
A Theory of Names and True Intensionality?

Reinhard Muskens

Tilburg Center for Logic and Philosophy of Science
r.a.muskens@uvt.nl

http://let.uvt.nl/general/people/rmuskens/

Abstract. Standard approaches to proper names, based on Kripke’s
views, hold that the semantic values of expressions are (set-theoretic)
functions from possible worlds to extensions and that names are rigid
designators, i.e. that their values are constant functions from worlds to
entities. The difficulties with these approaches are well-known and in this
paper we develop an alternative. Based on earlier work on a higher order
logic that is truly intensional in the sense that it does not validate the
axiom scheme of Extensionality, we develop a simple theory of names
in which Kripke’s intuitions concerning rigidity are accounted for, but
the more unpalatable consequences of standard implementations of his
theory are avoided. The logic uses Frege’s distinction between sense and
reference and while it accepts the rigidity of names it rejects the view that
names have direct reference. Names have constant denotations across
possible worlds, but the semantic value of a name is not determined by
its denotation.

Keywords: names, axiom of extensionality, true intensionality, rigid
designation

1 Introduction

Standard approaches to proper names, based on Kripke (1971, 1972), make the
following three assumptions.

(a) The semantic values of expressions are (possibly partial) functions from pos-
sible worlds to extensions.

(b) These functions are identified with their graphs, as in set theory.
(c) Names are rigid designators, i.e. their extensions are world-independent.

In particular, the semantic values of names are taken to be constant functions
from worlds to entities, possibly undefined for some worlds.

The difficulties resulting from these assumptions are well-known. On the one
hand, there are general ‘logical omniscience’ problems with the possible worlds
? From A. Aloni et al. (Eds.): Amsterdam Colloquium 2011, LNCS 7218, pp. 441–449.

Springer, Heidelberg (2012). I would like to thank the anonymous referees for their
excellent advice.



2

approach resulting from (a) + (b). Since functions, in the set-theoretic concep-
tion, are extensional entities, with their identity criteria given by input-output
behaviour, the semantic values of far too many expressions will be identified. Im-
plications and their contrapositives, for example, will be lumped together. That
is incorrect since one may very well believe p → q but fail to believe ¬q → ¬p,
so that there is at least one property the semantic values of these expressions do
not have in common.

Adding (c) as a further restriction makes things worse, since if the semantic
value of a name depends only on its bearer it is predicted that names with the
same bearer can be substituted for one another in any context. This leads to
philosophers claiming and dogmatically defending the position that the Ancients
did know that Hesperus was Phosphorus before that identity was actually dis-
covered, an armchair intuition that does not seem to be shared by many outside
the profession. It also leads to the prediction that the following are equivalent.

(1) a. We do not know a priori that Hesperus is Phosphorus
b. We do not know a priori that Phosphorus is Phosphorus

(1a) is asserted in Kripke (1972, page 308); (1b) is obviously false. Traditional
theorists are therefore confronted with the challenge to come up with a logic in
which the values of (1a) and (1b) can be distinguished. No precise system seems
to have been developed thus far.

The substitutivity problems that follow from the adoption of (a)–(c) show
that this combination cannot stand, but this does not mean, of course, that (c),
the idea that names denote rigidly, has to go. In this paper I will sketch a theory
that does not suffer from the many problems that are connected with identifying
intensions with certain functions in extension, but in which it is still possible to
consistently formalize the intuition that names denote rigidly.

2 A Truly Intensional Logic

We move to a (higher order) logic that is truly intensional. By this we mean that
the following axiom (schema) of extensionality fails.1

(2) ∀XY (∀~x(X~x↔ Y ~x)→ ∀Z(ZX ↔ ZY ))

This axiom schema says that whenever two relations X and Y of arbitrary arity
are co-extensional, ∀~x(X~x ↔ Y ~x), they are in fact identical in the sense that
they have the same properties, i.e. ∀Z(ZX ↔ ZY ).2

1 Our notion of true intensionality is just the notion of intensionality defined in White-
head and Russell (1913), but using that term without modification may lead to
confusion nowadays, as the word is now widely used for Carnap’s imperfect approx-
imation of the original concept. I will mostly, but not always, use true intensionality
for intensionality in this paper. Hyperintensionality, another word for the same idea,
is less than felicitous, as it suggests a property stronger than intensionality, while it
is only stronger than Carnap’s approximation.

