Combining Montague Semantics and Discourse
Representation

|. INTRODUCTION

Kamp’s Discourse Representation Theory (DRT, see Kamp [1981], Heim [1982,
1983], Kamp & Reyle [1993]) offers an attractive means of modeling the semantics of
discourse. The theory works very well for cross-sentential pronominal anaphora, for
temporal anaphora and, on the sentence level, for the medieval ‘donkey’ sentences that
Geach has reminded us about so forcefully. However, other classes of data, such as
guantification and coordination phenomena, are handled in less elegant ways, and
since such data were rather successfully accounted for within Montague’s earlier
paradigm, some logicians have sought to combine the advantages of both approaches
and have come up with various systems that combine the dynamics of DRT with the
compositionality of Montague Semantics in one way or another.

There are two lines of approach here. Some authors start with a Montague-like set-
up and add extra machinery to it in order to deal with anaphora; others take DRT as
their point of departure and add lambdas to the system in order to obtain
compositionality. An example of the first line of thought is Rooth [1987], who extends
Montague Grammar with the ‘parameterised sets’ of Barwise [1987]. Other examples
are Groenendijk & Stokhof [1990], who obtain a dynamic effect with the help of
Janssen’s [1986] ‘state switchers’; Chierchia [1992], who gives a simplified variant of
Groenendijk & Stokhof’s ‘Dynamic Montague Grammar’ (DMG); and Dekker
[1993], who elaborates upon DMG and extends it with many useful features. The
second line of approach is exemplified in BMBRT framework of Pinkal and his co-
workers (Latecki & Pinkal [1990], Bos et al. [1994]) and in the ‘bottom-up’ DRT of
Asher [1993].

However, while all this work has certainly clarified the issues which are at stake
when an integration of the two semantic frameworks is called for, and while some of
this work has led to the development of formalisms in which very interesting linguistic
theories have been expressed, we are still not in the possession of a combined
framework which is easy to use and mathematically clean at the same time. The
approaches which add lambdas to DRT are easy to use, while the systems which take
Montague Semantics as their point of departure are difficult to work with. All systems
base themselves @d hocspecial purpose logics and have a more or less baroque
underlying mathematics which is not very well understood.

* From: Linguistics and Philosoph$9: 143-186, 1996. | would like to thank my audience at the
Ninth Amsterdam Colloquium and the anonymous referees for interesting feedback. The present title
was kindly suggested by an anonymous referee.



It is the purpose of this paper to combine Montague Semantics and Discourse
Representation into a formalism that is not only notationally adequate, in the sense that
the working linguist need remember only a few rules and notations, but is also
mathematically rigourous and based on ordinary type logic. The mathematics of
lambdas is well-known and has received a classical formulation in the elegant system
of Church [1940] and for the present purposes | hardly see any reason to tamper with
the logic. Later extensions of Church’s logic, such as Montague’s IL, but also
Janssen’s [1986] Dynamic Intensional Logic, upon which DMG is based, add all
kinds of embellishments, but these make the logic lose its simplicity and its fun-
damental mathematical propertiedsually, the embellishments are superfluous, as
Church’s logic is already very expressive so that what can be said with embel-
lishments can also be said without thehis for this reason that we shall stick to (a
many-sorted variant of) the classical system. Our goal is to design a formalism for
linguistic description which is easy to use in practice and has a simple underlying
mathematics.

How can we combine the DRT logic with classical type theory? It is evident that the
expressivity of the core part of DRT does not extend that of first-order logic (Kamp &
Reyle [1993] in fact give a translation of DRT into elementary logic). The question
therefore arises whether it is not possiblegducethe language of DRT to type
theory. | shall show that this question has an affirmative answer and that DRT'’s
Discourse Representation Structures (DRSs or boxes henceforth) are already present
in classical type logic in the sense that they can simply be viewed as abbreviations of
certain first-order terms, provided that some first-order axioms are adopted. This
means that we can have boxes and lambdas in one logic, and the combination of these
two (plus the sequencing operator of Dynamic Logic, which is definable in type logic
as well) will allow us to assign boxes to English discourses in accordance with
Frege’s Principle: the meaning of a complex expression is a function of the meanings
of its parts.

The method of showing that the DRS language is really a part of type logic (and
even of predicate logic) is straightforward. Boxes are connected to first-order models
via ‘verifying embeddings’ in Kamp’s definition and in fact the meaning of a box can
be viewed as a binary relation between such embeddings. Groenendijk & Stokhof
[1991] give an ordinary Tarski Definition for the box language on the basis of this
idea. The reduction to classical logic can be carried out by simply observing that the
right-hand,definiens parts of the clauses in this inductive definition are expressible
within the logic and that the constructs in the box language that are defined by them

1 Such as the Church-Rosser property, which says that the order in which lambda reductions are
performed is immaterial. See Friedman & Warren [1980] for a counterexample to the Church-Rosser
property in IL.

2 For example, Gallin [1975] already shows that what can be said within IL can be said within the
Church system T¥.
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may therefore do duty as abbreviations of the logical terms which express these
clauses.

The presence of boxes in type logic permits us to fuse DRT and Montague
Grammar in a rather evenhanded way: both theories will be recognisable in the result.
In Muskens [1991, 1995a] | have given versions of Montague Grammar that were
based on some technical insights that are also present in this paper, but while these
articles succeed in importing the dynamics of DRT into Montague Grammar, they do
not offer a real synthesis of the two theories in this sense. The present formalism,
which | call Compositional DRT (CDRT), may well be described as a version of DRT
in which the construction algorithm that sends (parsed) sentences to boxes consists of
a Montague style compositional translation of trees into the lambda-box language.

With this unification of the theories standard techniques (such as type-shifting) that
are used in Montague Grammar become available in DRT. The fused theory gives us a
means to compare specific semantic analyses that are made in the two different
frameworks and semantic theories that can be expressed within the older paradigm can
in principle be transposed to our version of the newer one. Although descriptive
linguistic work is not the principal aim of this paper, we provide an illustration here
and it will be shown how the Boolean theory of generalised coordination can be
adapted to Compositional DRT. Various authors (e.g. Von Stechow [1974], Keenan
& Faltz [1978], Gazdar [1980], Partee & Rooth [1983]) have suggested that, barring
some exceptions, the wordsd andor and their counterparts in other languages act
as Boolean operators, no matter what types of expressions they connect. This, | think,
is a very elegant and empirically significant claim about natural languages.
Unfortunately, it does not seem to match completely with the data, as it does not seem
possible to treat expressions with anaphoric links across coordinated elements (such
as inA cat catches a fish and eatsv. *A cat catches no fish and eatyiit a
Boolean way. On the other hand it must be admitted that the treatment in Kamp &
Reyle [1993] of such expressions, while satisfactory in the sense that it accounts for
the anaphoric linkings, is unsatisfactory in the sense that it complicates the whole set-
up of DRT. Discourse Representations are no longer boxes, but complicated
constructs out of boxes and natural numbers in this analysis; even the treatment of
expressions that do not contain a conjunction cannot escape from the complications. It
would be much nicer if we could connect a single algebraic operation to each of the
two wordsand andor . In section IV we shall provide such operations.

The paper is set up as follows. In the next section standard DRT is discussed and
provided with some extensions, such as the sequencing operator *;’, which is familiar
from programming languages, and a compositional treatment of proper names as
constants. In section lll, the main part of the paper, we define the basic formalism and
show how it can be used to interpret a fragment of English that is generated with the
help of a reduced transformational grammar. Section 1V extends this fragment with the
promised treatment of coordinations and section V gives conclusions and further
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prospects. In a short appendix the reader finds two proofs of propositions which were
mentioned in the main text.

Il. STANDARD DRT AND SOME EXTENSIONS

I1.1. The core fragment: syntax and semantics

The standard way of writing down discourse representations makes for very easy
reading but is also rather space consuming and for this reason | shall linearize DRS
boxes in this paper. So, for example, (2), a representation of the little text in (1), will be

written more concisely as (3) below, and | shall save paper by writing (6) instead of

the more wasteful (5), which is a representation of (4).

(1) A man adores a woman. She abhors him.

(2) X1 X,

man X,
woman X,
X, adoresx,
X, abhorsx,

(3) [X1 % | manx;, womarx,, x; adores %, % abhors %]

(4) If aman bores a woman she ignores him.

(5)

X1 X3

man X,
woman X,
X, boresx,

O | X, ignores x,

6) [|[xy % | manx;, womarnx,, X bores %] 0 [ | X,ignores x]]
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Formally, the language which comprises these linearized forms is obtained by starting
with sets of relation constants and individual constants and an infinite set of individual
variables (individual constants and variables will also be cdimburse referenjs
Conditions and boxes are constructed from these by the following clauses.

SYN1 If Ris ann-ary relation constant ard,...,d, are discourse referents, then
R(dy,...,0,) is a condition;
If & andd, are discourse referents théns &, is a condition;
SYN2 If K; andK, are boxesnot K, K; or K, andK; [0 K, are conditions;
SYN3 If y,..., 4, are conditionsng = 0) andx;,...,x, are variablesn= 0), then

[X1..- X0 | Vase- -2 Vil 1S @ bOX.

That the language given here containastantdiscourse referents in addition to the
usual variable ones is a novelty which has to do with the interpretation of proper
names. This will be discussed below. In (3) and (6) we have systematically abbreviated
conditions of the fornRR(d;,5,) asd;RS, in caseR was a two-place relation symbol
and we have writteR(d) asRd whenevelR was one-place. We shall continue to
follow this convention.

The constructs generated by SYN1-SYN3 are interpreted on ordinary first-order
models. As usual, these are defined as pBirs] whereD is an arbitrary non-empty
set and is a function with the set of constants as its domain such(t)at D for
each individual constard andI(R) [0 D" for eachn-ary relation constanR. An
assignmentor, in DRT terminology, aembeddingfor such a first-order mod&l =
[D, IT0s a function from the set of variable discourse referents to the d@maie
write a[X;...x,]a' as an abbreviation for ‘assignmeatanda’ differ at most in their
values forxy,...,x,. As usual, we lef|d]|M2 be equal t@(d) if dis a variable and to
1(9) if dis a constant. Clauses SEM1-SEM3 below define the semantid|yifuef
a conditionyin a modeM to be a set of embeddings, while the valkig™ of a boxK
in M is defined to be a binary relation between embeddings. (The supekaspt
suppressed.)

