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Abstract

This paper introduces A-grammar, a form of categorial grammar
that has much in common with LFG. Like other forms of categorial
grammar, A-grammars are multi-dimensional and their components
are combined in a strictly parallel fashion. Grammatical representa-
tions are combined with the help of linear combinators, closed pure
A-terms in which each abstractor binds exactly one variable. Mathe-
matically this is equivalent to employing linear logic, in use in LFG
for semantic composition, but the method seems more practicable.

While A-grammars could be used to formalize many approaches
to grammatical theory, they are certainly natural as a basis for the
formalization of LFG. This leads to a theory I would like to call A-
LFG. In this paper it will be shown how the standard components of
LFG can be set up in the framework. We will have descriptions of
c-structure, descriptions of f-structure, and semantics. The difference
between defining and constraining information will be explained in
terms of entailment, and requirements on long-distance paths in f-
structure will be explained in terms of entailment in the presence of a
simple set of axioms.

1 Introduction

In this paper I want to discuss a version of Lexical-Functional Grammar
(LFG) that is also a version of Categorial Grammar (CG). A convergence
between the two frameworks has set in at least since Zeevat, Klein, and
Calder (1986) proposed a ‘sign-based’ categorial grammar and Oehrle (1988)
defined ‘multi-dimensional’ categorial grammars. The sign-based approach,
now adopted by many categorial grammarians (e.g. Moortgat 1991; Morrill
1994; Moortgat 1997),! allows various grammatical representations to be
combined in tandem, a move clearly reminiscent of LFG’s multi-component
architecture.

1Signs in Categorial Grammar are sequences of representations. For example, Zeevat,
Klein, and Calder (1986) work with signs of the form (phonology, syntactic category,
semantics, order). Each slot in the sequence may be associated with its own form of
reasoning. This should be distinguished from the concept of a sign in Head-Driven Phrase
Structure Grammar, where multiple levels of the grammar are represented in one attribute-
value matrix.



A second important step leading to further convergence of the two frame-
works was Dalrymple et al.’s (1993) proposal to use Linear Logic? as a ‘glue’
between f-structure and semantics. The {—o, ®} fragment of Intuitionistic
Linear Logic that is used in this ‘glue’ approach is in fact identical with
the undirected Lambek Calculus.?> This still leaves a gap between the two
frameworks, as most versions of Categorial Grammar are directional and dis-
tinguish between categories A/B (seeking a B to the right) and B\ A (seeking
a B to the left). Linear Logic and the undirected Lambek Calculus collapse
this to a single B —o A, a formula that consumes a B and then produces
an A, irrespective of order. The motivation for using a directional system
comes from a wish to treat word order directly on the level of the calculus.
Grammatical formalisms that treat word order in a different way, as LFG
does, can make do with nondirectionality.

In fact the treatment of word order can be factored out of the general
calculus in CG as well. Consider the signs in (1), which are in the style of
(Moortgat 1991; Morrill 1994) and are triples consisting of a string, a se-
mantic term, and a directional category. Since (1a) has a type which seeks
an np to the left, it can be combined with (1b). The combination consists
of string concatenation in the first dimension (forming likes John), appli-
cation in the second dimension (forming Az\y.[like(y, z)](j), which reduces
to Ay.like(y,j)), and a form of Modus Ponens in the third dimension. The
result is as in (1c).

(1) a. likes : Az Ay.like(y, x) : (np\s)/np
b. John:j:np
c. likes John : Ay.like(y, j) : np\s

The directionality of the types here codes the way in which strings can be
concatenated, but, as was observed in (Oehrle 1994; Oehrle 1995), this in-
formation can be shifted to the syntactic dimension if we are willing to let
syntactic representations be lambda terms, in analogy with semantic repre-
sentations. (1a) then becomes (2a), whose first element is a lambda term over

2The original paper on Linear Logic is (Girard 1987). An attractive textbook (Troelstra
1992).

3For the original version of the Lambek Calculus, see Lambek 1958; for the undirected
version Benthem 1986; Benthem 1988; Benthem 1991; for a survey of Categorial Grammar
in the Lambek tradition Moortgat 1997.



strings and whose last element is an undirected type. Combining (2a) with
(1b), now using application in the first as well as in the second dimension,
leads to (2b).

(2) a. Ax\y. y likes x : Az \y.like(y, z) : np —o (np —o s)
b. Ay. y likes John : Ay.like(y,j) : np —o s

There is much to be said for such a shift of word order information from the
level of types to the syntactic dimension.* A priori it seems that once we
have a syntactic dimension, word order should be handled there. But there
are also empirical consequences, one positive, the other less so. Let us look
at a consequence that is less than positive. One clear attraction of categorial
grammars is the way in which (non-constituent) coordination is treated (see
e.g. Steedman 1985; Dowty 1988; Moortgat 1988). The sign in (3a) can be
formed from (1a) and (1b) with the help of hypothetical reasoning and can
subsequently be coordinated with the similar sign in (3b). The result is as
in (3c), which may be used to obtain (3d). Coordination is concatenation in
the first dimension (with the coordinating word in between the coordinated
elements) and either union or intersection in the semantic dimension, de-
pending on whether the coordination is a disjunction or a conjunction. The
types of the coordinated signs must be equal and the result will have the
same type again.

