
Combining Montague Semantics and Discourse
Representation

I. INTRODUCTION

Kamp’s Discourse Representation Theory (DRT, see Kamp [1981], Heim [1982,
1983], Kamp & Reyle [1993]) offers an attractive means of modeling the semantics of
discourse. The theory works very well for cross-sentential pronominal anaphora, for
temporal anaphora and, on the sentence level, for the medieval ‘donkey’ sentences that
Geach has reminded us about so forcefully. However, other classes of data, such as
quantification and coordination phenomena, are handled in less elegant ways, and
since such data were rather successfully accounted for within Montague’s earlier
paradigm, some logicians have sought to combine the advantages of both approaches
and have come up with various systems that combine the dynamics of DRT with the
compositionality of Montague Semantics in one way or another.

There are two lines of approach here. Some authors start with a Montague-like set-
up and add extra machinery to it in order to deal with anaphora; others take DRT as
their point of departure and add lambdas to the system in order to obtain
compositionality. An example of the first line of thought is Rooth [1987], who extends
Montague Grammar with the ‘parameterised sets’ of Barwise [1987]. Other examples
are Groenendijk & Stokhof [1990], who obtain a dynamic effect with the help of
Janssen’s [1986] ‘state switchers’; Chierchia [1992], who gives a simplified variant of
Groenendijk & Stokhof’s ‘Dynamic Montague Grammar’ (DMG); and Dekker
[1993], who elaborates upon DMG and extends it with many useful features. The
second line of approach is exemplified in the λ-DRT framework of Pinkal and his co-
workers (Latecki & Pinkal [1990], Bos et al. [1994]) and in the ‘bottom-up’ DRT of
Asher [1993].

However, while all this work has certainly clarified the issues which are at stake
when an  integration of the two semantic frameworks is called for, and while some of
this work has led to the development of formalisms in which very interesting linguistic
theories have been expressed, we are still not in the possession of a combined
framework which is easy to use and mathematically clean at the same time. The
approaches which add lambdas to DRT are easy to use, while the systems which take
Montague Semantics as their point of departure are difficult to work with. All systems
base themselves on ad hoc special purpose logics and have a more or less baroque
underlying mathematics which is not very well understood.

*  From: Linguistics and Philosophy 19: 143-186, 1996. I would like to thank my audience at the
Ninth Amsterdam Colloquium and the anonymous referees for interesting feedback. The present title
was kindly suggested by an anonymous referee.
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It is the purpose of this paper to combine Montague Semantics and Discourse
Representation into a formalism that is not only notationally adequate, in the sense that
the working linguist need remember only a few rules and notations, but is also
mathematically rigourous and based on ordinary type logic. The mathematics of
lambdas is well-known and has received a classical formulation in the elegant system
of Church [1940] and for the present purposes I hardly see any reason to tamper with
the logic. Later extensions of Church’s logic, such as Montague’s IL, but also
Janssen’s [1986] Dynamic Intensional Logic, upon which DMG is based, add all
kinds of embellishments, but these make the logic lose its simplicity and its fun-
damental mathematical properties.1 Usually, the embellishments are superfluous, as
Church’s logic is already very expressive so that what can be said with embel-
lishments can also be said without them.2 It is for this reason that we shall stick to (a
many-sorted variant of) the classical system. Our goal is to design a formalism for
linguistic description which is easy to use in practice and has a simple underlying
mathematics.

How can we combine the DRT logic with classical type theory? It is evident that the
expressivity of the core part of DRT does not extend that of first-order logic (Kamp &
Reyle [1993] in fact give a translation of DRT into elementary logic). The question
therefore arises whether it is not possible to reduce the language of DRT to type
theory. I shall show that this question has an affirmative answer and that DRT’s
Discourse Representation Structures (DRSs or boxes henceforth) are already present
in classical type logic in the sense that they can simply be viewed as abbreviations of
certain first-order terms, provided that some first-order axioms are adopted. This
means that we can have boxes and lambdas in one logic, and the combination of these
two (plus the sequencing operator of Dynamic Logic, which is definable in type logic
as well) will allow us to assign boxes to English discourses in accordance with
Frege’s Principle: the meaning of a complex expression is a function of the meanings
of its parts.

The method of showing that the DRS language is really a part of type logic (and
even of predicate logic) is straightforward. Boxes are connected to first-order models
via ‘verifying embeddings’ in Kamp’s definition and in fact the meaning of a box can
be viewed as a binary relation between such embeddings. Groenendijk & Stokhof
[1991] give an ordinary Tarski Definition for the box language on the basis of this
idea. The reduction to classical logic can be carried out by simply observing that the
right-hand, definiens, parts of the clauses in this inductive definition are expressible
within the logic and that the constructs in the box language that are defined by them

1 Such as the Church-Rosser property, which says that the order in which lambda reductions are
performed is immaterial. See Friedman & Warren [1980] for a counterexample to the Church-Rosser
property in IL.
2 For example, Gallin [1975] already shows that what can be said within IL can be said within the
Church system TY2.
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may therefore do duty as abbreviations of the logical terms which express these
clauses.

The presence of boxes in type logic permits us to fuse DRT and Montague
Grammar in a rather evenhanded way: both theories will be recognisable in the result.
In Muskens [1991, 1995a] I have given versions of Montague Grammar that were
based on some technical insights that are also present in this paper, but while these
articles succeed in importing the dynamics of DRT into Montague Grammar, they do
not offer a real synthesis of the two theories in this sense. The present formalism,
which I call Compositional DRT (CDRT), may well be described as a version of DRT
in which the construction algorithm that sends (parsed) sentences to boxes consists of
a Montague style compositional translation of trees into the lambda-box language.

With this unification of the theories standard techniques (such as type-shifting) that
are used in Montague Grammar become available in DRT. The fused theory gives us a
means to compare specific semantic analyses that are made in the two different
frameworks and semantic theories that can be expressed within the older paradigm can
in principle be transposed to our version of the newer one. Although descriptive
linguistic work is not the principal aim of this paper, we provide an illustration here
and it will be shown how the Boolean theory of generalised coordination can be
adapted to Compositional DRT. Various authors (e.g. Von Stechow [1974], Keenan
& Faltz [1978], Gazdar [1980], Partee & Rooth [1983]) have suggested that, barring
some exceptions, the words and  and or  and their counterparts in other languages act
as Boolean operators, no matter what types of expressions they connect. This, I think,
is a very elegant and empirically significant claim about natural languages.
Unfortunately, it does not seem to match completely with the data, as it does not seem
possible to treat expressions with anaphoric links across coordinated elements (such
as in A cat catches a fish and eats it vs. *A cat catches no fish and eats it) in a
Boolean way. On the other hand it must be admitted that the treatment in Kamp &
Reyle [1993] of such expressions, while satisfactory in the sense that it accounts for
the anaphoric linkings, is unsatisfactory in the sense that it complicates the whole set-
up of DRT. Discourse Representations are no longer boxes, but complicated
constructs out of boxes and natural numbers in this analysis; even the treatment of
expressions that do not contain a conjunction cannot escape from the complications. It
would be much nicer if we could connect a single algebraic operation to each of the
two words and  and or . In section IV we shall provide such operations.

The paper is set up as follows. In the next section standard DRT is discussed and
provided with some extensions, such as the sequencing operator ‘;’, which is familiar
from programming languages, and a compositional treatment of proper names as
constants. In section III, the main part of the paper, we define the basic formalism and
show how it can be used to interpret a fragment of English that is generated with the
help of a reduced transformational grammar. Section IV extends this fragment with the
promised treatment of coordinations and section V gives conclusions and further
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prospects. In a short appendix the reader finds two proofs of propositions which were
mentioned in the main text.

II. STANDARD DRT AND SOME EXTENSIONS

II.1. The core fragment: syntax and semantics
The standard way of writing down discourse representations makes for very easy
reading but is also rather space consuming and for this reason I shall linearize DRS
boxes in this paper. So, for example, (2), a representation of the little text in (1), will be
written more concisely as (3) below, and I shall save paper by writing (6) instead of
the more wasteful (5), which is a representation of (4).

(1) A man adores a woman. She abhors him.

(2) x1 x 2

man x1

woman x 2

x1 adores x 2

x 2 abhors x1

(3) [x1 x2 | man x1, woman x2,  x1 adores x2, x2 abhors x1]

(4) If a man bores a woman she ignores him.

(5)

x1 x 2

man x1

woman x 2

x1 bores x 2

⇒ x 2 ignores x1

(6) [ | [x1 x2 | man x1, woman x2, x1 bores x2] ⇒ [ | x2 ignores x1]]
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Formally, the language which comprises these linearized forms is obtained by starting
with sets of relation constants and individual constants and an infinite set of individual
variables (individual constants and variables will also be called discourse referents).
Conditions and boxes are constructed from these by the following clauses.

SYN1 If R is an n-ary relation constant and δ1,…,δn are discourse referents, then
R(δ1,…,δn) is a condition;
If δ1 and δ2 are discourse referents then δ1 is δ2 is a condition;

SYN2 If K1 and K2 are boxes, not K1, K1 or K2 and K1 ⇒ K2 are conditions;
SYN3 If γ1,…,γm are conditions (m ≥ 0) and x1,…,xn are variables (n ≥ 0), then

[x1…xn | γ1,…,γm] is a box.

That the language given here contains constant discourse referents in addition to the
usual variable ones is a novelty which has to do with the interpretation of proper
names. This will be discussed below. In (3) and (6) we have systematically abbreviated
conditions of the form R(δ1,δ2) as δ1Rδ2 in case R was a two-place relation symbol
and we have written R(δ) as Rδ whenever R was one-place. We shall continue to
follow this convention.

The constructs generated by SYN1-SYN3 are interpreted on ordinary first-order
models. As usual, these are defined as pairs 〈D, I〉, where D is an arbitrary non-empty
set and I is a function with the set of constants as its domain such that I(c) ∈ D for
each individual constant c and I(R) ⊆ Dn for each n-ary relation constant R. An
assignment, or, in DRT terminology, an embedding, for such a first-order model M =
〈D, I〉 is a function from the set of variable discourse referents to the domain D. We
write a[x1…xn]a' as an abbreviation for ‘assignments a and a' differ at most in their
values for x1,…,xn’. As usual, we let ||δ||M,a be equal to a(δ) if δ is a variable and to
I(δ) if δ is a constant. Clauses SEM1–SEM3 below define the semantic value ||γ||M of
a condition γ in a model M to be a set of embeddings, while the value ||K||M of a box K
in M is defined to be a binary relation between embeddings. (The superscript M is
suppressed.)

