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Abstract. In this paper we define intensional models for the classical theory of types,

thus arriving at an intensional type logic ITL. Intensional models generalize Henkin’s gen-

eral models and have a natural definition. As a class they do not validate the axiom of

Extensionality. We give a cut-free sequent calculus for type theory and show completeness

of this calculus with respect to the class of intensional models via a model existence theo-

rem. After this we turn our attention to applications. Firstly, it is argued that, since ITL

is truly intensional, it can be used to model ascriptions of propositional attitude without

predicting logical omniscience. In order to illustrate this a small fragment of English is

defined and provided with an ITL semantics. Secondly, it is shown that ITL models contain

certain objects that can be identified with possible worlds. Essential elements of modal

logic become available within classical type theory once the axiom of Extensionality is

given up.

§1. Introduction. The axiom scheme of Extensionality states that whenever
two predicates or relations are coextensive they must have the same properties:∗

∀XY (∀~x(X~x↔ Y ~x)→ ∀Z(ZX → ZY ))(1)

Historically Extensionality has always been problematic, the main problem be-
ing that in many areas of application, though not perhaps in the foundations of
mathematics, the statement is simply false. This was recognized by Whitehead
and Russell in Principia Mathematica [32], where intensional functions such as
‘A believes that p’ or ‘it is a strange coincidence that p’ are discussed at length.
However, in the introduction to the second edition (1927) of the Principia White-
head and Russell (influenced by Wittgenstein’s Tractatus) already entertain the
possibility that “all functions of functions are extensional”. Thirteen years later,
in Church’s [6] canonical formulation of the Theory of Types, it is observed that
axioms of Extensionality should be adopted “[i]n order to obtain classical real
number theory (analysis)”, a wording that does not seem to rule out the op-
tion of not adopting them. Church’s formulation of type theory was completely
syntactic and axioms could be adopted or dropped at will, but in Henkin’s [12]
classical proof of generalized completeness the models that are considered, both
the “standard” models and the “general” ones, simply validate Extensionality.
Although Henkin’s text still allows giving up the axiom1 the formal set-up now
effectively rules out intensional predicates and functions.

∗This paper appeared in The Journal of Symbolic Logic, 72(1):98-118, 2007.
1Henkin [12]: The axioms of extensionality . . . can be dropped if we are willing to admit

models whose domains contain functions which are regarded as distinct even though they have
the same value for every argument.
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This poses problems for those areas of application of the logic where it is im-
portant to distinguish between predicates that are coextensive and where propo-
sitions that determine the same set of possible worlds should be kept apart
nevertheless. Linguistic semantics and Artificial Intelligence are such applica-
tions and the problem has been dubbed one of “logical omniscience” there, for
it is with propositional attitudes like knowledge and belief that predicates of
predicates and predicates of propositions most naturally arise. Is there a deep
foundational difficulty with type theory that makes the theory adequate for one
area of application (mathematics) but not for others? Or is it possible to come
up with a revised and generalized semantics for the logic, in which intensional
predicates of predicates (or intensional functions of functions) are allowed? In
the latter case Extensionality becomes a non-logical axiom that can be added
to the theory for the purposes of one area of application while in other areas of
application it is not added.

Even if one is interested in mathematical applications of type theory only
there are good reasons to consider a generalization of its models in which Ex-
tensionality fails. This was realized by Takahashi [28] and Prawitz [24] in their
(independent, but closely related) proofs of Cut-elimination. These proofs make
use of what Andrews [1] calls “V -complexes”, structures whose typed domains
consist of elements 〈A, e〉, where A is a term and e is a possible extension of A.
Clearly, two objects 〈A, e〉 and 〈B, e′〉 can be distinct even if e = e′. Andrews [1]
uses V -complexes to show that a certain resolution system R corresponds to the
first six axioms of Church [6] (not comprising Extensionality).
V -complexes in themselves cannot be used as independent models for an

intensional type theory, as their definition depends on Schütte’s [26] “semi-
valuations”, essentially sets of sentences (the “V ” in “V -complex” ranges over
semi-valuations). Is it possible to define a stand-alone notion of general inten-
sional model that has V -complexes as a special case? I know of two proposals for
such general models, both recent. The first is found in Fitting [10], the second in
Benzmüller et al. [3]. In Fitting’s “generalized Henkin models” abstraction may
receive a non-standard interpretation, while in the “Σ-models” of Benzmüller
et al. it is application that may be interpreted in a non-standard way. Such
non-standard evaluations seem unnecessary, however, and in this paper, I will
propose a simple definition of intensional model that generalizes Henkin models
for type theory but gives all logical operations their usual semantics. The system
of type theory interpreted with the help of these intensional models will be called
ITL (‘Intensional Type Logic’).

The rest of the paper is organized as follows. In the following section we
will consider some existing proposals to obtain intensionality and we will argue
that they all have a simple pattern in common that can be used to obtain a
general intensional logic. Section 3 gives the types and terms of a type theory in
the spirit of Church [6] (but framed as a relational theory, as in Orey [22] and
Schütte [26]). In section 4 our notion of intensional model will be defined, with
a corresponding notion of entailment. Section 5 introduces a cut-free Gentzen
calculus for ITL while section 6 proves a Model Existence theorem. The proofs
in that section all employ familiar techniques but are given as a sanity check on
the definition of the basic modeltheoretic notions. The last two sections consider
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applications: Section 7 uses the logic to provide a fragment of natural language
with a truly intensional semantics while section 8 shows how possible worlds can
be obtained as certain objects in intensional models. A short conclusion ends
the paper.

§2. Informal Analysis. Given Leibniz’s principle of the identity of indistin-
guishables and the assumption that ∀ and→ behave classically, ∀Z(ZX → ZY )
implies X = Y and

∀XY (∀~x(X~x↔ Y ~x)→ X = Y )(2)

therefore will be equivalent with Extensionality. This means that a semantics in
which this axiom fails cannot under reasonable assumptions identify the semantic
value of an expression with its extension, as ∀~x(X~x ↔ Y ~x) just states that X
and Y are co-extensive. The following is a propositional instantiation of (2) (with
the length of ~x set to 0 and X and Y instantiated as ϕ and ψ respectively).

(ϕ↔ ψ)→ ϕ = ψ(3)

Here ϕ ↔ ψ expresses that ϕ and ψ have the same truth value whereas ϕ = ψ
says they are the same proposition. Typically we want this scheme to fail, as
sentences with the same truth values may be distinguishable in the sense that
one is believed while the other is not, or that one is a strange coincidence, while
the other is entirely expected, etc. Many propositions must therefore be allowed
to exist, although each proposition must assume one of two truth values if we
want to retain classicality.

Although the semantic values of sentences cannot be equated with their truth
values, it still seems reasonable to require that they should determine these truth
values, while the values of expressions of higher type should likewise determine
their extensions. If this is accepted the picture that arises is that logical expres-
sions are sent to their (intensional) values by some function I, while these values
in their turn are connected with extensions by a function E. The latter typically
does not need to be injective. Readers familiar with the extensive literature on
intensionality (sometimes dubbed hyper intensionality) will be aware that, while
there are many divergent proposals for what intensions are, the pattern just
sketched is well-nigh ubiquitous. Already in Frege’s [11] pivotal work an expres-
sion expresses a sense (the function I) while a sense in its turn determines a
reference (E). In modal logic, intensions are functions from possible worlds to
extensions (let us call such functions modal intensions) and the function E can
be viewed as application of such functions to a fixed ‘actual’ world w0. It is
obvious that this modal strategy does not individuate intensions finely enough
(essentially since, if W1 and W2 denote sets of possible worlds or the character-
istic functions of such sets, ∀w(W1w ↔W2w)→ W1 = W2 will hold) and many
researchers have sought notions of intension coming with more fine-grained cri-
teria of individuation than modal intensions come with. Carnap [4], for example,
who defined a precursor to the now usual possible worlds analysis of natural lan-
guage, noticed the problems that this analysis suffers from and proposed a theory
of structured meanings that was later worked out in Lewis [14] and Cresswell [8].
On Lewis’ account the meaning of an expression is a finite ordered tree having at
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each node a category and an appropriate modal intension. The modal intension
at the root node of this tree is the one associated with the expression as a whole
and so in this theory the function I assigns finite ordered trees of categories and
modal intensions to any given expression, while E is the function that takes any
such tree and returns Ww0, where W is the modal intension found at its root
node.