(3) a. John likes : \x.like(j,x) : s/np
b. Mary hates : Az.hate(m,x) : s/np
c. John likes but Mary hates : Az.like(j,z) A hate(m, x) : s/np

d. John likes but Mary hates bananas : like(j, b) A hate(m,b) : s

4Interestingly, Curry (1961) already argues for this approach. Curry considers functors,
which are expressions containing subscripted blanks, such as ‘“—j is between —5 and —3’
or ‘—1 were eaten by the children’. Functors can apply to arguments and arguments are
to be substituted for blanks in the order of the subscripts. Essentially then, although
Curry does not explicitly mention this, functors are lambda terms over syntactic objects.
For example, the first of the functors just mentioned can also be written ‘AxAyAz.x is
between y and z’.



Treatments of coordination along these lines are not without their problems
and usually result in overgeneration (see (Milward 1994; Moortgat 1997) for
good discussions), but nevertheless seem to fare well compared to many other
approaches. The analysis depends on a reduction of the syntactic dimension
to strings and collapses when richer structures such as trees are taken to be
basic. A move to representations such as the ones in (2) does not seem to be
compatible with this analysis of coordination either.

On the other hand such representations immediately solve one of the
problems of the standard Lambek Calculus. Since John likes can be analysed
as an s/mp, it is easy to obtain parses for sentences such as (4a) in Lambek’s
system. The trick is to categorize who as an item that searches an s/np to
its right. who must also be categorized as searching for an np\s in view of
(4b). But what to do if the gap is medial, as in (4c)?

(4) a. a woman who John likes
b. a woman who likes John

c. a woman who John likes enormously

In order to deal with this problem clever extensions of the Lambek Calculus
have been proposed (e.g. Morrill 1994). But these extensions are also consid-
erable complications of the original idea. For the kind of representations in
(2), on the other hand, a problem with medial gaps does not even arise: The
relevant representations can be taken to be Ax.John likes x, Ax.x likes John,
and Ax.John likes x enormously, all of type np —o s. The relative pronoun
can subcategorize for this type.®

(5) a. Everyone loves someone

b. Bill thinks someone kissed Carol

Similarly, it is well known that the Lambek Calculus can deal with scope
ambiguities as long as the scope taking elements are in a peripheral position:
(5a) will get its desired two readings. But as soon as a scope taking element is
non-peripheral, difficulties may arise (Hendriks 1993; Morrill 1994; Moortgat
1997; Dalrymple et al. 1999). For example, (5b) will not obtain a reading in

The sign for the pronoun who could be taken to be AX\y.y who X(g) : AXAY \2.X (2)A
Y(z): (np — s) —o (n —o n), where ¢ is the empty string.



which someone takes scope over thinks. Again, operators (such as Moortgat’s
1) have been introduced that cleverly circumvent the problem (see Dalrymple
et al. 1999 however) but also complicate the categorial machinery. Moving
to an undirected calculus will make the problem disappear, as the periphery
does not play any special role in such a system. I take this to be strong
evidence that word order information should not be treated on the level of
the type system but should be dealt with in a syntactic dimension. If it is
represented in the type system this essentially syntactic information causes
trouble in the semantics.

If Oehrle’s move from simple strings to lambda-ed strings and from a
directed to an undirected calculus is accepted then a third step narrowing
the gap between CG and LFG is made. The same calculus now plays a central
role in both grammatical frameworks. An obvious next step, made in (Oehrle
1999), is to bring the various components of the categorial grammar into line
with the components that are recognized in LFG. Oehrle considers sequences
such as the one in (6), consisting of a lambda-ed c-structure, a lambda-ed
f-structure, a semantic term, and a type. Such signs are combined with the
help of the undirected Lambek Calculus.

(6) S
NP/\VP PRED  ‘SEE’
Ayzx. | N Ay, TENSE - PAST Ayzx.see(x,y) : np —o (np —o s)
SUBJ =
z V NP
o OBJ y
saw Yy

Oehrle’s work will be my point of departure and should receive much praise,
but I have a point of criticism as well. The terms in the first two dimensions
of (6) are structures. More precisely, they are functions that take certain
arguments and then give structures as a result. While I think it possible to
flesh this out formally, I also think it is not very promising as a formalization
of LFG. One of the important insights of (Kaplan and Bresnan 1982) was
a separation, at least in the f-dimension, of descriptions and the structures
satisfying them. This distinction, which is also at the heart of model theory,
is lost if signs get a form as in (6).5 As a consequence, it will not be possible
to model disjunctive or negative constraints. It will also not be possible

6A footnote in (Oehrle 1999) credits a referee with suggesting a move from structures
to descriptions in the f-dimension.



syntax: k. f:v t,F vt T,F : (vt)(vt)
semantics: T,y:e 1,j:8 p: st P :e(st)

Table 1: Typographical conventions for variables used in this paper. Var :
Type means that Var (with or without subscripts or superscripts) always has

type Type.

to formalize the difference between defining and constraining information,
or to explain path constraints on f-structure arising out of long-distance
dependencies. Such mechanisms are part and parcel of Lexical-Functional
Grammar and in this paper I will show that they can easily be accounted for
within a combined CG-LFG approach if a shift from structures to descriptions
is made.