2 The Leibniz identity ∀Z(ZX ↔ ZY ) can be abbreviated as X = Y . Note that
∀Z(ZX → ZY ) is in fact equivalent.



3

There are now several approaches to type theory that manage to avoid mak-
ing (2) valid. Fitting (2002) and Benzmüller et al. (2004) are two of them, but
since both interpret the central machinery of type logic in some non-standard
way,3 the logic used here will be the ITL of Muskens (2007). In this logic all op-
erators have standard interpretations and in fact the interpretation of the logic
is a rather straightforward generalisation of that of Henkin (1950), making (2)
invalid but retaining all classical rules for logical operators. The following some-
what impressionistic description mainly highlights ITL’s minor differences with
standard simple type theory. For precise definitions consult Muskens (2007).

Type system ITL’s type system is relational, rather than functional. Given
some set of basic types, further types are formed by the rule that 〈α1 . . . αn〉
is a type if α1, . . . , αn are. Objects of type 〈α1 . . . αn〉 are n-ary relations in
intension that take objects of type αk in their k-th argument place. Readers
familiar with functional type logics may identify 〈α1 . . . αn〉 with α1 → . . . →
αn → t, where t is the type of propositions and truth values (and association is
to the right). In linguistic semantics this would be written without the arrows:
α1 . . . αnt. So 〈e〉 is the type of unary and 〈eee〉 the type of ternary relations in
intension of type e objects, while 〈〈e〉〉 is the type of properties of properties of
individuals (quantifiers). The type 〈〉 is a limiting case. It corresponds to t in
the functional set-up. Objects of this type are propositions, and their extensions
are truth values. Note that, since (2) fails, there may be many non-identical true
propositions in any given model, just as there may be many non-identical but
co-extensional relations in other types.

Language Terms of the logic are built up in the usual way from variables and
non-logical constants with the help of application, λ-abstraction and a few logical
constants, here ⊂ and ⊥ (⊂ is meant to denote inclusion of extensions and ⊥
will be a proposition that is always false). Typing of terms is as expected, given
the correlation between relational and functional types that was just described.
For example, (λx.A) is of type 〈α1α2 . . . αn〉 if A is of type 〈α2 . . . αn〉 and x is
of type α1, while (AB) is of type 〈α2 . . . αn〉 if A is of type 〈α1α2 . . . αn〉 and B
is of type α1. Successive applications can ‘eat up’ all the argument places of a
relation until 〈〉 is reached.

2.1 Further Information about ITL

At this point a reader mainly interested in the application of the logic ITL to the
theory of names may want to skip to section 3. Those who want slightly more
information about the logic may first want to read the rest of this section.

3 Fitting’s (2002) interpretation of lambda abstraction is non-standard, while in the
theory of Benzmüller et al. (2004) the interpretation of application is.



4

Π ⇒ Σ
[W ]

Π ′ ⇒ Σ′
, if Π ⊆ Π ′, Σ ⊆ Σ′

[R]
Π,ϕ⇒ Σ,ϕ

[⊥L]
Π,⊥ ⇒ Σ

Π,A{x := B}~C ⇒ Σ
[λL]

Π, (λx.A)B ~C ⇒ Σ

Π ⇒ Σ,A{x := B}~C
[λR]

Π ⇒ Σ, (λx.A)B ~C

if B is free for x in A if B is free for x in A

Π,B ~C ⇒ Σ Π ⇒ Σ,A~C
[⊂ L]

Π,A ⊂ B ⇒ Σ

Π,A~c⇒ Σ,B~c
[⊂R]

Π ⇒ Σ,A ⊂ B
if the constants ~c are fresh

Table 1. Gentzen rules for ITL.

Intensional models Models for ITL distinguish between the intension of a
term (given an assignment) and the extension associated with that intension.
Fitting (2002) uses a similar way of defining models and the set-up is strongly
reminiscent of that of Frege (1892).

Collections of domains will be sets {Dα | α is a type} of pairwise disjoint
non-empty sets. There is no further restriction on collections of domains and in
particular sets D〈α1...αn〉 need not consist of relations over lower type domains,
as is the case in the usual Henkin models. Assignments and notation for assign-
ments are defined as usual. Intension functions are defined to be functions that
send terms and assignments to elements of the Dα and respect the following
constraints.

– I(a,A) ∈ Dα, if A is of type α
– I(a, x) = a(x), if x is a variable
– I(a,A) = I(a′, A), if a and a′ agree on all variables free in A
– I(a,A{x := B}) = I(a[I(a,B)/x], A), if B is free for x in A

These constraints are still very liberal and do not amount to the constraints
imposed by the usual Tarski definition.