SEM1 ||R(δ1,…,δn)|| = {a | 〈||δ1||a,…, ||δn||a〉 ∈ I (R)}
||δ1 is δ2|| = { a | ||δ1||a = ||δ2||a}

SEM2 ||not K|| = { a | ¬∃a' 〈a, a'〉 ∈ ||K||}
||K1 or K2|| = { a | ∃a' (〈a, a'〉 ∈ ||K1|| ∨ 〈a, a'〉 ∈ ||K2||)}
||K1 ⇒ K2|| = { a | ∀a'(〈a, a'〉 ∈ ||K1|| → ∃a''〈a', a''〉 ∈ ||K2||)}

SEM3 ||[x1…xn | γ1,…,γm]|| = { 〈a, a'〉 | a[x1…xn]a' &  a' ∈ ||γ1|| ∩…∩ ||γm||}

The interpretation here may look somewhat different from the standard interpretation
of DRT (as, for example it is given in Kamp & Reyle [1993]), but is in fact
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equivalent.3 For a discussion of this slightly different format as compared to the
standard one I refer to Groenendijk & Stokhof [1991].4

A box K is defined to be true in a model M under an embedding a if and only if
there is some embedding a' such that 〈a, a'〉 ∈ ||K||M; a condition γ is true in M under
a iff a ∈ ||γ||M. The reader is invited to verify that the truth-conditions of (3) above
correspond to the truth-conditions of the more conventional (7), and that the truth-
conditions of (6) are those of (8).

(7) ∃x1x2(man x1 ∧ woman x2 ∧ x1 adores x2 ∧ x2 abhors x1)
(8) ∀x1x2((man x1 ∧ woman x2 ∧ x1 bores x2) → x2 ignores x1)

Boxes can be interpreted as instructions to change the current embedding in a non-
deterministic way. For example, given some input embedding a, box (3) can be read as
an instruction to output an arbitrary embedding a' such that a[x1,x2]a', while a'(x1) is
a man, a'(x2) is a woman, a'(x1) adores a'(x2) and a'(x2) abhors a'(x1). If it is possible
to find such an embedding a' then (3) is true.

As many authors (e.g. Van Benthem [1989, 1991], Groenendijk & Stokhof [1991])
have emphasized, there is a strong connection with Quantificational Dynamic Logic
(Pratt [1976]), the logic of computer programs, here. In fact it can be shown that DRT
is a fragment of this logic. For a discussion of this last point see Muskens [1995a] or
Muskens, Van Benthem & Visser [forthcoming].

II.2. Merging boxes
In standard Discourse Representation Theory sentences in discourse do not in general
get a separate interpretation each. Let us reconsider text (1), represented here as (9),
with its indefinite determiners and pronouns now indexed in order to show the
intended anaphoric relationships.

(9) A1 man adores a2 woman. She2 abhors him1.

3 Since we have enlarged the language with constant discourse referents the equivalence is to be
restricted to constructs that do not contain these.
4 The main difference with the standard DRT set-up is that we use total assignments, while standard
DRT uses partial ones. Although it is immaterial from a formal point of view which set-up is chosen
as long as our purpose is limited to giving a truth definition for DRT, it may very well be that the
partial approach is better inasfar as it is more realistic and therefore more liable to suggest useful
generalisations of the theory. I leave a partialisation of the theory presented in this paper for future
research. For a partial theory of types on which such a partialisation could be based see Muskens
[1989, 1995b]. A second difference with standard DRT lies in the treatment of cases such as [ |  [x |
man x] ⇒ [x | mortal x]], where x is declared twice. In standard DRT the second declaration of x is
ignored and the box would express that every man is mortal. In the present set-up the second x
assumes a new value and the box says that there is a mortal if there is a man. The construction
algorithm for standard DRT never generates such cases of ‘reassignment’, but we shall see an
application in section IV below.
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While the first sentence in this little text can indeed be said to have its own repre-
sentation, namely (10), the second is not associated with a box itself in the standard
approach. Its contribution to the Discourse Representation that will finally be built lies
in the transition from (10) to (3). But if, as is our purpose in this paper, we want the
meaning of a complex text to be a function of the meanings of its constituing
sentences, we must indeed assign separate meanings to the latter.

The only reasonable box that we can associate with the open sentence She2 abhors
him1 is the open box (11) below which is true under an embedding a if and only if the
condition x2 abhors x1 is true under a. The anaphoric pronouns she2 and him1 get
whatever value the input embedding associates with the discourse referents x2 and x1.
Box (11) can be interpreted as a test: given any input embedding a, it tests whether
a(x2) abhors a(x1), if so, it returns a as an output, if not, the test fails and no output is
returned.

(10) [x1 x2 | man x1, woman x2, x1 adores x2]
(11) [ | x2 abhors x1]

How can we combine boxes (10) and (11)? The metaphor that invites us to view boxes
as programs suggests an answer: first carry out the instruction (10) (non-
deterministically) and then carry out (11). In other words, the metaphor suggests that
the concatenation of sentences in simple narrative discourse is nothing but the
sequencing of instructions that we find in imperative programming languages, usually
written as ‘;’. This would mean that (12) would be the correct translation of text (9).

(12) [x1 x2 | man x1, woman x2, x1 adores x2] ; [ | x2 abhors x1]

In order to make this a legal expression of our language let us extend the DRT syntax
with the sequencing operator.

SYN4 If K1 and K2 are boxes then K1 ; K2 is a box

In contexts where programs are modeled as relations between states, sequencing is
usually associated with the operation of relational composition. A program K1 ; K2 can
bring the machine from an input state a to an output state a' if and only if K1 can bring
it from a to some intermediary state a'' and K2 can take it from a'' to a'. In this paper
we shall also associate relational composition with the sequencing of boxes as clause
SEM4 makes clear.

SEM4 ||K1 ; K2|| = { 〈a, a'〉 | ∃a'' (〈a, a''〉 ∈ ||K1|| & 〈a'', a'〉 ∈ ||K2||)}
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It is easy to verify that (12) and (3), our new translation of the text in (9) and the old
one, are equivalent. More in general, we have the following lemma, which has a simple
proof.

MERGING LEMMA . If x'1,…,x'k do not occur in any of γ1,…,γm then
||[x1…xn | γ1,…,γm] ; [x'1…x'k | δ1,…,δq]|| = ||[x1…xnx'1…x'k | γ1,…,γm,δ1,…,δq]||

For obvious reasons [x1…xnx'1…x'k | γ1,…,γm,δ1,…,δq] is usually called the merge of
boxes [x1…xn | γ1,…,γm] and [x'1…x'k | δ1,…,δq].

In the presence of the sequencing operator we can provide texts with compositional
translations, as (13) illustrates.

(13) T
[x1,x2| man x1, woman x2, x1 adores x2, x2 abhors x1, x1 bores x2]

T
[x1,x2| man x1, woman x2, x1 adores x2, x2 abhors x1]

T

S
[x1,x2| man x1, woman x2, x1 adores x2]

a
1
 man adores a

2
 woman

 

S
[ | x2 abhors x1]

she 2 abhors him 1

 

 

S

[ | x1 bores x2]

he1 bores her 2

 

But clearly, given the tools we have developed thus far, this can only work on a
suprasentential level. For compositionality on the subsentential level we need an
additional strategy, which will be developed in section III.

II.3. Proper Names
The treatment of proper names in DRT seems to be inherently non-local inasfar as the
proper name rule in the DRS construction algorithm places material in the topmost
box of the DRS under construction. In the earliest version of the theory (Kamp
[1981]), for example, sentence (14) would be translated as (15). Even though the
names ‘Sue’ and ‘Tom’ are encountered in the antecedent of the conditional, the
discourse referents x1 and x2 they give rise to are placed at the top level of the
discourse representation structure. Conditions x1 is sue and x2 is tom, where sue and
tom are individual constants, constrain the interpretation of these discourse referents
and are also placed at top level. In more recent versions of the theory (such as Kamp
& Reyle [1993]) we find a slightly different form for these constraining conditions:
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(16) is the DRS that is connected with (14) now. The expressions Sue and Tom are
one-place predicate symbols here, denoting the predicates ‘being a Sue’ and ‘being a
Tom’, or perhaps ‘being named Sue’ and ‘being named Tom’. This means that
situations in which more than one person carries a particular name are allowed for
now. But in this approach too, we find that discourse referents connected with names
and the conditions constraining them are put at the top of the box, not in the antecedent
of the conditional.

(14) If Sue ignores Tom he is miserable. He adores her.

(15) [x1 x2 | x1 is sue, x2 is tom, [ | x1 ignores x2] ⇒ [ | miserable x2],
x2 adores x1]

(16) [x1 x2 | Sue x1, Tom x2, [ | x1 ignores x2] ⇒ [ | miserable x2],
x2 adores x1]

However, as Kamp & Reyle (pp. 246-248) note, the interpretation strategy which is
illustrated by (16) is wrong. In a situation where two girls a and b are both called
‘Zebedea’ we cannot use ‘Zebedea loves a stockbroker’ to express that either a or b
loves a stockbroker; the sentence can only be used with unique reference to some
Zebedea. For this reason Kamp & Reyle propose to adopt the device of external
anchoring. An external anchor is a finite function from discourse referents to the
objects they are meant to denote and in Kamp & Reyle’s proposal these anchors may
appear in the discourse representation. For example, if d1 is Sue and d2 is Tom, then
(17) is now a DRS for (14).

(17) [x1 x2 | { 〈x1, d1〉, 〈x2, d2〉} , [ | x1 ignores x2] ⇒ [ | miserable x2],
x2 adores x1]

The idea is that x1 and x2 are constrained to be Sue and Tom respectively. Formally,
we can let an anchor f be a condition with interpretation {a | f ⊆ a}, so that the
interpretation of (17) becomes the set of all pairs 〈a, a'〉 such that a and a' differ at
most in x1 and x2, a'(x1) = d1 (= Sue), a'(x2) = d2 (= Tom) and such that a' also
satisfies the last two conditions of (17).

Two remarks can be made. The first is that we seem to have an illustration of the
non-transitivity of improvement here: although the interpretation strategy that gave rise
to (17) was presented as an improvement over the strategy that lead to (16), and (16)
as an improvement over (15), we cannot conclude that (17) is an improvement over
(15) because, in the intended models where I(sue) = d1 and I(tom) = d2, these boxes
have exactly the same denotations, and in fact it can be said that the external anchor
{ 〈x1, d1〉, 〈x2, d2〉} is just a way to express what would otherwise be expressed as x1
is sue, x2 is tom. A second remark is that discourse markers which are anchored to
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specific objects in the model in fact are no variables but are constants. If x1 and x2 are
anchored to Sue and Tom from the outset, these variables are not allowed to vary and
in fact function as constants; but then why not straightforwardly use constants sue and
tom instead, which are already appropriately anchored by the interpretation function?
The intended translation of (14) then becomes (18).