SEM1 [R(Sy,....a))l = {aldiaP,.... /PO T (R)}
101 is &, = {alllag* = llo:1%}

SEM2 ||not K] = {a| -k &, alld |K]}
[IKy or K| = {a| & (fa, alll [IKq|| O &, alld [y}
K O Kol = {a|Da(f@, alll [|Ky|| - Ca'@, a"0 [|Kl[)}

SEM3 IIXq... X | Voo ¥lll = {[& @0 alxg...xjJa’ & a Oyl 0o Iyl

The interpretation here may look somewhat different from the standard interpretation
of DRT (as, for example it is given in Kamp & Reyle [1993]), but is in fact
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equivalent3 For a discussion of this slightly different format as compared to the
standard one | refer to Groenendijk & Stokhof [1991].

A box K is defined to bérue in a modeM under an embeddirgif and only if
there is some embeddiagsuch thata, a'dd ||K|[M; a conditionyis true in M under
aiff ad [|y/M. The reader is invited to verify that the truth-conditions of (3) above
correspond to the truth-conditions of the more conventional (7), and that the truth-
conditions of (6) are those of (8).

(7)  XX(manx, O womanx, [ x; adoresx, [ x, abhorsx;)
(8) DOxyxo((manx; O womanx, 0 x; boresx,) — X, ignoresx;)

Boxes can be interpreted as instructionshangethe current embedding in a non-
deterministic way. For example, given some input embeddibgx (3) can be read as
an instruction to output an arbitrary embeddahguch thas[x;,%,]a’, while a'(x;) is

a mana'(x,) is a womana'(x;) adoresa'(x,) anda'(x,) abhorsa'(x,). If it is possible
to find such an embeddirgjthen (3) is true.

As many authors (e.g. Van Benthem [1989, 1991], Groenendijk & Stokhof [1991])
have emphasized, there is a strong connection with Quantificational Dynamic Logic
(Pratt [1976]), the logic of computer programs, here. In fact it can be shown that DRT
is a fragment of this logic. For a discussion of this last point see Muskens [1995a] or
Muskens, Van Benthem & Visser [forthcoming].

I1.2. Merging boxes

In standard Discourse Representation Theory sentences in discourse do not in general
get a separate interpretation each. Let us reconsider text (1), represented here as (9),
with its indefinite determiners and pronouns now indexed in order to show the
intended anaphoric relationships.

(9) Al man adores?avoman. Shgabhors him.

3 Since we have enlarged the language with constant discourse referents the equivalence is to be
restricted to constructs that do not contain these.

4 The main difference with the standard DRT set-up is that we use total assignments, while standard
DRT uses partial ones. Although it is immaterial from a formal point of view which set-up is chosen
as long as our purpose is limited to giving a truth definition for DRT, it may very well be that the
partial approach is better inasfar as it is more realistic and therefore more liable to suggest useful
generalisations of the theory. | leave a partialisation of the theory presented in this paper for future
research. For a partial theory of types on which such a partialisation could be based see Muskens
[1989, 1995b]. A second difference with standard DRT lies in the treatment of cases shdk fas [

man ¥ O [x | mortal ], wherex is declared twice. In standard DRT the second declaratignsof
ignored and the box would express that every man is mortal. In the present set-up thexsecond
assumes a new value and the box says that there is a mortal if there is a man. The construction
algorithm for standard DRT never generates such cases of ‘reassignment’, but we shall see an
application in section 1V below.



While the first sentence in this little text can indeed be said to have its own repre-
sentation, namely (10), the second is not associated with a box itself in the standard
approach. Its contribution to the Discourse Representation that will finally be built lies
in the transition from (10) to (3). But if, as is our purpose in this paper, we want the
meaning of a complex text to be a function of the meanings of its constituing
sentences, we must indeed assign separate meanings to the latter.

The only reasonable box that we can associate with the open seSitenaiehors
him, is the open box (11) below which is true under an embeddirand only if the
conditionx, abhors % is true undea. The anaphoric pronourshe and him; get
whatever value the input embedding associates with the discourse refges;.
Box (11) can be interpreted asest given any input embedding it tests whether
a(x,) abhorsa(x,), if so, it returnsa as an output, if not, the test fails and no output is
returned.

(10) [x;1 % | manxy, womarnx,, x; adores x|
(11) [|x,abhors x]

How can we combine boxes (10) and (11)? The metaphor that invites us to view boxes
as programs suggests an answer: first carry out the instruction (10) (non-
deterministically) and then carry out (11). In other words, the metaphor suggests that
the concatenation of sentences in simple narrative discourse is nothing but the
sequencin®f instructions that we find in imperative programming languages, usually
written as ‘;’. This would mean that (12) would be the correct translation of text (9).

(12) [Xq % | manx,, womarnx,, X, adores ¥] ; [ | X, abhors x]

In order to make this a legal expression of our language let us extend the DRT syntax
with the sequencing operator.

SYN4 If K; andK, are boxes theK; ; K, is a box

In contexts where programs are modeled as relations between states, sequencing is
usually associated with the operation of relational composition. A prdgyamd, can

bring the machine from an input staté an output stata' if and only ifK; can bring

it from a to some intermediary staé¢ andK, can take it froma" toa'. In this paper

we shall also associate relational composition with the sequencing of boxes as clause
SEM4 makes clear.

SEM4 [[Ky; Koll = {[& a0 [a" ([, a'Tl |[Ky|| & @", a0 [|Kol)}
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It is easy to verify that (12) and (3), our new translation of the text in (9) and the old
one, are equivalent. More in general, we have the following lemma, which has a simple
proof.

MERGINGLEMMA. If X4,...,X'c do not occur in any of,..., ), then
DX X | Vs Yo 5 XX B Gl = X XX 3 X | Vi Yo B G

For obvious reasong{...XpX'1... X'y | Yi,--+, YO1,---, Q] is usually called thenergeof
boxes ky...X, | Vi, ¥l @nd K'5... X [ Oy,..., 0.

In the presence of the sequencing operator we can provide texts with compositional
translations, as (13) illustrates.

(13) !

[x1,%5] man %, woman x, x; adores ¥, X, abhors X, x; bores %]

S
T [ | X, bores %]
[x1, %] man %, woman ¥, x; adores %, X, abhors ]
he, bores her

T
S S
[X1,%| man %, woman ¥, x; adores ¥ [ [ , abhors X]

1 5 she, abhors him
a man adores a woman

But clearly, given the tools we have developed thus far, this can only work on a
suprasentential level. For compositionality on the subsentential level we need an
additional strategy, which will be developed in section IIl.

I1.3. Proper Names

The treatment of proper names in DRT seems to be inherently non-local inasfar as the
proper name rule in the DRS construction algorithm places material in the topmost
box of the DRS under construction. In the earliest version of the theory (Kamp
[1981]), for example, sentence (14) would be translated as (15). Even though the
names ‘Sueand ‘Tom’ are encountered in the antecedent of the conditional, the
discourse referentg; andx, they give rise to are placed at the top level of the
discourse representation structure. Conditigris sueandx, is tom, wheresueand
tomare individual constants, constrain the interpretation of these discourse referents
and are also placed at top level. In more recent versions of the theory (such as Kamp
& Reyle [1993]) we find a slightly different form for these constraining conditions:
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(16) is the DRS that is connected with (14) now. The expresSioeandTomare
one-place predicate symbols here, denoting the predicates ‘being a Sue’ and ‘being a
Tom’, or perhaps ‘being named Sue’ and ‘being named Tom’. This means that
situations in which more than one person carries a particular name are allowed for
now. But in this approach too, we find that discourse referents connected with names
and the conditions constraining them are put at the top of the box, not in the antecedent
of the conditional.

(14) If Sue ignores Tom he is miserable. He adores her.

(15) [X1Xo| X, issuex,istom,[ | x;ignores %] O [ | miserable ¥,
X, adores X]

(16) [x1 %> | Sue %, Tom %, [ | X, ignores %] [ [ | miserable ¥],
X, adores X]

However, as Kamp & Reyle (pp. 246-248) note, the interpretation strategy which is
illustrated by (16) is wrong. In a situation where two girlandb are both called
‘Zebedea’ we cannot use ‘Zebedea loves a stockbroker’ to express thah either

loves a stockbroker; the sentence can only be used with unique reference to some
Zebedea. For this reason Kamp & Reyle propose to adopt the dewaséeohal
anchoring.An external anchor is a finite function from discourse referents to the
objects they are meant to denote and in Kamp & Reyle’s proposal these anchors may
appear in the discourse representation. For exampmlgisfSue andl, is Tom, then

(17) is now a DRS for (14).

(A7) [xq % | {1, d01 B, Ao, [ | Xg ignores %] O [ | miserable ¥],
X, adores X]

The idea is that; andx, are constrained to be Sue and Tom respectively. Formally,
we can let an anchdrbe a condition with interpretatiora{ f O a}, so that the
interpretation of (17) becomes the set of all parsalisuch that anda’ differ at
most inx; andx,, a'(x;) =d; (= Sue),a'(x,) =d, (= Tom) and such tha' also
satisfies the last two conditions of (17).

Two remarks can be made. The first is that we seem to have an illustration of the
non-transitivity of improvement here: although the interpretation strategy that gave rise
to (17) was presented as an improvement over the strategy that lead to (16), and (16)
as an improvement over (15), we cannot conclude that (17) is an improvement over
(15) because, in the intended models whéseg = d; andl(tom) =d,, these boxes
have exactly the same denotations, and in fact it can be said that the external anchor
{ ¥, d;LJ By, do[ is just a way to express what would otherwise be expressed as
issue,x, istom A second remark is that discourse markers which are anchored to
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specific objects in the model in fact are no variables but@rstantsif x; andx, are
anchored to Sue and Tom from the outset, these variables are not allowed to vary and
in fact function as constants; but then why not straightforwardly use corsiaatsl
tominstead, which are already appropriately anchored by the interpretation function?
The intended translation of (14) then becomes (18).