The next step associates extensions with intensions. For each α = 〈α1 . . . αn〉,
a function Eα:Dα → P(Dα1 × · · · × Dαn) is called an extension function. A
triple consisting of a collection of domains, an intension function, and a family
of extension functions is called a generalised frame. (Note that in a generalised
frame E〈〉:D〈〉 → {0, 1}, if some standard identifications are made.) Generalised
frames are intensional models if, for all α = 〈α1 . . . αn〉, and for all terms A
of type α, the extensions Eα(I(a,A)), for which we write V (a,A), satisfy the
following constraints.

– V (a,⊥) = 0



5

[>R]
Π ⇒ Σ,>

Π,ψ ⇒ Σ Π ⇒ Σ,ϕ
[→ L]

Π,ϕ→ ψ ⇒ Σ

Π,ϕ⇒ Σ,ψ
[→R]

Π ⇒ Σ,ϕ→ ψ

Π,ϕ{x := A} ⇒ Σ
[∀L]

Π, ∀xϕ⇒ Σ

Π ⇒ Σ,ϕ{x := c}
[∀R]

Π ⇒ Σ,∀xϕ
where c is fresh

Π,A
.
= B ⇒ Σ,ϕ{x := A}

[= L]
Π,A

.
= B ⇒ Σ,ϕ{x := B}

[= R]
Π ⇒ Σ,A = A

where A
.
= B is A = B or B = A

Table 2. Some classical rules derivable in ITL.

– V (a,AB) = {〈~d〉 | 〈I(a,B), ~d〉 ∈ V (a,A)}
– V (a, λxβ .A) = {〈d, ~d〉 | d ∈ Dβ and 〈~d〉 ∈ V (a[d/x], A)}
– V (a,A ⊂ B) = 1⇐⇒ V (a,A) ⊆ V (a,B)

These last clauses constrain extensions to behave as in the usual Tarski value def-
inition. For the treatment of abstraction and application in a relational setting,
see also Muskens (1995).

Entailment is defined in the usual way, with the help of intensional models.
The rules for λ-conversion, (α), (β) and (η), do not automatically hold (they
preserve extension, but not necessarily intension), but it is possible to consis-
tently add them to the logic. Extensionality is not universally valid. This is
because the functions Eα:Dα → P(Dα1 × · · · ×Dαn

) need not be injective. In
fact, intensional models in which all extension functions are injective essentially
are Henkin’s general models, while a further requirement of surjectivity will give
full models.

Proofs The Gentzen calculus in Table 1 is generalised complete for the semantic
notion of entailment just defined (see Muskens (2007) for a proof). Table 2 gives
derived rules for some operators defined from the two primitives ⊂ and ⊥. The
identity here is Leibniz identity again, having the same properties, i.e. A = B is
short for ∀Z(ZA→ ZB).

3 Names in a Truly Intensional Setting

Given a truly intensional logic such as the one just defined, a theory of names
can take the following form.

– Ordinary proper names are predicates.



6

– They are singular in the sense that their extensions are either empty or
singletons.

– Meanings are represented by lambda terms and combine with the help of
application and type shifters.

– Among the type shifters is Partee’s type shifter A, i.e. λP ′P.∃x(P ′x ∧ Px)
(Partee, 1986).4

In defending a theory of names as predicates I side with Aristotle, I think. More
recent authors who have defended the names-as-predicates view in one form or
another are Quine (1948), Quine (1960), Burge (1973), Muskens (1995), Ma-
tushansky (2006), and Fara (2011), among others. The idea seems linguistically
natural, as names accept modification, combine with determiners, etc., just like
common nouns.

Singularity can be enforced by adopting the following constraint, for all names
N.5

(3) ∀xy((Nx ∧ Ny)→ x = y)

The type shifter A provides the glue that is needed to get predication going. (4)
provides a simple example. Let’s say Zeus translates as the predicate Z (4a); then
combining with Partee’s type shifter λP ′P.∃x(P ′x∧Px) leads to the translation
in (4b) and a further combination with the translation of smiles, S say, to that
in (4c) (here it is assumed that the rules of λ-conversion have indeed been added
to the logic).

(4) a. Zeus ; Z
b. Zeus ; λP.∃x(Zx ∧ Px)
c. Zeus smiles ; ∃x(Zx ∧ Sx)

(4c) also illustrates how non-referring names are dealt with. Atheists denying the
existence of Zeus can consistently claim the statement ∃x(Zx ∧ Sx) to be false,
a possibility that was also provided for in Russell (1905), but is not available in
theories that translate names as individual constants.