(18) [ | [ | sue ignores tom] ⇒ [ | miserable tom], tom adores sue]

In order for this to work we must allow constants to be discourse referents, as we have
done in II.1. A name will simply be translated as a constant discourse referent and
pronouns can pick up constant discourse referents from any position, provided that
these were introduced somewhere in the text.

An important advantage of this strategy is that it is no longer necessary to have a
non-local rule for the interpretation of names: since constants are scopeless we can
interpret them in situ. This solves a difficulty that compositional treatments of DRT,
such as Groenendijk & Stokhof’s DPL and DMG systems and the systems in
Muskens [1991, 1995a], usually have with proper names. The special form of the
DRT rule for processing names is an artefact of the standard convention that only
variables can function as discourse referents. As soon as we allow constants to be
discourse referents as well, we can process names locally. Although this procedure is
optically different from the approach where discourse markers for names are
externally anchored, there seems to be no real difference, as externally anchored
referents in fact are constants.

III. COMPOSITIONAL DRT

III.1. The Logic of Change
The sequencing operator introduced in II.2 allows us to compute the meaning of
certain texts from the meanings of the sentences they are built from, but it does not
allow us to compute the meanings of these sentences from those of smaller building
blocks of language. The theory simply does not assign meanings to such constituents.
If we want to build up meanings compositionally from the lexical level to the level of
texts we must provide for representations of such meanings and we shall therefore
adopt Montague’s strategy to introduce lambda-abstraction and application into the
logical language. In this section and the next ones we shall see how these two logical
notions can be combined with the DRT syntax that was defined above. Fortunately
there is no need to do anything very special on the logical side, for it turns out that
ordinary many-sorted type logic satisfies our needs. There is a natural way to emulate
the DRT language in type logic, provided that we adopt a few axioms. As we have
seen, the DRT language talks about embeddings and our set-up will enable us to do
likewise.



11

We shall have at least four types of primitive objects in our logic:5 apart from the
ordinary cabbages and kings sort of entities (type e) and the two truth values (type t)
we shall also allow for what I would like to call pigeon-holes or storages or registers
(type π) and for states (type s). Registers, which are the things that are denoted by
discourse referents, may be thought of as small chunks of space that can contain
exactly one object. The intuitive idea (which should not be taken too seriously,
however, since we are talking about non-deterministic processes) is that whenever in a
text we encounter an indefinite noun phrase like a pigeon , some pigeon is stored in
a register connected to the indefinite; whenever we encounter the pronoun it ,
anaphorically related to the indefinite, we interpret it as referring to the contents of that
register. A proper name like Sue will also be connected with a register and a pronoun
she  anaphorically related to Sue will be interpreted as the contents of that storage.
This explains how in a little text such as (19) the anaphoric relationships are
established.

(19) Sue3 has a 8 pigeon. She 3 feeds it 8.

There is a difference in kind between registers connected to indefinites and registers
connected to names. The contents of the first can always be changed and will
accordingly be called variable registers. The second kind of registers always have a
fixed inhabitant and are called constant registers. Variable registers and constant
registers will very much play the role that individual variables and constants played in
section II, but unlike these they are model-theoretic objects. Discourse referents will
simply be names of registers, i.e. constants of type π. Those naming variable registers
will be called unspecific discourse referents; those denoting constant registers are
called specific discourse referents. Note that an unspecific discourse referent is a
constant of the language itself, but denotes an object which may be thought of as a
variable; a specific discourse referent is a constant which denotes something which
always has the same value.

A state may be thought of as a list of the current inhabitants of all registers. States
are very much like the program states that theoretical computer scientists talk about,
which are lists of the current values of all variables in a given program at some stage of
its execution.

We will typically use u to range over unspecific referents, but Tim, Tom, Mary
(written with an initial capital letter) and the like to range over specific ones. Variables
over registers are possible as well and we shall typically use v for these. Variables of
type e are typically denoted with x and we shall also retain the type e constants tim,

5 For each n let us define TYn just as the logic TY2 in Gallin [1975], but with n basic types other
than t instead of Gallin’s two types e and s. TY0 is the logic described in Henkin [1963], TY1 is
Church’s [1940] original theory of types, TY2 is Gallin’s logic, TY3 is the logic that we are
working in presently.  Of course, all systems in this hierarchy, with the exception of TY0 (in which
all Henkin models are standard models and vice versa), have virtually the same metatheory.



12

i1 i2 i3 i4 i5 L

u1: Bob Joe Joe Tim Tom L

u2: Tim Jim Ann Sue Rob L

u3: Lee Bob Lee Lee Jan L

u4: Sue Pat Sue Sue Jan L

u5: Ann Ann Ann Ann Sue L

u6: Tom Ann Tom Tom Jim L

M M M M M M

Tim: Tim Tim Tim Tim Tim L

Joe: Joe Joe Joe Joe Joe L

M M M M M M O

Figure 1

tom, mary (no capital) from section II. Table 1 sums up the various conventions that
will be used.

Type Name of objects Variables Constants
s states i, j, k, h

e entities x1, x2, … mary, …
π registers v u1, u2, … (unspecific discourse referents)

Mary, … (specific discourse referents)
Table 1.

Pictorially the relation between states, entities and registers is as in Figure 1. We have
an infinity of unspecific referents u1,…,un,…, a set of specific referents Tim, Tom,
Mary,… and an infinity of states i1,…,in,…. Each discourse referent corresponds to a
register which in each state has some occupant (an entity). We shall let V be a fixed
non-logical constant of type π(se) and denote the inhabitant of register δ in state i with
the type e term V(δ)(i). In the given figure V(u3)(i4) = Lee for example. Note that
each state i corresponds to a function λv(V(v)(i)), which is as close to an embedding
as one can get, since it assigns an entity to each variable register.

In order to impose the necessary structure on our models we must adopt some
definitions and axioms. First a definition: let i[δ1…δn]j be short for

∀v((δ1 ≠ v ∧…∧ δn ≠ v) → V(v)(i) = V(v)(j)),
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for all type s terms i and j and all δ1,…,δn of type π;  i[] j will stand for the formula
∀v(V(v)(i) = V(v)(j)). The formula i[δ1…δn] j  now expresses that i and j differ at
most in δ1,…,δn. Next the axioms. Letting VAR be a predicate of type πt (singling
out the variable registers), we require the following:

AX1 ∀i∀v∀x(VAR(v) → ∃j(i[v]j ∧ V(v)(j) = x))
AX2 VAR(u) , if u is an unspecific referent
AX3 un ≠ um , for each two different unspecific referents un and um
AX4 ∀i(V(Tom)(i) = tom),

∀i(V(Mary)(i) = mary),
∀i(V(Tim)(i) = tim), etc., for all names in the fragment.

AX1 demands that for each state, each variable register and each individual, there must
be a second state that is just like the first one, except that the given individual is an
occupant of the given register. The axiom is connected to Janssen’s [1986] ‘Update
Postulate’ and to ‘Having Enough States’ in Dynamic Logic (see e.g. Goldblatt
[1987]). The second axiom says that unspecific referents refer to variable registers and
the third axiom demands that different unspecific discourse referents denote different
registers. This is necessary, as an update on one discourse referent should not result in
a change in some other discourse referent’s value. The fourth axiom scheme ensures
that constant registers always have the same inhabitant and establishes the obvious
connection between constant referents and the corresponding constants of type e.

Type logic enriched with these first-order non-logical axioms (axiom schemes) will
be our ‘Logic of Change’. The logic has the very useful property that it allows us to
have a form of the ‘unselective binding’ that seems to be omnipresent in natural
language (see Lewis [1975]). Since states (Lewis’s ‘cases’6) correspond to lists of
items, a single quantification over states may correspond to multiple quantifications
over the items in such a list. The following lemma gives a precise formulation of this
phenomenon; it has an elementary proof based on AX1 and AX2.

UNSELECTIVE BINDING LEMMA . Let u1,…,un be unspecific referents of type π, let
x1,…,xn be  distinct variables of type e, let ϕ be a formula that does not contain j and
write [V(u1)(j) / x1,…,V(un)(j) / xn ]ϕ for the simultaneous substitution of V(u1)(j) for
x1 and … and V(un)(j) for xn in ϕ, then:

|=AX  ∀i(∃j(i[u1,…,un ]j ∧ [V(u1)(j) / x1,…,V(un)(j) / xn]ϕ) ↔ ∃x1…∃xnϕ)

6 The items in our lists are all of individual type, whereas Lewis’s cases are lists of objects of
various types. See Muskens [1995a] for a generalisation that will allow objects of many types to be
the inhabitants of registers.
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III.2. Boxes in type logic
The reader may note that all concepts expressed in the language of set theory that were
needed to give a semantics for DRT in clauses SEM1–SEM4 are now available in our
type logic. This means that it is possible now to have analogues of these clauses as
abbreviations in our logic. In particular (letting δ typically range over terms of type π,
specific as well as unspecific discourse referents) we may agree to write

ABB1 R{ δ1,…,δn} for λi.R(V(δ1)(i))…(V(δn)(i)),
δ1 is δ2 for λi.V(δ1)(i) = V(δ2)(i),

ABB2 not K for λi¬∃jK(i)(j),
K or K' for λi∃j(K(i)(j) ∨ K'(i)(j)),
K ⇒ K' for λi∀j(K(i)(j) → ∃kK'(j)(k)),

ABB3 [u1…un | γ1,…,γm] for λiλj(i[u1,…,un]j ∧ γ1(j) ∧…∧ γm(j)),
ABB4 K ; K' for λiλj∃k(K(i)(k) ∧ K'(k)(j)).

In ABB1 R must be a constant of type ent, where ent is defined by letting e0t be t and
ek+1t be e(ekt). We shall write R{ δ1,δ2} as δ1Rδ2 and R{ δ1} as Rδ1.

The principal difference between the clauses given here and SEM1–SEM4 is that
we no longer interpret the boxes and conditions of DRT in a metalanguage, but that
we consider them to be abbreviations of expressions in our type logical object
language. Boxes are abbreviations of certain s(st) terms, conditions are shorthand for
terms of type st. Otherwise SEM1–SEM4 and ABB1–ABB4 are much the same.

Let us see how these abbreviations work. First note that e.g. u2 abhors John turns
out to be short for λi.abhors(V(u2)(i))(V(John)(i)), which, given AX4, is equivalent to
λi.abhors(V(u2)(i))(john). The discourse referents u2 and John have an indirect refer-
ence here: they act as addresses of the memory locations where, in state i, the objects
V(u2)(i) and V(John)(i) are to be found. Next, consider (20); ABB3 tells us that this
term is really short for (21) and with ABB1 plus λ-conversion we find that the latter is
equivalent to (22).

