all δ ∈ ∆ =⇒ N ∈ V (γ) for some γ ∈ Γ

Γ |=f ∆, on the other hand, is true iff the conjunction of the following four
statements holds for all V .

T ∈ V (γ) for all γ ∈ Γ =⇒ T ∈ V (δ) for some δ ∈ ∆
B ∈ V (δ) for all δ ∈ ∆ =⇒ B ∈ V (γ) for some γ ∈ Γ
F ∈ V (δ) for all δ ∈ ∆ =⇒ F ∈ V (γ) for some γ ∈ Γ
N ∈ V (γ) for all γ ∈ Γ =⇒ N ∈ V (δ) for some δ ∈ ∆

Proof By inspection, using propositions 1 and 2. ut

These decompositions inspire us to define four auxiliary entailment relations.

Definition 10 For each x ∈ {T,B,F,N}, define the auxiliary entailment
relation |=x by

Γ |=x ∆⇐⇒ x ∈
⋂
γ∈Γ

V (γ)⇒ x ∈
⋃
δ∈∆

V (δ), for all valuations V

Note that no pair of these relations or their inverses are equivalent on sets of
premises and conclusions from Ltfi .

Proposition 7 The relations |=T, |=F, |=N, |=B, and their inverses are pair-
wise distinct on Ltfi.

Proof None of these relations is equivalent with any of their inverses, for ∅ |=x

nftb for all x ∈ {T,B,F,N} while nftb |=x ∅ holds for none. Note further that
nftb |=x n holds for x = N, but not for any other of the three values for x, so
that |=N is different from |=T, |=F, and |=B. Showing that other relations |=x

and |=y are distinct goes in an entirely similar way. ut
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x : ϕ ∧t ψ
(∧1t )

x : ϕ, x : ψ

x : ϕ ∧t ψ
(∧2t )

x : ϕ | x : ψ

x : ∼t ϕ
(∼t)

y : ϕ

x ∈ {6 n, 6 f, t, b} x ∈ {n, f, 6 t, 6 b} 〈x, y〉 or 〈y, x〉 ∈ {〈n, t〉, 〈f, b〉, 〈6 n, 6 t〉, 〈6 f,6 b〉}

x : ϕ ∧f ψ
(∧1f )

x : ϕ, x : ψ

x : ϕ ∧f ψ
(∧2f )

x : ϕ | x : ψ

x : ∼f ϕ
(∼f )

y : ϕ

x ∈ {n, 6 f, t, 6 b} x ∈ {6 n, f, 6 t, b} 〈x, y〉 or 〈y, x〉 ∈ {〈n, f〉, 〈t, b〉, 〈6 n, 6 f〉, 〈6 t,6 b〉}

x : ϕ ∧i ψ
(∧1i )

x : ϕ, x : ψ

x : ϕ ∧i ψ
(∧2i )

x : ϕ | x : ψ

x : ∼i ϕ
(∼i)

y : ϕ

x ∈ {n, f, t, b} x ∈ {6 n, 6 f, 6 t, 6 b} 〈x, y〉 or 〈y, x〉 ∈ {〈n,6 b〉, 〈f,6 t〉, 〈6 n, b〉, 〈6 f, t〉}

Table 1 Tableau expansion rules for PL16.

Proposition 7 is in stark contrast with what is the case in less expressive
logics, in which not all elements of 16 can be named. See Shramko & Wansing
[14, Lemma 4.2]. A similar situation obtains with respect to Belnap’s original
four-valued logic versus a functionally complete extension (see Muskens [8]).

Given our definitions thus far the following equivalences between our main
consequence relations and certain combinations of the auxiliary ones obviously
hold.

Γ |=t ∆ ⇐⇒ Γ |=T ∆ and Γ |=B ∆ and ∆ |=F Γ and ∆ |=N Γ

Γ |=f ∆ ⇐⇒ Γ |=T ∆ and ∆ |=B Γ and ∆ |=F Γ and Γ |=N ∆

Γ |=i ∆ ⇐⇒ Γ |=T ∆ and Γ |=B ∆ and Γ |=F ∆ and Γ |=N ∆

The idea now is to define four syntactic entailment relations `x (x ∈ {T,B,F,N}),
each one characterising its semantic counterpart |=x. In this way the relations
|=t, |=f , |=i, and |= will also be provided with syntactic characterisations.
We will do this with the help of the signed tableau calculus PL16 (the name
stands for ‘16-valued propositional logic’). This calculus will make use of eight
signs t, f, n, b, 6 t, 6 f, 6 n, and 6 b, whose informal interpretations will become clear
shortly. A signed Ltfi sentence will be a pair x : ϕ, where x is one of these
signs and ϕ is an Ltfi sentence. In Table 1 nine rule schemes are given which
form the heart of our calculus. Note that each of the three conjunctions comes
with two rule schemes, each allowing four instantiations of a variable x ranging
over signs, while negations come with one rule scheme each and can each be
instantiated in eight different ways. The rule schemes thus sum up eight rules
for each connective. Conjunction rules do not change the signs of formulas,
but negation rules always do.