A second departure from Oehrle’s proposal that I want to suggest involves
a simplification of the technical machinery which now becomes possible. Thus
far we have considered signs that needed to be combined with the help of
some form of Lambek Calculus, but it is well-known (see Benthem 1986, for
example) that proofs in the implicational fragment of the undirected Lambek
Calculus (= Linear Logic) are isomorphic with linear combinators, closed
pure A-terms in which each abstractor binds exactly one free variable. This
will make it possible to do away with proofs altogether and to just consider
certain linear combinations of lexical elements.

2 A-Grammars

To make concrete what I have in mind, I will define a small toy grammar
in this section. In the next section some elaborations and revisions will be
discussed. Consider the three signs in (7).

(7) a. john : Af.arc(f, cat, N) A arc(f, num, sg) A arc(f, pers,3) : john
b. mary : Af.arc(f, cat, N) A arc(f, num, sg) A arc(f, pers,3) : mary

c. AtyAto. [t [loves t4]]
AFI NN f1 fo[ Fi(f1) A Fo(fo) A are(f, cat, V) A are( f, tense, pres) A
arc(f1, cat, N) A\ arc(f, obj, f1) N arc(fo, cat, N) N\ arc( fo, num, sg) A

arc( fo, pers,3) A arc(f, subj, f2)] :
Az AyNi.love(y, x, 1)



These signs each consist of a c-structure component, an f-structure compo-
nent, and a semantic component. Expressions in sans serif in the c-structure
terms are of type vt, and denote sets of nodes.” For example, john can be
thought of as the set of nodes that are labeled ‘John’, whereas an expression
such as [loves mary| can be thought of as the set of nodes k directly dominat-
ing a node k; labeled ‘loves’ and a node ks labeled ‘Mary’, with k; preceding
ko. More information about c-structure components will follow in the next
section.

The f-components of our signs consist of A\-terms over the first order fea-
ture language of (Johnson 1991) and the semantics in the third component
is in accordance with a streamlined form of Montague’s (1973) theory. Con-
stants john and mary are of type e and love is of type e(e(st)). Constants
cat, num, pers, etc. are of a type a (attributes), while N, sg, 3, ... are of type
v (nodes).® More typing information is given in Table 1. For the moment,
we consider a grammar with three dimensions, but in general the number of
dimensions of a grammar is arbitrary (though fixed). The terms that we are
interested in are all closed and we require that lexical elements have closed
terms in each dimension.

Signs can be combined by means of pointwise application. In general, if
M = (M,...,M,)and N = (Ny,..., N,) are sequences of A\-terms such that
M;(N;) is well-typed for each 4, the pointwise application of M to N is just

<M1<N1)7 ey Mn(Nn)> .

Generalizing the notation for application, we denote this as M(N). It is
easily seen that the result of pointwise application of (7c) to (7a) equals (8a)
modulo standard equivalences and that (8a)((7b)) reduces to (8b).

(8) a. Ata.[ts [loves john]] :
AN f3f1 o[ Fa(fo)Nare(f, cat, V) Nare(f, tense, pres)Aarce( f1, cat, N)
A arc(f, obj, f1) A arc( fo, cat, N) N\ arc( fo, num, sg) A arc( fa, pers, 3) A

arc(f, subj, f)] -
AyAi.love(y, john, i)

b. [mary [loves john]] :
AfAfy falare(f, cat, V) A arc(f, tense, pres) A arc( f1, cat, N) A

"We drop the —o in types, in conformity with the usage in semantics.
8For simplicity, we make no type distinction between tree nodes and feature nodes in
this paper, but the conceptual distinction is important of course.

8



arc(f, obj, f1) N arc(fo, cat, N) N\ arc( fo, num, sg) A arc(fa, pers,3) A

arc(f, subj, f2)] :
Ai.love(mary, john, 1)

The three descriptions in sentential signs such as (8b) each denote a set in
every possible model of the language; the first two sets of nodes (type vt), the
third a set of possible worlds (a proposition, type st). The idea is that if the
second set is non-empty in some model of the axioms in Johnson 1991 (see
below), then any node satisfying the first description should be connected to
the truth conditions expressed in the third element. The requirement that
the second component should be satisfiable provides for a subcategorization
mechanism. E.g., combining (8a) with a plural subject would have led to an
f-description that can only denote the empty set.