(18) [|[ |sue ignores tojril [ | miserable torfy tom adores sye

In order for this to work we must allow constants to be discourse referents, as we have
done in 1.1. A name will simply be translated as a constant discourse referent and
pronouns can pick up constant discourse referents from any position, provided that
these were introduced somewhere in the text.

An important advantage of this strategy is that it is no longer necessary to have a
non-local rule for the interpretation of names: since constants are scopeless we can
interpret themn situ. This solves a difficulty that compositional treatments of DRT,
such as Groenendijk & Stokhof's DPL and DMG systems and the systems in
Muskens [1991, 1995a], usually have with proper names. The special form of the
DRT rule for processing names is an artefact of the standard convention that only
variables can function as discourse referents. As soon as we allow constants to be
discourse referents as well, we can process names locally. Although this procedure is
optically different from the approach where discourse markers for names are
externally anchored, there seems to be no real difference, as externally anchored
referents in facare constants.

[ll. COMPOSITIONALDRT

I[11.1. The Logic of Change

The sequencing operator introduced in 1.2 allows us to compute the meaning of
certain texts from the meanings of the sentences they are built from, but it does not
allow us to compute the meanings of these sentences from those of smaller building
blocks of language. The theory simply does not assign meanings to such constituents.
If we want to build up meanings compositionally from the lexical level to the level of
texts we must provide for representations of such meanings and we shall therefore
adopt Montague’s strategy to introduce lambda-abstraction and application into the
logical language. In this section and the next ones we shall see how these two logical
notions can be combined with the DRT syntax that was defined above. Fortunately
there is no need to do anything very special on the logical side, for it turns out that
ordinary many-sorted type logic satisfies our needs. There is a natural way to emulate
the DRT language in type logic, provided that we adopt a few axioms. As we have
seen, the DRT language talks about embeddings and our set-up will enable us to do
likewise.
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We shall have at least four types of primitive objects in our logjart from the
ordinary cabbages and kings sort of entities (g)mnd the two truth values (type
we shall also allow for what | would like to caligeon-hole®r storagesor registers
(type m) and forstates(types). Registers, which are the things that are denoted by
discourse referents, may be thought of as small chunks of space that can contain
exactly one object. The intuitive idea (which should not be taken too seriously,
however, since we are talking about non-deterministic processes) is that whenever in a
text we encounter an indefinite noun phrasedifggeon , some pigeon is stored in
a register connected to the indefinite; whenever we encounter the pranoun
anaphorically related to the indefinite, we interpret it as referring to the contents of that
register. A proper name likeue will also be connected with a register and a pronoun
she anaphorically related tS8ue will be interpreted as the contents of that storage.
This explains how in a little text such as (19) the anaphoric relationships are
established.

(19) Sue®has a ®pigeon. She jfeedsit .

There is a difference in kind between registers connected to indefinites and registers
connected to names. The contents of the first can always be changed and will
accordingly be calledariable registersThe second kind of registers always have a
fixed inhabitant and are callembnstant registersvVariable registers and constant
registers will very much play the role that individual variables and constants played in
section Il, but unlike these they are model-theoretic objects. Discourse referents will
simply benamesof registers, i.e. constants of tygeThose naming variable registers

will be calledunspecific discourse referentthose denoting constant registers are
calledspecific discourse referentilote that an unspecific discourse referent is a
constant of the language itself, but denotes an object which may be thought of as a
variable; a specific discourse referent is a constant which denotes something which
always has the same value.

A statemay be thought of as a list of the current inhabitants of all registers. States
are very much like the program states that theoretical computer scientists talk about,
which are lists of the current values of all variables in a given program at some stage of
its execution.

We will typically useu to range over unspecific referents, Bih, Tom, Mary
(written with an initial capital letter) and the like to range over specific ones. Variables
over registers are possible as well and we shall typically teethese. Variables of
type e are typically denoted witk and we shall also retain the typeonstantgim,

S For eachn let us define TY just as the logic T¥ in Gallin [1975], but withn basic types other
thant instead of Gallin’s two types ands. TYq is the logic described in Henkin [1963], TYs
Church’s [1940] original theory of types, pYis Gallin’s logic, TYzis the logic that we are
working in presently. Of course, all systems in this hierarchy, with the exceptiongdfrifwhich
all Henkin models are standard models and vice versa), have virtually the same metatheory.
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tom, mary(no capital) from section Il. Table 1 sums up the various conventions that
will be used.

Type| Name of objects| Variables| Constants
S states I, 1,k h
e entities X1, X, ... mary,...
m registers % Uy, Uy, ... (unspecific discourse referents)
Mary, ... (specific discourse referents)
Table 1.

Pictorially the relation between states, entities and registers is as in Figure 1. We have
an infinity of unspecific referents,,...,u,,..., a set of specific referentSm, Tom,
Mary,... and an infinity of states,...,i,,,.... Each discourse referent corresponds to a
register which in each state has some occupant (an entity). We shalided fixed
non-logical constant of typa(se and denote the inhabitant of regishen statel with
the typee termV(J)(i). In the given figure/(uz)(is) = Lee for example. Note that
each state corresponds to a functiotv(V(v)(i)), which is as close to an embedding
as one can get, since it assigns an entity to each variable register.

In order to impose the necessary structure on our models we must adopt some
definitions and axioms. First a definition: igd,...J4.]j be short for

OV((8, # v O...08,%V) - VW)(i) = VV)G)),

11 I2 i3 4 i5

Uq: Bob| | Joe| | Joe| | Tim | | Tom
Uy: Tim Jm| [ Ann| | Sue| | Rob
us: Lee| | Bob| | Lee Lee Jan
Uz Sue Pat Sue| | Sue| | Jan
Us: Ann| | Ann| | Ann| | Ann Sue
Us: Tom| | Ann| | Tom| | Tom| | Jim
Tim: Tm | | Tim| [ Tim | [ Tim| | Tim
Joe Joe| | Joe| | Joe| | Joe| | Joe

Figure 1
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for all types termsi andj and alldy,...,d, of typer i[]j will stand for the formula
Ov(V(v)(i) = V(V)(j)). The formulai[J;...5,]] now expresses thatnd] differ at
most indy,...,J,. Next the axioms. Lettin AR be a predicate of typat (singling
out the variable registersye require the following:

AX1  OiOvOx(VAR(V) - @[Vl DVMW)() = X))
AX2 VAR(u) ,if uis an unspecific referent
AX3 u,%u, ,foreach two different unspecific referentsanduy,
AX4  Oi(V(Tom(i) = tom),
di(V(Mary)(i) = mary),
i(V(Tim)(i) = tim), etc., for all names in the fragment.

AX1 demands that for each state, each variable register and each individual, there must
be a second state that is just like the first one, except that the given individual is an
occupant of the given register. The axiom is connected to Janssen’s [1986] ‘Update
Postulate’ and to ‘Having Enough States’ in Dynamic Logic (see e.g. Goldblatt
[1987]). The second axiom says that unspecific referents refer to variable registers and
the third axiom demands that different unspecific discourse referents denote different
registers. This is necessary, as an update on one discourse referent should not result in
a change in some other discourse referent’s value. The fourth axiom scheme ensures
that constant registers always have the same inhabitant and establishes the obvious
connection between constant referents and the corresponding constant&of type

Type logic enriched with these first-order non-logical axioms (axiom schemes) will
be our ‘Logic of Change’. The logic has the very useful property that it allows us to
have a form of the ‘unselective binding’ that seems to be omnipresent in natural
language (see Lewis [1975]). Since states (Lewis’s ‘c8sestrespond to lists of
items, a single quantification over states may correspond to multiple quantifications
over the items in such a list. The following lemma gives a precise formulation of this
phenomenon; it has an elementary proof based on AX1 and AX2.

UNSELECTIVE BINDING LEMMA. Letuy,...,u, be unspecific referents of type let
X1,...,% be distinct variables of type let ¢ be a formula that does not contpand
write [V(uy)() / %,-..,V(U,)() / X, ]¢ for the simultaneous substitution\dfu,)(j) for
X1 and... andV(u,)(j) for x, in ¢, then:

Fax Oi(Q(i[ug,... . un ]j OV(U)() 7 30,V (U) () / X0 4) « Dxa... D)

6 The items in our lists are all of individual type, whereas Lewis's cases are lists of objects of
various types. See Muskens [1995a] for a generalisation that will allow objects of many types to be
the inhabitants of registers.
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I11.2. Boxes in type logic

The reader may note that all concepts expressed in the language of set theory that were
needed to give a semantics for DRT in clauses SEM1-SEM4 are now available in our
type logic. This means that it is possible now to have analogues of these clauses as
abbreviations in our logic. In particular (lettiddypically range over terms of type

specific as well as unspecific discourse referemtsinay agree to write

ABB1 R{9,...,04} for ALR(V(8)(i))...(V()(i)),
0, is Oy for AiLV(O)() = V(8)(i),
ABB2 not K for AI=OK(»)()),
Kor K' for AIGK®GG) OK®O30)),
KO K' for AOJK®)() - KK'()(K)),
ABB3 [up...u,| V4. Yl for AiAj(i[ug,...,u] Ow() C...Ow0)),
ABB4 K;K' for AAJCK(K(i)(K) OK'(K)())-

In ABB1 R must be a constant of typ@, whereent is defined by letting®t bet and
ek+1t bee(ekt). We shall writeR{ 5;,6,} as §;R, andR{ 5,} as RJ;.

The principal difference between the clauses given here and SEM1-SEM4 is that
we no longeinterpretthe boxes and conditions of DRT in a metalanguage, but that
we consider them to babbreviationsof expressions in our type logical object
language. Boxes are abbreviations of ceggst) terms, conditions are shorthand for
terms of typest Otherwise SEM1-SEM4 and ABB1-ABB4 are much the same.