For formal considerations it will be useful to have a general form for rules,
for which we choose ϑ/B1, . . . , Bn, where ϑ is a signed sentence called the
top formula of the rule and each Bi is a set of signed sentences called a set
of bottom formulas of the rule. For example, one instantiation of (∧2f ) could
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formally be written as 6 n : ϕ ∧f ψ / {6 n : ϕ}, {6 n : ψ} and one instantiation of the
(∧1i ) rule could be expressed as f : ϕ ∧i ψ / {f : ϕ, f : ψ}. This general form is
useful, even though neither the number of sets of bottom formulas nor their
cardinality ever exceeds 2.

Tableaux will be certain sets of branches. Let us study the latter and some
of the syntactic and semantic properties of notions connected with them before
we define the tableaux themselves.

Definition 11 A (tableau) branch is a set of signed sentences. A branch is
closed if it contains signed sentences x : ϕ and 6 x : ϕ for x ∈ {n, f, t, b}. A
branch that is not closed is called open.

If B is a branch and x : ϕ ∈ B is a signed sentence, then x : ϕ is fulfilled
in B if (a) ϕ is atomic, or (b) ϕ is complex and Bi ⊆ B for one set of bottom
formulas of the unique rule x : ϕ/B1, . . . , Bn. A branch B is completed if B is
closed or ϑ is fulfilled in B for every ϑ ∈ B.

Satisfiability of branches will be a central notion. We define it as follows.

Definition 12 Let Θ be a set of signed Ltfi sentences and let V be an Ltfi
valuation. We say that V satisfies Θ iff the following statements hold.

t : ϕ ∈ Θ ⇒ T ∈ V (ϕ) 6 t : ϕ ∈ Θ ⇒ T /∈ V (ϕ)

f : ϕ ∈ Θ ⇒ F ∈ V (ϕ) 6 f : ϕ ∈ Θ ⇒ F /∈ V (ϕ)

n : ϕ ∈ Θ ⇒ N ∈ V (ϕ) 6 n : ϕ ∈ Θ ⇒ N /∈ V (ϕ)

b : ϕ ∈ Θ ⇒ B ∈ V (ϕ) 6 b : ϕ ∈ Θ ⇒ B /∈ V (ϕ)

So the signs wear their interpretations on their sleeves. We also say that
V satisfies ϑ if V satisfies {ϑ} and that a signed sentence or a set of signed
sentences is satisfiable if some V satisfies it.

Satisfaction is preserved from the top formula in a rule to one of its sets of
bottom formulas and vice versa, as the following proposition attests.

Proposition 8 For any instantiation of a rule scheme in Table 1, a valuation
satisfies the top formula of the rule if and only if it satisfies a set of bottom
formulas of the rule.

Proof By inspection, using proposition 2 and definition 3. ut

It is immediate from the definitions that a branch that is satisfiable cannot be
closed. The following also holds.

Lemma 1 A branch that is completed and open is satisfiable.

Proof Let B be completed and open and, for all propositional constants p, let

V (p) = {x | (x = T and t : p ∈ B) or (x = F and f : p ∈ B) or

(x = N and n : p ∈ B) or (x = B and b : p ∈ B)}
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We prove by induction on formula complexity that V satisfies all signed sen-
tences x : ϕ ∈ B. If ϕ is a propositional constant, then V satisfies x : ϕ by the
definition just given and the fact that B is open. So, let x : ϕ ∈ B for some
sign x and complex formula ϕ. Since B is completed, a set of bottom formulas
B of the unique rule of which x : ϕ is the top formula is a subset of B. But, for
all signed sentences y : ψ ∈ B, ψ is a subformula of ϕ, so that, by induction,
V satisfies y : ψ. So V satisfies B, and by proposition 8, V satisfies x : ϕ. ut

Let us now define tableaux.

Definition 13 Let T and T ′ be sets of branches. We say that T ′ is a one-
step expansion of T if, for some B ∈ T , ϑ ∈ B, and rule ϑ/B1, . . . , Bn, T ′ =
(T \{B}) ∪ {B ∪B1, . . . ,B ∪Bn}.

Let B be a finite branch. A set of branches T is a tableau with initial branch
B if there is a sequence T0, T1, . . . , Tn such that T0 = {B}, Tn = T , and each
Ti+1 is a one-step expansion of Ti (0 ≤ i < n). We also say that a finite B
has tableau T if T is a tableau with initial branch B. A tableau T is open if
some B ∈ T is open, otherwise T is closed. A tableau is completed if each of
its branches is completed.