Let us look at identity statements, such as the infamous Hesperus is Phos-
phorus case. In (5a) we translate Phosphorus as Φ, a translation that, I take it,
can be inherited by is Phosphorus.6 The translation in (5c) is then obtained in
a way analogous to the one in (4).
4 We generally use Q as a variable over type 〈〈e〉〉 (quantifiers), P as a variable of

type 〈e〉 (properties of individuals), R as a variable of type 〈ee〉 (binary relations in
intension of individuals), and x, y and z as variables of type e (individuals).

5 Another way to obtain singularity is to work with Partee’s type shifter THE,
λP ′P.∃x(∀y(P ′y ↔ x = y) ∧ Px). The application of THE can then be restricted to
names in argument positions. Adopting such a theory would bring us closer to the
theory of Fara (2011), for example.

6 A traditional way to obtain the translation of is Phosphorus from that of Phosphorus
is to start with (5a), to then observe that Partee’s A shifter allows for an interpreta-
tion of Phosphorus as λP.∃x(Φx ∧ Px), as in the Zeus case. To the latter we could
apply the linear combinator λQλRλx.Q(λy.Ryx), which is generally useful for com-



7

(5) a. Phosphorus ; Φ
b. is Phosphorus ; Φ
c. Hesperus is Phosphorus ; ∃x(Hx ∧ Φx)
d. Hesperus is Hesperus ; ∃x(Hx ∧ Hx)

Note that it is consistent to assume that the semantic value of Hesperus is
Phosphorus, ∃x(Hx ∧ Φx), and that of Hesperus is Hesperus, given in (5d) as
∃x(Hx∧Hx), are completely distinct propositions, even if the first is true. Also,
while ∀x(Hx ↔ Φx) follows from ∃x(Hx ∧ Φx) and the singularity requirement
for name denotations (from which we get ∀xy((Hx∧Hy)→ x = y) and ∀xy((Φx∧
Φy) → x = y)), it does not follow that H = Φ and H may well have properties
that Φ lacks or vice versa. Co-extensionality crucially does not entail identity,
having the same properties, in our theory and the theory allows for the possibility
that Phosphorus has, but Hesperus fails to have, the property (λX.we do not
know a priori that Hesperus is X), as in (1).

3.1 Worlds, Necessity, and Rigidity

Possible worlds are not needed to obtain true intensionality, and in fact can-
not provide it, but they are immensely useful for modeling all kinds of modal
phenomena. Here we construct them as certain properties of propositions (see
Muskens (2007) for more details). Propositions have type 〈〉, so properties of
propositions have type 〈〈〉〉, and the property of being a world, a property of
properties of propositions has type 〈〈〈〉〉〉. We will write Ω for this special prop-
erty and stipulate the following.

W1 ∀w(Ωw → ¬w⊥)
W2 ∀w(Ωw → (w(A ⊂ B)↔ ∀~x(w(A~x)→ w(B~x))))

W1 requires world extensions to be consistent while addition of W2 makes worlds
‘distribute over logical operators’. Statements such as the following become deriv-
able.

a. ∀w(Ωw → (w(¬ϕ)↔ ¬(wϕ)))
b. ∀w(Ωw → (w(ϕ ∧ ψ)↔ ((wϕ) ∧ (wψ))))
c. ∀w(Ωw → (w(∀xϕ)↔ ∀x(wϕ)))
d. ∀w(Ωw → (w(∃xϕ)↔ ∃x(wϕ)))

The first of these statements says that worlds are complete, while the last two are
‘Henkin properties’ that enforce, for example, that if an existential proposition
is an element of the extension of a given world some proposition witnessing the
existential must also be an element. In general, given W1 and W2, worlds single

bining transitive verb meanings with the meanings of their direct objects. This would
result in a translation λRλx.∃z(Φz ∧Rzx), which, combined with the translation of
is, λxy.x = y, would lead to λx.∃z(Φz ∧ z = x). The latter is extensionally, but not
intensionally, equivalent to Φ.



8

out sets of propositions that could be simultaneously true. The term λp.p (with
p of type 〈〉) will be a world if we assume Ω(λp.p) and it will then have the
function of the actual world, as, in any model, λp.p will hold of ϕ iff ϕ is indeed
true. Let us make Ω(λp.p) into an official postulate and let’s consider two more.

W3 Ω(λp.p)
W4 ∀ww′((Ωw ∧Ωw′)→ (w(w′ϕ)↔ (w′ϕ)))
W5 ∀w(Ωw → ∀w′(Ωw′ ↔ w(Ωw′)))

W4 says that whether a proposition holds in a world is a global property, and W5
says something similar about the question whether a property of propositions is
a world.