Let us see how these abbreviations work. First note thatgghors Johrturns
out to be short fodi.abhorgV(u,)(i))(V(Johrj(i)), which, given AX4, is equivalent to
Ai.abhorgV(u,)(i))(john). The discourse referents andJohnhave an indirect refer-
ence here: they act as addresses of the memory locations where, ijritetatbjects
V(u,)(i) andV(Johrj(i) are to be found. Next, consider (20); ABB3 tells us that this
term is really short for (21) and with ABB1 plasconversion we find that the latter is
equivalent to (22).

(20) [uq U, | manu;, womanu,, u; adores y, U, abhors y]

(21) AiAj(i[ug, uy)j O (manug)() T (womanu,)(j) [ (u; adores y)(j) O
(u, abhors y)(j))

(22) 2iAj(i[uy, uolj Omar(V(up)(j)) 0 womarfV(u,)()) O
adoregV(up) () (V(u2)()) U abhorgV (up) ())(V(u1)()))

In a similar way all other boxes can be rewritten as certain t&irkjg, whereg is a
first-order formula. Of course, for practical purposes we greatly prefer the more
transparent box notation and in fact it will turn out to be completely unneccessary to
expand definitions.
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However, if we want to talk about theeith of a given sentence (given an input state)
the box notation is no longer adequate and it seems better to switch to a more con-
ventional predicate logical form in that case. We say that a conglisdgrue in some
statei in M if (i) holds inM and thatyis true in M simpliciter if yis true in all states
in M. We define a boX to betrue in some stateif [jK(i)(j) is true;K istrueif K is
true in all states in M. This corresponds to the definition of truth in DRT as the
existence of a verifying embeddirfepr example, the truth conditions of (22) can be
rendered as (23).

(23) D(iluy, wli Dman(V(uy)()) 0 womarV(u,)()) O
adoreV/(uy) ())(V(u) (1) D abhorgV/(uz) () (V(up)()))

This, of course, is not the formula that we would normally associate with the truth-

conditions of (1), the text which was represented by (20). But it is equivalent to it:

using the Unselective Binding Lemma we readily reduce the unneccessarily com-
plicated (23) to the more familiar (24) below.

(24) [Xyx, (man(x;) 0 womarfx,) [ adoregx;)(x,) [ abhorgx,)(X;))

For a general algorithmic method for going from boxes to the predicate logical terms
giving their truth-conditions, see III.5.

Replacing SEM1-SEM4 by ABB1-ABB4 meant a move from meta-language to
object-languagé.The gain is that we now have lambda-abstraction and application in
our logic: it is now legal to use terms suchAaf | farmerv], wherev is a typermr
variable, andAP'AP([u, | ] ; P'(u,) ; P(u,)), whereP andP' are variables of type
r(s(st)). The first of these expressions may be considered to be a translation of the
common nourfarmer and the second a translation of the indexed indefinite de-
termineraZ2. Since we are working in a standard type logiconversion holds, and it
is easily seen that the application of the second term to the first is equivalB([iko
[1; [ |farmeru,] ; P(u,)). Since the Merging Lemma is still valid under the new
interpretation of the DRT constructs, as the reader may want to verify, the latter term
further reduces tdP([u, | farmeru,] ; P(u,)), which will be our translation cd?
farmer . This means that we can compute the meaning of this indefinite noun phrase
from the meanings of its parts. In Ill.4 below we shall see how the method enables us
to get a compositional translation of simple texts into boxes, but first we shall set up
some syntactic scaffolding.

7 Note that we have injected that part of the metatheory that deals with the assignment of values to
variables into the object language. Compare this to what happens in modal logic, where models are
treated as possible worlds and the consequence relation is treated as strict implication on the object-
level (see Scott [1971]).
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[11.3 A Small Fragment of English: Syntax

In order to be able to illustrate how our compositional semantics works, we need to
have the syntax of a small fragment of English at our disposal. The exact choice of
formalism is quite unimportant here and we can largely remain agnostic about matters
syntactic except inasfar as they effect the interpretability of the input to the semantic
component. The most important requirement that we impose is that the syntactic
component of grammar assigns indices to all names, pronouns and determiners. We
shall follow the convention in Barwise [1987] and index antecedents with superscripts
and dependent elements with subscripts. A pair consisting of a sulmsangtthat

same numben occurring as a superscript may be thought of as an arrow going from
the subscripted to the superscripted element. The indexed little text in (25), for
example, should really be thought of as (26), where the anaphoric dependencies are
shown with the help of arrows.

(25) Alfarmer owns a?donkey . He, beats it ».

26) A farmer owns a do'nkey. He beats it.
20) 4 |

We require that no two superscripts are the same, reflecting the fact that dependent
elements can have only one antecedent and, since we are primarily interested in the
phenomenon of linguistic anaphora as opposed to deixis, we demand that for each
subscriptn there is a superscript i.e. each dependent element has an antecedent. The
relation between dependent elements and their antecedents thus becomes a total
function, which we shall denote ast. In (25), for exampleant(it ,) will be a2.

There will be no further requirements on indexing as we want our semantic theory to
predict which anaphoric relations can obtain, as far as semantics is concerned, and we
do not want to stipulate matters a priori.

The syntax of our fragment will be couched in a transformational setting, a reduced
version of the Government and Binding approach in the tradition of Chomsky§1981]
(the reader will have no difficulty to transpose things to her favourite syntactical
formalism). We assume that there are four components of syntax called D-Structure
(DS), S-Structure (SS), Logical Form (LF) and Phonological Form (PF) respectively.
The first three of these components will be defined as sets of labelled bracketings, or
trees, connected by movement rules (‘ma¥)eln our limited set-up we shall assume
that S-Structure can be defined from D-Structure with the help of a rule called

8 For a connection between traditional Montague Semantics and the full GB theory which is close
to the present interpretation of a reduced GB theory on the basis of CDRT, see Bittner [1994]. For a
connection between the present semantic theory and Lambek Categorial Grammar see Muskens
[1994].
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Relativization and that LF can be defined from SS using a rule called Quantifier
Raising. PF will also be defined from SS and the overall set-up of the syntax of our
fragment will thus conform to the standard picture below.

(27) D‘S
Ss

N
PF LF

Let us fill in some details. We define the DS component of our grammar to consist of
all labelled bracketings that can be generated in the usual way with the help of phrase
structure rules PS1-PS12 and lexical insertion rules LI11-LI9.

PS1H)T - TS (PS7) VP 5 V'

PS2)T - S (PS8 V' - V(NP

(PS3)S -~ S'S (PS9) V' - V;,

(PS4)S - IMPS (PS10) NP - DETN

(PS5 S - NPVP (PS11)N' - N

(PS6) VP - AUXV' (PS12)N' - NS

(LI'1]) DET - a"every ",'no", (LI5 N - farmer, boy
some" (LI6) AUX - doesnt ,don't

(LI2) NP - he,she,it , (Lr7zy V¢ - own,..

(LI3) NP - Mary,... (LI8) Vi, - stink ,...

(LI4) NP - who,whomwhich (LI9) IMP - if

This part of the grammar should clearly be augmented with $eahgre systerm

order to rule out the worst overgeneration, but since it seems possible to handle the
semantics of this particular fragment without taking recourse to interpreting features,
the addition of such a system has been suppressed. Here are some examples of
labelled bracketings (or, trees) that are elements of DS.

(28) [+[rlsInplper@tlin Inmanll vely:[v,adores J[nplpera?]
[n [Nwoman ]Il s[neshe oIl vely:[v,abhors J[nphim (1111

(29) [nplper@’lln[ngirl  IlsInplperevery 3l [nboy]l]
[vel\v[vadores J[xpMary 4]

(30) [nploer@’lln[ngirl 1 sinplperevery 3w [nboy ]
[velv:[vadores J[xpwhoni]]]
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Clearly, structures like (29) are not grammatical. We could try to rule them out on the
level of syntax, but have chosen to account for their ungrammaticality by not assigning
them any meaning. Why (29) is not interpretable will become clear in the next section.
We now come to the definition of S-Structure. In order to connect D-Structures
like (30) to acceptable forms of English that will be interpretable in our semantics, we
shall employ a rudimentary version of the movement ruRetditivization Informally
speaking, Relativization allows us to move any relative pronoun from the position were
it was generated and adjoin it to some S node higher up in the tree. The relative
pronoun leaves a trace with which it becomes coindexed. More formally, we say that a
tree (labelled bracketing) follows by Relativizatiofrom a tree@ if and only if = is
the result of replacing some subtreeabdf the form f X [ypwh] Y], whereX andY
are (possibly empty) strings amdh is eitherwho, whomor which , by a tree
[<[npWh][s X €, Y]], wheren is any number not occurring @ Abbreviated:

(Relativization) [ X [ypwhl Y] O [dnpWhs X €, Y]]

As an example note that (31) belows follow by Relativization from (30).

(31) [nplper@’lln[ngirl [ sinpwhom ®[dyplperevery 3y [nboy II]
[velv:[vadores Jedll]

The formal definition of S-Structure is that it is the smallest set of trees that includes
D-Structure and is closed under Relativization. Thus[DSS, which may be a
surprising definition in view of the fact that trees like (30) are not normally accepted as
S-Structures. But again there is the question of interpretability: (30), unlike (31), will
not receive an interpretation in the semantics to be defined below and in effect no harm
is done.

We shall not attempt to give a serious definition of PF, as phonology is not a
concern of this paper, but as a stop-gap we shall reduce phonology to orthography and
stipulate that Phonological Forms are defined from S-Structures by the rule that any
S-Structure without its brackets, indexes and traces is a Phonological Form. Thus (32)
below is the Phonological Form that results from (31).