(20) [u1 u2 | man u1, woman u2, u1 adores u2, u2 abhors u1]

(21) λiλj(i[u1, u2]j ∧ (man u1)(j) ∧ (woman u2)(j) ∧ (u1 adores u2)(j) ∧
(u2 abhors u1)(j))

(22) λiλj(i[u1, u2]j ∧ man(V(u1)(j)) ∧ woman(V(u2)(j)) ∧
adores(V(u1)(j))(V(u2)(j)) ∧ abhors(V(u2)(j))(V(u1)(j)))

In a similar way all other boxes can be rewritten as certain terms λiλjϕ, where ϕ is a
first-order formula. Of course, for practical purposes we greatly prefer the more
transparent box notation and in fact it will turn out to be completely unneccessary to
expand definitions.
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However, if we want to talk about the truth of a given sentence (given an input state)
the box notation is no longer adequate and it seems better to switch to a more con-
ventional predicate logical form in that case. We say that a condition γ is true in some
state i in M if γ(i) holds in M and that γ is true in M simpliciter if γ is true in all states i
in M. We define a box K to be true in some state i if ∃jK(i)(j) is true; K is true if K is
true in all states i in M. This corresponds to the definition of truth in DRT as the
existence of a verifying embedding. For example, the truth conditions of (22) can be
rendered as (23).

(23) ∃j(i[u1, u2]j ∧ man(V(u1)(j)) ∧ woman(V(u2)(j)) ∧
adores(V(u1)(j))(V(u2)(j)) ∧ abhors(V(u2)(j))(V(u1)(j)))

This, of course, is not the formula that we would normally associate with the truth-
conditions of (1), the text which was represented by (20). But it is equivalent to it:
using the Unselective Binding Lemma we readily reduce the unneccessarily com-
plicated (23) to the more familiar (24) below.

(24) ∃x1x2 (man(x1) ∧ woman(x2) ∧ adores(x1)(x2) ∧ abhors(x2)(x1))

For a general algorithmic method for going from boxes to the predicate logical terms
giving their truth-conditions, see III.5.

Replacing SEM1-SEM4 by ABB1-ABB4 meant a move from meta-language to
object-language.7 The gain is that we now have lambda-abstraction and application in
our logic: it is now legal to use terms such as λv[ | farmer v], where v is a type π
variable, and λP'λP([u2 | ] ; P'(u2) ; P(u2)), where P and P' are variables of type
π(s(st)). The first of these expressions may be considered to be a translation of the
common noun farmer  and the second a translation of the indexed indefinite de-
terminer a2. Since we are working in a standard type logic, λ-conversion holds, and it
is easily seen that the application of the second term to the first is equivalent to λP([u2
| ] ; [ | farmer u2] ; P(u2)). Since the Merging Lemma is still valid under the new
interpretation of the DRT constructs, as the reader may want to verify, the latter term
further reduces to λP([u2 | farmer u2] ; P(u2)), which will be our translation of a2

farmer . This means that we can compute the meaning of this indefinite noun phrase
from the meanings of its parts. In III.4 below we shall see how the method enables us
to get a compositional translation of simple texts into boxes, but first we shall set up
some syntactic scaffolding.

7 Note that we have injected that part of the metatheory that deals with the assignment of values to
variables into the object language. Compare this to what happens in modal logic, where models are
treated as possible worlds and the consequence relation is treated as strict implication on the object-
level (see Scott [1971]).
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III.3 A Small Fragment of English: Syntax
In order to be able to illustrate how our compositional semantics works, we need to
have the syntax of a small fragment of English at our disposal. The exact choice of
formalism is quite unimportant here and we can largely remain agnostic about matters
syntactic except inasfar as they effect the interpretability of the input to the semantic
component. The most important requirement that we impose is that the syntactic
component of grammar assigns indices to all names, pronouns and determiners. We
shall follow the convention in Barwise [1987] and index antecedents with superscripts
and dependent elements with subscripts. A pair consisting of a subscript n and that
same number n occurring as a superscript may be thought of as an arrow going from
the subscripted to the superscripted element. The indexed little text in (25), for
example, should really be thought of as (26), where the anaphoric dependencies are
shown with the help of arrows.

(25) A1 farmer  owns a2 donkey . He1 beats  it 2.

(26) A farmer owns a donkey. He beats it.  

We require that no two superscripts are the same, reflecting the fact that dependent
elements can have only one antecedent and, since we are primarily interested in the
phenomenon of linguistic anaphora as opposed to deixis, we demand that for each
subscript n there is a superscript n, i.e. each dependent element has an antecedent. The
relation between dependent elements and their antecedents thus becomes a total
function, which we shall denote as ant. In (25), for example, ant(it 2) will be a2.
There will be no further requirements on indexing as we want our semantic theory to
predict which anaphoric relations can obtain, as far as semantics is concerned, and we
do not want to stipulate matters a priori.

The syntax of our fragment will be couched in a transformational setting, a reduced
version of the Government and Binding approach in the tradition of Chomsky [1981]8

(the reader will have no difficulty to transpose things to her favourite syntactical
formalism). We assume that there are four components of syntax called D-Structure
(DS), S-Structure (SS), Logical Form (LF) and Phonological Form (PF) respectively.
The first three of these components will be defined as sets of labelled bracketings, or
trees, connected by movement rules (‘move α’). In our limited set-up we shall assume
that S-Structure can be defined from D-Structure with the help of a rule called

8 For a connection between traditional Montague Semantics and the full GB theory which is close
to the present interpretation of a reduced GB theory on the basis of CDRT, see Bittner [1994]. For a
connection between the present semantic theory and Lambek Categorial Grammar see Muskens
[1994].
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Relativization and that LF can be defined from SS using a rule called Quantifier
Raising. PF will also be defined from SS and the overall set-up of the syntax of our
fragment will thus conform to the standard picture below.

(27) DS

SS

PF      LF

Let us fill in some details. We define the DS component of our grammar to consist of
all labelled bracketings that can be generated in the usual way with the help of phrase
structure rules PS1–PS12 and lexical insertion rules LI1–LI9.

(PS 1) T → T S
(PS 2) T → S
(PS 3) S → S' S
(PS 4) S' → IMP S
(PS 5) S → NP VP
(PS 6) VP → AUX V '

(PS 7) VP → V'
(PS 8) V' → V t NP
(PS 9) V' → V in
(PS 10) NP → DET N'
(PS 11) N' → N
(PS 12) N' → N S

(LI 1) DET → an, every n, non,
somen

(LI 2) NP → hen, she n, it n
(LI 3) NP → Mary ,…
(LI 4) NP → who, whom, which

(LI 5) N → farmer, boy …
(LI 6) AUX → doesn't , don’t
(LI 7) Vt → own,…
(LI 8) V in → stink ,…
(LI 9) IMP → if

This part of the grammar should clearly be augmented with some feature system in
order to rule out the worst overgeneration, but since it seems possible to handle the
semantics of this particular fragment without taking recourse to interpreting features,
the addition of such a system has been suppressed. Here are some examples of
labelled bracketings (or, trees) that are elements of DS.

(28) [T[T[S[NP[DETa1][N' [Nman]]][ VP[V' [Vt
adores ][NP[DETa2]

[N' [Nwoman]]]]][ S[NPshe 2][VP[V' [Vt
abhors ][NPhim 1]]]]]]

(29) [NP[DETa7][N' [Ngirl ][S[NP[DETevery 3][N' [Nboy ]]]
[VP[V' [Vt

adores ][NPMary 4]]]]

(30) [NP[DETa7][N' [Ngirl ][S[NP[DETevery 3][N' [Nboy ]]]
[VP[V' [Vt

adores ][NPwhom]]]]
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Clearly, structures like (29) are not grammatical. We could try to rule them out on the
level of syntax, but have chosen to account for their ungrammaticality by not assigning
them any meaning. Why (29) is not interpretable will become clear in the next section.

We now come to the definition of S-Structure. In order to connect D-Structures
like (30) to acceptable forms of English that will be interpretable in our semantics, we
shall employ a rudimentary version of the movement rule of Relativization. Informally
speaking, Relativization allows us to move any relative pronoun from the position were
it was generated and adjoin it to some S node higher up in the tree. The relative
pronoun leaves a trace with which it becomes coindexed. More formally, we say that a
tree (labelled bracketing) Ξ follows by Relativization from a tree Θ if and only if Ξ is
the result of replacing some subtree of Θ of the form [S X [NPwh] Y], where X and Y
are (possibly empty) strings and wh is either who, whom or which , by a tree
[S[NPwh]n[S X en Y]], where n is any number not occurring in Θ. Abbreviated:

(Relativization) [S X [NPwh] Y]  ⇒  [S[NPwh]n[S X en Y]]

As an example note that (31) belows follow by Relativization from (30).

(31) [NP[DETa7][N' [Ngirl ][S[NPwhom]6[S[NP[DETevery 3][N' [Nboy ]]]
[VP[V' [Vt

adores ]e6]]]]

The formal definition of S-Structure is that it is the smallest set of trees that includes
D-Structure and is closed under Relativization. Thus DS ⊆ SS, which may be a
surprising definition in view of the fact that trees like (30) are not normally accepted as
S-Structures. But again there is the question of interpretability: (30), unlike (31), will
not receive an interpretation in the semantics to be defined below and in effect no harm
is done.

We shall not attempt to give a serious definition of PF, as phonology is not a
concern of this paper, but as a stop-gap we shall reduce phonology to orthography and
stipulate that Phonological Forms are defined from S-Structures by the rule that any
S-Structure without its brackets, indexes and traces is a Phonological Form. Thus (32)
below is the Phonological Form that results from (31).