Another example of an approach in which the functions I and E can easily be
recognised is the theory of impossible worlds. The idea behind this line of thought
is that if the usual set of possible worlds is not large enough to make enough
distinctions between semantic values, extra worlds, impossible ones, should be
added. A key point is that the logical operators need not have their usual
meaning at these points of reference and that logical validities will therefore
cease to hold throughout the set of all worlds. The name “impossible (possible)
world” derives from Hintikka [13], but the idea was also present in Montague [15]
and Cresswell [7] and has been followed up in Rantala [25], Barwise [2], and
Zalta [34], for example. The function I here is the function that sends each
sentence to a set of possible and impossible worlds, wheras E can be described
as λW.Ww0, as in the ordinary modal account.

Other approaches to intensionality may have different conceptions of the na-
ture of intensions, but will also follow a two-stage pattern in which expressions
are first sent to their intensions (whatever these are) and intensions are subse-
quently related to extensions. For example, in Property Theory (Turner [31],
Chierchia and Turner [5]) one finds a homomorphism T sending an algebra of
‘information units’ I to a boolean algebra P (Chierchia and Turner [5]). Here
the information units act as intensions while the elements of P are the exten-
sions and T is the function we have called E. Thomason [30] uses a higher-order
logic that obeys a form of Extensionality to interpret natural language sentences
in a domain Dp of propositions considered as primitive entities and then uses
a function ∪ (our E) to send these propositions to their extensions (see also
Muskens [20]). Moschovakis [17], to give a last example, identifies senses with
algorithms and references with the values that these algorithms return. Here the
function that sends expressions to algorithms is our I while E assigns to each
algorithm the value returned.

Thus while opinions about the nature of intensions radically diverge, all pro-
posals follow a simple two-stage pattern. The aim of this paper is not to add
one more theory of intension to the proposals that have already been made,
but is an investigation of their common underlying logic. The idea will be that
the two-stage set-up is essentially all that is needed to obtain intensionality.
For the purposes of logic it suffices to consider intensions as abstract objects;
the question what intensions are, while philosophically important, can be ab-
stracted from. Conversely, while many positions regarding the ultimate nature
of intensions seem rationally possible and no knock-down arguments are likely
to decide the matter, it does equally seem possible to rationally converge on a
logic describing what intensions do. Here we attempt to contribute to that logic.

§3. Terms. In this section the types and terms of ITL will be defined and
some notation will be adopted. While this ITL syntax will be given an intensional
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interpretation in the next section, it essentially is the syntax of the simple type
theory of Church’s [6]. The intended interpretation will be relational, however,
as in Orey [22] and Schütte [26], not functional, as in Church’s original work.

Assuming that some finite set B of basic types is given, the following definition
gives the set of types.

Definition 1. The set T of types is the smallest set of strings such that

1. B ⊆ T
2. If α1, . . . , αn ∈ T (n ≥ 0) then 〈α1 . . . αn〉 ∈ T

Types formed with the second clause of this definition will be called complex.
The intended interpretation is that the extension of an object of type 〈α1 . . . αn〉
is an n-place relation taking objects of type αi as its i-th argument. Note that,
as a limiting case, 〈〉 is defined to be a (complex) type; this will be the type of
propositions, with truth values as extensions.

A language will be a countable set of uniquely typed non-logical constants. If
L is a language, the set of constants from L that have type α is denoted Lα. For
each α ∈ T we moreover assume the existence of a denumerably infinite set Vα

of variables with unique type α. We let V =
⋃

α∈T Vα.
The following definition gives us terms in all types. Apart from variables

and non-logical vocabulary there will be a sentence ⊥ that is always false, and
there will be application and abstraction. Furthermore, a symbol ⊂ will denote
inclusion of extensions, so that A ⊂ B is true if the extension of A is a subset
of that of B.

Definition 2. Let L be a language. Define sets TL
α of terms of L of type α,

for each α ∈ T , as follows.

1. Lα ⊆ T
L
α and Vα ⊆ T

L
α for each α ∈ T

2. ⊥ ∈ TL
〈〉

3. If A ∈ TL
〈α1α2...αn〉 and B ∈ TL

α1
, then (AB) ∈ TL

〈α2...αn〉

4. If A ∈ TL
〈α2...αn〉 and x ∈ Vα1

, then (λx.A) ∈ TL
〈α1α2...αn〉

5. If A ∈ TL
α and B ∈ TL

α then (A ⊂ B) ∈ TL
〈〉, if α is complex

We will write TL for the set of all terms of the language L, i.e. for the union⋃
α∈T T

L
α . If A is a term of type α, we may indicate this by writing Aα and we

will use ϕ, ψ, χ for terms of type 〈〉, which we call formulas. The notions free and
bound occurrence of a variable and the notion B is free for x in A are defined
as usual, as are closed terms and sentences. Substitutions are functions σ from
variables to terms such that σ(x) has the same type as x. If σ is a substitution
then the substitution σ′ such that σ′(x) = A and σ′(y) = σ(y) for all y 6≡ x is
denoted as σ[x := A]. If A is a term and σ is a substitution, Aσ, the extension
of σ to A, is defined in the usual way. The substitution σ such that σ(xi) = Ai

and σ(y) = y if y /∈ {x1, . . . , xn} is written as {x1 := A1, . . . , xn := An}.
Parentheses in terms will often be dropped on the understanding that ABC is
((AB)C), i.e. association is to the left.

Our stock of operators may seem somewhat spartan, but is rich enough to let
the usual connectives and quantifiers be defined. In particular, ∀, → and = are
easily obtained.
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Definition 3. Write
ϕ→ ψ for ϕ ⊂ ψ,

⊤ for ⊥ → ⊥,

∀xϕ for (λx.⊤) ⊂ (λx.ϕ), and

Aα = Bα for ∀x〈α〉 (xA→ xB).

The operators ¬, ∧, ∨, ↔ and ∃ are defined as usual.
Our presentation of the logic will revolve around sequents. A signed sentence

of L will be a pair 〈L, ϕ〉 (written L : ϕ) or a pair 〈R, ϕ〉 (written R : ϕ), such that
ϕ is a sentence of L (L indicates ‘left’ and R indicates ‘right’). A sequent of L
is a set of signed sentences of L. Letting sequents be sets has some advantages,
but we may also want to use a more conventional form and write Π ⇒ Σ for
{L : ϕ | ϕ ∈ Π} ∪ {R : ϕ | ϕ ∈ Σ} if Π and Σ are sets of sentences.

§4. Intensional Models. Let us turn to the semantics of ITL, which will
essentially follow the two-stage pattern discussed above. The following definition
sets up the usual hierarchies of objects and provides some of the usual notation.

Definition 4. A collection of domains will be a set {Dα | α ∈ T } of pairwise
disjoint non-empty sets. An assignment a for a collection of domains D = {Dα |
α ∈ T } is a function which has the set of variables V as domain and has the
property that a(x) ∈ Dα if x ∈ Vα. The set of all assignments for D is denoted
AD. If a is an assignment, d ∈ Dα, and x is a variable of type α, a[d/x] is
defined by letting a[d/x](x) = d and a[d/x](y) = a(y), if y is not equal to x.