(32) agirl whomevery boy adores

Lastly, we come to the definition of LF, the component of grammar that will be in-
terpreted by our semantics. The motivation for having this component in syntax is—it
must be confessed—entirely semantical in nature: on the one hand we want the
language that is to be interpreted to be unambiguous (a ‘disambiguated language’ in
Montague’s sense), on the other we want to account for scope ambiguities like the one
that arguably exists in (33).
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(33) every girl adores a boy

The two different readings that this sentence seems to have will be obtained by
adopting the rule odQuantifier RaisingMay [1977]). Quantifier Raising adjoins NPs

to S. Formally, a tre& follows by Quantifier Raisinffom a tree@ if and only if ='is

the result of replacing some subteef © of the form E X [yp 2] Y], by [g[np 2 s

X e, Y]], wheren is any number not occurring @®. Conditions on this rule are that
[ne 2] is a tree, thaZ is not not a (relative) pronoun, and thg ¥] does not occur as

a proper subtree of a subtreebf the form [jp Z']. We abbreviate the rule as
follows

(Quantifier Raising) [s X [ypZ] Y] O [dnpZ"[s X & VY]]

In order to give some examples of applications of this rule we note that (35) follows
by Quantifier Raising from the S-structure (34); (36) and (37) in their turn follow by
Quantifier Raising from (35).

(34) [dlnpevery ®girl ]adores [ypa?boy]]

(35) [¢[npa? boy]3[dnpevery tgirl ] adores ej]
(36) [glnpevery !girl ]4[S[NPa2_boy]3[Se4adoreS e3]]]
(37) [<[npa?boy[g[npevery tgirl ]9se,adores eyl]

We define LF to be the smallest set of trees that contains SS and is closed under
Quantifier Raising. Note that SS LF, which means that our rule of Quantifier
Raising is optional, just like Relativization was. But while structures like (30) simply
do not get an interpretation, structures like (34) and (35) do. The first will in fact be
connected to théld reading of sentence (33) and the second talitsreading.
Structures (36) and (37) will also be connected to these readings and so one might
want to define only these to belong to LF proper, stipulating perhaps that every non-
pronominal NP must be raised exactly once. But since this would not alter the set of
meanings that are connected with any S-structure and since the present definition is
simpler than the one that we would need in that case, we shall deviate from tradition
and let the definition of LF be as it stands.

[11.4. A Small Fragment of English: Semantics
Before we assign meanings to the LF expressions of the little fragment given in the
preceding section, let us agree on some notational conventions. In Table 2 below some

9 Note that, as an anonymous referee kindly pointed out, trees such as (36) and (37) can be the
input_of Quantifier Raising again, with results such ggypevery 1girl ]4[Se4[S[Npa2
boy]?’[seﬂr adores ej]]]]. However, such structures will receive no translations by the rules that

will be formulated in the next section and are therefore out on semantic grounds. We may, but need
not, stipulate that such structures are out syntactically as well.
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types are listed, together with the typography that we shall typically use when referring
to variables and constants of these types. Since all logical expressions that we shall
assign to expressions of the fragment will be equivalent to terms consisting of a chain
of lambdas followed by an expression of the box tg(sd, it is useful to have a
special notation for the types of such expressions: we shall abbreviate any type of the
form ay(...(ay(s(sY)...) as |o;...a,]. So boxes have type [] and, as will become clear
below, we associate terms of tygg fith common nouns and intransitive verbs, terms

of type [[[]] 7] with transitive verbs, terms of typerf] with noun phrases, terms of

type [[7[ ] with determiners, etcetera. Verb phrases will either ged][[pr the

more basic fi], depending on whether they dominate an auxiliary or not.

Type Abbreviation| Name of objects Variables Constants
et — static one-place — stinks,
predicates farmer,...
e(el) — static two-place — loves,
relations owns, ..
S(st) (1 dynamic propositions| p, g —
11(s(st)) [ dynamic one-place | P —
predicates
(r(s(s))(s(sh)) | [[ ] dynamic one-place | Q —
quantifiers
Table 2.

Translations of lexical elements and indexed traces are given inyrblow10 Note

that each possible antecedénta determiner or a proper name) introduces a new
discourse referent, which we shall denotés). So, for examplegr(no2’) will be

U, anddr(John 3) will be John.Anaphoric pronouns pick up the discourse referent
that was created by their antecedent. In (38), for example, we hawgetthat) = a8,

and sadr(ant(it g)) = ug, which means thatglassignsAP(P(ug)) (the ‘lift’ of ug) to

it g. Similarly, sincedr(ant(she 3)) = Sue,the pronourshe ; will be translated as
AP(P(Sug).

(38) Suedhas a 8pigeon. She jfeedsit g

10 Not all lexical items are actually given here; but the ones that are absent should be treated in
analogy with the nearest ones that are present, sbeyg.translates adv[ | boyv] since the
translation ofarmer is given asiv[ | farmerv].
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type
an ~ APAP([u, |1; P'(uy) ; P(uy) [l ]
no" ~ APAP[ | not([u, []; P'(uy) ; P(up))] [[ [ ]
every "~ APAP[[([u,[]; P'(uy) O P(uy)] [[7[ ]
Mary" - AP.P(Mary) [ ]
he, ~  AP(P(9)), whered =dr(ant(he ) [ ]
e, - AP(P(V) [ 7]
who »  AP'APAV(P(V) ; P'(V)) [l 773
farmer - AV[ |farmerv] [
stink ~ AV | stinksv] [7]
love v AQAV(Q(AVT | v lovesv])) [[[ ] 4
doesnt ~» APAQ[ | not Q(P)] ([l 7]]
if - Apd |pO q] (0]

From these basic translations other terms translating complex expressions can be
obtained by specifying how the translation of a mother node depends on the
translations of its daughters. We provide five rules. The first says that single-daughter
mothers simply inherit their translations from their daughters. The second allows for
applying a translation of one daughter to a translation of another daughter and placing
the result on the mother. The third is the sequencing rule that we have met in 11.2.: a
text followed by a sentence can be translated as a translation of that text sequenced
with a translation of that sentence. The fourth rule handles quantifying-in. The last rule
allows us to simplify translations. We say that a t@&follows by reductiorfrom a

term a if we can obtairg from a by a finite number of lambda conversions and
mergings, i.e. replacements of subterms.[u, | y3,.... )l ; [U'y...U' | Oy,...,85] with
[ug...uU'y. . U | Vo, Vi 01,0, 0], provided none otr'y...u'y occurs in any of
Vir- - Y 12 Ts states that such reductions can be performed.

T1 COPYING
If A ~ a and A is the only daughter of B then-B a.

11 The category-to-type rule that has been at the back of my mind while writing down these
translations is TYRY) =, TYP(t) = [] and TYP(A/B) = (TYP(B),TYP(A)), where andt are

basic categories and other categories are defined as in Montague [1973]. With the help of this
category-to-type rule it is a relatively simple task to assign the present semantics to Generalised
Categorial Grammars such as the Lambek Calculus (see Muskens [1994]). We could also connect the
semantics with a subsystem of tiedirectedLambek calculus to obtain a scoping and type-shifting
system, as it is done in Hendriks [1993], who extends the rules of Partee & Rooth [1983].

12 The provision can be relaxed somewhat by requiring that noung.ofu', occursfreein any of

Vi:--- ¥ FOr the notion of a free occurrence of an unspecific referent see I11.5.
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T2 APPLICATION
If A ~ a, B~ Band A and B are the only daughters of C, ther @(f3), provided
that this is a well-formed term.

T3 SEQUENCING
If T~ 1,S+~ gand T and S are daughters offien T~ 1; g, provided that this is
a well-formed term.

T4 QUANTIFYING-IN
If NP" -~ n, S~ gand NP and S are daughters dftBen S~ n(Av,,0), provided
that this is a well-formed term.

Ts REDUCTION
If A ~» a andpfollows froma by reduction then A~ L.

In these rules we identify trees with their top nodes. Formally, we dedimgates as

to be the smallest relatien between trees and logical expressions that conforms to
To-Ts. It is useful to think of §Ts as rules for decorating trees. For example, (39)
shows a decoration for the tree &drmanadores a2 woman(only translations that
are not simply copied from the lexicom Br from a single daughter node are
displayed).

(39) S

[ug,u,] man y, woman y, u, adores y]

NP

VP
AP([u;| man y] ; P(u)) ‘
DET N’ v
| | Av[u,| woman y, v adores 4
1 N
a |
man NP
\%
. AP([u,] woman y] ; P(uy))
adores
DET N'
| I
& N
woman

Here, sinca? translates adP'AP([u, |] ; P'(u,) ; P(u,)) andwomantranslates asv]
| womany], the tree fom? womantranslates as the former term applied to the latter,
which reduces tdaP([u, | woman y] ; P(u,)) with the help of lambda conversion and
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merging. The application of the translationaofores to this term then reduces to
Av[u, | woman y, v adores y]. Continuing the process in this way will lead to a
decoration of the S node with the desired translation.

In order to give an example of an application of the Quantifying-in rule, | have
decorated (35) with translations in (40) below. The tegetroduces a free variable
v into the translation of the lower S node here, but, since the NP that is quantified-in
is coindexed with this trace, the variable gets bound in the translation of the next node.
The result is a translation that gives the indefia@®oy scope over the quantified
noun phrasevery 1girl . The discourse referent corresponding to the indefinite
lands at the top of the box and can hence be picked up by pronouns later in the text. In
(41) we see that such continuations are indeed possible. Of course, in the simple
every girl adores a boy case strong preference is given to the narrow scope
reading ofa boy . But if we add a relative clause to the noun, for example, the wide
scope interpretation becomes completely natural.

S
(40) [Uz| boy u, [u| girl u] O [ u, adores ]

NP S
APWZ)) [ |[u] girluy] O [|u, adores ]
DET N’ /\
| |
2 N NP
a L APLI [l girl u] O Pu,)] Wi
boy .
V
DET N' Av[ | v adores §
| |
every ! N v, e

|
girl [
adores

(41) Every girl adores a boy (I met yesterday). He adores only himself.