Proposition 9 (a) Every finite branch has a tableau that is completed. (b)
Let T be a tableau with initial branch B. If B is satisfiable then there is a
satisfiable branch B′ such that B ⊆ B′ ∈ T .

Proof The (a) part is proved just as in classical propositional logic. For the (b)
part, consider the sequence B = T0, T1, . . . , Tn = T that must exist according
to the previous definition and do an induction on n, using proposition 8. ut

With the help of this proposition and lemma 1 the following lemma now follows
immediately.

Lemma 2 A finite set of signed sentences is unsatisfiable iff it has a closed
tableau.

Proof Suppose the finite set of signed sentences B is unsatisfiable. By the
previous proposition B has a completed tableau T . Since B is included in
every branch of T , no such branch can be satisfiable. By lemma 1 it follows
that T must be closed. Conversely, assume that B is satisfiable. Then B has
a completed tableau T with at least one satisfiable branch, so that T cannot
be closed. ut

With the help of our tableaux we define four auxiliary syntactic consequence
relations.

Definition 14 Let Γ and ∆ be finite sets of Ltfi sentences and define

Γ `T ∆ := {t : ϕ | ϕ ∈ Γ} ∪ {6 t : ϕ | ϕ ∈ ∆} has a closed tableau;

Γ `F ∆ := {f : ϕ | ϕ ∈ Γ} ∪ {6 f : ϕ | ϕ ∈ ∆} has a closed tableau;

Γ `N ∆ := {n : ϕ | ϕ ∈ Γ} ∪ {6 n : ϕ | ϕ ∈ ∆} has a closed tableau;

Γ `B ∆ := {b : ϕ | ϕ ∈ Γ} ∪ {6 b : ϕ | ϕ ∈ ∆} has a closed tableau.
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Using lemma 2 it immediately follows that these provide sound and complete
characterisations of the auxiliary semantic entailment relations defined earlier.

Lemma 3 Γ |=x ∆⇐⇒ Γ `x ∆, for each x ∈ {T,B,F,N}.

Proof Let BT = {t : ϕ | ϕ ∈ Γ} ∪ {6 t : ϕ | ϕ ∈ ∆}. Then Γ |=T ∆ ⇐⇒ BT is
unsatisfiable ⇐⇒ BT has a closed tableau ⇐⇒ Γ `T ∆. The other cases are
quite similar. ut

Definition 15 Let Γ and ∆ be finite sets of Ltfi sentences. Define

Γ `t ∆ ⇐⇒ Γ `T ∆ and Γ `B ∆ and ∆ `F Γ and ∆ `N Γ

Γ `f ∆ ⇐⇒ Γ `T ∆ and ∆ `B Γ and ∆ `F Γ and Γ `N ∆

Γ `i ∆ ⇐⇒ Γ `T ∆ and Γ `B ∆ and Γ `F ∆ and Γ `N ∆

Γ ` ∆ ⇐⇒ Γ `t ∆ and Γ `f ∆

From lemma 3 and our definitions the next theorem now immediately follows.

Theorem 1 If Γ and ∆ are finite sets of Ltfi sentences the following hold.

Γ |=t ∆⇐⇒ Γ `t ∆ Γ |=f ∆⇐⇒ Γ `f ∆
Γ |=i ∆⇐⇒ Γ `i ∆ Γ |= ∆⇐⇒ Γ `t ∆ and Γ `f ∆

This solves the characterisation problem of the logics connected with Ltfi . Fi-
nite sequents can now be decided with the help of developing several tableaus.
In general four tableaus are needed to decide |=t, |=f , or |=i sequents and six
are needed to decide sequents on the basis of |=. It may of course happen that
fewer tableaux are needed if sequents have a special form. For |=t sequents
from Lt, the language based on {∧t,∼t}, only one tableau needs to be de-
veloped, for example, as the others will be isomorphic. This is already clear
from Shramko & Wansing’s [14, Lemma 4.2], but can also be glossed from our
tableau rules.

Conclusion

We have given an analytic tableau calculus PL16 for the whole of SIXTEEN 3,
with connectives for all its truth functions. While each connective comes with
eight rules and in general several tableaux must be developed in order to
check entailments (six tableaux, for instance, in the case of |= entailments),
the calculus is still essentially simple, as the many rules can be brought under
much fewer rule schemes and the system that results has a remarkable family
resemblance to the usual signed tableau calculus for classical propositional
logic.3

3 This simplicity has a pay off because it is now very easy to implement the logic. Mainly
for their own amusement and instruction the authors have written a simple theorem prover

16TAP , loosely based on (the propositional part of) Beckert & Posegga’s [2] leanTAP marvel.
It similarly exploits Prolog’s left-to-right depth-first evaluation mechanism, but the code
unfortunately is far less concise than Beckert & Posegga’s.
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