Once worlds are introduced, it becomes useful to associate domains with
them. Some objects may exist in some worlds but not in others. We introduce a
constant E of type 〈e〉 that will function as an existence predicate. Quantification
over existing objects can then be obtained by relativizing to E. For example, the
type shifter A may now be redefined as λP ′P.∃x(Ex ∧ P ′x ∧ Px). This will
lead to slightly revised translations, e.g. Hesperus is Phosphorus will now go to
∃x(Ex ∧ Hx ∧ Φx).

Having worlds at our disposal, we can now express that ϕ is globally necessary
by writing ∀w(Ωw → wϕ) and we may abbreviate this as 2ϕ.7 The following
scheme says that names have singleton extensions in all worlds.

(6) 2∃x∀y(Ny ↔ y = x)

This entails (3) but no longer leaves open the possibility of empty denotation
that was useful for non-referring names. Since we now have an existence predicate
at our disposal, that possibility is no longer needed.

We now come to rigidity. There are various ways to model variants of the
notion. Here is a strong and straightforward one.

(7) ∃x2∀y(Ny ↔ y = x)

The idea is that for all names there is a possible object o such that the name’s
extension is {o} across all possible worlds. Clearly, in the presence of this require-
ment ∃x(Ex∧Hx∧Φx) will entail 2∃x(Hx∧Φx), so if Hesperus is Phosphorus,
it is necessary that Hesperus is Phoshorus wherever it exists and the usual Krip-
kean intuitions are formalised.

On the other hand codesignating names cannot be replaced for one another
in arbitrary contexts. While Hesperus and Phosphorus have the same extension
in all possible worlds, they may still have distinct intensions, as intension is not
determined by extension, not even by extension in all possible worlds. And since
∃x(Ex∧Hx∧Φx), and ∃x(Ex∧Hx∧Hx) are completely distinct propositions it
is possible, for example, to bear the relation of belief to the second but not to
the first.
7 Muskens (2007) discusses modalities based on accessibility relations, but here we can

make do without these.



9

4 Conclusion

In this paper I have shown that Kripke’s intuitions with respect to the rigid
designation of proper names can be formalised in a way that does not result in
a theory predicting the intersubstitutivity of codesignating names in arbitrary
contexts. This means that this intersubstitutivity does not follow from the in-
tuitions. The theory I have developed accepts rigidity of names, but rejects the
Millian idea of direct reference, the idea that the meaning of a name is its bearer
or at least is determined by its bearer. In the present theory a person can have
many names, all with different intensions.



Bibliography

C. Benzmüller, C. E. Brown, and M. Kohlhase. Higher Order Semantics and
Extensionality. Journal of Symbolic Logic, 69, 2004.

T. Burge. Reference and Proper Names. Journal of Philosophy, 70:425–439,
1973.

D. Graff Fara. Names as Predicates. 2011. unpublished manuscript.
M. Fitting. Types, Tableaus, and Gödels God. Kluwer Academic Publishers,

Dordrecht, 2002.
G. Frege. Über Sinn und Bedeutung. In G. Patzig, editor, Funktion, Begriff,

Bedeutung. Fünf Logische Studien. Vanden Hoeck, Göttingen, 1892.
L. Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic,

15:81–91, 1950.
S. Kripke. Identity and Necessity. In M. Munitz, editor, Identity and Individu-

ation, pages 135–164. New York University Press, 1971.
S. Kripke. Naming and Necessity. In D. Davidson and G. Harman, editors,

Semantics of Natural Language, pages 253–355. Reidel, Dordrecht, 1972.
O. Matushansky. Why Rose is the Rose: On the use of definite articles in proper

names. In O. Bonami and P. Cabredo Hofherr, editors, Empirical Issues in
Formal Syntax and Semantics, volume 6, pages 285–307. CSSP, Paris, 2006.

R.A. Muskens. Intensional Models for the Theory of Types. Journal of Symbolic
Logic, 72(1):98–118, 2007.

R.A. Muskens. Meaning and Partiality. CSLI, Stanford, 1995.
B. Partee. Noun Phrase Interpretation and Type Shifting Principles. In J. Groe-

nendijk, D. de Jongh, and M. Stokhof, editors, Studies in Discourse Repre-
sentation and the Theory of Generalized Quantifiers, pages 115–143. Foris,
Dordrecht, 1986.

W.V.O. Quine. From a Logical Point of View. Harper and Row, New York,
1953.

W.V.O. Quine. On What There Is. Review of Metaphysics, 2:21–28, 1948.
Reprinted in Quine (1953).

W.V.O. Quine. Word and Object. MIT Press, 1960.
B. Russell. On Denoting. Mind, 14(56):479–493, 1905.
A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University

Press, 1913.