Note that we have not imposed any non-trivial relations between the elements of
any given collection of domains D. In particular we have not required domains
D〈α1...αn〉 to consist of relations over lower domains. This is because we need
to tease apart the intensions and extensions of terms of complex type. While
extensions of such terms will be certain relations, with their identity criteria
therefore given by set membership, the intension functions defined below send
terms to almost arbitrary domain elements.

Definition 5. An intension function for a collection of domains D = {Dα |
α ∈ T } and a language L is a function I : AD × T

L → D such that

1. I(a,A) ∈ Dα, if A is of type α
2. I(a, x) = a(x), if x is a variable
3. I(a,A) = I(a′, A), if a and a′ agree on all variables free in A
4. I(a,A{x := B}) = I(a[I(a,B)/x], A), if B is free for x in A

Intension functions are the formal counterpart of the functions I that were dis-
cussed informally above. They take an extra assignment argument in order to
take care of free variables.

The second part of our formalisation of the two-stage architecture discussed
above are the extension functions of definition 6. They send objects of complex
types to certain relations over the relevant domains. We first give very gen-
eral constraints and will put more requirements on useful extension functions in
definition 8.
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Definition 6. An extension function for a collection of domains D = {Dα |
α ∈ T } is a function E with domain ∪{Dα | α is complex} such that E(d) ⊆
Dα1

× · · · ×Dαn
whenever d ∈ D〈α1...αn〉.

The restriction of E to Dα is written as Eα, for any complex type α, so that
Eα : Dα → P(Dα1

× · · · ×Dαn
) if α = 〈α1 . . . αn〉.

The limiting case that n = 0 is of some interest here. In this case the product
Dα1

× · · · × Dαn
equals {〈〉}. We identify 〈〉 with ∅, ∅ with 0, and {∅} with

1, so that E〈〉 : D〈〉 → {0, 1} if E〈〉 is an extension function of type 〈〉 for D.
Note that, while the range of E〈〉 thus consists of the two standard truth-values,
the domain D〈〉 of propositions can have any cardinality ≥ 2. Propositions
with the same truth-value need not be identified and, as will become apparent,
even propositions that receive the same truth value in all structures need not be
identical in any given structure.

Definition 7. A generalized frame for the language L is a triple 〈D, I,E〉
such that D is a collection of domains, I is an intension function for D and L,
and E is an extension function for D.

We are interested in the extensions E(I(a,Aα)) of terms A of complex type α.
Let V be the composition of E and I, so that, in the interest of readability, we can
write V (a,A), for E(I(a,A)). The following definition, which gives the central
notion of this paper, puts constraints on intension and extension functions that
cause terms to get their usual semantic values.

Definition 8. A generalized frame 〈D, I,E〉 for L is an intensional model
for L if

1. V (a,⊥) = 0

2. V (a,AB) = {〈~d〉 | 〈I(a,B), ~d〉 ∈ V (a,A)}

3. V (a, λxβ .A) = {〈d, ~d〉 | d ∈ Dβ and 〈~d〉 ∈ V (a[d/x], A)}
4. V (a,A ⊂ B) = 1⇐⇒ V (a,A) ⊆ V (a,B)

To better understand the motivation behind the second and third clauses of
this definition, it may help to consider that any n + 1 place relation R can be

thought of as a unary function F such that F (d) = {〈~d〉 | 〈d, ~d〉 ∈ R}. Thus
V (a,AB) = F (I(a,B)), where F is the function corresponding to V (a,A) and
V (a, λxβ .A) corresponds to the function F such that F (d) = V (a[d/x], A) for
each d ∈ Dβ . For further discussion of this little trick in an extensional setting
see Muskens [18, 19].

If M = 〈D, I,E〉 is an intensional model, a is an assignment for D, and ϕ is
a formula, we may alternatively write M |= ϕ[a] for V (a, ϕ) = 1. In case ϕ is a
sentence it makes sense to write M |= ϕ if M |= ϕ[a] for some a. The following
facts are unsurprising but useful.

Proposition 1. Let M = 〈D, I,E〉 be an intensional model, and let a be an
assignment for D. Then, for all ϕ, ψ, A, B and B′ of appropriate types,

1. V (a, ϕ→ ψ) = 0 iff V (a, ϕ) = 1 and V (a, ψ) = 0;
2. V (a, ∀xαϕ) = 1 iff V (a[d/x], ϕ) = 1 for all d ∈ Dα;
3. V (a, (λx.A)B) = V (a,A{x := B}), if B is free for x in A;
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4. If V (a,A = B) = 1 then V (a,A ⊂ B) = 1;
5. V (a,A = A) = 1;
6. If V (a,B = B′) = 1 then V (a,A{x := B} = A{x := B′}) = 1, provided B

and B′ are free for x in A.

Proof. Left to the reader. ⊣

Note that β-conversion preserves extensional identity, but that it does not nec-
essarily preserve intensional identity, i.e. (λxα.A)B = A{x := B} is not neces-
sarily true given the usual side condition. Similar remarks can be made about
η-conversion and even about α-conversion. Since it is not necessary to hard-
wire these principles into the logic, we have chosen not to do so. However, the
principles can clearly be added to the logic by means of an axiomatic extension.
In section 7 below, where a linguistic application is considered, this axiomatic
extension will be given.

The last two statements in proposition 1 above show that = is the usual
congruence, but intensional models may still have the undesirable property that
= does not denote true identity of intension. This is an anomaly we want to get
rid of. Intensional models are called normal just in case they have the desired
property.

Definition 9. An intensional model M = 〈D, I,E〉 is normal if, for any type
α, any d, d′ ∈ Dα, and any a, 〈d, d′〉 ∈ V (a, λxαλx

′
α.x = x′) implies d = d′.

That a restriction to normal intensional models does not buy us any new truths
is shown by the next proposition. Its proof uses the Axiom of Choice unless M
is countable.

Proposition 2. Let M be an intensional model. There is a normal inten-
sional model M such that M |= ϕ⇐⇒M |= ϕ for each sentence ϕ.

Proof. Suppose M = 〈D, I,E〉. Let ∼ be the relation given by d ∼ d′ iff
〈d, d′〉 ∈ V (a, λxαλx

′
α.x = x′) for any d, d′ ∈ Dα and any α (where a is arbitrary).

Clearly, ∼ is an equivalence relation. Note that, by proposition 1 and definition
5, for any term A,

d ∼ d′ =⇒ I(a[d/x], A) ∼ I(a[d′/x], A) .(4)

Define d = {d′ | d ∼ d′}, let Dα = {d | d ∈ Dα}, and let D = {Dα | α ∈ T }.

Let f be a function such that f(d) ∈ d, if d ∈ Dα. For any assignment a for
D, let a◦ be the assignment for D defined by a◦(x) = f(a(x)), for all x. Let

I(a,A) = I(a◦, A), for each assignment a for D and each term A. Then I is an
intension function for D. The first three requirements of definition 5 are easily
checked, so let us check the last requirement. Note that

I(a◦, A{x := B}) = (Definition 5)

I(a◦[I(a◦, B)/x], A) ∼ (4)

I(a◦[f(I(a◦, B))/x]), A) = (definition of I)

I(a◦[f(I(a,B))/x]), A) = (definition of ◦)

I((a[I(a,B)/x])◦, A) .

From this conclude that I(a,A{x := B}) = I(a[I(a,B)/x], A).
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Π⇒ Σ
[W ]

Π′ ⇒ Σ′
, if Π ⊆ Π′, Σ ⊆ Σ′

[R]
Π, ϕ⇒ Σ, ϕ

[⊥L]
Π,⊥ ⇒ Σ

Π, A{x := B} ~C ⇒ Σ
[λL]

Π, (λx.A)B ~C ⇒ Σ

Π⇒ Σ, A{x := B} ~C
[λR]

Π⇒ Σ, (λx.A)B ~C

if B is free for x in A if B is free for x in A

Π, B ~C ⇒ Σ Π⇒ Σ, A~C
[⊂ L]

Π, A ⊂ B ⇒ Σ

Π, A~c⇒ Σ, B~c
[⊂R]

Π⇒ Σ, A ⊂ B

if the constants ~c are fresh

Table 1. Gentzen rules for ITL.