(32) a girl  whom every  boy  adores

Lastly, we come to the definition of LF, the component of grammar that will be in-
terpreted by our semantics. The motivation for having this component in syntax is—it
must be confessed—entirely semantical in nature: on the one hand we want the
language that is to be interpreted to be unambiguous (a ‘disambiguated language’ in
Montague’s sense), on the other we want to account for scope ambiguities like the one
that arguably exists in (33).
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(33) every  girl  adores  a boy

The two different readings that this sentence seems to have will be obtained by
adopting the rule of Quantifier Raising (May [1977]). Quantifier Raising adjoins NPs
to S. Formally, a tree Ξ follows by Quantifier Raising from a tree Θ if and only if Ξ is
the result of replacing some subtree Σ of Θ of the form [S X [NP Z] Y], by [S[NP Z]n[S
X en Y]], where n is any number not occurring in Θ. Conditions on this rule are that
 [NP Z] is a tree, that Z is not not a (relative) pronoun, and that [NP Z] does not occur as
a proper subtree of a subtree of Σ of the form [NP Z']. We abbreviate the rule as
follows

(Quantifier Raising) [S X [NP Z] Y]  ⇒  [S[NP Z]n[S X en Y]]

In order to give some examples of applications of this rule we note that (35) follows
by Quantifier Raising from the S-structure (34); (36) and (37) in their turn follow by
Quantifier Raising from (35).9

(34) [S[NPevery 1 girl ] adores  [NPa2 boy ]]
(35) [S[NPa2 boy ]3[S[NPevery 1 girl ] adores  e3]]
(36) [S[NPevery 1 girl ]4[S[NPa2 boy ]3[Se4 adores  e3]]]
(37) [S[NPa2 boy ]3[S[NPevery 1 girl ]4[Se4 adores  e3]]]

We define LF to be the smallest set of trees that contains SS and is closed under
Quantifier Raising. Note that SS ⊆ LF, which means that our rule of Quantifier
Raising is optional, just like Relativization was. But while structures like (30) simply
do not get an interpretation, structures like (34) and (35) do. The first will in fact be
connected to the ∀∃ reading of sentence (33) and the second to its ∃∀ reading.
Structures (36) and (37) will also be connected to these readings and so one might
want to define only these to belong to LF proper, stipulating perhaps that every non-
pronominal NP must be raised exactly once. But since this would not alter the set of
meanings that are connected with any S-structure and since the present definition is
simpler than the one that we would need in that case, we shall deviate from tradition
and let the definition of LF be as it stands.

III.4. A Small Fragment of English: Semantics
Before we assign meanings to the LF expressions of the little fragment given in the
preceding section, let us agree on some notational conventions. In Table 2 below some

9 Note that, as an anonymous referee kindly pointed out, trees such as (36) and (37) can be the
input of Quantifier Raising again, with results such as [S[NPevery 1 girl ]4[Se4[S[NPa2

boy ]3[Se4 adores  e3]]]]. However, such structures will receive no translations by the rules that
will be formulated in the next section and are therefore out on semantic grounds. We may, but need
not, stipulate that such structures are out syntactically as well.
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types are listed, together with the typography that we shall typically use when referring
to variables and constants of these types. Since all logical expressions that we shall
assign to expressions of the fragment will be equivalent to terms consisting of a chain
of lambdas followed by an expression of the box type s(st), it is useful to have a
special notation for the types of such expressions: we shall abbreviate any type of the
form α1(…(αn(s(st))…) as [α1…αn]. So boxes have type [] and, as will become clear
below, we associate terms of type [π] with common nouns and intransitive verbs, terms
of type [[[π]]π] with transitive verbs, terms of type [[π]] with noun phrases, terms of
type [[π][π]] with determiners, etcetera. Verb phrases will either get [[[π]]] or the
more basic [π], depending on whether they dominate an auxiliary or not.

Type Abbreviation Name of objects Variables Constants
et — static one-place

predicates
— stinks,

farmer,…
e(et) — static two-place

relations
— loves,

owns,…
s(st) [] dynamic propositions p, q —
π(s(st)) [π] dynamic one-place

predicates
P —

(π(s(st)))(s(st)) [[π]] dynamic one-place
quantifiers

Q —

Table 2.

Translations of lexical elements and indexed traces are given in rule T0 below.10 Note
that each possible antecedent A (a determiner or a proper name) introduces a new
discourse referent, which we shall denote as dr(A). So, for example, dr(no27) will be
u27 and dr(John 3) will be John. Anaphoric pronouns pick up the discourse referent
that was created by their antecedent. In (38), for example, we have that ant(it 8) = a8,
and so dr(ant(it 8)) = u8, which means that T0 assigns λP(P(u8)) (the ‘lift’ of u8) to
it 8. Similarly, since dr(ant(she 3)) = Sue, the pronoun she 3 will be translated as
λP(P(Sue)).

(38) Sue3 has a 8 pigeon. She 3 feeds it 8.

10 Not all lexical items are actually given here; but the ones that are absent should be treated in
analogy with the nearest ones that are present, so e.g. boy  translates as λv[  | boy v] since the
translation of farmer  is given as λv[ | farmer v].
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T0 BASIC TRANSLATIONS11

type
an λP'λP([un | ] ; P'(un) ; P(un)) [[π][π]]
non   λP'λP[ | not([un | ] ; P'(un) ; P(un))] [[π][π]]
every n  λP'λP[ | ([un | ] ; P'(un)) ⇒ P(un)] [[π][π]]
Mary n  λP.P(Mary) [[π]]
hen   λP(P(δ)), where δ = dr(ant(hen) [[π]]
en  λP(P(vn)) [[π]]
who  λP'λPλv(P(v) ; P'(v)) [[π][π]π]
farmer    λv[ | farmer v] [π]
stink    λv[ | stinks v] [π]
love   λQλv(Q(λv'[ | v loves v'])) [[[ π]]π]
doesn't  λPλQ[ | not Q(P)] [[π][[ π]]]
if    λpq[ | p ⇒ q] [[][]]

From these basic translations other terms translating complex expressions can be
obtained by specifying how the translation of a mother node depends on the
translations of its daughters. We provide five rules. The first says that single-daughter
mothers simply inherit their translations from their daughters. The second allows for
applying a translation of one daughter to a translation of another daughter and placing
the result on the mother. The third is the sequencing rule that we have met in II.2.: a
text followed by a sentence can be translated as a translation of that text sequenced
with a translation of that sentence. The fourth rule handles quantifying-in. The last rule
allows us to simplify translations. We say that a term β follows by reduction from a
term α if we can obtain β from α by a finite number of lambda conversions and
mergings, i.e. replacements of subterms [u1…un | γ1,…,γm] ; [u'1…u'k | δ1,…,δq] with
[u1…unu'1…u'k | γ1,…,γm,δ1,…,δq], provided none of u'1…u'k occurs in any of
γ1,…,γm.12 T5 states that such reductions can be performed.

T1 COPYING

If A  α and A is the only daughter of B then B α.

11 The category-to-type rule that has been at the back of my mind while writing down these
translations is TYP(e) = π, TYP(t) = [] and TYP(A/B) = (TYP(B),TYP(A)), where e and t are
basic categories and other categories are defined as in Montague [1973]. With the help of this
category-to-type rule it is a relatively simple task to assign the present semantics to Generalised
Categorial Grammars such as the Lambek Calculus (see Muskens [1994]). We could also connect the
semantics with a subsystem of the undirected Lambek calculus to obtain a scoping and type-shifting
system, as it is done in Hendriks [1993], who extends the rules of Partee & Rooth [1983].
12 The provision can be relaxed somewhat by requiring that none of u'1…u'k occurs free in any of
γ1,…,γm. For the notion of a free occurrence of an unspecific referent see III.5.
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T2 APPLICATION

If A  α, B β and A and B are the only daughters of C, then C α(β), provided
that this is a well-formed term.

T3 SEQUENCING

If T τ, S σ and  T and S are daughters of T' then T' τ ; σ, provided that this is
a well-formed term.

T4 QUANTIFYING-IN
If NPn η, S σ and  NPn and S are daughters of S' then S' η(λvnσ), provided
that this is a well-formed term.

T5 REDUCTION

If A  α and β follows from α by reduction then A β.

In these rules we identify trees with their top nodes. Formally, we define translates as
to be the smallest relation  between trees and logical expressions that conforms to
T0-T5. It is useful to think of T0-T5 as rules for decorating trees. For example, (39)
shows a decoration for the tree for a1 man adores  a2 woman (only translations that
are not simply copied from the lexicon T0 or from a single daughter node are
displayed).

(39) S
[u1,u2| man u1, woman u2, u1 adores u2]

NP
λP([u1| man u1] ; P(u1))

DET

a
1

N'

N

man

VP

V'
λv[u2| woman u2, v adores u2]

Vt

adores

NP
λP([u2| woman u2] ; P(u2))

DET

a
2

N'

N

woman

Here, since a2 translates as λP'λP([u2 | ] ; P'(u2) ; P(u2)) and woman translates as λv[
| woman v], the tree for a2 woman translates as the former term applied to the latter,
which reduces to λP([u2 | woman u2] ; P(u2)) with the help of lambda conversion and
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merging. The application of the translation of adores  to this term then reduces to
λv[u2 | woman u2, v adores u2]. Continuing the process in this way will lead to a
decoration of the S node with the desired translation.

In order to give an example of an application of the Quantifying-in rule, I have
decorated (35) with translations in (40) below. The trace e3 introduces a free variable
v3 into the translation of the lower S node here, but, since the NP that is quantified-in
is coindexed with this trace, the variable gets bound in the translation of the next node.
The result is a translation that gives the indefinite a2 boy  scope over the quantified
noun phrase every 1 girl . The discourse referent corresponding to the indefinite
lands at the top of the box and can hence be picked up by pronouns later in the text. In
(41) we see that such continuations are indeed possible. Of course, in the simple
every  girl  adores  a boy  case strong preference is given to the narrow scope
reading of a boy . But if we add a relative clause to the noun, for example, the wide
scope interpretation becomes completely natural.

(40) S
[u2| boy u2, [u1| girl u1] ⇒ [ | u1 adores u2]]

NP3

λP([u2| boy u2] ; P(u2))

DET

a
2

N'

N

boy

S
[ | [u1| girl u1] ⇒ [ | u1 adores v3]]

NP
λP[ | [u1| girl u1] ⇒ P(u1)]

DET

every
1

N'

N

girl

VP

V'
λv[ | v adores v3]

Vt

adores

e3

(41) Every girl adores a boy (I met yesterday). He adores only himself.

Structures that result from Quantifier Raising are not the only ones that allow for an
application of the Quantifying-in rule. The results of Relativization can also be
decorated with its help. In (42) an example is shown. The translation of whom is
applied to λv6[ | [u3 | boy u3] ⇒ [  | u3 adores v6]] here, resulting in a term that is
applicable to the translation of girl . Clearly, the position of the relative pronoun
plays an essential role for the interpretability of the tree in this example. In (30), where
the relative pronoun has not moved from its original position, the translation of
adores  cannot apply to the translation of whom and neither can whom apply to
adores . Therefore the V' and the rest of the tree above it will get no translation (note
that our definition of the translation relation allows for this). In (29) the trouble arises
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when we want to apply the translation of girl  to the translation of the S or vice versa.
The same mechanism also renders those trees uninterpretable that result from two or
more applications of Relativization to the same relative pronoun.