In (9) and (10) some more lexical signs are given with two results of their
possible combinations in (11).

(9) a. man: Af.arc(f, cat, N) A arc(f, num, sg) A arc(f, pers,3) : man

b. woman : \f.arc(f, cat, N) A arc(f, num, sq) A arc(f, pers,3) : woman

(10) a. MAT T'[a t] :
AFAF.F(NfE(f)Nare(f, cat, N) A arce( f, num, sg) A arc( f, pers, 3)) :
AP'PXi3x[P'(z)(i) A P(x)(1)]

b. MAT.T'[every t] :
AFAF.F(Nf.E(f)Nare(f, cat, N) A arce( f, num, sg) A arc( f, pers, 3)) :
AP'PAXiVz|[P'(x)(i) — P(z)(7)]

(11) a. AT.T'[every man] :
AF.F(Af.arc(f, cat, N) A arc(f, num, sg) A arc(f, pers,3)) :
APXiVz[man(x,1) — P(z)(i)]

b. AT.T'[a woman] :
AF. F(Af.arc(f, cat, N) A arc(f, num, sg) A arc(f, pers,3)) :
APXidz[woman(z,i) A P(x)(i)]



abstract type syntactic dimensions semantic dimension

S vt st
NP vt e
N vt e(st)

Table 2: Concretizations of abstract types used in this paper.

The terms that our signs consist of are typed, but it is expedient to type
the signs themselves as well. Types for signs will be called abstract types.
Abstract types in this paper are built up from ground types s, NP and N with
the help of implication, and thus have forms such as NP S, N((NP $)s), etc.
A restriction on signs is that a sign of abstract type A should have a term of
type A® in its i-th dimension. The values of the function .* for ground types
can be chosen on a per grammar basis and in this paper are as in Table 2. For
complex types, the rule is that (AB)" = A’B’. This means, for example, that
NP(NP 8)" = NP(NP S)® = (vt)((vt)vt) and that NP(NP 8)° = e(e(st)). As a
consequence, (7¢) should be of type NP(NP S). Similarly, (7a) and (7b) can
be taken to be of type NP, (8a) and (8b) are of types NP s and S respectively,
etc. In general, if M has abstract type AB and N abstract type A, then the
pointwise application M (V) is defined and has type B.

Abstraction can also be lifted to the level of signs. Supposing that
the variables in our logic have some fixed ordering and that the number
of dimensions of the grammar under consideration is n, we define the k-
th n-dimensional variable £ of abstract type A as the sequence of variables
(&1,...,&,), where each & is the k-th variable of type A’. The pointwise
abstraction A(M is then defined as (A& My, ..., A\, M,). A definition of
pointwise substitution is left to the reader.

With the definitions of pointwise application, pointwise abstraction, and
n-dimensional variable in place, we can consider complex terms built up with
these constructions. (12a), for example, is the pointwise application of (11b)
to the pointwise composition of (11a) and (7c). Here ( is of type Np. (12a)
can be expanded to (12b), where each dimension of a lexical sign is denoted
with the help of an appropriate subscript (e.g. (11b); is AT.T[a woman]). The
terms here can be reduced and the result is as in (12¢), a sign coupling the
c-description in its first dimension to one of its possible readings. The other
reading is obtained from (12d), which reduces to (12e).

(12) a. (11b)(AC.(11a)((7c)(¢)))

10



(11b)1(AG-(11a)1((7c)1(G1))) -

(11b)2(AC2-(11a)2((7c)2(C2))) -

(11b)3(As.(11a)3((7c)3(Cs)))

c. [[every man] [loves [a womanl]]] :

Af3fifolarc(f, cat, V) A arc(f, tense, pres) A arc(fy, cat, N) A

arc(f, obj, f1) N arc(fo, cat, N) N\ arc( fo, num, sg) A arc(fa, pers,3) A

arc(f, subj, f2)] -
Xidy[woman(y, i) A Vx[man(z,i) — love(x,y,1i)]]

d. (11a)(AG. (11b)(AG-(7¢)(¢1)(¢2)))

e. [[every man] [loves [a woman]]] :
Af3fy falare(f, cat, V) A arc(f, tense, pres) A arc( f1, cat, N) A
arc(f, obj, f1) N arc(fa, cat, N) A arc(fo, num, sq) A arc(fo, pers,3) A

arc(f, subj, f2)] :
AiVx[man(x, 1) — Jy[woman(y, i) A love(x,y,1)]]

Let us call terms such as (12a) and (12d), which are built up from lexical
signs with the help of n-dimensional variables, pointwise application and
abstraction, n-terms. It is worth to note that n-terms are subject to the laws
of o, 3, and n-conversion, i.e. reasoning with them is as usual. But clearly, not
every n-term makes for an acceptable coupling between syntax and semantics.
We restrict ourselves to linear combinations of lexical elements. These are
n-terms that are closed and conform to the condition that every abstractor
A(, with ¢ an n-dimensional variable, binds exactly one free (. n-terms
conforming to this condition are called generated signs.® Conditions such
as the requirement that the third component of a generated sign must be
satisfiable are admissibility conditions and a generated sign obeying them is
called admissable.