Define E by letting E(dα) = {〈d1, . . . , dn〉 | 〈d1, . . . , dn〉 ∈ E(d)}, if α is com-
plex. It is easy to see that this is well-defined. Since 〈d1, . . . , dn〉 ∈ E(I(a,A))
iff 〈d1, . . . , dn〉 ∈ V (a◦, A) it follows that M = 〈D, I,E〉 is an intensional model,
M |= ϕ⇐⇒M |= ϕ for each sentence ϕ, and M is normal. ⊣

Now that the situation with respect to normality and non-normality of inten-
sional models has become clear, we can define our semantic notion of conse-
quence.

Definition 10. An intensional model M for L refutes a sequent Π⇒ Σ of L
if M |= ϕ for all ϕ ∈ Π and M 6|= ϕ for all ϕ ∈ Σ. A sequent Γ is i-valid if no
intensional model for L refutes Γ. Π i-entails Σ, Π |=i Σ, if Π⇒ Σ is i-valid.

Let us take stock. We have defined a notion of intensional model following the
two-stage pattern discussed in section 2. This is also the pattern followed in Fit-
ting [10], but we have avoided the complex “abstraction designation functions”
that are used there but do not seem to have a justification beyond the fact that
they are needed in proofs. Intensional models are a further generalisation of
Henkin models in the following sense. While in intensional models the functions

E〈α1...αn〉 : D〈α1...αn〉 → P(Dα1
× · · · ×Dαn

)

need neither be injective nor surjective, the usual Henkin models are essentially
obtained if an injectivity requirement is imposed. An additional requirement of
surjectivity brings us to a variant of the so-called standard models of type theory.

§5. Proof Theory. We now provide the relation of i-entailment with what
will turn out to be a syntactic equivalent. The rules in Table 1, for which the
usual notational conventions apply, constitute a Gentzen sequent calculus for
ITL. If Π ⇒ Σ is a (finite or infinite) sequent, then we say that Π ⇒ Σ is
provable, Π ⊢ Σ, if there are finite Π0 ⊆ Π and Σ0 ⊆ Σ such that Π0 ⇒ Σ0
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[⊤R]
Π⇒ Σ,⊤

Π, ψ ⇒ Σ Π⇒ Σ, ϕ
[→ L]

Π, ϕ→ ψ ⇒ Σ

Π, ϕ⇒ Σ, ψ
[→R]

Π⇒ Σ, ϕ→ ψ

Π, ϕ{x := A} ⇒ Σ
[∀L]

Π, ∀xϕ⇒ Σ

Π⇒ Σ, ϕ{x := c}
[∀R]

Π⇒ Σ, ∀xϕ

where c is fresh

Π, A
.
= B ⇒ Σ, ϕ{x := A}

[=L]
Π, A

.
= B ⇒ Σ, ϕ{x := B}

[= R]
Π⇒ Σ, A = A

where A
.
= B is A = B or B = A

Table 2. Some classical rules derivable in ITL.

can be proved in this calculus. The following theorem states that the calculus is
sound.

Theorem 3 (Soundness). If a sequent Γ is provable, Γ is i-valid. Hence Π ⊢
Σ =⇒ Π |=i Σ

Proof. Left to the reader. (The proof involves some observations about the
behaviour of intension functions when the language is extended.) ⊣

That the converse (generalized completeness) also holds will be shown in the
next section.

While the rules in Table 1 suffice to characterize the |=i relation, it is pleasant
to also have the usual classical Gentzen rules for the defined connectives at one’s
disposal. These are available as derived rules. By way of example those for ⊤,
→, ∀, and = are given in Table 2. Given the abbreviations in definition 3, they
are easily derivable from the ITL rules, as the reader may verify. Note that in
view of the correctness of these rules it seems reasonable to say that ITL is indeed
a classical logic.

§6. Model Existence. The purpose of this section—which could be skipped
on a first reading by readers mainly interested in the general characteristics of
our logic—is to prove Generalized Completeness and some of its friends, such as
the generalized Löwenheim-Skolem and Compactness theorems. We will do this
in the way Smullyan [27] did it for first-order logic, via a central Model Existence
theorem from which the desired theorems all follow as corollaries. First it will
be proved that certain “Hintikka” sequents, which can be thought of as resulting
from a systematic but unsuccessful attempt to construct a Gentzen proof from
the bottom up, are refutable. This is then used to show refutability of a wide
class of sequents.
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The definition of Hintikka sequents is close to that of the “Hintikka sets” in
Smullyan [27] and Fitting [9, 10], but is also analogous to that of Schütte’s [26]
semi-valuations.

Definition 11. A sequent Γ of L is called a Hintikka sequent in L if the
following hold:

1. {L : ϕ, R : ϕ} 6⊆ Γ for any sentence ϕ;
2. L : ⊥ /∈ Γ;

3. L : (λx.A)B ~C ∈ Γ =⇒ L : A{x := B} ~C ∈ Γ, if λx.A, B, and the sequence

of terms ~C are closed and of appropriate type;

4. R : (λx.A)B ~C ∈ Γ =⇒ R : A{x := B} ~C ∈ Γ, if λx.A, B, and the sequence

of terms ~C are closed and of appropriate type;

5. L : A ⊂ B ∈ Γ =⇒ L : B ~C ∈ Γ or R : A~C ∈ Γ, for all closed A, B and

sequences of closed ~C of appropriate types;
6. R : A ⊂ B ∈ Γ =⇒ there are constants ~c of appropriate types such that
{L : A~c,R : B~c} ⊆ Γ.

A Hintikka sequent Γ in L is said to be complete if L : ϕ ∈ Γ or R : ϕ ∈ Γ, for
each sentence ϕ of L.

A key property of Hintikka sequents is that they are refuted by intensional mod-
els, as the following lemma shows. The intensional model constructed in its proof
is closely akin to Andrews’ V -complexes.

Lemma 4 (Hintikka Lemma). Let Γ be a Hintikka sequent in a language L
such that Lα 6= ∅ if α is basic. Then Γ is refuted by an intensional model. If Γ
is complete, then Γ is refuted by a normal countable intensional model.

Proof. Let Γ be a Hintikka sequent in the language L as described. We will
find an intensional model refuting Γ using the Takahashi-Prawitz construction.
The following induction on type complexity defines domains Dα as sets of pairs
〈A, e〉, where A is a closed term of type α and e is called a possible extension of
A.

1. If α is basic let Dα = {〈c, c〉 | c ∈ Lα};
2. If α = 〈α1 . . . αn〉 let 〈Aα, e〉 ∈ Dα iff A is closed, e ⊆ Dα1

× · · ·×Dαn
and,

whenever 〈B1, e1〉 ∈ Dα1
, . . . , 〈Bn, en〉 ∈ Dαn

(a) If L : AB1 . . . Bn ∈ Γ then 〈〈B1, e1〉, . . . , 〈Bn, en〉〉 ∈ e;
(b) If R : AB1 . . . Bn ∈ Γ then 〈〈B1, e1〉, . . . , 〈Bn, en〉〉 /∈ e.

It is worth observing that each Dα is a function if Γ is complete. In that case
each Dα will be countable.

The set D = {Dα | α ∈ T } will be the collection of domains of the refuting
intensional model we are after. Note that, since each term has a unique type,
the Dα are pairwise disjoint. The Dα are also non-empty. This follows from the
assumption that Lα 6= ∅ in case α is basic; in case α = 〈α1 . . . αn〉 it is easy to
show that 〈λxα1

. . . λxαn
.⊥,∅〉 ∈ Dα.