(42) NP
λP([u7| girl u7, [u3| boy u3] ⇒ [ | u3 adores u7]]  ; P(u7))

DET

a
7

N'
λv[ | girl v, [u3| boy u3] ⇒ [ | u3 adores v]]

N

girl

S
λPλv(P(v) ; [ | [u3| boy u3] ⇒ [ | u3 adores v]])

NP6

whom

S
[ | [u3| boy u3] ⇒ [ | u3 adores v6]]

NP
λP([ | [u3| boy u3] ⇒ P(u3)])

DET

every
3

N'

N

boy

VP

V'
λv[ | v adores v6]

Vt

adores

e6

In Montague’s PTQ (Montague [1973]) the Quantifying-in rules served two pur-
poses: a) to obtain scope ambiguities between noun phrases and other scope bearing
elements, such as other noun phrases, negations and intensional contexts, and b) to
bind pronouns appearing in the expression that the noun phrase took scope over. In
the present set-up the mechanism of discourse referents takes over the second task. In
(43), for example, we see that the pronoun he  can pick up the discourse referent that
was introduced by a farmer , but no use has been made of Quantifier Raising or
Quantifying-in.



25

(43) S
[ | [u1| farmer u1,  drinks u1] ⇒ [ | stinks u1]]

S'
λq([ | [u1| farmer u1,  drinks u1] ⇒ q]

IMP

if

S
[u1| farmer u1,  drinks u1]

NP
λP([u1| farmer u1] ; P(u1))

DET

a1

N

farmer

VP

V'

Vin

drinks

S
[ | stinks u1]

NP

he1

VP

V'

Vin

stinks

III.5. Accessibility
A concept which plays an important role in the standard DRT construction algorithm
is that of accessibility. Resolving a pronoun as an unspecific discourse referent u will
result in a new occurrence of u in the discourse representation, but the pronoun cannot
so be resolved unless an earlier occurrence of u is accessible from this new
occurrence. Accessibility will play an important role here too and, for any given DRS
K and any given occurrence of a variable u in an atomic condition in K, we shall define
the set acc(u, K) of discourse referents that are accessible from u in K. In order to be
able to define this set inductively, we are interested in sets acc(u, γ), where γ is a
condition, as well. As a preliminary step we let the set of active discourse referents,
adr(K), of any box K be defined by:

adr([u1,…,un | γ1,…,γm]) = {u1,…,un}
adr(K1 ; K2) = adr(K1) ∪ adr(K2)

Intuitively, the active discourse referents of K are those referents that K can ‘bind to its
right’; for example the discourse referents that an antecedent of a conditional can bind
in the consequent. The following rules define the function acc.

(i) acc(u, ϕ) = ∅, if ϕ is atomic
(ii) acc(u, not K) = acc(u, K)
(iii) acc(u, K1 or K2) = acc(u, K1), if u occurs in K1

= acc(u, K2), if u occurs in K2
(iv) acc(u, K1 ⇒ K2) = acc(u, K1), if u occurs in K1

= acc(u, K2) ∪ adr(K1), if u occurs in K2
(v) acc(u, [u1,…,un | γ1,…,γm]) = acc(u, γi) ∪ { u1,…,un}, if u occurs in γi
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(vi) acc(u, K1 ; K2) = acc(u, K1), if u occurs in K1
= acc(u, K2) ∪ adr(K1), if u occurs in K2

We say that u' is accessible from an occurrence of u in K if u' ∈ acc(u, K); an oc-
currence of an unspecific referent u in an atomic condition is free in K if u ∉ acc(u,
K) and u is free in γ if u ∉ acc(u, γ). A DRS that contains no free referents is a
proper DRS. In III.3. we have imposed a very liberal indexing mechanism requiring
only that the relation ant between dependent elements and their antecedents be a total
function from subscripts to superscripts. We now distinguish between those indexed
texts which are semantically acceptable and those which are not by requiring the
former to have a proper DRS as a translation.

The notion of being a proper DRS is representational in the sense that a proper
box K and a box K' which is not proper may have exactly the same semantic value.
For example, (45), the translation of (44), in any model denotes exactly the same
relation between states as (47), the translation of (46). Yet (45) is a proper DRS while
(47) is not.

(44) No1 girl  walks
(45) [ |  not[u1| girl  u1, walk u1]]

(46) *No1 girl  walks. If she 1 talks she 1 talks
(47) [ |  not[u1| girl  u1, walk u1], [ | talk u1] ⇒ [ | talk u1]]

That a proper box and a box which is not proper can have the same semantic value is
the reason why we have not allowed full closure under equivalence in rule T5. If a
node of a tree is decorated with a certain translation we may with safety perform
lambda conversions and merging. But if we would make it a general rule that terms
can be replaced by their equivalents, proper DRSs would be replaced by ones that are
not proper and vice versa and the characterisation of acceptable indexings would be
lost.

A semantic theory is non-representational if it accounts for semantic phenomena in
terms of semantic values only. Although a non-representational theory may work with
representations intermediate between language and semantic values, these should in
principle be eliminable, just as the expressions of IL were eliminable in principle from
Montague’s set-up of the PTQ fragment. But many accounts of anaphora which
present themselves as non-representational, including the theories of Groenendijk &
Stokhof [1990, 1991] and Muskens [1991, 1995a], have a problem with (44) and (46).
As these theories assign the same semantic values to (44) and (46), they wrongly
predict (46) to be as acceptable as (44) is.13

13 DPL, for example, assigns ¬∃x1(girl x1 ∧ walk x1) to (44), while it assigns ¬∃x1(girl x1 ∧ walk
x1) ∧ (talk x1 →  talk x1) to (46). But these representations are equivalent and therefore the two
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III.6. Truth and entailment: a weakest precondition calculus
We have now in fact connected the sentences and texts of our fragment with truth-
conditions. If we are presented with a text then, in order to find its truth-conditions, we
may parse it (find a Logical Form for it) according to the grammar given in III.3. and
then decorate the resulting tree according to the rules given in III.4. The truth-
conditions that we are after will be those of the box K that we find at the top node. By
definition K will be true in a state i if ∃jK(i)(j) is true. As we shall see shortly, the
choice of i is immaterial if K is a proper DRS: ∃jK(i)(j) will be true for all i or none
then.

In III.2 we have shown how the truth conditions of a box can be found by ex-
panding definitions and by applying the Unselective Binding Lemma. For simple
DRSs such as (3) this is a trivial task, but if we apply the method to more complex
discourse representations, things soon become involved and we find that the advan-
tages of our system of abbreviations are lost. For this reason it is useful to know that
there is a simple calculus which, given some box or condition, always outputs its truth
conditions in the form of a first order formula. The calculus is an adaptation of a
technique that was developed in computer science (the field of ‘Hoare logics’) and
was first used for linguistic purposes in Van Eijck & De Vries [1992]. We give a
variant here, defining a one-place translation function tr which sends conditions to
predicate logical formulae and a two-place function wp (weakest precondition), which
gives a formula of predicate logic if we feed it a box and a first-order formula.14, 15

The idea is that tr(γ) gives the truth conditions of γ and that the truth conditions of K
are given by wp(K,T) (where T is the sentence that is always true). Assume that the set
of variable referents {u1, u2,… ,un,… } and the set of individual variables {x1,
x2,…,xn,…} are ordered as indicated. Let † be the function from discourse referents to
individual variables and constants such that un

† = xn for any n and Tom† = tom, Tim†

= tim, Mary† = mary, etc. The following clauses do the job.

(TRA) tr(R{ δ1,…,δn}) = R(δ1
†)…(δn

†)

texts should be treated as equally acceptable. Saying that (46) is out because its representation
contains a free variable, while (44) is in because its representation is closed, involves an appeal to
properties of the representations that are not mirrored in their semantics. It seems probable that this
feature of DPL can be repaired by following the usual set-up of DRT and using finite assignments
instead of total assignments as the basis of the semantic theory. I expect that a similar move could
also change the present theory into a non-representational one.
14 For an alternative translation of DRT into predicate logic see Kamp & Reyle [1993].
15 The reason that wp(K, χ) is called the weakest precondition of K and χ is that it corresponds to
the set of all states i such that K, when started in state i, may after execution end in a state where χ
holds. A predicate logical formula ψ is called a precondition of K and χ if in any state where ψ
holds we can successfully carry out K and end in a state where χ holds. By the definition of wp(K,
χ) it is a precondition of K and χ and since wp(K, χ) follows from any precondition of K and χ, it
can be reasonably called the weakest precondition of K and χ.
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tr(δ1 is δ2) = δ1
† = δ2

†

(TRnot) tr(not K) = ¬wp(K, T)
(TRor) tr(K1 or K2)  = wp(K1, T) ∨ wp(K2, T)
(TR⇒) tr(K1 ⇒ K2)  = ¬wp(K1, ¬wp(K2, T))
(WP[] ) wp([ uk1

,…,ukn  | γ1 ,…,γm], χ) = ∃ xk1
… xkn

(tr(γ1) ∧…∧ tr(γm) ∧ χ)
(WP;) wp(K1 ; K2, χ) = wp(K1, wp(K2, χ))

As an example of how this may be used to find the truth conditions of any DRS, we
compute those of K = [u6 u2 | man u6, woman u2,  u6 adores u2, u6 abhors u1] by
first writing down wp(K, T), then applying WP[] , and then applying TRA four times:

wp([u6 u2 | man u6, woman u2,  u6 adores u2, u6 abhors u1], T)
∃x6x2(tr(man u6) ∧ tr(woman u2) ∧ tr(u6 adores u2) ∧ tr(u2 abhors u6)) WP[]
∃x6x2(man(x6) ∧ woman(x2) ∧ adores(x6)(x2) ∧ abhors(x2)(x6)) 4×TRA

The following derivation is a bit longer, as the box that it starts with is a bit more
complex.

wp([ | [u1 u2 | man u1, woman u2, u1 bores u2] ⇒ [ | u2 ignores u1]], T)
tr([u1 u2 | man u1, woman u2, u1 bores u2] ⇒ [ | u2 ignores u1]) WP[]
¬wp([u1 u2 | man u1, woman u2, u1 bores u2], ¬wp([ | u2 ignores u1], T)) TR⇒
¬wp([u1 u2 | man u1, woman u2, u1 bores u2], ¬tr(u2 ignores u1)) WP[]
¬wp([u1 u2 | man u1, woman u2, u1 bores u2], ¬ignores(x2)(x1)) TRA
¬∃x1x2(tr(man u1) ∧ tr(woman u2) ∧ tr(u1 bores u2) ∧ ¬ignores(x2)(x1)) WP[]
¬∃x1x2(man(x1) ∧ woman(x2) ∧ bores(x1)(x2) ∧ ¬ignores(x2)(x1)) 3×TRA

Clearly, applied to any box K, the method will give a result in a number of steps that is
equal to the complexity of K, if we define the latter as the number of applications of
ABB1-ABB4 that were needed to form the box.