Multidimensional grammars that are set up in the way sketched here,
with A-terms in each dimension of the grammar and linear combination as
a generative device, will be called \-grammars. If a A-grammar is meant
to be an alternative formalization of LFG insights, as the grammars in this
paper will be, it is called a A-LFG. For more information on A-grammars, see
(Muskens 2001a).

Since any n-term M obeys the usual laws of A-conversion, it can be written
in the form C(Ly)---(Ly,), where Ly, ..., L,, are lexical signs and C' is an

9Note that any linear combination of generated signs is itself a generated sign.

11



n-term that does not contain any lexical material. If M is closed, C' is a
multi-dimensional (and typed) variant of a combinator in the sense of (Curry
and Feys 1958). In case M is a generated sign, C' will correspond to a
linear (or BCI) combinator. For example, (12a) can be rewritten as (13),
with AQ1ARAQ2.Q1(A(.Q2(R(())) playing the role of the linear combinator
combining (11b), (7c), and (11a).

(13) AQIARAQ2.Q1(AC.Q2(R(()))((11b))((7c))((11a))

From the fact that linear combinators play an important underlying role we
see that A\-grammars have obvious affinities not only with LFG and Lambek
Categorial Grammar, but also with Combinatory Categorial Grammar (see
e.g. Steedman 1996; Steedman 2000). But A-grammars should be distin-
guished from standard categorial grammars in that they are non-directional
and do not use derivations.

3 A-LFG

The purpose of this section is twofold. First we need to fill in some details
that were left open in the definition of our toy grammar. We will take a closer
look at the c-description and f-description components. For the logic of the
semantic component the reader is referred to the first chapters of (Muskens
1995). When the necessary details have been filled in, we will show how the
descriptions approach that is taken in this paper allows for the incorporation
of some further ideas that are central to LFG.

3.1 A Closer Look at C-descriptions and F-descriptions
3.1.1 C-descriptions

Terms such as [loves [a woman]] in fact can be taken to be abbreviations of
tree descriptions. We flesh this out by providing the v domain with binary
relations << (proper dominance), < (immediate dominance), and < (prece-
dence) and by imposing the necessary structure by means of axioms (see also
Cornell 1994; Backofen et al. 1995; Muskens 2001b). Here we just adopt
the requirements in (14). (14a) states that the relations <™ and < are strict
partial orders, while (14b) and (14c) impose Inheritance, (14d) requires Root-
edness (r is a constant of type v here), and (14e) defines <1 as an immediate

12



dominance relation in terms of <<7.1° The last axiom excludes the possibility
that leaf nodes have more than one label.

(14) a. <™ and < are irreflexive and transitive
b. Vkikoks [[k1 <t ko A k1 < k3] — ko < ks3]
c. Ykikaoks [[k1 <t ko A kg < k1] — k3 < ko
d. Vk[r <t kVr=EF|
e. Ykiko (k1 < kg > Vks[ky < ks <t kg — [k = ki V ks = ko]
f. Vk=[01(k) A 09(k)], if 61 and dy are distinct lexical labels

Using the relations < and <, we define [A4; - -+ A;,] to be an abbreviation of
(15).1

(15) AkTky .. En[Ai (BN AAp (k) Ne<8ky Ao A<k ANk < -+ < k)

In other words, [A; --- A,,] will denote the set of nodes with daughters Aj,

.., Ay, (in that order), as expected. E.g., [loves [a woman]] now is short for
(16).

(16) )\k’ﬂklk’g[lOVGS(kIl)/\k’<]k’1/\k’<]k2/\l€1 < k:gA3k3k4[a(k3)Awoman(k4)A
ko <Wks AN ky <tky N ks -<k4]]

From (16) we see that a minimality requirement is needed: As things stand
the statement [A; - -+ A,,](k) may hold in some model in which k has daugh-
ters other than Ay, ..., A,,.'> We exclude this possibility by our interpre-
tation of generated signs. First, define the relation C between models for

10These requirements in themselves do not suffice to axiomatize the notion of linguistic
tree. For instance, the usual requirement of Ezhaustivity (Vkiks [k1 < ko Vo < k1 Vi <t
ko V ko < k1 V k1 = kg]) is not met. But the axioms are sufficient in the sense that the
terms we generate will have a minimal model which is a tree.

UThe use of square brackets in [A; - -+ A,,] is special and should be distinguished from
its normal use in terms.

120ne way to rule out such undesired structures would be to strengthen the definition
of [A; - -+ Ay, with an extra condition of the form VE'[k <k — [k = k1 V... VK = ku]].
However, such a strengthening would preclude the possibility of attaching extra daughters
to a given node while constructing a description.