We will define a function I which will turn out to be an intension function
for D. First some handy notation. If π is an ordered pair, write π1 and π2 for
the first and second elements of π respectively, so that π = 〈π1, π2〉. If f is a
function whose values are ordered pairs, write f1 and f2 for the functions with
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the same domain as f , such that f1(z) = (f(z))1 and f2(z) = (f(z))2 for any
argument z. Let a be an assignment for D. The substitution ←−a is defined by
←−a (x) = a1(x) and we let I1(a,A) = A←−a for any term A. The second component
of I, is defined by letting I2 =

⋃
α∈T I

2
α, where the I2

α are functions such that

I2
α : AD × T

L
α → TL

α if α ∈ B and

I2
α : AD × T

L
α → P(Dα1

× · · · ×Dαn
) ,

if α = 〈α1 . . . αn〉. The I2
α in their turn are defined using the following induction

on the complexity of terms.

1. I2
α(a, xα) = a2(x), if x is a variable;
I2
α(a, cα) = c, if α is basic;
I2
α(a, cα) = {〈〈A1, e1〉, . . . , 〈An, en〉〉 | 〈Ai, ei〉 ∈ Dαi

& L : cA1 . . . An ∈ Γ},
if α = 〈α1 . . . αn〉;

2. I2
〈〉(a,⊥) = 0

3. I2
〈~α〉(a,A〈β~α〉Bβ) = {〈~d〉 | 〈〈I1(a,B), I2

β(a,B)〉, ~d〉 ∈ I2
〈β~α〉(a,A)}

4. I2
〈β~α〉(a, λxβA〈~α〉) = {〈d, ~d〉 | d ∈ Dβ & 〈~d〉 ∈ I2

〈~α〉(a[d/x], A)}

5. I2
〈〉(a,A ⊂ B) = 1⇐⇒ I2

α(a,Aα) ⊆ I2
α(a,Bα)

Note that this definition does not depend on the question whether I is an in-
tension function for D and L, and indeed the latter is not immediately obvious.
We need to check the requirements in definition 5. That I(a, x) = a(x) for any
variable x is immediate and that I(a,A) = I(a′, A) if a and a′ agree on the
variables free in A follows by a standard property of substitutions and an easy
induction. Suppose that B is free for x in A. Then

I1(a,A{x := B}) = A{x := B}←−a = A←−a [x := B←−a ] =

A←−a [x := I1(a,B)] = A
←−−−−−−−−
a[I(a,B)/x] = I1(a[I(a,B)/x], A) .

That I2(a,A{x := B}) = I2(a[I(a,B)/x], A) if B is free for x in A follows by a
straightforward induction on the complexity of A which we leave to the reader.
Thus I(a,A{x := B}) = I(a[I(a,B)/x], A) if B is free for x in A.

It remains to be shown that I(a,A) ∈ Dα for any assignment a and term A of
type α. This is done by induction on the complexity of A. That I(a, xα) ∈ Dα

if x is a variable follows from the fact that I(a, x) = a(x) and that I(a, cα) ∈ Dα

if α is basic is immediate. In the remaining cases the type of A is complex
and it suffices to prove that whenever α = 〈α1 . . . αn〉, 〈B1, e1〉 ∈ Dα1

, . . . , and
〈Bn, en〉 ∈ Dαn

:

(a) If L : A←−a B1 . . . Bn ∈ Γ then 〈〈B1, e1〉, . . . , 〈Bn, en〉〉 ∈ I
2(a,A);

(b) If R : A←−a B1 . . . Bn ∈ Γ then 〈〈B1, e1〉, . . . , 〈Bn, en〉〉 /∈ I
2(a,A).

We shall consider each case. IH will be short for ‘induction hypothesis’.

• Aα ≡ c and α = 〈α1 . . . αn〉. The requirement follows from the definition
of I2(a, c) and clause 1. of definition 11.
• Aα ≡ ⊥ and α = 〈〉. The (a) part of the property follows from clause 2. of

definition 11, the (b) part from the fact that I2(a,⊥) = 0 = ∅.
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• A ≡ B〈βα1...αn〉Cβ . Suppose 〈B1, e1〉 ∈ Dα1
, . . . , 〈Bn, en〉 ∈ Dαn

, then

L : (BC)←−a B1 . . . Bn ∈ Γ⇐⇒

L : B←−a C←−a B1 . . . Bn ∈ Γ =⇒ (IH)

〈I(a, C), 〈B1, e1〉, . . . , 〈Bn, en〉〉 ∈ I
2(a,B)⇐⇒ (def. of I)

〈〈B1, e1〉, . . . , 〈Bn, en〉〉 ∈ I
2(a,BC)

This proves the (a) part of the case; the (b) part is similar.
• A ≡ (λxα1

C〈α2...αn〉). Again suppose d1 = 〈B1, e1〉 ∈ Dα1
, . . . , dn =

〈Bn, en〉 ∈ Dαn
, and reason as follows.

R : (λx.C)←−a B1 . . . Bn ∈ Γ⇐⇒

R : λx.C←−a xB1 . . . Bn ∈ Γ =⇒ Def. 11, B1 is closed

R : C←−a x{x := B1}B2 . . . Bn ∈ Γ⇐⇒

R : C
←−−−−
a[d1/x]B2 . . . Bn ∈ Γ =⇒ (IH)

〈d2, . . . , dn〉 /∈ I
2(a[d1/x], C)⇐⇒ (def. of I)

〈d1, d2, . . . , dn〉 /∈ I
2(a, λx.C)

This proves the (b) part, which is similar to the (a) part.
• Aα ≡ B ⊂ C. Then α = 〈〉 and B and C have some type 〈α1 . . . αn〉.

Using induction we may assume that I(a,B), I(a, C) ∈ D〈α1...αn〉. Suppose
L : (B ⊂ C)←−a ∈ Γ, i.e. L : B←−a ⊂ C←−a ∈ Γ and reason as follows.

〈〈B1, e1〉, . . . , 〈Bn, en〉〉 ∈ I
2(a,B) =⇒ (IH)

R : B←−a B1 . . . Bn /∈ Γ =⇒ (Def. 11)

L : C←−a B1 . . . Bn ∈ Γ =⇒ (IH)

〈〈B1, e1〉, . . . , 〈Bn, en〉〉 ∈ I
2(a, C)

We conclude that I2(a,B) ⊆ I2(a, C) and that I2(a,B ⊂ C) = 1. This
proves the (a) part of the property. The (b) part is left to the reader.

This concludes the proof that I is an intension function for D and L. Now
define the function E by letting E(〈A, e〉) = e if 〈A, e〉 ∈ Dα for any complex α.
Clearly, E(I(a,A)) = I2(a,A) for any Aα, E is an extension function for D, and
M = 〈D, I,E〉 is an intensional model for the language L. It is easy to see that
M refutes Γ. We have already established that M is countable if Γ is complete,
and proposition 2 gives a normal intensional model refuting Γ which is countable
in case Γ is complete.

⊣

Before we continue with the proof of Model Existence, let us look at an applica-
tion. Hintikka’s Lemma sometimes gives an easy way of showing the refutability
of certain sequents. For example, while standard higher order logic validates
the sentence p = q ∨ q = r ∨ r = p (where p, q and r are type 〈〉 constants), a
Hintikka sequent (corresponding to an open tableau branch) shows that this is
not the case in ITL.

Proposition 5. ⇒ p = q, q = r, r = p is refutable by an intensional model.
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Proof. The non-abbreviated form of ⇒ p = q, q = r, r = p is

Γ = {R : (λz.⊤) ⊂ (λz.zp ⊂ zq), R : (λz.⊤) ⊂ (λz.zq ⊂ zr),
R : (λz.⊤) ⊂ (λz.zr ⊂ zp)},

with z a variable of type 〈〈〉〉. An inspection tells that the following extension
Γ+ of Γ, in which c1, c2 and c3 are constants of type 〈〈〉〉, is a Hintikka sequent.