Structures that result from Quantifier Raising are not the only ones that allow for an
application of the Quantifying-in rule. The results of Relativization can also be
decorated with its help. In (42) an example is shown. The translatimhahis
applied toAvg[ |[uz |boy w] O [ | uzadores ¥]] here, resulting in a term that is
applicable to the translation gfrl . Clearly, the position of the relative pronoun
plays an essential role for the interpretability of the tree in this example. In (30), where
the relative pronoun has not moved from its original position, the translation of
adores cannot apply to the translation whomand neither cawhomapply to
adores . Therefore the Vand the rest of the tree above it will get no translation (note
that our definition of the translation relation allows for this). In (29) the trouble arises



24

when we want to apply the translatiorgof  to the translation of the S or vice versa.
The same mechanism also renders those trees uninterpretable that result from two or
more applications of Relativization to the same relative pronoun.

(42) AP([u7] girl u7, [us| boy lé] D [ | us adores ] ; P(uy))

M

AV[ | girl v, [ug] boy 4] O [ | u; adores Y

M

APAV(P(V) ; [ | [ug] boy u] O [ | u; adores )

[ [{us] boy ] O [ | u; adores ]

Whom /\
NP

AP([ | [ug] boy w] O P(u3)])

V'
DET N' Av[ | v adores
|
every 3 ’\" Vv, Y
|
boy adores

In Montague’s PTQ (Montague [1973]) the Quantifying-in rules served two pur-
poses: a) to obtain scope ambiguities between noun phrases and other scope bearing
elements, such as other noun phrases, negations and intensional contexts, and b) to
bind pronouns appearing in the expression that the noun phrase took scope over. In
the present set-up the mechanism of discourse referents takes over the second task. In
(43), for example, we see that the pronbencan pick up the discourse referent that

was introduced by farmer , but no use has been made of Quantifier Raising or

Quantifying-in.
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S
(43) [ |[uy| farmer y, drinks y] O [ | stinks y]]

S S
Aq([ | [uy] farmer y, drinks y] O q] [ | stinks y]
/\
NP VP
I |
S he, \A
lMP [uy] farmer y, drinks y] V‘
i in
|
stinks
NP
AP([u,| farmer y] ; P(uy)) le
V'
|
DET N Vi,
\ [ |
al farmer  drinks

[11.5. Accessibility

A concept which plays an important role in the standard DRT construction algorithm
is that ofaccessibilityResolving a pronoun as an unspecific discourse refengl

result in a new occurrence wfn the discourse representation, but the pronoun cannot
so be resolved unless an earlier occurrence o accessible from this new
occurrence. Accessibility will play an important role here too and, for any given DRS
K and any given occurrence of a varialbia an atomic condition iK, we shall define

the setacc(u, K) of discourse referents that are accessible framK. In order to be

able to define this set inductively, we are interested ina&®{sl, }), whereyis a
condition, as wellAs a preliminary step we let the setaative discourse referents,

adr (K), of any boxK be defined by:

adr([ug,...,Uy | Vi, ¥l) = {ug,...,up}
adr (K ; Ky) =adr (K O adr(K,)

Intuitively, the active discourse referentoére those referents thatcan ‘bind to its
right’; for example the discourse referents that an antecedent of a conditional can bind
in the consequent. The following rules define the funcitm

, if ¢ is atomic

acc(u, K)

acc(u, Ky), if uoccurs ink;

acc(u, Ky), if uoccurs ink,

acc(u, Ky), if u occurs inK;

acc(u, Ky) O adr(Ky), if u occurs ink,
acc(u, ¥) O {uq,...,uy}, if uoccurs iny

() acc(u, ¢)
(i) acc(u, not K)
(i) acc(u, K; or Ky)

(iv) acc(u, K; O Ky)

(v) acc(u, [ug,....un | V1, Yil)
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(vi) acc(u, K; ; Ky) acc(u, Ky), if uoccurs ink;

acc(u, Ky) O adr(K,), if uoccurs ink,

We say thatl' is accessiblédrom an occurrence af in K if u' 0 acc(u, K); an oc-
currence of an unspecific referanin an atomic condition iBeein K if u [J acc(u,
K) andu is freein yif u 0 acc(u, y). A DRS that contains no free referents is a
properDRS. In 111.3. we have imposed a very liberal indexing mechanism requiring
only that the relatioant between dependent elements and their antecedents be a total
function from subscripts to superscripts. We now distinguish between those indexed
texts which are semantically acceptable and those which are not by requiring the
former to have a proper DRS as a translation.

The notion of being a proper DRSrespresentationaln the sense that a proper
box K and a boxXK' which is not proper may have exactly the same semantic value.
For example, (45), the translation of (44), in any model denotes exactly the same
relation between states as (47), the translation of (46). Yet (45) is a proper DRS while
(47) is not.

(44) Nolgirl walks
(45) [| not[uy] girl uy, walk u]]

(46) *Nolgirl walks. If she ;talks she  ;talks
(47) [| not[uy| girl uy, walk ul, [ |talku;] O [ | talk u]]

That a proper box and a box which is not proper can have the same semantic value is
the reason why we have not allowed full closure under equivalence ing.ulieaT

node of a tree is decorated with a certain translation we may with safety perform
lambda conversions and merging. But if we would make it a general rule that terms
can be replaced by their equivalents, proper DRSs would be replaced by ones that are
not proper and vice versa and the characterisation of acceptable indexings would be
lost.

A semantic theory ison-representationdf it accounts for semantic phenomena in
terms of semantic values only. Although a non-representational theory may work with
representations intermediate between language and semantic values, these should in
principle be eliminable, just as the expressions of IL were eliminable in principle from
Montague’s set-up of the PTQ fragment. But many accounts of anaphora which
present themselves as non-representational, including the theories of Groenendijk &
Stokhof [1990, 1991] and Muskens [1991, 1995a], have a problem with (44) and (46).
As these theories assign the same semantic values to (44) and (46), they wrongly
predict (46) to be as acceptable as (44} is.

13 DPL, for example, assignd k(girl xq Owalk x) to (44), while it assigns=x,(girl x; Owalk
xq) O(talk Xy — talk x;) to (46). But these representations are equivalent and therefore the two
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[11.6. Truth and entailment: a weakest precondition calculus

We have now in fact connected the sentences and texts of our fragment with truth-
conditions. If we are presented with a text then, in order to find its truth-conditions, we
may parse it (find a Logical Form for it) according to the grammar given in I1.3. and
then decorate the resulting tree according to the rules given in 1ll.4. The truth-
conditions that we are after will be those of the Kdkat we find at the top node. By
definition K will be true in a stateif [JK(i)(j) is true. As we shall see shortly, the
choice ofi is immaterial ifK is a proper DRSJK(i)(j) will be true for alli or none

then.

In 111.2 we have shown how the truth conditions of a box can be found by ex-
panding definitions and by applying the Unselective Binding Lemma. For simple
DRSs such as (3) this is a trivial task, but if we apply the method to more complex
discourse representations, things soon become involved and we find that the advan-
tages of our system of abbreviations are lost. For this reason it is useful to know that
there is a simple calculus which, given some box or condition, always outputs its truth
conditions in the form of a first order formula. The calculus is an adaptation of a
technique that was developed in computer science (the field of ‘Hoare logics’) and
was first used for linguistic purposes in Van Eijck & De Vries [1992]. We give a
variant here, defining a one-place translation fundtrowhich sends conditions to
predicate logical formulae and a two-place functign(weakest preconditionwhich
gives a formula of predicate logic if we feed it a box and a first-order forFhudfa.

The idea is thatr (y) gives the truth conditions g¢fand that the truth conditions Kf

are given bywp(K,T) (whereT is the sentence that is always true). Assume that the set
of variable referentsyj, w,...,u,,...} and the set of individual variables{,
Xo,...,%,,...} @re ordered as indicated. Let T be the function from discourse referents to
individual variables and constants such that= x,, for anyn andToni = tom, Tind

=tim, Mary" = mary, etc. The following clauses do the job.

(TRa)  tr(R{9y,....54}) = R(&...(&0)

texts should be treated as equally acceptable. Saying that (46) is out because its representation
contains a free variable, while (44) is in because its representation is closed, involves an appeal to
properties of the representations that are not mirrored in their semantics. It seems probable that this
feature of DPL can be repaired by following the usual set-up of DRT and using finite assignments
instead of total assignments as the basis of the semantic theory. | expect that a similar move could
also change the present theory into a hon-representational one.

14 For an alternative translation of DRT into predicate logic see Kamp & Reyle [1993].

15 The reason thatp(K, ) is called thaveakest preconditionf K andy is that it corresponds to

the set of all stateissuch that, when started in statemay after execution end in a state where

holds A predicate logical formulap is called gpreconditionof K andy if in any state wherey

holds we can successfully carry ¢utand end in a state whexeholds. By the definition ofvp(K,

X) it is a precondition oK andy and sincevp(K, x) follows from any precondition df andy, it

can be reasonably called tveakesprecondition oK andy.
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tr(o;is 5,)
(TRpot)  tr(not K)
(TRor) tr(K;, or K,)
(WP)  wWp([U s U [ Ve ¥l X)
(WP,) wp(Ky ; Ky, X)

511' = 621'

—|Wp(K, T)

wp(Kq, T) Owp(Ky, T)

—wWp(Kq, =wp(Ky, T))

DX % (tr(yp) O...0tr () £ X)
wp(Ky, wp(Ky, X))

As an example of how this may be used to find the truth conditions of any DRS, we
compute those ok = [ug U, | manug, womanu,, Usadores y, ugabhors y] by
first writing downwp(K, T), then applying WP, and then applying TRfour times:

wp([ug U, | manug, womanu,, Usadores y, ugabhors y], T)
[KgXo(tr (Manug) Otr (womanuy) Otr (ugadores y) Otr(u, abhors g)) WP

XeXo(mMarn(Xg) L womargx,) U adoregxg)(X,) U abhorgx,)(Xs)) 4AxTRA

The following derivation is a bit longer, as the box that it starts with is a bit more
complex.

wp([ | [u; U, | manuy, womanu,, uy bores y] O [ | u,ignores y]], T)

tr([u; u, | manu;, womanu,, u; bores y] O [ | u,ignores y]) WP
-wp([u; U, | manu;, womanu,, u; bores y], -wp([ |u,ignores y], T)) TR
-wp([u; U, | manu,;, womanu,, u; bores yJ, -tr (u, ignores y)) WPy
-wp([u; U, | manu;, womanu,, W bores y], -ignoregx,)(x,)) TRa
=X Xo(tr (manuy) Otr(womanu,) Otr(u; bores y) L —ignoregx,)(x)) WP
=X X%(man(x;) 0 womarfx,) 0 boregx;)(x,) 0 -ignoregx,)(X,)) 3xTRp

Clearly, applied to any badx, the method will give a result in a number of steps that is
equal to the complexity df, if we define the latter as the number of applications of
ABB1-ABB4 that were needed to form the box

It is worth noting that the notion of accessibility is closely related to the notion of
weakest precondition. In particular, we find that the following relation obtains.