13



the tree language by letting M’ C— M if and only if (a) the domain of M’ is
a proper subset of the domain of M, (b) the root of M’ is the root of M,
and (c) elements of M’ are in the proper dominance relation in M’ if and
only if they are in the proper dominance relation in M. (There is no similar
constraint on precedence.) Now let S be a generated admissable sign with
c-description component C' and semantic component S. We say that a tree
model M ezpresses S if M is a model of the axioms in (14) that satisfies C(r)
and no M’ T M is both a model of the axioms in (14) and satisfies C(r).
The minimality condition with respect to [ serves to rule out structures M
that have more nodes than were intended.

Thus far, we have not put any category information into our c-descriptions.
This could be done very easily by letting category labels such as AP, VP, ...
be terms of type v and by stipulating that [, A; - - - A,,,], where L is a category
label, is short for Mk (arc(k, cat, L) AN[Ay - -+ Ap)(k)). However, we shall prefer
treating major category information on a par with feature information in the
rest of this paper.

Writing [A; - - - A,,,] for (15) will be handy in circumstances where we want
the grammar to prescribe the way in which the daughters of a given mother
are ordered. But this is not always what we want. In many languages the or-
der of daughters is not rigidly constrained. The non-configurational Warlpiri
language (Simpson 1991), for example, has essentially free word order in
nominal and verbal finite clauses, the only restriction being that ‘auxiliaries’
always take second position.!® In (17) it is illustrated how word order in the
simple sentence Ngarrka-ngku ka wawirre panti-rni can vary, as long as the
present tense ‘auxiliary’ is in second position. (The example is from (Hale
1983). We limit ourselves to three of the six possible permutations.)

(17) a. Ngarrka-ngku ka  wawirri panti-rni
man-ERG PRES kangaroo(ABS) spear-NPST
The man is spearing the kangaroo

b. Wawirri ka ngarrka-ngku panti-rni
c. Panti-rni ka wawirri ngarrka-ngku

d. *Panti-rni wawirri ka ngarrka-ngku

I3AUX elements with a polysyllabic base can take first or second position (Simpson
1991). T will ignore this possibility for the sake of exposition.
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This behaviour can be modeled by weakening the description in (15) and
requiring pairwise disequalities instead of a series of precedences. Let us
write [A; - -+ A,,]" for the following property:

[Ay -+ A ]"(k) will hold if & is the mother of daughters Ay, ..., A,,; but this
time no ordering is prescribed.

We need a way to model the fact that AUX elements always take second
position. Let us write Asnd for:

ko = ks]]]

The term in (20) will now describe all grammatical variations of sentence
(17) in the sense that any of its minimal models is an acceptable tree for one
of these variations while each acceptable tree is a model.

(20) [Panti-rni wawirri ka*"d ngarrka-ngku]*

3.1.2 F-descriptions

The following three axioms are a direct adaptation from (Johnson 1991). The
first puts a functionality requirement on the transition relation. The second
embodies the constraint that atomic features have no further attributes (C\q
stands for the set of constants denoting atomic features, such as sg, past, ... ).
And the third axiom schema gives constant-constant clashes by requiring that
past # sg, past # pres, V # N, etc.

(21) a. YaVfifafsllarc(fi,a, fa) Aarc(fi,a, f3)] — fo = f3]
b. YaVf=arc(c, a, f), where ¢ € Cyy

c. ¢ # ¢, for all syntactically distinct pairs ¢, ¢’ € C\y

For more information about these axioms the reader is referred to (Johnson
1991).
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3.2 Incorporating More Ideas from LFG
3.2.1 Checking as Entailment

Thus far, information in the f~-components of our signs has been of the defining
kind, but LFG has always distinguished between defining and constraining
equations (see Kaplan and Bresnan 1982). The first give positive information,
the second an obligation to check whether certain information is present. For
example, the defining equation (] INF) = + sets the INF value of T to +,
whereas the constraining (1 INF) =, + checks whether the INF value of 1 is
+ after all defining equations have been processed.

An obvious way to model this logically is to say that constraining infor-
mation must be entailed by defining information. In (22) two of the signs in
(7) are repeated, but this time there are two f-components. The first consists
of defining information, the second of defining plus constraining material.

(22) a. john :
Af.arc(f, cat, N) A arc(f, num, sg) \ arc(f, pers,3) :
Af.arc(f, cat, N) A arc(f, num, sg) \ arc(f, pers,3) :
john

b. )\tl)\tg.[tg ['OVGS tl]] .
AR fASf1 fo L (f1) A Fo(f2) A are(f, cat, V) A are( f, tense, pres) A
arc(f, obj, f1) N arc(f, subj, f2)] :
AR A3 f1 fo[ FL(f1) A Fo(fo) A are(f, cat, V) A are( f, tense, pres) A
arc(f1, cat, N) A arc(f, obj, f1) A arc(fa, cat, N) A arc( fa, num, sg) A

(ZT’C(f27 pers, 3) A CL?"C(f, SUbja f2)] :
Az AyNi.love(y, x, 1)