{R : (λz.⊤) ⊂ (λz.zp ⊂ zq), L : (λz.⊤)c1, R : (λz.zp ⊂ zq)c1, L : ⊤,
R : c1p ⊂ c1q, L : c1p, R : c1q, R : (λz.⊤) ⊂ (λz.zq ⊂ zr), L : (λz.⊤)c2,
R : (λz.zq ⊂ zr)c2, R : c2q ⊂ c2r, L : c2q, R : c2r,
R : (λz.⊤) ⊂ (λz.zr ⊂ zp), L : (λz.⊤)c3, R : (λz.zr ⊂ zp)c3, R : c3r ⊂ c3p,
L : c3r, R : c3p}

It follows that Γ+ and hence Γ are refutable by an intensional model. ⊣

This shows that it is consistent to assume that there are at least three proposi-
tions. It is clear that the method can be generalized to show that it is consistent
to assume a set of propositions ≥ any given countable cardinality. If the count-
ability restriction on languages is dropped, the existence of intensional models
with type 〈〉 domains ≥ any given cardinality is obtained. We leave it to the
reader to show that p ↔ q ⇒ p = q and other instances of Extensionality are
refutable.

Let us return to the main line of argument. In order to state the model
existence theorem below, we need the notion of a provability property (closely
related to Smullyan’s [27] abstract consistency property).

Definition 12. Let P be a set of sequents in the language L. P is a prov-
ability property in L if P is closed under sequent rules, i.e. if Γ ∈ P whenever
{Γ1, . . . ,Γn} ⊆ P and Γ1, . . . ,Γn/Γ is a sequent rule.

A provability property P in L is sound if no Γ ∈ P is refuted by an intensional
model for L.

We now come to Model Existence itself: sequents that are not elements of a sound
provability property (in an extended language) can be extended to Hintikka
sequents (in that language) and are hence refutable.

Theorem 6 (Model Existence). Let L and C be languages such that L ∩ C =
∅ and each Cα is denumerably infinite. Assume that P is a sound provability
property in L ∪ C and that Γ is a sequent in the language L. If Γ /∈ P then Γ is
refuted by a countable normal intensional model.

Proof. Let P and Γ be as described. We construct a Hintikka sequent Γ∗

such that Γ ⊆ Γ∗. Let ϑ1, . . . , ϑn, . . . be an enumeration of all signed sentences
in L ∪ C. Write ι(ϑ) for the index that the signed sentence ϑ obtains in this
enumeration. Let Γ0 = Γ and define each Γn+1 by distinguishing the following
cases.

• Γn+1 = Γn, if Γn ∪ {ϑn} ∈ P ;
• Γn+1 = Γn ∪ {ϑn}, if Γn ∪ {ϑn} /∈ P and ϑn is not of the form R : A ⊂ B;
• Γn+1 = Γn ∪ {ϑn, L : Ac1 . . . cn,R : Bc1 . . . cn}, if Γn ∪ {ϑn} /∈ P and ϑn =

R : A ⊂ B for A and B of type 〈α1 . . . αn〉, where each ci is the first constant
in Cαi

which does not occur in Γn∪{ϑn} and is no element of {c1, . . . , ci−1}
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This is well-defined since each Γn contains only a finite number of constants from
C. That Γn /∈ P for each n follows by a simple induction which uses the definition
of a provability property and the fact that [⊂R] is a sequent rule. Define Γ∗ =⋃

n Γn. For all finite sets {ϑk1
, . . . , ϑkn

} and for all k ≥ max{k1, . . . , kn}

{ϑk1
, . . . , ϑkn

} ⊆ Γ∗ ⇔ Γk ∪ {ϑk1
, . . . , ϑkn

} /∈ P(5)

In order to show this, let k ≥ max{k1, . . . , kn} and let {ϑk1
, . . . , ϑkn

} ⊆ Γ∗.
Then there is some ℓ such that {ϑk1

, . . . , ϑkn
} ⊆ Γℓ. Let m = max{k, ℓ}. We

have that Γk ∪ {ϑk1
, . . . , ϑkn

} ⊆ Γm. Since Γm /∈ P and P is closed under
supersets (rule [W ]), it follows that Γk ∪ {ϑk1

, . . . , ϑkn
} /∈ P . For the reverse

direction, suppose that Γk ∪ {ϑk1
, . . . , ϑkn

} /∈ P . Then, since P is closed under
supersets, Γki

∪ {ϑki
} /∈ P , for each of the ki. By the construction of Γ∗ each

ϑki
∈ Γ∗ and {ϑk1

, . . . , ϑkn
} ⊆ Γ∗.

With the help of (5) it can be verified that Γ∗ is a Hintikka sequent. The last
condition of Definition 11 immediately follows from the construction of Γ∗. We
check condition 5, which may serve as an example for the other cases. Assume

L : A ⊂ B ∈ Γ∗ and let k be the maximum of ι(L : A ⊂ B), ι(L : B ~C), and

ι(R : A~C). Since, by (5), Γk∪{L : A ⊂ B} /∈ P and since P is closed under sequent

rules, it must be the case that either Γk ∪ {L : B ~C} /∈ P or Γk ∪ {R : A~C} /∈ P ,

Using (5), we find that L : B ~C ∈ Γ∗ or R : A~C ∈ Γ∗.
We conclude that Γ∗ is refuted by an intensional model M . In order to prove

that there is a normal countable intensional model that refutes Γ∗ and hence
Γ it suffices to show that Γ∗ is complete. Let ϕ be any sentence of L ∪ C and
assume that L : ϕ /∈ Γ∗ and R : ϕ /∈ Γ∗. Then, by (5), Γk ∪ {L : ϕ} ∈ P and
Γk ∪ {R : ϕ} ∈ P , for sufficiently large k. But M refutes Γk and therefore must
either refute Γk∪{L : ϕ} or Γk ∪{R : ϕ}, contradicting the soundness of P . Thus
Γ∗ is complete and some normal countable intensional model refutes Γ∗ and Γ.

⊣

From model existence we can derive some nice corollaries. In the following Γ will
always be a sequent in some language L while ∆ ranges over sequents in L ∪ C,
where L and C are as in the formulation of Theorem 6.

Corollary 7 (Generalized Compactness). If Γ is i-valid then some finite
Γ0 ⊆ Γ is i-valid.

Proof. {∆ | some finite ∆0 ⊆ ∆ is i-valid} is a sound provability property. ⊣

Corollary 8 (Generalized Löwenheim–Skolem). If Γ is not i-valid then Γ is
refutable by a countable normal intensional model.

Proof. {∆ | ∆ is i-valid} is a sound provability property. ⊣

Corollary 9 (Generalized Completeness). If Γ is i-valid then Γ is provable.
Hence Π |=i Σ =⇒ Π ⊢ Σ.

Proof. {∆ | ∆ is provable} is a sound provability property. ⊣

Corollary 10 (Cut elimination). If Π, ϕ ⊢ Σ and Π ⊢ Σ, ϕ then Π ⊢ Σ.

Proof. Use soundness and completeness. ⊣
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word translation word translation

if λp〈〉λq〈〉.p→ q man man〈e〉

no λP ′
〈e〉λP〈e〉.¬∃xe(P

′x ∧ Px) unicorn unicorn〈e〉

some λP ′
〈e〉λP〈e〉.∃xe(P

′x ∧ Px) runs run〈e〉

every λP ′
〈e〉λP〈e〉.∀xe(P

′x→ Px) laughs laugh〈e〉
loves λQ〈〈e〉〉λxe.Q(λye.love〈ee〉 xy) Bill bill〈〈e〉〉

is λQ〈〈e〉〉λxe.Q(λye.x = y) Ann ann〈〈e〉〉

knows λp〈〉λxe.know〈e〈〉〉 xp Tully tully〈〈e〉〉
believes λp〈〉λxe.believe〈e〈〉〉 xp Cicero cicero〈〈e〉〉

Table 3. Some words and their translations

§7. A Linguistic Application. We now turn to a linguistic application of
ITL and will develop the semantics of a tiny fragment of English containing
verbs of propositional attitude. It will be shown that, given the present logic, it
is consistent for an agent a to know that ϕ without knowing that ψ, even if ϕ
and ψ are co-entailing.