PROPOSITIONL. A DRS K is proper if and onlywp(K,T) is a closed formula

To prove this statement we must consider a somewhat messier one, namely the
conjunction of (aly is free inyiff x, is free intr(y), and (b)x is free inwp(K, ) iff
uy is free inkK, or x, is free inx while u, O adr (K). This will follow by a
straightforward induction on the complexity of constructs in the discourse repre-
sentation language and entails the proposition.

The following proposition justifies the calculus in the sense that it shows that
wp(K,T) really gives the truth conditions Kf providedK is a proper DRS.
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PrROPOSITION2. If wp(K, T) is closed then it is equivalent &K (i)(j) for any i.

The proposition is proved via a generalisation which also gives information about
cases where/p(K,T) is an open formula. The proof is given in an appendix.

The weakest precondition calculus helps characterise the relation of entailment on
boxes. DefineKy,...,K,, |=prTK to hold just in case, for evei andi in M, if
Ky,....K,, are true in in M, thenK is true ini in M. We have:

PROPOSITIONS. Ky,....K, [FDRTK iff wp(K4,T),...,wp(K,,T) |= wp(K,T)

This time there is no restriction to closed formulae. For a short proof see the appendix
again.

With proposition 3 we get a syntactic characterization of the entailment relation in
DRT, via any of the familiar axiomatisations of first-order entailnd&wmt.practical
consequence is that a theorem prover for DRT can simply consist of an existing
theorem prover for predicate logic plus seven additional Prolog clauses embodying the
weakest precondition calculus.

An alternative notion of entailment (for DPL) was defined in Groenendijk &
Stokhof [1991], whose definition boils down to the requirementkHatlows from
Ky,...,K, if and only if K4; ... ; K,) O K is true in all models in all states. We
denote this aKj,...,K,, |=ppL K and find as a direct consequence of Proposition 3:

COROLLARY. Ky,....K, [=ppL K iff [=tr((Ky; ... ; Ky O K)

And again the question whether a given argument is valid under this notion of en-
tailment can be reduced to a question about validity in elementary logic.

V. AN ILLUSTRATION: ANAPHORA AND GENERALISED COORDINATION

By way of example | shall now apply the system to a field were the phenomena that
DRT deals nicely with and those which are nicely treated in Montague Semantics
seem to interact: anaphora across generalised coordinations. One of Kamp’s main
motivations for setting up the DRT framework was the paucity of Montague’s
treatment of anaphora. On the other hand, Kamp & Reyle [1993, pages 214-232]
obviously have difficulty dealing with conjunctions and are forced to introduce
considerable overall complications of their theory in order to cope with them. As

16 Alternatively, we can characterise DRT entailment directly, using a natural deduction system as in
Saurer [1993]. Saurer notices that DRT entailment can be characterised via translation into
elementary logic, but claims psychological reality for his inference system, saying that it can be
understood as offering a mental logic.
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Montague’s system is particularly apt at dealing with coordinating constructions, it
seems that a treatment of anaphora, coordinations and their interplay which combines
the good parts of both systems is called for. In the next pages | shall try to set up such
a treatment.

It seems to be a fundamental fact about languages that expressions belonging to the
same category can be coordinated. As long as A and B belong to the same category, A
and B and Aor B will belong to that category too. More in general, it seems that the
following rules should be added to our phrase structure grammar.

(PS 13) X - X*CONJ X
(LI'10) CONJ - and,or

Here X may be unified with any category and 3tands for strings of Xs of any
positive length. So the result of an application of PS 13 could be S CONJ S, or NP
NP NP CONJ NP, as ifom, Dick , Harry and a girl who abhors
Delaware .

Now various authors (Von Stechow [1974], Keenan & Faltz [1978], Gazdar
[1980], Partee & Rooth [1983]) have noted that the semantics of these coordinated
constructions conforms to a striking regularity. Roughly speaking, as long as we are
not considering cases where anaphoric dependencies play a role and barring ‘group
readings’ such as ifiom Dick and Harry carried the piano , the hypothesis
thatand always denotes intersection, and thratalways denotes union seems to fare
remarkably well7.18

However, it seems that this Boolean hypothesis about coordination can no longer
be upheld in a setting where anaphoric dependencies are taken into consideration. In
(48) and (49) a minimal pair of short two sentence texts is given which shows that the
pronounit , can pick up a referent that was created by the indefinite deterariier
a preceding sentence but that it cannot pick up the referent that was created by a
determinemo? occurring in the same position (both standard DRT and our version

17 In an extensional Montague semantics we could implement this Boolean hypothesis by always
translating A...Apand Apiqas (1) and A...Aor A4 as (Il) below.

() A% AX (A (X)) - (X O DA (X)) - (X))
(1) AXqo AX (A (X)) - Xy O OA {41 (X)) - (X))

Here A',..., A 41 are assumed to be the translations pf A A, 1 respectively andy,... X, are
variables of the types that are needed to make these well-formed terms.

18 Of course the empirical content of the hypothesis depends on the types of the translations that we
assign to expressions of different categories. There is also a characteristic flip-flop behaviour of the
connectivesMost men and women swimeans that most men swim and most women swinMigut

friend and colleague swirmeans that a person who is both my friend and my colleague swims. The
word ‘and’ cannot be treated as intersection in both cases. This observation is attributed to Robin
Cooper by Partee & Rooth [1983] who propose to deal with the phenomenon via type-shifting.
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predict this, of course). The pair (50)-(51) shows that the same phenomenon occurs
across sentence conjunctions. Since we have accepted that the sequencing of sentences
cannot be treated as simple logical conjunction we must also accept that a grammatical
conjunction of sentences cannot be treated in this way.

(48) A?cat catches alfish .It ,eats it ;.
(49) *A?cat catches nolfish .It ,eats it ;.

(50) A?cat catches alfish andit ,eats it ;.
(51) *A?cat catches nolfish and it ,eats it ;.

But the phenomenon is not restricted to conjunctions of sentences, of course. In (52)-
(53) and in (54)-(55) it is shown that it also occurs in conjunctions of expressions in
categories other than S. (52)-(53) illustrate the case for VP and (54)-(55) for NP.

(52) A’cat catches alfish and eats it
(53) *A?cat catches nolfish and eats it

(54) John3has a?cat which catches alfish and a*cat which eats
it ,

(55) *John3has aZcat which catches nolfish and a*cat which
eats it 4

Fortunately it is possible to generalise the Boolean hypothesis of coordination to make
it account for data such as these. While the Boolean theory equatewith a
generalised form of logical conjunction amd with a generalised logical disjunction,

we can equate the first with a generalised form of sequencing (relational composition)
and the second with a generalisation of the DRT notion of sentence disjunction.
Formally, we add the following schemata @ T

and -+~ AR..ARAX{..AX(R1(X)...(Xy) 5 -+ 5 Ryf(XD ... (X))
or v AR CARAX L AXGL | RI(XY)... (X Or ... or Ry(Xq)...(Xip»],

These clauses assign an infinity of systematically related translatiand @ndor .
Note that in any well-formed term of one of the displayed forms, the variaples
R, must all have the same type.

We now let the translation of a coordinated construction consist of the translation
of the coordinating element applied to the translations of the coordinated expressions.
More precisely, we addglto our translation rules.
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Te GENERALISEDCOORDINATION

If Aj~» ayg, ... ,Ape1~ O, CONI» B, and A, ..., A,, CONJ and A, are
daughters of A (in that order), then-A B(a)...(0+1), providedp(day)...(anq) IS
well-formed and has the same type as each afithe

It may be observed that only the ‘right’ translation of CONJ is applicable here.

In order to show how this works we give some examples. In (56) a tree for (52) is
decorated with translations. Here only the translaa®APAv(P'(v) ; P(v)) for and
is applicable and the result of applying this to the translations of the coordinated VPs
is shown on the mother VP.

(56) S

[u, | cat u, fish u, u, catches y u, eats y]

NP VP
AP([u,] cat u) ; P(uy)) AV[y,| fish u, v catches y v eats ]
DET N
| I
a? N VP CONJ VP
\
cat ‘ and \‘/
v AV[ | v eats ]
AV[y,]| fish u, v catches g E
V., NP
|
N NP eats it 4
! AP([uy] fish u] ; P(uy))
catches
DET N
|
a N

The reader may wish to verify that a similar tree for (53) leads to a box in which the
discourse referent that is introduced by the wood is not accessible from the
discourse referent that is connected to the proitoyn

A second example in (57) shows how the rule deals with coordinations of noun
phrases. Here the translatid®'AQAP(Q'(P) ; Q(P)) is the only one that can be used
and its application to the two coordinated NPs leads to the translation at the top node.
In (58) a full sentence with this NP in object position is given; in (59) its translation,
and in (60) its truth conditions (obtained directly or via the weakest precondition
calculus) are shown. Since (59) is a proper DRS (or, equivalently, since (60) is a
closed formula) we find that (58) is acceptable.
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NP
(57) AP([uy] girl u4] ; P(uy) ; [uy] boyus,, u, lovesu,] ; P(uy))

AP(uglginl ud;P)) SO APyl boyu,, u, lovesuy] ; P(uy)
/\ and /\
DET N’
| | N'
al N DI|ET AV[ | boy v v lovesu,]

|
girl a? /\
S

N APAVPW) :[| v lovesuy])
boy

7/\5
NF [ ] vy lovesu,]
who 7\
e VP
|
V'
AV[ | v lovesu,]

T

vV, NP

| ]
loves her ,

(58) John3admires algirl and a?boy who loves her

(59) [uq u,]|girl uy, Johnadmires y, boyu,, W, loves y, Johnadmires y]

(60) [Xyxo(girl(xq) O admiregjohn)(x;)) D boyx,) [ lovegx,)(x;) Uad-
miregjohn)(x,))

However, if we replace the determireer by nol, as is done in (61), binding fails.
Applying AQAQAP(Q'(P) ; Q(P)) to the translation afo! girl , AP[ | not([u,| girl

u,] ; P(u;))] and then to the translation af boy who loves her ; now results in
(62); application of the translation afimires to (62) results in (63); and a final
application of the translation dbhn 3 gives (64), the translation of the sentence. We
find that it contains a free occurrencewsf If we use thevp calculus to compute
(64)’s truth conditions, we get the result in (65), an open formulaxyiffee. This
means that (61) is predicted to be out: the quantifiérgirl  does not manage to
bind the dependent elemérar .