It is worth noting that the notion of accessibility is closely related to the notion of
weakest precondition. In particular, we find that the following relation obtains.

PROPOSITION 1.  A DRS K is proper if and only if wp(K,T) is a closed formula

To prove this statement we must consider a somewhat messier one, namely the
conjunction of (a) uk is free in γ iff xk is free in tr(γ), and (b) xk is free in wp(K, χ) iff
uk is free in K, or xk is free in χ  while uk ∉ adr(K ). This will follow by a
straightforward induction on the complexity of constructs in the discourse repre-
sentation language and entails the proposition.

The following proposition justifies the calculus in the sense that it shows that
wp(K,T) really gives the truth conditions of K, provided K is a proper DRS.
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PROPOSITION 2.  If wp(K, T) is closed then it is equivalent to ∃jK(i)(j) for any i.

The proposition is proved via a generalisation which also gives information about
cases where wp(K,T) is an open formula. The proof is given in an appendix.

The weakest precondition calculus helps characterise the relation of entailment on
boxes. Define K1,…,Kn |=DRT K to hold just in case, for every M and i in M, if
K1,…,Kn are true in i in M, then K is true in i in M. We have:

PROPOSITION 3.  K1,…,Kn |=DRT K  iff  wp(K1,T),…,wp(Kn,T) |= wp(K,T)

This time there is no restriction to closed formulae. For a short proof see the appendix
again.

With proposition 3 we get a syntactic characterization of the entailment relation in
DRT, via any of the familiar axiomatisations of first-order entailment.16 A practical
consequence is that a theorem prover for DRT can simply consist of an existing
theorem prover for predicate logic plus seven additional Prolog clauses embodying the
weakest precondition calculus.

An alternative notion of entailment (for DPL) was defined in Groenendijk &
Stokhof [1991], whose definition boils down to the requirement that K follows from
K1,…,Kn if and only if (K1 ; … ; Kn) ⇒ K is true in all models in all states. We
denote this as K1,…,Kn |=DPL K and find as a direct consequence of Proposition 3:

COROLLARY.  K1,…,Kn |=DPL K  iff  |= tr((K1 ; … ; Kn) ⇒ K)

And again the question whether a given argument is valid under this notion of en-
tailment can be reduced to a question about validity in elementary logic.

IV. AN ILLUSTRATION: ANAPHORA AND GENERALISED COORDINATION

By way of example I shall now apply the system to a field were the phenomena that
DRT deals nicely with and those which are nicely treated in Montague Semantics
seem to interact: anaphora across generalised coordinations. One of Kamp’s main
motivations for setting up the DRT framework was the paucity of Montague’s
treatment of anaphora. On the other hand, Kamp & Reyle [1993, pages 214-232]
obviously have difficulty dealing with conjunctions and are forced to introduce
considerable overall complications of their theory in order to cope with them. As

16 Alternatively, we can characterise DRT entailment directly, using a natural deduction system as in
Saurer [1993]. Saurer notices that DRT entailment can be characterised via translation into
elementary logic, but claims psychological reality for his inference system, saying that it can be
understood as offering a mental logic.
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Montague’s system is particularly apt at dealing with coordinating constructions, it
seems that a treatment of anaphora, coordinations and their interplay which combines
the good parts of both systems is called for. In the next pages I shall try to set up such
a treatment.

It seems to be a fundamental fact about languages that expressions belonging to the
same category can be coordinated. As long as A and B belong to the same category, A
and  B and A or  B will belong to that category too. More in general, it seems that the
following rules should be added to our phrase structure grammar.

(PS 13) X → X+ CONJ X
(LI 10) CONJ → and , or

Here X may be unified with any category and X+ stands for strings of Xs of any
positive length. So the result of an application of PS 13 could be S CONJ S, or NP
NP NP CONJ NP, as in Tom, Dick , Harry  and  a  gir l  who abhors
Delaware .

Now various authors (Von Stechow [1974], Keenan & Faltz [1978], Gazdar
[1980], Partee & Rooth [1983]) have noted that the semantics of these coordinated
constructions conforms to a striking regularity. Roughly speaking, as long as we are
not considering cases where anaphoric dependencies play a role and barring ‘group
readings’ such as in Tom, Dick  and  Harry  carried  the  piano , the hypothesis
that and  always denotes intersection, and that or  always denotes union seems to fare
remarkably well.17,18

However, it seems that this Boolean hypothesis about coordination can no longer
be upheld in a setting where anaphoric dependencies are taken into consideration. In
(48) and (49) a minimal pair of short two sentence texts is given which shows that the
pronoun it 1 can pick up a referent that was created by the indefinite determiner a1 in
a preceding sentence but that it cannot pick up the referent that was created by a
determiner no1 occurring in the same position (both standard DRT and our version

17 In an extensional Montague semantics we could implement this Boolean hypothesis by always
translating A1…An and  An+1 as (I) and A1…An or  An+1 as (II) below.

(I) λx1…λxm(A1'(x1)…(xm) ∧ … ∧ An+1'(x1)…(xm))
(II) λx1…λxm(A1'(x1)…(xm) ∨ … ∨ An+1'(x1)…(xm))

Here A1',…, An+1' are assumed to be the translations of A1,…, An+1 respectively and x1,…,xm are
variables of the types that are needed to make these well-formed terms.
18 Of course the empirical content of the hypothesis depends on the types of the translations that we
assign to expressions of different categories. There is also a characteristic flip-flop behaviour of the
connectives: Most men and women swim means that most men swim and most women swim but My
friend and colleague swims means that a person who is both my friend and my colleague swims. The
word ‘and’ cannot be treated as intersection in both cases. This observation is attributed to Robin
Cooper by Partee & Rooth [1983] who propose to deal with the phenomenon via type-shifting.
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predict this, of course). The pair (50)-(51) shows that the same phenomenon occurs
across sentence conjunctions. Since we have accepted that the sequencing of sentences
cannot be treated as simple logical conjunction we must also accept that a grammatical
conjunction of sentences cannot be treated in this way.

(48) A2 cat  catches  a1 fish . It 2 eats  it 1.
(49) *A2 cat  catches  no1 fish . It 2 eats  it 1.

(50) A2 cat  catches  a1 fish  and  it 2 eats  it 1.
(51) *A2 cat  catches  no1 fish  and  it 2 eats  it 1.

But the phenomenon is not restricted to conjunctions of sentences, of course. In (52)-
(53) and in (54)-(55) it is shown that it also occurs in conjunctions of expressions in
categories other than S. (52)-(53) illustrate the case for VP and (54)-(55) for NP.

(52) A2 cat  catches  a1 fish  and  eats  it 1
(53) *A2 cat  catches  no1 fish  and  eats  it 1

(54) John 3 has  a2 cat  which  catches  a1 fish  and  a4 cat  which  eats
it 1

(55) *John 3 has  a2 cat  which  catches  no1 fish  and  a4 cat  which
eats  it 1

Fortunately it is possible to generalise the Boolean hypothesis of coordination to make
it account for data such as these. While the Boolean theory equates and  with a
generalised form of logical conjunction and or  with a generalised logical disjunction,
we can equate the first with a generalised form of sequencing (relational composition)
and the second with a generalisation of the DRT notion of sentence disjunction.
Formally, we add the following schemata to T0.

and    λR1…λRnλX1…λXm(R1(X1)…(Xm) ; … ; Rn(X1)…(Xm))
or   λR1…λRnλX1…λXm[ | R1(X1)…(Xm) or … or Rn(X1)…(Xm)],

These clauses assign an infinity of systematically related translations to and  and or .
Note that in any well-formed term of one of the displayed forms, the variables R1,…,
Rn must all have the same type.

We now let the translation of a coordinated construction consist of the translation
of the coordinating element applied to the translations of the coordinated expressions.
More precisely, we add T6 to our translation rules.
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T6 GENERALISED COORDINATION

If A 1 α1, … , An+1 αn+1, CONJ β, and A1, … , An, CONJ and An+1 are
daughters of A (in that order), then A β(α1)…(αn+1), provided β(α1)…(αn+1) is
well-formed and has the same type as each of the αi.

It may be observed that only the ‘right’ translation of CONJ is applicable here.
In order to show how this works we give some examples. In (56) a tree for (52) is

decorated with translations. Here only the translation λP'λPλv(P'(v) ; P(v)) for and
is applicable and the result of applying this to the translations of the coordinated VPs
is shown on the mother VP.

(56) S
[u2 u1| cat u2, fish u1, u2 catches u1, u2 eats u1]

NP
λP([u2| cat u2] ; P(u2))

DET

a2

N'

N

cat

VP
λv[u1| fish u1, v catches u1, v eats u1]

VP

V'
λv[u1| fish u1, v catches u1]

Vt

catches

NP
λP([u1| fish u1] ; P(u1))

DET

a1

N'

N

fish

CONJ

and

VP

V'
λv[ | v eats u1]

Vt

eats

NP

it 1

The reader may wish to verify that a similar tree for (53) leads to a box in which the
discourse referent that is introduced by the word no 1 is not accessible from the
discourse referent that is connected to the pronoun it 1.

A second example in (57) shows how the rule deals with coordinations of noun
phrases. Here the translation λQ'λQλP(Q'(P) ; Q(P)) is the only one that can be used
and its application to the two coordinated NPs leads to the translation at the top node.
In (58) a full sentence with this NP in object position is given; in (59) its translation,
and in (60) its truth conditions (obtained directly or via the weakest precondition
calculus) are shown. Since (59) is a proper DRS (or, equivalently, since (60) is a
closed formula) we find that (58) is acceptable.
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(57) NP
λP([u1| girl u1] ; P(u1) ; [u2| boy u2, u2 loves u1] ; P(u2))

NP
λP([u1| girl u1] ; P(u1))

DET

a1

N'

N

girl

CONJ

and

NP
λP([u2| boy u2, u2 loves u1] ; P(u2))

DET

a2

N'
λv[ | boy v, v loves u1]

N

boy

S
λPλv(P(v) ; [ | v loves u1])

NP7

who

S
[ | v7 loves u1]

e7 VP

V'
λv[ | v loves u1]

Vt

loves

NP

her 1

(58) John 3 admires  a1 girl  and  a2 boy  who loves her 1
(59) [u1 u2 | girl  u1, John admires u1, boy u2, u2 loves u1, John admires u2]
(60) ∃x1x2(girl (x1) ∧ admires(john)(x1)) ∧ boy(x2) ∧ loves(x2)(x1) ∧ ad-

mires(john)(x2))

However, if we replace the determiner a1 by no1, as is done in (61), binding fails.
Applying λQ'λQλP(Q'(P) ; Q(P)) to the translation of no1 girl ,  λP[ | not([u1| girl
u1] ; P(u1))] and then to the translation of a2 boy  who loves her 1 now results in
(62); application of the translation of admires  to (62) results in (63); and a final
application of the translation of John 3 gives (64), the translation of the sentence. We
find that it contains a free occurrence of u1. If we use the wp calculus to compute
(64)’s truth conditions, we get the result in (65), an open formula with x1 free. This
means that (61) is predicted to be out: the quantifier no1 girl  does not manage to
bind the dependent element her 1.