Note that the third element of (22b) contains more material than the second.
The extra statements are the ones that need to be checked. In order for this
to work we need to revise the definition of admissability slightly. Suppose
that some set of axioms such as the ones in (21) is given. A generated sign
of type S is now defined to be admissable if (a) its first f-component has a
non-empty denotation in some model of the axioms, and (b) the denotation
of its first f-component is a subset of the denotation of its second f-component
in all models of the axioms. The second condition is in fact an entailment
requirement.'? The reader will have no difficulty in seeing that agreement

14Tt may be worthy of notice that while the treatment of agreement in (7) rested crucially
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is now enforced. In ‘John loves Mary’ the required entailment holds, but
only because the f-descriptions for ‘John’ and 'Mary’ provide the material
requested by ‘loves’.

There is a lot of duplication in the four-dimensional signs in (22) and in
practice it seems possible to use the notation in (23) where just one term is
used, with subscripts ¢ on some subformulas. This is just short for a four-
dimensional sign. The second f-description is the one that is given (without
the subscripts), but the first is obtained by deleting all subscripted material.
The checking process now boils down to the requirement that subscripted
material must become redundant under the usual rules of logic.

(23) a. john : Af.arc(f, cat, N) A\ arc(f, num, sq) A arc(f, pers,3) : john

b. )\tl/\tg[tg [lOVGS tl]] .
AR A fAf1 fo[ FL(f1) A Fo(fo) A are(f, cat, V) A are( f, tense, pres) A
arc(f1, cat, N)o N arc(f, obj, f1) A arc( fa, cat, N). A arc( fa, num, sg). A

arc( fo, pers,3). A arc(f, subj, fo)] :
Az Ayi.love(y, x, 1)

The formalization of constraining information given here is straightforward
and in the end we employ a notation that is very close to the standard one.
But note that explaining the distinction between defining and constraining
material as that between what is given and what must be derived essentially
requires working on a level of descriptions. A structural approach, as the one
in (Ochrle 1999), cannot explain the difference in this way.

3.2.2 The Long Distance: Checking F-paths

The technique developed in the previous section can also be used to char-
acterize non-local dependencies by checking whether certain types of path
exist in the functional domain. Standard LFG uses the device of functional
uncertainty (Kaplan and Zaenen 1989) here, but it seems that the present
approach can handle path checking without additional machinery. Consider
Kaplan and Zaenen’s rule for English topicalization in (24).

on the axioms in (21), the new treatment in (22) does not in fact make use of these axioms.
The situation is discussed and explained in (Johnson 1999). We like to remain agnostic
about the question whether in the end axioms such as those in (21) will be needed.
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(24) 8 — XP or & S
(TTopiC) = |
(TTopic) = (T{comMP, XCOMP }*(GF — COMP))

The second annotation on this rule states that there must be a path from the
f-structure connected to the mother S’ to that connected to the topicalized
element and that the path should, top-down, start with zero or more comp
or XCOMP transitions, and then bottom out with one transition labeled by
a grammatical function (SUBJ, OBJ, OBJ2,...) other than comp. It is
not stated how many open or closed complements are present, whence the
uncertainty. The series of complements is called the body of the path, the
final grammatical function its bottom.

Suppose we wanted to prove in our system that a certain path was a top-
icalisation path (for English). Then the following axioms would be needed.

(25) a. Vff'f"[[body™ (f, f") A bottom™ (f”, f)] — pathX(f, )]
b. Vf bodyT (f, f)

c. VEf'f"[body (f, f') A arc(f', comp, f")] — body™ (f, f")]
VEf f [body™ (f, f) A arc(f', zcomp, f")] — body™ (£, f")]

d. Vf f'larc(f, subj, f') — bottom™ (f, ]
Vf f'larc(f, oby, f') — bottomT(f, 1], ete., for all grammatical func-

tions save comp.

The first two of these Horn statements are not particular to English and say
that a topicalisation path must consist of a body and a bottom and that
a body may be empty. The statements in (25¢,d), on the other hand, give
the particular form that bodies and bottoms in English topicalization paths
must have.

In order to be able to give a treatment of topicalization using these ax-
ioms, we must at least have one complement taking verb at our disposal.
In (26) a sign for thinks is given, very much along lines that are now famil-
iar.’> In combination with similar signs (26) can provide the arbitrarily long
distances that some syntactic constructions can bridge.