Before considering our special application, however, let us address the general
point of axiomatic extensions of the base logic. In most applications one will
like to work with a subclass of the class of intensional models that conform
to some set of non-logical axioms S. In that case one can define Π |=S Σ to
be S ∪ Π |=i Σ, while Π ⊢S Σ can be defined as S ∪ Π ⊢ Σ. Soundness and
generalized completeness immediately give that Π |=S Σ ⇐⇒ Π ⊢S Σ. Not
all applications will instantiate S in the same way, but one set of axioms that
immediately come to mind, and that we shall adopt here, are the usual principles
of λ-conversion. We may add these by assuming that S contains all universal
closures of instantiations of the following schemes.

(α) λx.A = λy.A{x := y}, if y is free for x in A;
(β) (λx.A)B = A{x := B}, if B is free for x in A;
(η) λx.Ax = A, if x is not free in A.

As soon as these schemes are added to the base logic, the result is full intensional
identity of βη equivalent terms, i.e. |=S A = B will hold if A =βη B.

For our linguistic application we will proceed along lines pioneered by Mon-
tague [16] and define a small fragment of English. The words of this fragment
are given in Table 3, along with their translations into type logic. In these trans-
lations the terms love, run, man, etc. are constants of the types indicated, where
e is the type of entities. The set of syntactic structures is obtained by stipulating
that all words in Table 3 are syntactic structures and that [XY ] is a syntactic
structure whenever X and Y are syntactic structures. Defining syntactic struc-
tures in this way leads to a lot of gibberish along with the structures we are
interested in, but this is not important for present purposes. As long as the
desired structures are there and get reasonable interpretations our aim is served.

Let us define the relation ; (“translates as”) between syntactic structures
and terms as the smallest relation such that 1) X ; A if X is a word and A is
its translation in Table 3 and 2) if X ; A and Y ; B then [XY ] ; AB if AB
is a well-formed term and [XY ] ; BA if BA is well-formed. This leaves open
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the possibility that a syntactic structure does not get a translation and indeed
many do not. Structures X for which there is no A such that X ; A are called
uninterpretable and we have no interest in them.

Let us turn to some syntactic structures that are interpretable. In (1) be-
low two are given, together with (the β normal forms of) their interpretations.
Clearly, (1b), the interpretation of (1a), i-entails and is i-entailed by (1d), which
is the interpretation of (1c).

(1) a. [[[no man]laughs][if[[some unicorn]runs]]]
b. ∃x(unicorn x ∧ run x)→ ¬∃x(man x ∧ laugh x)
c. [[[no unicorn]runs][if[[some man]laughs]]]
d. ∃x(man x ∧ laugh x)→ ¬∃x(unicorn x ∧ run x)

This does not mean however that (1b) and (1d) are identical in all intensional
models, as nothing excludes the possibility that I(a, (1b)) 6= I(a, (1d)) for some
intension function I. It follows that the two structures in (2) are not co-entailing.

(2) a. [[every man][knows[[[no man]laughs][if[[some unicorn]runs]]]]]
b. ∀y(man y → know y (∃x(unicorn x ∧ run x)→ ¬∃x(man x ∧ laugh x)))
c. [[every man][knows[[[no unicorn]runs][if[[some man]laughs]]]]]
d. ∀y(man y → know y (∃x(man x ∧ laugh x)→ ¬∃x(unicorn x ∧ run x)))

Suppose that c is some constant of type e. Then know c (1b) ⇒ know c (1d)
is in fact a Hintikka sequent and is therefore refuted by an intensional model
(addition of (α), (β) and (η) does not change this). This intensional model can
also be used to show that (2b) does not entail (2d). This is as desired, for even if
(2a) holds there may well be a man who has not managed to draw the inference
necessary to arrive at (1c). We have thus shown that the logic avoids the problem
of logical omniscience in the sense that it does not exclude the possibility that a
person knows one thing but fails to know another thing logically equivalent with
it. Essential use was made of the failure of Extensionality in our logic ITL: terms
of complex type can have the same extensions, even in all intensional models,
without necessarily having the same intension.

This distinction between extension and intension does not extend to terms of
basic type however and this raises the question how names are to be dealt with.
If they are treated straightforwardly using constants of type e (e.g. be, or in the
present context preferably λP.Pb, for ‘Bill’) we run into the standard problems
of the ‘Cicero–Tully’ or ‘Hesperus–Phosphorus’ kind. However, there are many
reasonable translations that do not directly equate names with type e constants.
The translations in Table 3, that send names to constants of the quantifier type
〈〈e〉〉, may serve as an example, provided some meaning postulates (additions to
S) like the following are adopted.

(3) a. ∀P (annP ↔ Pa)
b. ∀P (billP ↔ Pb)
c. ∀P (tullyP ↔ Pt)
d. ∀P (ciceroP ↔ Pc)

The structure [Tully runs] translates as tully run, but given the meaning pos-
tulates just introduced, this is equivalent with run t. Similarly, [Cicero runs]
translates as cicero run, equivalent with run c. And since [Tully[is Cicero]]
is translated as tully(λx.cicero(λy.x = y)), which is equivalent with t = c,
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it is readily explained why the argument Tully runs, Tully is Cicero, there-
fore Cicero runs holds. But this reasoning essentially depends on extensional
equivalence and therefore will not go through once propositional attitudes enter
the picture. Consider the structure [Ann[believes[Tully runs]]]. It translates as
ann(λx.believe x(tully run)) and this is equivalent with believe a (tully run), while
believe a (cicero run) is equivalent with the translation of [Ann[believes [Cicero
runs]]]. However, there is no co-entailment between these sentences, even in the
presence of the postulates in (3) and the translation of [Tully[is Cicero]].

This shows that even for names the sense/reference distinction can be captured
in this logic, provided one is willing to treat names with the help of predicates
(Quine’s ‘primacy of predicates’ comes to mind). Treating them as being of type
〈〈e〉〉, as we have done here, is one possible strategy. There may be others.

The present application of our intensional type theory to linguistic semantics
has avoided the concept of possible worlds altogether, as it was not needed in or-
der to illustrate our points. However, as possible worlds are obviously extremely
useful for the analysis of a range of natural language constructions (though not
for the true intensionality we have been concerned with in this paper), one might
well want to combine them with the present approach. Muskens [19, chapter 4]
gives a translation of what is essentially the fragment of Montague [16] into a
two-sorted relational type theory, with possible worlds providing an additional
basic type. Although the type theory in [19] validates Extensionality, its lan-
guage essentially is the language employed here, so that the translation can also
serve as a translation into ITL. A minor variation will treat names as they are
treated above.

§8. Worlds. ITL is a generalization of the usual formulation of type theory
and intensionality is obtained by giving up the axiom of Extensionality, not by
the introduction of possible worlds, as in modal logic. However, while the usual
Kripke-style semantics is not known to do a very good job regarding the puzzles
of intensionality we have been concerned with here, it does perform very well
when it comes to modal reasoning, temporal reasoning, counterfactual reasoning
etc. So it seems that worlds and the possibility to quantify over worlds are
still welcome, even to those who accept the claim that the present approach to
intensionality is superior to the modal one.

If such a combination of modality with true intensionality is desired, one way
to proceed would be to simply add domains of worlds to the existing intensional
models and interpret a modal higher order language on the results, a course
of action followed in Muskens [21]. There is, however, an easier way. Once
true intensionality is obtained in the way it was done in this paper, worlds
can also be constructed out of propositions, the inhabitants of the domain D〈〉,
while accessibility relations can be obtained as well. The procedure will only
be sketched in this section; more formal considerations and comparisons with
standard approaches to modality will be left to a future occasion.