(61) *John3admires nolgirl and a?boy who loves her

(62) AP([|not([uy| girl ug] ; Pup)] ; [Uy| boyuy, uyloves y] ; P(uy))

(63) AV([ | not([uq] girl uq] ; [ | vadmires y])] ; [u, | boyu,, u,loves y] ;
[| vadmires y])

(64) [u,|not[uy| girl uy, Johnadmires y], boyu,, u,loves y,
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Johnadmires y]
(65) [X(=IXq(girl (xy) O admiregjohn)(x,)) O boy(x,) [llovegx,)(X;) Uad-
miregjohn)(x,))

A last examplé&® shows that our treatment of coordination sometimes leads to
applications of the sequencing operator ‘;” which cannot be reduced with the help of
the Merging Lemma as the conditions under which that rule is applicable are not
fulfilled. In order to find the translation of the distributive reading of (66) we first
conjoin the translations @ill 1 andSue? to AP(P(Bill) ; P(Sug). This term can

then be applied tav[uz | donkeyus, v owns 4], the translation of the VP. The result
(after lambda conversions) is (67); but note that this extended DRS cannot be reduced
with the help of merging, as the that is declared in the second box already appears

in the conditions of the first box.

(66) Bill land Sue 2owna 2donkey
(67) [us]|donkeyus, Bill owns ] ; [ug | donkeyus, Sue ownsdl
(68) [Xz(donkeyxs) Lowngbill)(xg)) [ Cxg(donkeyxs) [lowngsug(Xs))

This brings us outside the standard DRT language, but no harm is done as we
systematically get the right predictions about truth conditions and anaphora in these
cases. Using the program metaphor that is often useful when thinking about DRT we
may say that the first box in (67) assigns a donkey which Bill owngdad that the
second box then assigns it a possiidy value, a donkey owned by Sue. In other
words, (67) is a case cgdassignmentClearly, first assigning a donkey owned by Bill

to u; and then one owned by Sue is a program which can be carried out just in case
Bill and Sue each own a donkey and indeed we find thatvpuralculus correctly
computes the truth conditions given in (68).

V. CONCLUSION AND FURTHER PROSPECTS

In this paper we have defined a fusion of two important frameworks for natural
language semantics, taking care that the resulting formalism is easy to work with and
has a simple underlying mathematics. In order to obtain the constructs of DRT within
the type logic which underlies Montague Semantics we have used a technique which |
would like to callgrafting: logicsL andL' can often be combined by (a) taking an
adequate Tarski definition df, (b) axiomatising withirL the concepts that this
definition talks about, and then (c) introducing the syntactic construdts ax
abbreviations withi. by means of a transcription of the Tarski definitiorcan then

19 Questions from Bart Geurts at the Ninth Amsterdam Colloquium and from an anonymous referee
drew my attention to this example. | would like to thank them both.
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be said to bgrafted uporL. In our casd. was many-sorted type logic, was DRT,

the Tarski definition was the one given by Groenendijk & Stokhof [1991] and the
transcription was given in ABB1-ABB4. But the technique seems very general, can be
used whenevdr' has an acceptable Tarski definition ani$ expressive enough to
transcribe this definition, and might help to integrate many different logics that have
been proposed in order to deal with special phenomena in the semantics of natural
language. There has been a tendency in the field to propose a different logic for each
phenomenon in natural language, but ultimately language is one, and we shall need to
synthesize these logics if we want to obtain one logic for the whole range of
phenomena. Grafting logics upon a single expressive logic such as classical type logic
is one possible technique to do this.

There are two directions that can be taken from here, and both must be explored.
The first leads into linguistics and the second leads further into logic. Concerning the
first: In this paper | have hardly used the formalism presented here to work out any
new descriptive theories. The linguistic theory of section Il (as opposed to the general
formalism which was presented there) is of course nothing but a streamlined
presentation of the theories by Kamp and Heim. The work in section IV is an
improvement over the treatment in Kamp & Reyle [1993] as far as | can see, but not
because it describes essentially new phenomena, or because it can deal with
phenomena that Kamp & Reyle cannot treat, but because it can deal with the data in a
principled way, without having to complicate the theory, and assigning a single
algebraic operation to each of the woalsd andor , while Kamp & Reyle’s
treatment introduces complexities that threaten the DRT framework as such. In this
paper my main purpose has been to define a practicable formalism for the analysis of
natural language semantics, but the next step must of course consist of a series of
applications of the formalism to descriptive work. Everybody is invited to join the fun.

A second step that | think must be taken is more foundational. In section Il it was
explained that CDRT as it is described here must tepeesentationatheory of
language semantics, on pain of not getting the facts right. This was because it turned
out that a linguistically acceptable text may have a representatibich has the same
semantic value as a representatorof an unacceptable text. Given that this is the
case, we can account for the difference in acceptability only on the basis of the
difference betweeK andK', not on the basis of a difference in semantic values. The
same problem holds for DPL, DMG and some of my earlier work. The present
solution of ‘going representational’ is mathematically impeccable as far as | can see,
and some researchers, including Hans Kamp, have advocated the move for
philosophical reasons. But for those who—like the present author—sympathise with
Richard Montague’s requirement that the level of intermediate representations should
in principle be eliminable from the theory, things cannot remain as they stand now.
The only road which is open to them is to adapt the theory, such that in all cases where
K andK' represent texts which from a semantical point of view should be
distinguishedK andK' really have a different semantic value. This means that it is
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either necessary to provide the underlying type logic with a more fine-grained notion
of entailment (as it was done in Muskens [1995Db] for different purposes), or that DRT
must be grafted upon type logic in a slightly different way. However, such
considerations do not affect the applicability of the present system and | am glad to
leave them for future research.

APPENDIX PROOFS OFPROPOSITIONS2 AND 3
PrROPOSITION2. If wp(K, T) is closed then it is equivalent &K (i)(j) for any i.

PROOF. For any formulap and state variablielet (¢)' denote the result of replacing
each free individual variablg in ¢ with V(u,)(i). We prove that

(@) (tr(y)'is equivalent tofi)
(b) (wp(K, X))' is equivalent taj(K(i)() O (x)')

These statements are proved by induction on the complexity of DRT constructs. In the
following = stands for ‘is equivalent to’.

i)  (tr(R{Sy,....6))) = R(&D...(8,.N)" = (by the definitions of (Hand (.)
and AXARV(3)()-- (VD) = RS040
(r(&is&) = (BiT= &N = V(B)() = V(&) = §isS()
(i) (tr(not K))' = (-wp(K,T))' = =(wp(K,T))" = -Lj(K(i)() = (not K)(i)

(i)  (tr(Kpor Kp)' = (Wp(Ky,T) Dwp(K,,T)) =

~ (wp(Ky ) Dwp(KoT))' = Ci(Ky(i)() DOK()G) = (Kqor Ky)(i)

(v) (tr(KyO Kp)' = (-wp(Ky,~wp(KpT)))' = -Li(Ky(i)() O (~wp(KpT))) =
_'Ej(Kl(l)(J) O=Ck(KA()(K) = Ky O K)(i)

~  (wp([u,.. uk |Va oo Yy X))
= (0%, - X (tr(yy) O...0tr () 0X))'
= (by the Unselectlve Binding Lemmaj([u, .....u, ]j O

[V(U)G) / X V(U O)G) /% 1 () OOt () D X))
= (by the definition of[ Uy, -+ U ]j @and AX3)
LU U Ji Ot () O 0t () 0X))
= El(i[uk SU i O (Y 0.0 (tr () D))
= Gt i O110) T-. O yei) O(X)

= 00U U [ (06 O )

V) Wp(Ky; Ky X)) = Wp(Ky, wp(Ky, X)) =
Ck(Ky(D)(K) O (wp(Ka, X))9) = Ck(Ky(i)(K) O O(K(KG) D)) =
OOk(K()(K) DK1(KG) OO0 = T((Ky 5 K)6) O (X))

The proposition directly follows from (b).
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PROPOSITIONS. Kj,....K, [FprTK iff wp(Ky, T),....wp(Ko, T) |=wp(K, T)

PROOF. Suppose tha&,,...,K,, are true in while K is not. Then, by (b) in the
preceding proof,wWp(K;,T))\,...,(wp(K,,T))' hold while wp(K,T))' does not. Use
AX3 to choose an assignmeimt such thata(x,) = V(u,)(i) for all k; then
wp(K4,T),...,.wp(K,,T) are true undea while wp(K,T) is false undea. Conversely,
letwp(K4,T),...,wp(K,,T) be true undea andwp(K,T) false undea. By AX1 and
AX2 we can find ani such thata(x,) = V(u,)(i) for all free variablesxin
wp(Ky,T),...,wp(K,,T),wp(K,T). Clearly, wp(K{,T))',...,(wp(K,,T))' hold but
(wp(K,T))' is false and using (b) again we have tat.. K, are true iri while K is
not.
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