15The term in the semantic component of thinks gives a version of Hintikka’s theory
of belief as truth in all doxastic alternatives. Read B(y,j,7) as ‘world j is a doxastic
alternative for y in world 7’.
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(26) )\tl)\tg.[tg [thinks tlﬂ .
AN fAf1folFi(f1) A Fo(f2) A are(f, cat, V) A arc(f, tense, pres) A
arc(f1, cat, V') A arc(f, comp, f1) A arc( fa, cat, N). A arc( fo, num, $g) A
arc( fo, pers,3). A arc(f, subj, f2)] :
APAYAIY B (y, 3,7) — p(5)]

The sign in (27) gives a treatment of noun phrase topicalization. It has a
form that requires it to be combined with (a) a sentence lacking a noun
phrase which may be a generalized quantifier (type ((NP s)s)s), and (b) the
lacking noun phrase (type (NP s)s). We use Z for variables of the first type,
@ for those of the second. When applied to signs of such types (27) returns
a sign of type S, so that its overall type is (((NP 8)s)S)(((NP $)s)s).'6 The
term in the first dimension of (27) preposes the syntactic material of its
quantifier argument to the result of providing its first argument with a trace
e. The term in the second dimension provides the Z argument with a new
quantifier that essentially consists of the old one plus (a) the information
that the f-structure connected with the NP is a topic of the f-structure of the
result, and (b) the requirement that a topicalisation path must run from the
latter to the former. The term in the semantic dimension merely copies the
semantics of the Z argument.'”

AZoAQoA .
Zs(AFFO' Qo(NFF)(f') A arc(f, topic, f') A path (f, f)e))(f) -
ANZ3. 23

As an example of how this works, consider the generated sign in (28a),
which can be shown to reduce to the sign in (28b). Many requirements that
have already been checked are omitted in (28b), but the crucial requirement
pathT( f, f1)e is displayed. However, this statement can easily be derived us-
ing arc(f, comp, f3), arc(fs, obj, f1), and the axioms in (25). It is clear that

16Tt seems we need to go this high in order to preserve scope possibilities. A simplified
version of the sign makes do with type (NP s)(NP S):
ATAL[E T(e)] : A\FAEXNS.FAf'.E(f) A arc(f, topic, f') A pathT(f, Me)(f) : AP.P
This is simpler, but requires the NP to be quantified-in at the point of topicalization or
higher.

"There are of course semantic and pragmatic consequences of topicalisation, but we
ignore them here.
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these path axioms will always allow the requirement to be satisfied as long
as the defining information provides a path of the right kind.

(28) a. (27)(AQ.(26)(Q(AC.(23b)(Q)((7h))))((7a)) ) ((11b))

b. [[a woman][john][thinks[mary[loves e]]]] :
MNfAf1 fafsfalare(fi, cat, N) A arc(fr, num, sg) A arc(f1, pers,3) A
arc(f, topic, f1) A pathT(f, f1)e N arc(fa, cat, N) A arc( fa, num, sg) A
arc( fo, pers, 3) A arc(f3, cat, V') N arc( fs, tense, pres) A arc( fs, obj, f1) A
arc( fs, subj, f3) A\ arc(fy, cat, N) A arc( fy, num, sq) A arc( fy, pers,3) A
arc(f, cat, V') Narc( f, tense, pres) Narc(f, comp, f3)Narc(f, subj, fa)] :
AiVj[B(john, j,i) — Jx|woman(x,j) A loves(mary, , j)|]

We conclude that no extra mechanism is needed for path constraints. Path
requirements are just constraining information in our approach and con-
straining information is modeled using entailment. But while the treatment
of path requirements reduces to the treatment of constraints in general, there
is still a computational difference between them and the simple agreement
requirements that were met before. While the latter can be shown to be
satisfied on the basis of simple properties of conjunctions, the former need
reasoning in a Horn theory.

4  Conclusion

We have defined A-grammars, a form of categorial grammar based on multi-
dimensional signs that can be combined using linear combinators. We also
hope to have shown that this form of grammar squares well with the set-up of
LFG and many important ideas underlying that grammatical theory. Com-
ponents of signs in A\-grammars are combined in a strictly parallel way. The
linear combinators combining them provide a form of resource-sensitivity
that is also present in the mathematically related linear logic. This takes
care of the Coherence and Completeness requirements in LFG (approaches
to LFG based on linear logic also take care of these requirements automat-
ically). Since the various components of our grammar are terms, and since
terms describe structure instead of providing it, we immediately reap some of
the benefits of the descriptions approach to grammar. There is no difficulty
with expressing negative or disjunctive information and it was shown that
the distinction between defining and constraining information, important in
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LFG, can naturally be modeled as an entailment requirement. Constraints
on long-distance paths can be modeled in essentially the same way, using a
simple set of axioms characterizing acceptable paths.

The strictly parallel character has advantages, but it also has drawbacks.
An advantage which the approach shares with other formalizations of LFG
is that semantics need not be compositional with respect to surface struc-
ture. As I hope to show in a longer version of this paper, examples refuting
surface compositionality, such as discontinuous adjective-noun combinations
in Warlpiri and other non-configurational languages, pose no problem. A
disadvantage of the strict parallelism in this paper is that the lack of com-
munication between various components is total. Researchers in LFG have
found it fruitful to mix statements about precedence and grammatical func-
tion (Bresnan 1995), but this is impossible in the present set-up. One way to
allow a form of communication would be to let the various components share
certain constants, but discussion about how this can be done in a sufficiently
restricted way should also await the longer version of this paper.
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