The idea of constructing possible worlds out of other entities is an old one.
E.g. Wittgenstein [33] constructs them out of ‘states of affairs’ and Carnap [4]
takes worlds to be ‘state-descriptions’, maximal consistent sets of sentences. A
recent construction of worlds from propositions can be found in Pollard [23].
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Varying upon such proposals, one can identify worlds with certain objects of
type 〈〈〉〉 here, i.e. objects whose extensions are sets of propositions. Here is the
construction. Assume, for simplicity, the principles (α), (β), and (η) discussed
above, and let Ω, which will stand for the predicate ‘is a world’, be a fixed
constant of type 〈〈〈〉〉〉, while w varies over objects of type 〈〈〉〉. Stipulate the
following.

(W1) ∀w(Ωw → ¬w⊥)
(W2) ∀w(Ωw → (w(A ⊂ B)↔ ∀~x(w(A~x)→ w(B~x))))

The first of these axioms requires world extensions to be consistent while addition
of the second schema makes worlds distribute over logical operators. Statements
such as the following become derivable.

a. ∀w(Ωw → (w(¬ϕ) ↔ ¬(wϕ)))
b. ∀w(Ωw → (w(ϕ ∧ ψ)↔ ((wϕ) ∧ (wψ))))
c. ∀w(Ωw → (w(∀xϕ) ↔ ∀x(wϕ)))
d. ∀w(Ωw → (w(∃xϕ) ↔ ∃x(wϕ)))

The first of these statements says that worlds are complete, while the last two are
‘Henkin properties’ that enforce, for example, that if an existential proposition
is an element of the extension of a given world some proposition witnessing the
existential must also be an element. In general, given (W1) and (W2), worlds
single out sets of propositions that could be simultaneously true.

It is natural from this perspective to introduce a constant w0 of type 〈〈〉〉 that
is meant to denote the actual world, the world consisting of all propositions that
are true (in a given intensional model). If this is wanted one should stipulate
the following.

a. Ωw0

b. ∀p〈〉(w0p↔ p).

The first of these requirements merely stipulates that w0 is a world while the sec-
ond makes it the actual world. In models additionally satisfying Extensionality,
w0 is the only world in view of the fact that there are exactly two propositions in
such models, but in other intensional models there is no such trivialization. Note,
by the way, that nothing requires co-extensional worlds to be identical. The set
of propositions that are true in some world does not necessarily determine it.

Since worlds are of type 〈〈〉〉 it is possible to iterate and form propositions
w1ϕ, w2(w1ϕ), w3(w2(w1ϕ)) and so on. Is it acceptable that these differ in
truth value? Here we shall assume that this is not so and that if a proposition
wϕ is true at some world, it is true at all, provided w is a world. The question
whether a proposition is in the extension of a world should arguably be world-
independent itself. The way to enforce this is by adopting the following axiom
scheme.

(W3) ∀ww′((Ωw ∧ Ωw′)→ (w(w′ϕ)↔ (w′ϕ)))

In a similar vein, the question whether an 〈〈〉〉 object is a world, presumably
should also be uniform across worlds:

(W4) ∀w(Ωw → ∀w′(Ωw′ ↔ w(Ωw′)))

We now have worlds, but we still do not have accessibility relations between
worlds. These can be obtained, however, by considering more expressions of
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type 〈〈〈〉〉〉. If R is such an expression, it can be interpreted as the predicate
‘is accessible’, and λwλw′.w(Rw′) will play the role of an accessibility relation.
The usual relational properties (transitivity, reflexivity, euclideanness, . . . ) can
then either be stipulated or, depending on the choice of R, be shown to hold.
For example, the universal accessibility relation λwλw′.w(Ωw′) is easily seen to
be an equivalence relation on the set of worlds in view of (W4).

A next step is the introduction of the usual modal operators. Modal boxes
can be obtained by writing [R] for λp∀w((Ωw ∧ Rw) → wp), so that [R]ϕ will
reduce to ∀w((Ωw ∧ Rw) → wϕ). Diamonds are obtained as usual, as the
duals of boxes: 〈R〉 is short for λp.¬[R]¬p. Note that if w′ can be shown to
be a world, the statement w′([R]ϕ), i.e. w′(∀w((Ωw ∧ Rw) → wϕ)), will be
equivalent with ∀w((w′(Ωw)∧w′(Rw))→ w′(wϕ)) by the distribution of worlds
over logical operators and the last statement will in its turn be equivalent with
∀w((Ωw ∧ w′(Rw))→ wϕ) by (W3) and (W4).

Let us give another example of an accessibility relation some of whose prop-
erties follow from its definition. The relation of belief considered in the previous
section, λpλx.believe xp, is one of explicit belief. It is not closed under entail-
ment or even under logical equivalence. But there is also a notion of implicit
belief that is closed under entailment. Roughly, one implicitly believes ϕ if one
rationally should believe ϕ given one’s explicit beliefs. One way to model this
(for some arbitrary agent john) is to consider the following property R of worlds.

λw.∀p((believe john p↔ w(believe john p)) ∧ (believe john p→ wp))

Here a world w is accessible if John’s explicit beliefs in w are exactly those that
John actually holds and if those explicit beliefs are in fact true in w. There
may fail to be such worlds, for example if John’s explicit beliefs are in fact
inconsistent, a situation not ruled out by our previous considerations. But it is
possible to stipulate that λwλw′.w(Rw′) is in fact serial:

∀w∃w′∀p((w(believe john p)↔ w′(believe john p)) ∧ (w(believe john p)→ w′p))

Such a stipulation is simultaneously an existence requirement on worlds and a
rationality constraint on John’s beliefs. It will lead to the derivability of the
usual D axiom, as [R]ϕ→ 〈R〉ϕ will now hold for all ϕ. Note that the definition
of R immediately gives transitivity and euclideanity of λwλw′.w(Rw′), so that
we have, for all ϕ, that [R]ϕ→ [R][R]ϕ and 〈R〉ϕ→ [R]〈R〉ϕ. These correspond
to the usual 4 and 5 axioms.

§9. Conclusion. In this paper we have introduced an abstract and simple
notion of intensional model that is a generalization of Henkin’s general mod-
els. Its definition does not involve concepts that have no immediate intuitive
justification, such as the “abstraction designation functions” of Fitting [10] or
the “application operators” of Benzmüller et al. [3]. These operators provide
generalized, non-standard notions of abstraction in one case and of application
in the other, but seem to have no justification other than a purely technical one.
The present approach, in contrast, gives a kind of minimal logic of intension and
extension, with ingredients that well-nigh any logic of intension and extension
seems to need. Models are inhabited by intensions, a function I sends terms to
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their intensions and functions Eα send intensions to the extensions they deter-
mine. If an additional requirement should be made that the Eα be injective, one
essentially obtains Henkin’s general models, if, moreover, the E〈α1...αn〉 should
be required to be onto P(Dα1

× · · · ×Dαn
), standard models are obtained.

The logic contrasts with other approaches to (hyper-)intensionality in two
ways. Firstly, unlike other approaches, the aim is not to set up a new logic, but
to provide existing classical type theory with a wider class of models in order to
invalidate the axiom of Extensionality, which is unwanted in many applications.
Secondly, the logic is agnostic about what intensions are. To the latter question
various answers have been given but here we have only provided an abstract
characterization of the notion of intensionality. We have, in other words, focused
on the logic rather than on the ontology of intensions.

While the logic is a generalisation of classical type theory, not an extension
with new concepts, it turns out that there is a natural connection with the usual
notion of modality. Intensional models may have domains of the propositional
type 〈〉 that are not isomorphic with {0, 1} and certain properties of objects
in these domains can be identified with possible worlds. Accessibility relations
of various kinds between such worlds are easily definable and modal box and
diamond operators can be obtained accordingly.
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