(61) *John 3 admires  no1 girl  and  a2 boy  who loves her 1
(62) λP([ | not([u1| girl  u1] ; P(u1))] ; [u2 |  boy u2, u2 loves u1] ; P(u2))
(63) λv([ | not([u1| girl  u1] ; [ | v admires u1])] ; [u2 |  boy u2, u2 loves u1] ;

[ | v admires u2])
(64) [u2 | not[u1| girl  u1, John admires u1], boy u2, u2 loves u1,
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John admires u2]
(65) ∃x2(¬∃x1(girl (x1) ∧ admires(john)(x1)) ∧ boy(x2) ∧ loves(x2)(x1) ∧ ad-

mires(john)(x2))

A last example19 shows that our treatment of coordination sometimes leads to
applications of the sequencing operator ‘;’ which cannot be reduced with the help of
the Merging Lemma as the conditions under which that rule is applicable are not
fulfilled. In order to find the translation of the distributive reading of (66) we first
conjoin the translations of Bill 1 and Sue2 to λP(P(Bill ) ; P(Sue)). This term can
then be applied to λv[u3 | donkey u3, v owns u3], the translation of the VP. The result
(after lambda conversions) is (67); but note that this extended DRS cannot be reduced
with the help of merging, as the u3 that is declared in the second box already appears
in the conditions of the first box.

(66) Bill 1 and Sue 2 own a 3 donkey
(67) [u3 | donkey u3, Bill owns u3] ; [u3 | donkey u3, Sue owns u3]
(68) ∃x3(donkey(x3) ∧ owns(bill )(x3)) ∧ ∃x3(donkey(x3) ∧ owns(sue)(x3))

This brings us outside the standard DRT language, but no harm is done as we
systematically get the right predictions about truth conditions and anaphora in these
cases. Using the program metaphor that is often useful when thinking about DRT we
may say that the first box in (67) assigns a donkey which Bill owns to u3 and that the
second box then assigns it a possibly new value, a donkey owned by Sue. In other
words, (67) is a case of reassignment. Clearly, first assigning a donkey owned by Bill
to u3 and then one owned by Sue is a program which can be carried out just in case
Bill and Sue each own a donkey and indeed we find that our wp calculus correctly
computes the truth conditions given in (68).

V. CONCLUSION AND FURTHER PROSPECTS

In this paper we have defined a fusion of two important frameworks for natural
language semantics, taking care that the resulting formalism is easy to work with and
has a simple underlying mathematics. In order to obtain the constructs of DRT within
the type logic which underlies Montague Semantics we have used a technique which I
would like to call grafting: logics L and L' can often be combined by (a) taking an
adequate Tarski definition of L', (b) axiomatising within L the concepts that this
definition talks about, and then (c) introducing the syntactic constructs of L' as
abbreviations within L by means of a transcription of the Tarski definition. L' can then

19 Questions from Bart Geurts at the Ninth Amsterdam Colloquium and from an anonymous referee
drew my attention to this example. I would like to thank them both.
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be said to be grafted upon L. In our case L was many-sorted type logic, L' was DRT,
the Tarski definition was the one given by Groenendijk & Stokhof [1991] and the
transcription was given in ABB1-ABB4. But the technique seems very general, can be
used whenever L' has an acceptable Tarski definition and L is expressive enough to
transcribe this definition, and might help to integrate many different logics that have
been proposed in order to deal with special phenomena in the semantics of natural
language. There has been a tendency in the field to propose a different logic for each
phenomenon in natural language, but ultimately language is one, and we shall need to
synthesize these logics if we want to obtain one logic for the whole range of
phenomena. Grafting logics upon a single expressive logic such as classical type logic
is one possible technique to do this.

There are two directions that can be taken from here, and both must be explored.
The first leads into linguistics and the second leads further into logic. Concerning the
first: In this paper I have hardly used the formalism presented here to work out any
new descriptive theories. The linguistic theory of section III (as opposed to the general
formalism which was presented there) is of course nothing but a streamlined
presentation of the theories by Kamp and Heim. The work in section IV is an
improvement over the treatment in Kamp & Reyle [1993] as far as I can see, but not
because it describes essentially new phenomena, or because it can deal with
phenomena that Kamp & Reyle cannot treat, but because it can deal with the data in a
principled way, without having to complicate the theory, and assigning a single
algebraic operation to each of the words and  and or , while Kamp & Reyle’s
treatment introduces complexities that threaten the DRT framework as such. In this
paper my main purpose has been to define a practicable formalism for the analysis of
natural language semantics, but the next step must of course consist of a series of
applications of the formalism to descriptive work. Everybody is invited to join the fun.

A second step that I think must be taken is more foundational. In section III it was
explained that CDRT as it is described here must be a representational theory of
language semantics, on pain of not getting the facts right. This was because it turned
out that a linguistically acceptable text may have a representation K which has the same
semantic value as a representation K' of an unacceptable text. Given that this is the
case, we can account for the difference in acceptability only on the basis of the
difference between K and K', not on the basis of a difference in semantic values. The
same problem holds for DPL, DMG and some of my earlier work. The present
solution of ‘going representational’ is mathematically impeccable as far as I can see,
and some researchers, including Hans Kamp, have advocated the move for
philosophical reasons. But for those who—like the present author—sympathise with
Richard Montague’s requirement that the level of intermediate representations should
in principle be eliminable from the theory, things cannot remain as they stand now.
The only road which is open to them is to adapt the theory, such that in all cases where
K  and K'  represent texts which from a semantical point of view should be
distinguished, K and K' really have a different semantic value. This means that it is
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either necessary to provide the underlying type logic with a more fine-grained notion
of entailment (as it was done in Muskens [1995b] for different purposes), or that DRT
must be grafted upon type logic in a slightly different way. However, such
considerations do not affect the applicability of the present system and I am glad to
leave them for future research.

APPENDIX: PROOFS OF PROPOSITIONS 2 AND 3

PROPOSITION 2.  If wp(K, T) is closed then it is equivalent to ∃jK(i)(j) for any i.

PROOF.  For any formula ϕ and state variable i let (ϕ)i denote the result of replacing
each free individual variable xk in ϕ with V(uk)(i). We prove that

(a) (tr(γ))i is equivalent to γ(i)
(b) (wp(K, χ))i is equivalent to ∃j(K(i)(j) ∧ (χ)j)

These statements are proved by induction on the complexity of DRT constructs. In the
following  ≈  stands for ‘is equivalent to’.

(i) (tr(R{ δ1,…,δn}))
i  ≈  (R(δ1

†)…(δn
†))i  ≈  (by the definitions of (.)† and (.)i

and AX4) R(V(δ1)(i))…(V(δn)(i))  ≈  R{ δ1,…,δn}( i)
(tr(δ1 is δ2))

i  ≈  (δ1
† = δ2

†)i  ≈  V(δ1)(i) = V(δ2)(i)  ≈  δ1 is δ2(i)
(ii) (tr(not K))i  ≈  (¬wp(K,T))i  ≈  ¬(wp(K,T))i  ≈  ¬∃j(K(i)(j)  ≈  (not K)(i)
(iii) (tr(K1 or K2))

i  ≈  (wp(K1,T) ∨ wp(K2,T))i  ≈
(wp(K1,T))i ∨ (wp(K2,T))i  ≈  ∃j(K1(i)(j) ∨ ∃j(K2(i)(j)  ≈  (K1 or K2)(i)

(iv) (tr(K1 ⇒ K2))
i  ≈  (¬wp(K1,¬wp(K2,T)))i  ≈  ¬∃j(K1(i)(j) ∧ (¬wp(K2,T))j) ≈

¬∃j(K1(i)(j) ∧ ¬∃k(K2(j)(k))  ≈  (K1 ⇒ K2)(i)
(v) (wp([ uk1

,…,ukn  | γ1 ,…,γm], χ))i

≈  (∃ xk1
… xkn

(tr(γ1) ∧…∧ tr(γm) ∧ χ))i

≈  (by the Unselective Binding Lemma) (∃j(i[ uk1
,…,ukn

]j ∧
[V( uk1

)(j) / xk1
,…,V(ukn

)(j) / xkn
](tr(γ1) ∧…∧ tr(γm) ∧ χ))i

≈  (by the definition of i[ uk1
,…,ukn

]j and AX3)
∃j(i[ uk1

,…,ukn
]j ∧ (tr(γ1) ∧…∧ tr(γm) ∧ χ)j)

≈  ∃j(i[ uk1
,…,ukn

]j ∧ (tr(γ1))
j ∧…∧ (tr(γm))j ∧ (χ)j)

≈  ∃j(i[ uk1
,…,ukn

]j ∧ γ1(j) ∧…∧ γm(j) ∧ (χ)j)
≈  ∃j([ uk1

,…,ukn  | γ1 ,…,γm](i)(j) ∧ (χ)j)
(vi) (wp(K1 ; K2, χ))i  ≈  (wp(K1, wp(K2, χ)))i  ≈

∃k(K1(i)(k) ∧ (wp(K2, χ))k)  ≈  ∃k(K1(i)(k) ∧ ∃j(K1(k)(j) ∧ (χ)j)) ≈
∃j∃k(K1(i)(k) ∧ K1(k)(j) ∧ (χ)j) ≈  ∃j((K1 ; K2)(i)(j) ∧ (χ)j)

The proposition directly follows from (b).
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PROPOSITION 3.  K1,…,Kn |=DRT K  iff  wp(K1, T),…,wp(Kn, T) |= wp(K, T)

PROOF.  Suppose that K1,…,Kn are true in i while K is not. Then, by (b) in the
preceding proof, (wp(K1,T))i,…,(wp(Kn,T))i hold while (wp(K,T))i does not. Use
AX3 to choose an assignment a such that a(xk) = V (uk)(i ) for all k; then
wp(K1,T),…,wp(Kn,T) are true under a while wp(K,T) is false under a. Conversely,
let wp(K1,T),…,wp(Kn,T) be true under a and wp(K,T) false under a. By AX1 and
AX2 we can find an i  such that a(xk) = V (uk)(i ) for all free variables xk i n
wp(K1,T),…,wp(Kn,T),wp(K,T). Clearly, (wp(K1,T))i,…,(wp(Kn,T))i hold but
(wp(K,T))i is false and using (b) again we have that K1,…,Kn are true in i while K is
not.
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